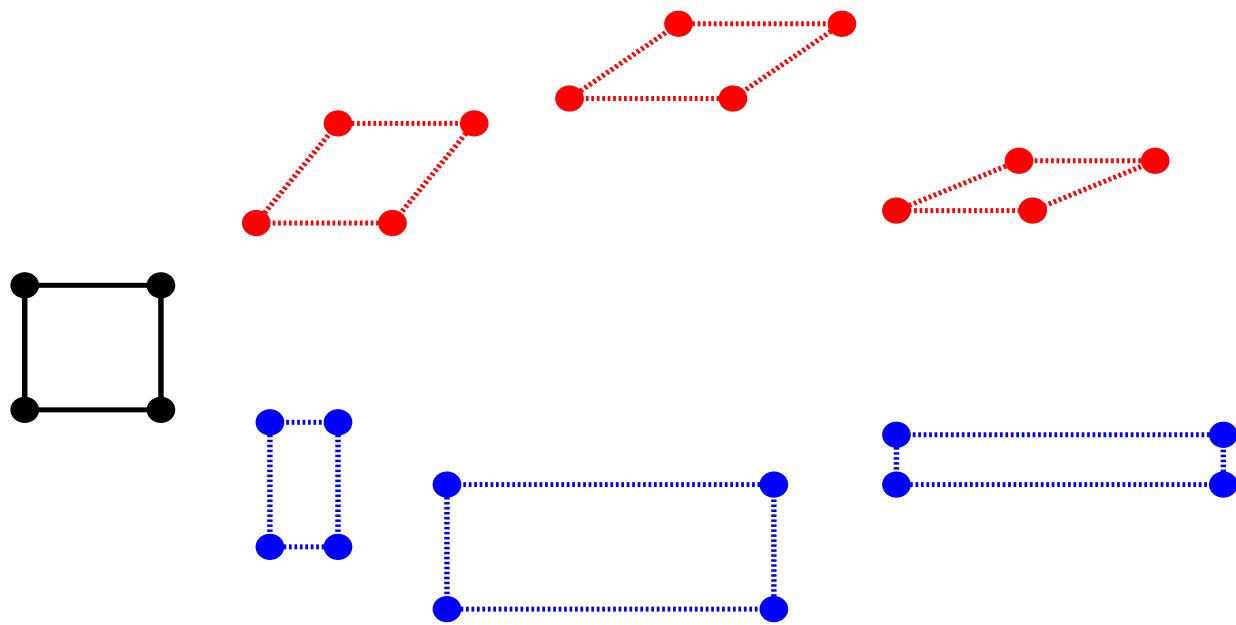


Rigidity Theory for Matroids



Mike Develin
Jeremy Martin
Victor Reiner

develin@post.harvard.edu
jmartin@math.ku.edu
reiner@math.umn.edu

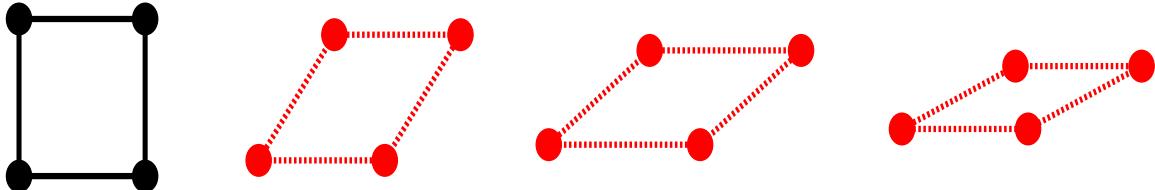
Full paper: [arXiv:math/0503050](https://arxiv.org/abs/math/0503050)

Rigidity Theory for Graphs

Framework for a graph $G = (V, E)$ in \mathbb{R}^d :

$$\begin{array}{ccc} \text{joints} & \longleftrightarrow & \text{vertices} \\ \text{bars} & \longleftrightarrow & \text{edges} \end{array}$$

