Rigidity Theory for Matroids
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Rigidity Theory for Graphs

Framework for a graph G = (V, E) in R
joints «—— vertices
bars «— edges

Pivoting framework: bars are fixed in length, but can pivot
around joints

Telescoping framework: bars are attached to joints at fixed
angles, but are allowed to change in length

Problem: When is a framework in R? rigid?




Examples of Rigid and Flexible Graphs

e A graph is 1-rigid if and only if it is connected.

e [very d-rigid graph is d-connected, and in particular has mini-
mum degree > d.

e Lvery triangulation is 2-rigid.

e 'Triangulations are typically not 3-rigid.




Matroids

e A matroid independence system M on a finite ground set
FE is a collection of subsets of F such that. ..

(1) 0e M;
2 IcJ, JeM = 1IeM;
3) I,JeM, |I|<|J|] = ZFJeeJ—-I ITUeec M.

A matroid can be described equally well by any of the following data:

Bases (maximal independent sets)
Circuits (minimal dependent sets)
Rank function r(A) = size of maximal ind’t subset of A

Closure operator A= {e: r(AUe) =r(A)}

Linear matroid: FE = set of vectors
M = {linearly independent subsets}

Graphic matroid: E = edges of a graph
M = {acyclic edge subsets}

Tutte polynomial of M (an incredibly nice invariant!):

Tv(z,y) = Z(m — 1)@=y — )l
ACFE



The d-Rigidity Matroid of a Graph

Let G = (V, E) be a graph and d > 2 an integer. Define the
d-rigidity matroid R%(G) on E by the closure operator

F := {edges whose length in every generic pivoting framework in R?
is determined by the lengths of the edges in F'}

A i / i / A

d=2
B 5 ; % z ; B
e Replacing “length” with “slope” gives the d-slope matroid
(or d-parallel matroid), denoted S4(G).



Representing the d-Rigidity Matroid
RI(G) can be represented by the d-rigidity matrix R = RY(G)

e R has |FE| rows and d|V| columns
Rows of R «— edges
Columns of R «— coordinates of vertices in R?
Entries of R are polynomials in d|V'| variables

e Right nullvectors of R (syzygies among columns)
= infinitesimal motions of vertices that preserve all edge lengths

G is d-rigid <= right nullspace = {rigid motions of R}

e rank R =d|V|— (}")

o Left nullvectors of R (syzygies among rows)
= polynomial constraints (“stresses”) on edge lengths
e 7 (F) = rank of corresponding row-selected submatrix of R

G is d-rigidity-independent <= left nullspace = 0
<~ RYQG)=2*

S4(@Q) is represented analogously by the d-parallel matrix P%(G)



Combinatorial Rigidity in the Plane

Theorem 1 The following are equivalent:
(1) G = (V, E) is 2-rigidity-independent, i.e., R*(G) = 2%

(2) (Recski’s condition) For each e € F, adding a parallel
edge € produces a graph that decomposes into two forests.
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(3) (Laman’s condition) For (@ # F C F,
|F| <2|V(F)| - 3.

(Idea: edges are not concentrated in any one region of G. Ky is the
smallest simple counterexample.)

(4) Ta(q, q) is monic of degree r(G).

Problem: Generalize these criteria to arbitrary d.




Pictures, Planar Duality and Matroids

Picture of G: an arrangement of points and lines that correspond
to vertices and edges of G

Picture space of G: the algebraic variety X = X%(G) of all
pictures

Theorem 2 The following are equivalent:
(1) G is d-parallel independent;
(2) The d-dimensional picture space of G is irreducible;

(3) Ta(q,q* 1) is monic of degree r(G).

Corollary 3 (Planar Duality) R*(G) = S*(G).

Corollary 4 The rigidity properties of G' depend only on its
underlying graphic matroid.



Rigidity Matroids of Matroids??
Motivated by Corollary 4. ..

... let’s try to develop a version of rigidity theory in which the un-
derlying objects of study are matroids rather than graphs.

Why do we want to do this?

e Provide combinatorial proofs of Laman’s Theorem, Planar Dual-
ity Theorem, and other fundamental results of rigidity theory

e Generalize these theorems to a wider setting

e Explain geometric invariants (cross-ratio, tree polynomials) com-
binatorially

e Add to the toolbox of graph rigidity theory. ..

e ...and the theory of matroids themselves.



A Trinity of Independence Complexes

e There are three plausible notions of “d-rigidity-independence”
for an arbitrary matroid M (with ground set E):

Combinatorial: M is d-Laman-independent if

d-r(F)>|F| foral)#FCFE

...provided that this condition gives a matroid (for which d)?

