

Towards a bijective enumeration of spanning trees of the hypercube

Jeremy L. Martin and Victor Reiner
University of Minnesota

Full paper

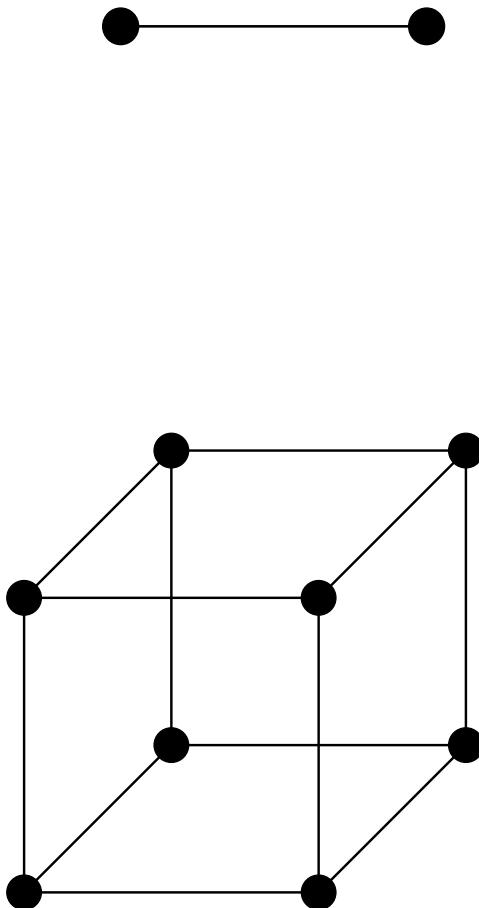
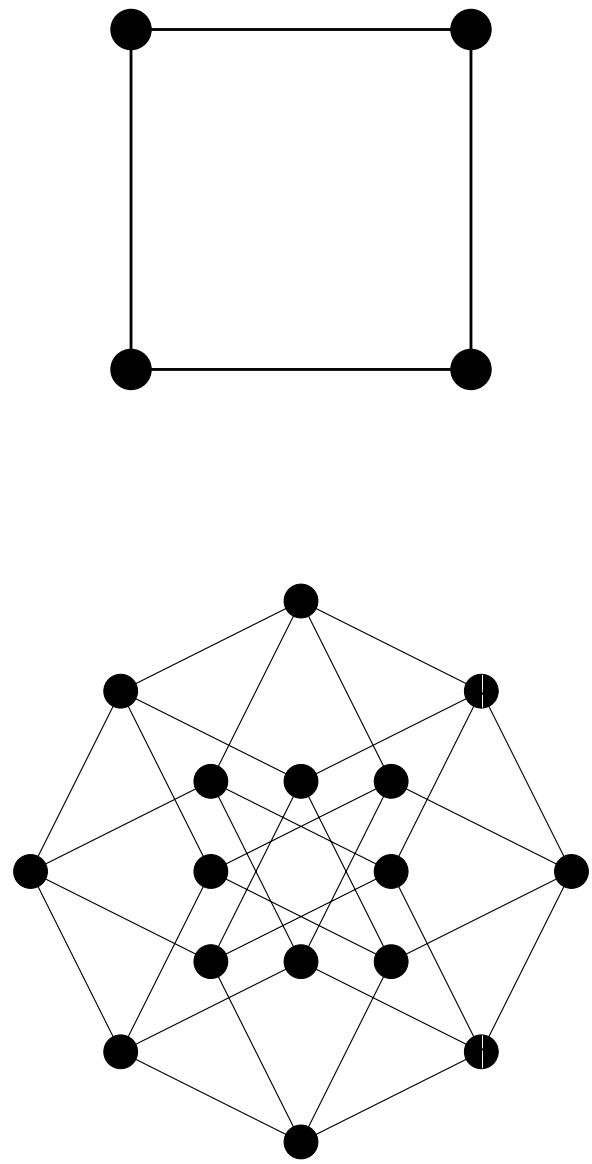
“Factorization of some weighted spanning tree enumerators”

at <http://math.umn.edu/~martin/math/pubs.html>

The hypercube Q_n

$$V(Q_n) = \{v = v_1v_2 \dots v_n : v_i \in \{0, 1\}\}$$

$$E(Q_n) = \{vw : v_i = w_i \text{ for all but one } i\}$$



Spanning trees of Q_n

$$\begin{aligned}\text{Tree}(G) &= \{\text{spanning trees of a graph } G\} \\ \tau(G) &= |\text{Tree}(G)| \\ [n] &= \{1, 2, \dots, n\}\end{aligned}$$