Pivoting framework: bars are fixed in length, but can pivot around joints

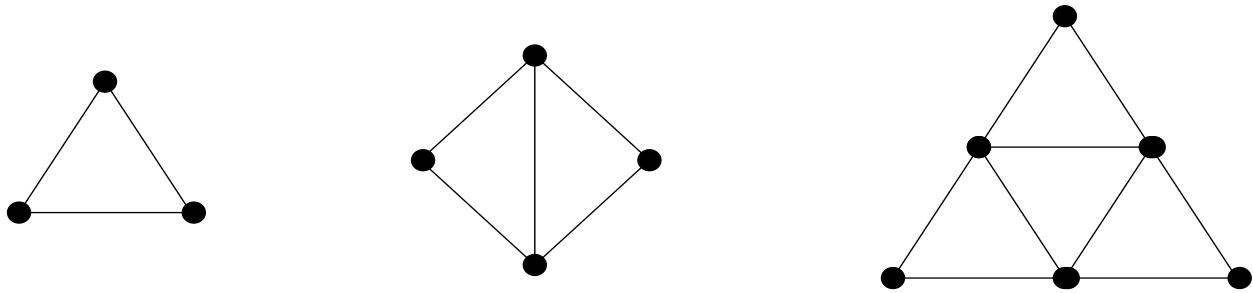


Telescoping framework: bars are attached to joints at fixed angles, but are allowed to change in length

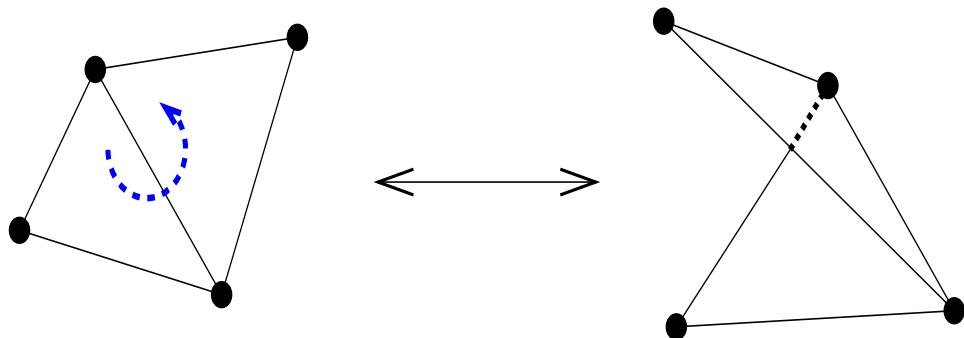
Problem: When is a framework in \mathbb{R}^d rigid?

Examples of Rigid and Flexible Graphs

- A graph is 1-rigid if and only if it is connected.
- Every d -rigid graph is d -connected, and in particular has minimum degree $\geq d$.
- Every triangulation is 2-rigid.



- Triangulations are typically not 3-rigid.



Matroids

- A **matroid independence system** M on a finite ground set E is a collection of subsets of E such that...

- (1) $\emptyset \in M$;
- (2) $I \subset J, J \in M \implies I \in M$;
- (3) $I, J \in M, |I| < |J| \implies \exists e \in J - I: I \cup e \in M$.

A matroid can be described equally well by any of the following data:

<i>Bases</i>	(maximal independent sets)
<i>Circuits</i>	(minimal dependent sets)
<i>Rank function</i>	$r(A) =$ size of maximal ind't subset of A
<i>Closure operator</i>	$\bar{A} = \{e : r(A \cup e) = r(A)\}$

Linear matroid: $E =$ set of vectors
 $M = \{\text{linearly independent subsets}\}$

Graphic matroid: $E =$ edges of a graph
 $M = \{\text{acyclic edge subsets}\}$

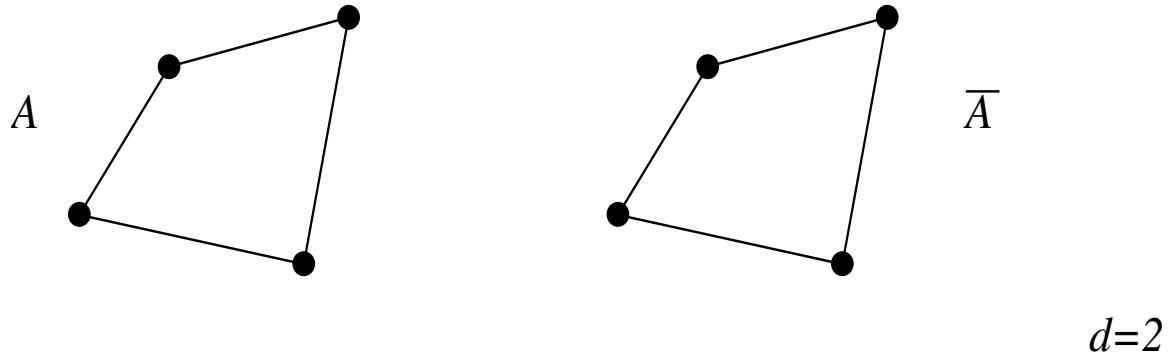
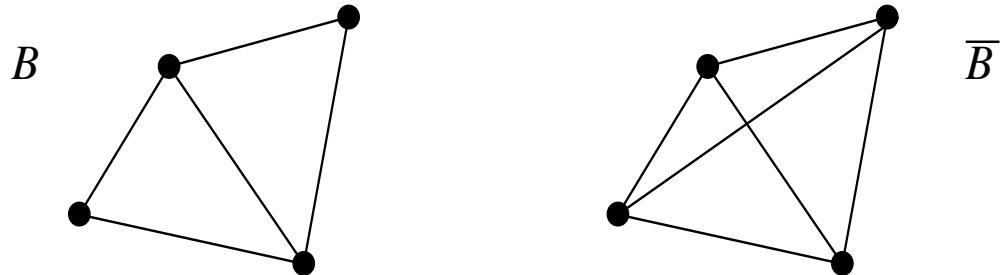
Tutte polynomial of M (an incredibly nice invariant!):

