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The hypercube @,




Spanning trees of @),

Tree(G) = {spanning trees of a graph G}
7(G) | Tree(G)|
n] {1,2,...,n}

Theorem 0 (Stanley, Enumerative Combinatorics, vol. 2, p. 62)

(@) = ]2 = 22”—n—1ﬁk(z),
SCln] k=1

5]=2

Eg, 7(Qs) = 21{1,2}] - 2{1,3}] - 2[{2,3}] - 2[{1, 2,3}
= 4-4.4.6 = 384.

Bijective proof??




The model: K,, and the Prufer code

K, = complete graph on n vertices

Cayley’s Formula: 7(K,)=n""?

Priifer code: Tree(K,,) bijection [n]"—2
1 2 3
® o O
4 5 6 Prifer code
® ® ® - 4255458
7 8 9
o e O
e degy(i) = 14 number of i’s in Priifer code of T’
Cayley-Prifer Formula:
Z mdegT coogdeer() — g (4 4y

TeTree(Kp)



Weighted enumeration and bijections

e Suppose that you know Cayley’s formula 7(K,) = n" 2. ..

...and can prove it using the Matrix-Tree Theorem. . .
... but are looking for a bijective proof.

e Knowing the Cayley-Priifer Formula

Sl gl ) g (g e )
TeTree(Ky)

might be an important clue, enabling you to reproduce the
Priifer code (or a similar bijection).

e Goal: Do the same thing for (), by finding a weighted analogue
of the formula

(@) = ]] 2I9]
ScCln]

|S1>2



Weighted enumeration of spanning trees of @Q,,

e Assign a monomial weight wt(e) to each edge e € @,

define  wt(7T) = Hwt(e) for T' € Tree(Q,),

ecT

and consider the generating function

> wi(T).

TeTree(Qn)

First attempt: Keep track of vertex degrees (a la Priifer).

Weight each edge vw € E(Q,) by

wt(vw) = Yyl
so that

wt(T) = H ydegT

veV(Qn)

e Unfortunately, this does not factor nicely. E.g., for n = 3, it is

Tooo * Tool * -+ T111 - (some irreducible degree-6 nightmare).



Directions of edges

o Weight each edge vw by ¢;, where i = dir(vw) is the unique index
for which v; # w;. So

n

Wt(T) _ qdir(T) _ H q-\{edges of T in direction 7}|

1
1=1

(0,1,1) (1,1,)

(0,0,1) (1,0,1)

(0,1,0) (1,1,0)

(0,0,0) (1,0,0)

Theorem 1

d g™ = 27 ] (Z%)

T € Tree(Qn) ﬁg|c [n] €S
>2



Decoupled vertex degrees

e For each edge e = vw not in direction 1,

either v, =w; =0 or v; = w; = 1.

Weight e by x; or xl-_l accordingly. E.g., for e = {010, 110},

dd(e)

wt(e) = ddir(e)T = Q1£U233§1-

e FEquivalently, record which Q),,_1 C @,, the edge e belongs to.

(0,1,1) (1,1,)

(0,0,1) (1,0,1)

(0,1,0) (1,1,0)

(0,0,0) (1,0,0)



The main result

Theorem 2

2.

T € Tree(Qy)

where

q

dir(T)xdd(T) = qi...(qn H
SCln
EECA

(

> ala;

€S

A(T) _ Hl,dd(e)

ecT

Compare Theorem 1:

S Clnj

Z qdlr — 22n_n_1 q1---dqn H ( Z %’)

T € Tree(Qn)

1€8S

5122

and Theorem 0:

T(Qn) = HQ‘S‘
SC[n]
15|>2



Sketch of the proof

Weighted Matrix-Tree Theorem
Let L = (Lyw)vwev(a) be the weighted Laplacian:

2

0 v # w and vw € E(G)
Lyw = { — wt(vw) vw € E(G)
> wt(e) v=w

Then Y remyee(qy WHT) = det L, where L is obtained by deleting the
vth row and vth column of L.

Identification of Factors Lemma (Krattenthaler)
fldet L <= L has a nullvector in Q|q, z|/(f).

e Use a computer algebra package (e.g., Macaulay) to compute
“witness” nullvectors for factors f = fs

e FExperimentally, the witnesses have a nice form, reducing
the proof to calculation

e Same method can be used for threshold graphs (specializing
a result of Remmel and Williamson) and products of K,,’s