Theorem 0 (Stanley, Enumerative Combinatorics, vol. 2, p. 62)

$$\tau(Q_n) = \prod_{\substack{S \subset [n] \\ |S| \geq 2}} 2|S| = 2^{2^n - n - 1} \prod_{k=1}^n k^{\binom{n}{k}}.$$

$$\begin{aligned}\text{E.g., } \tau(Q_3) &= 2|\{1, 2\}| \cdot 2|\{1, 3\}| \cdot 2|\{2, 3\}| \cdot 2|\{1, 2, 3\}| \\ &= 4 \cdot 4 \cdot 4 \cdot 6 = 384.\end{aligned}$$

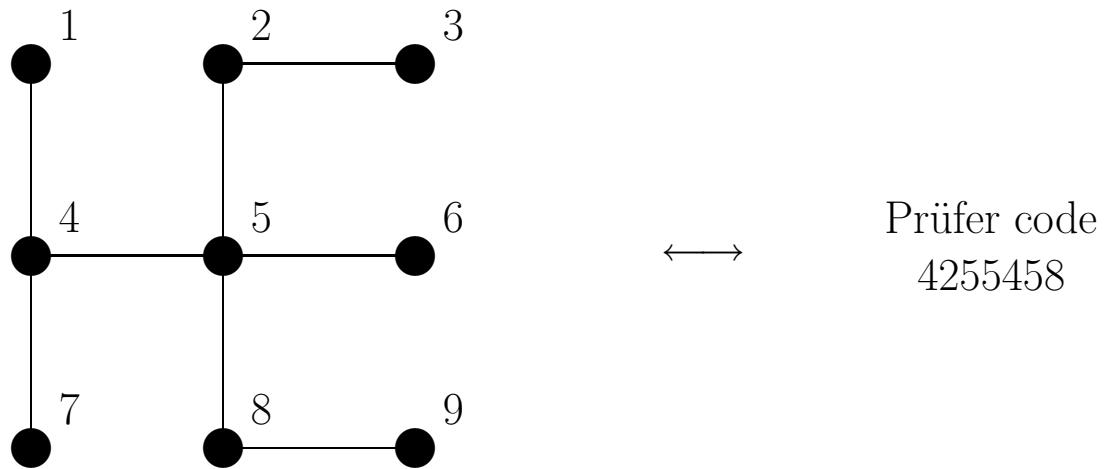
Bijective proof??

The model: K_n and the Prüfer code

K_n = complete graph on n vertices

Cayley's Formula: $\tau(K_n) = n^{n-2}$

Prüfer code: $\text{Tree}(K_n) \xrightarrow{\text{bijection}} [n]^{n-2}$



- $\deg_T(i) = 1 + \text{number of } i\text{'s in Prüfer code of } T$

Cayley-Prüfer Formula:

$$\sum_{T \in \text{Tree}(K_n)} x_1^{\deg_T(i)} \cdots x_n^{\deg_T(n)} = x_1 \cdots x_n (x_1 + \cdots + x_n)^{n-2}$$

Weighted enumeration and bijections

- Suppose that you know Cayley's formula $\tau(K_n) = n^{n-2} \dots$
... and can prove it using the Matrix-Tree Theorem...
... but are looking for a *bijective* proof.
- Knowing the Cayley-Prüfer Formula

$$\sum_{T \in \text{Tree}(K_n)} x_1^{\deg_T(i)} \cdots x_n^{\deg_T(n)} = x_1 \cdots x_n (x_1 + \cdots + x_n)^{n-2}$$

might be an important clue, enabling you to reproduce the Prüfer code (or a similar bijection).