$$T_M(x, y) = \sum_{A \subseteq E} (x - 1)^{r(E) - r(A)} (y - 1)^{|A| - r(A)}$$

The d -Rigidity Matroid of a Graph

Let $G = (V, E)$ be a graph and $d \geq 2$ an integer. Define the **d -rigidity matroid $\mathcal{R}^d(G)$** on E by the closure operator

$\overline{F} := \{\text{edges whose length in every generic pivoting framework in } \mathbb{R}^d \text{ is determined by the lengths of the edges in } F\}$



- Replacing “length” with “slope” gives the **d -slope matroid** (or **d -parallel matroid**), denoted $\mathcal{S}^d(G)$.

Representing the d -Rigidity Matroid

$\mathcal{R}^d(G)$ can be represented by the **d -rigidity matrix** $R = R^d(G)$

- R has $|E|$ rows and $d|V|$ columns
 - Rows of $R \longleftrightarrow$ edges
 - Columns of $R \longleftrightarrow$ coordinates of vertices in \mathbb{R}^d
 - Entries of R are polynomials in $d|V|$ variables
- Right nullvectors of R (syzygies among columns)
 - = infinitesimal motions of vertices that preserve all edge lengths

$$\begin{aligned} G \text{ is } d\text{-rigid} &\iff \text{right nullspace} = \{\text{rigid motions of } \mathbb{R}^d\} \\ &\iff \text{rank } R = d|V| - \binom{d+1}{2} \end{aligned}$$

- Left nullvectors of R (syzygies among rows)
 - = polynomial constraints (“stresses”) on edge lengths
- $r(F) = \text{rank of corresponding row-selected submatrix of } R$

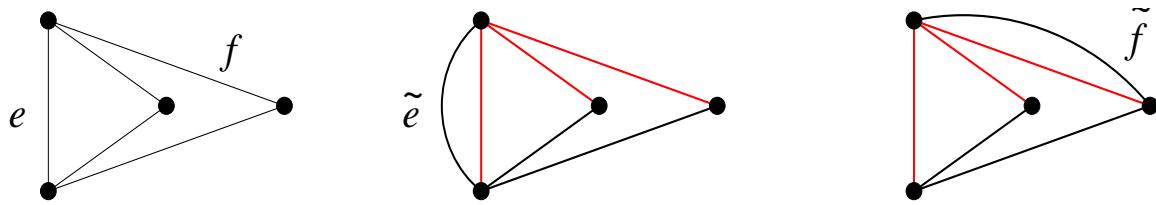
$$\begin{aligned} G \text{ is } d\text{-rigidity-independent} &\iff \text{left nullspace} = 0 \\ &\iff \mathbb{R}^d(G) = 2^E \end{aligned}$$

$\mathcal{S}^d(G)$ is represented analogously by the **d -parallel matrix** $P^d(G)$

Combinatorial Rigidity in the Plane

Theorem 1 The following are equivalent:

- (1) $G = (V, E)$ is 2-rigidity-independent, i.e., $\mathcal{R}^2(G) = 2^E$.
- (2) **(Recski's condition)** For each $e \in E$, adding a parallel edge \tilde{e} produces a graph that decomposes into two forests.



- (3) **(Laman's condition)** For $\emptyset \neq F \subset E$,

$$|F| \leq 2|V(F)| - 3.$$

(Idea: edges are not concentrated in any one region of G . K_4 is the smallest simple counterexample.)

- (4) $T_G(q, q)$ is monic of degree $r(G)$.

Problem: Generalize these criteria to arbitrary d .