Linear algebraic: M is d-rigidity-independent if the rows of
R are linearly independent

...where R = R%M) is the rigidity matrix of M (generalizing the
construction for the graphic case)

Geometric: M is d-slope-independent if X (M) is irreducible

... where X4(M) is some matroidal analogue of the picture space



d-Laman Independence

Let d € (1,00)g. The d-Laman complex of M is defined as
LYM) = {FCE: d-r(F')>|F|forall@ # F C F}.

Theorem 5 dcZ <= L%M)isa matroid for every M.

Theorem 6 The following are equivalent:

(1) M is d-Laman-independent, i.c., L/(M) = 2F.
(2)  Tul(g™ ", q) is monic in q of degree (d — 1)r(M).

(3) M has an Edmonds decomposition as a disjoint union
E=hLhuby- Ul

where

e cach [; is independent in M; and

e there is no collection of nonempty subsets J1 C I,...,Jg C Iy
such that J; =--- = J,.

(The proof relies on Edmonds’ theorem on matroid partitioning.)



d-Slope Independence
Let M be represented by vectors E = {vy, ..., v,} spanning F". For
0 <k <deN,let G(k,F?) = {k-dimensional subspaces of F?}.
The (k, d)-photo space X = X 4(M) is defined as

{(¢,W1,...,W,) € Hom(F",F) xG(k,F))" : ¢(v;) € W; (Vi) }.

(k, d)-slope independence: the map X — G(k, F%)" is dense.

(k, d)-slope complex of M:
SH(M)={ACE: M|y4is (k,d)-slope independent }.

Theorem 7 Let m = ﬁ. The following are equivalent:

(1) M is (k,d)-slope independent.
(2) The photo space X is an irreducible variety.
(3) M is m-Laman independent. (So S¥4(M) = L™(M).)

Theorem 8 IfF is the finite field F,, then | X| is given by a certain
Tutte polynomial specialization (involving g-binomial coefficients).



d-Rigidity Independence

Let M be represented by vectors ' = {vy,...,v,} spanning F".
Let ¢ = (#;;) be a (d x r) matrix of transcendentals (regarded as a
“generic” linear map F” — 7).

Defn: The d-rigidity matroid R (M) is represented over (1))
by the vectors

{vi®@¥(vi) : i€ n]}
in " ® F(¢))?. (This generalizes the construction of R4(G).)

Theorem 9 (The Nesting Theorem) Let M be a repre-
sentable matroid and d > 1 an integer. Then:

SYMY € RYM) C £YM) C S+,

Corollary 10 Equality holds throughout when d = 2.

(This generalizes both Laman’s Theorem and the Planar Duality
Theorem.)



Uniform Matroids

Let |E| = n. The uniform matroid U, is defined as

{SCFE |5 <r}.

e Every U,, is representable over a suitable field (e.g., R).
LYU,,) and 8%4(U,,,) are uniform matroids for all k, d.

Example 1: Us3 (= graphic matroid of 3-cycle)

U fl<d<?
Cd U 2,3
) 2

Uss ifd=2
Usps ifd=34,...

o TFor ¢ : F? — T2, the slopes of the ¢(v;) may be specified freely
o For ¢:F? — F? (d > 2), the three lines ¢(v;) must be coplanar

Uss ifd=1
RdU _ )
(U2) {w3 ifd=23,...

e Two sides of a triangle determine the third iff the triangle is flat!



Uniform Matroids (II)

Example 2: U4, represented as follows. (All representations are
projectively equivalent to this one, up to the choice of pu.)
v, =(1,0) ) "
v, =(0, 1)
vy =(1,1) v,
vy =(L W v,
Upsy if1<d<3
LYUps) = Uy if3<d<?2
U474 if d > 2
U. if d =2
S Upy) =4 °F
’ U274 lfd=3,4,...

e Ford>1,each ¢ : F? — F? preserves the cross-ratio s, so there
is an additional constraint on the slopes of the ¢(v;). Therefore

Us.4

R%@My—{U
3.4

ifd=1
ifd=23 ...



Open Questions

1. Is RYM) a combinatorial invariant of M? That is, is it in-
dependent of the choice of representation of M, or at least of the
ground field IF? Is the question easier if M is required to be graphic?

2. Give a combinatorial explanation for the identity
qd.r(M)‘Xd_k’d(MJ_)’ _ q(d_k)n‘Xk,d(M)‘

where r is the rank of M and M= is the dual matroid.

3. Describe the defining equations of the photo space. (These poly-
nomials may be generating functions for certain bases of M.) What
geometric invariants (such as the cross ratio) show up?

4. Study the singular locus of the photo space. (It is smooth iff M
contains only loops and coloops.)

5. [Explain the “dimension scaling phenomenon”

Sk,d<M) _ S)‘k’)\d(M).

6. Generalize other rigidity-theoretic facts to the setting of ma-
troids: for example, Henneberg’s and Crapo’s constructions of £2.