- **Goal:** Do the same thing for Q_n by finding a weighted analogue of the formula

$$\tau(Q_n) = \prod_{\substack{S \subset [n] \\ |S| \geq 2}} 2|S|$$

Weighted enumeration of spanning trees of Q_n

- Assign a monomial weight $\text{wt}(e)$ to each edge $e \in Q_n$,

$$\text{define } \text{wt}(T) = \prod_{e \in T} \text{wt}(e) \quad \text{for } T \in \text{Tree}(Q_n),$$

and consider the generating function

$$\sum_{T \in \text{Tree}(Q_n)} \text{wt}(T).$$

First attempt: Keep track of vertex degrees (à la Prüfer).

Weight each edge $vw \in E(Q_n)$ by

$$\text{wt}(vw) = y_v y_w$$

so that

$$\text{wt}(T) = \prod_{v \in V(Q_n)} y_v^{\deg_T(v)}$$

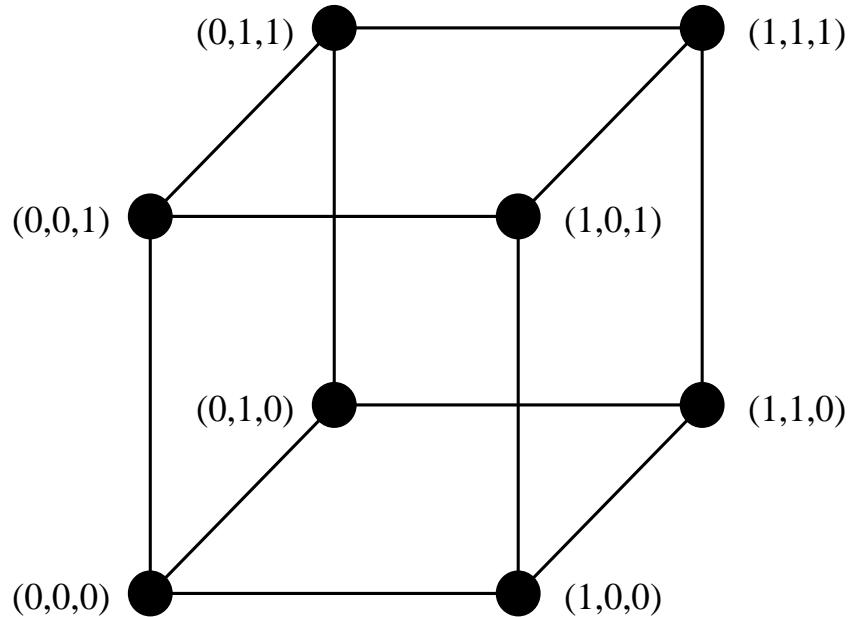
- Unfortunately, this does not factor nicely. E.g., for $n = 3$, it is

$$x_{000} \cdot x_{001} \cdots x_{111} \cdot (\text{some irreducible degree-6 nightmare}).$$

Directions of edges

- Weight each edge vw by q_i , where $i = \text{dir}(vw)$ is the unique index for which $v_i \neq w_i$. So

$$\text{wt}(T) = q^{\text{dir}(T)} = \prod_{i=1}^n q_i^{|\{\text{edges of } T \text{ in direction } i\}|}$$



Theorem 1

$$\sum_{T \in \text{Tree}(Q_n)} q^{\text{dir}(T)} = 2^{2^n - n - 1} q_1 \cdots q_n \prod_{\substack{S \subset [n] \\ |S| \geq 2}} \left(\sum_{i \in S} q_i \right)$$

Decoupled vertex degrees

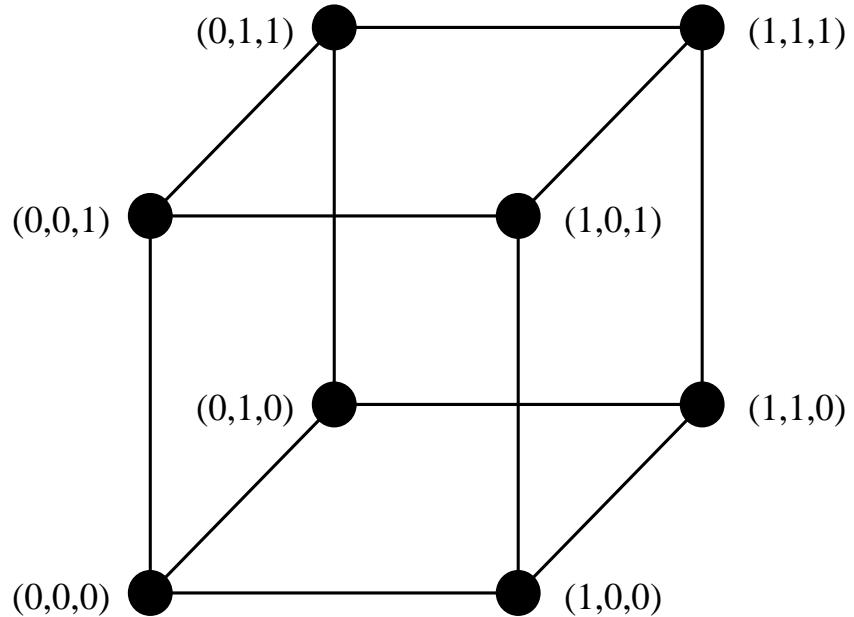
- For each edge $e = vw$ not in direction i ,

$$\text{either } v_i = w_i = 0 \quad \text{or} \quad v_i = w_i = 1.$$

Weight e by x_i or x_i^{-1} accordingly. E.g., for $e = \{\mathbf{010}, \mathbf{110}\}$,

$$\text{wt}(e) = q_{\text{dir}(e)} x^{\text{dd}(e)} = q_1 x_2 x_3^{-1}.$$

- Equivalently, record which $Q_{n-1} \subset Q_n$ the edge e belongs to.



The main result

Theorem 2

$$\sum_{T \in \text{Tree}(Q_n)} q^{\text{dir}(T)} x^{\text{dd}(T)} = q_1 \dots q_n \prod_{\substack{S \subset [n] \\ |S| \geq 2}} \underbrace{\left(\sum_{i \in S} q_i (x_i^{-1} + x_i) \right)}_{f_S}$$

where $q^{\text{dir}(T)} = \prod_{e \in T} q_{\text{dir}(e)}$, $x^{\text{dd}(T)} = \prod_{e \in T} x^{\text{dd}(e)}$.

Compare Theorem 1:

$$\sum_{T \in \text{Tree}(Q_n)} q^{\text{dir}(T)} = 2^{2^n - n - 1} q_1 \dots q_n \prod_{\substack{S \subset [n] \\ |S| \geq 2}} \left(\sum_{i \in S} q_i \right)$$

and Theorem 0:

$$\tau(Q_n) = \prod_{\substack{S \subset [n] \\ |S| \geq 2}} 2|S|$$

Sketch of the proof

Weighted Matrix-Tree Theorem

Let $L = (L_{vw})_{v,w \in V(G)}$ be the weighted Laplacian:

$$L_{vw} = \begin{cases} 0 & v \neq w \text{ and } vw \notin E(G) \\ -\text{wt}(vw) & vw \in E(G) \\ \sum_{e \ni v} \text{wt}(e) & v = w \end{cases}$$

Then $\sum_{T \in \text{Tree}(G)} \text{wt}(T) = \det \hat{L}$, where \hat{L} is obtained by deleting the v th row and v th column of L .

Identification of Factors Lemma (Krattenthaler)

$$f \mid \det \hat{L} \iff \hat{L} \text{ has a nullvector in } \mathbb{Q}[q, x]/(f).$$

- Use a computer algebra package (e.g., Macaulay) to compute “witness” nullvectors for factors $f = f_S$
- Experimentally, the witnesses have a nice form, reducing the proof to calculation
- Same method can be used for threshold graphs (specializing a result of Remmel and Williamson) and products of K_n ’s