Pictures, Planar Duality and Matroids

Picture of G : an arrangement of points and lines that correspond to vertices and edges of G

Picture space of G : the algebraic variety $X = X^d(G)$ of all pictures

Theorem 2 The following are equivalent:

- (1) G is d -parallel independent;
- (2) The d -dimensional picture space of G is irreducible;
- (3) $T_G(q, q^{d-1})$ is monic of degree $r(G)$.

Corollary 3 (Planar Duality) $\mathcal{R}^2(G) = \mathcal{S}^2(G)$.

Corollary 4 The rigidity properties of G depend only on its underlying **graphic matroid**.

Rigidity Matroids of Matroids??

Motivated by Corollary 4...

...let's try to develop a version of rigidity theory in which the underlying objects of study are **matroids** rather than **graphs**.

Why do we want to do this?

- Provide combinatorial proofs of Laman's Theorem, Planar Duality Theorem, and other fundamental results of rigidity theory
- Generalize these theorems to a wider setting
- Explain geometric invariants (cross-ratio, tree polynomials) combinatorially
- Add to the toolbox of graph rigidity theory...
- ... and the theory of matroids themselves.

A Trinity of Independence Complexes

- There are **three** plausible notions of “ d -rigidity-independence” for an arbitrary matroid M (with ground set E):

Combinatorial: M is **d -Laman-independent** if

$$d \cdot r(F) > |F| \quad \text{for all } \emptyset \neq F \subset E$$

... provided that this condition gives a matroid (for which d)?

Linear algebraic: M is **d -rigidity-independent** if the rows of R are linearly independent

... where $R = R^d(M)$ is the rigidity matrix of M (generalizing the construction for the graphic case)

Geometric: M is **d -slope-independent** if $X^d(M)$ is irreducible

... where $X^d(M)$ is some matroidal analogue of the picture space

d -Laman Independence

Let $d \in (1, \infty)_{\mathbb{R}}$. The **d -Laman complex of M** is defined as

$$\mathcal{L}^d(M) = \{F \subset E : d \cdot r(F') > |F| \text{ for all } \emptyset \neq F' \subseteq F\}.$$

Theorem 5 $d \in \mathbb{Z} \iff \mathcal{L}^d(M)$ is a matroid for every M .

Theorem 6 The following are equivalent:

- (1) M is d -Laman-independent, i.e., $\mathcal{L}^d(M) = 2^E$.
- (2) $T_M(q^{d-1}, q)$ is monic in q of degree $(d-1)r(M)$.
- (3) M has an *Edmonds decomposition* as a disjoint union

$$E = I_1 \cup I_2 \cup \cdots \cup I_d$$

where

- each I_k is independent in M ; and
- there is no collection of nonempty subsets $J_1 \subset I_1, \dots, J_d \subset I_d$ such that $\overline{J_1} = \cdots = \overline{J_d}$.

(The proof relies on Edmonds' theorem on matroid partitioning.)

d -Slope Independence

Let M be represented by vectors $E = \{v_1, \dots, v_n\}$ spanning \mathbb{F}^r . For $0 < k < d \in \mathbb{N}$, let $\mathbb{G}(k, \mathbb{F}^d) = \{k\text{-dimensional subspaces of } \mathbb{F}^d\}$.

The **(k, d) -photo space** $X = X_{k,d}(M)$ is defined as

$$\{(\phi, W_1, \dots, W_n) \in \text{Hom}(\mathbb{F}^r, \mathbb{F}^d) \times \mathbb{G}(k, \mathbb{F}^d)^n : \phi(v_i) \in W_i \quad (\forall i)\}.$$

(k, d) -slope independence: the map $X \rightarrow \mathbb{G}(k, \mathbb{F}^d)^n$ is dense.

(k, d) -slope complex of M :

$$\mathcal{S}^{k,d}(M) = \{A \subset E : M|_A \text{ is } (k, d)\text{-slope independent}\}.$$

Theorem 7 Let $m = \frac{d}{d-k}$. The following are equivalent:

- (1) M is (k, d) -slope independent.
- (2) The photo space X is an irreducible variety.
- (3) M is m -Laman independent. (So $\mathcal{S}^{k,d}(M) = \mathcal{L}^m(M)$.)

Theorem 8 If \mathbb{F} is the finite field \mathbb{F}_q , then $|X|$ is given by a certain Tutte polynomial specialization (involving q -binomial coefficients).

d -Rigidity Independence

Let M be represented by vectors $E = \{v_1, \dots, v_n\}$ spanning \mathbb{F}^r . Let $\psi = (\psi_{ij})$ be a $(d \times r)$ matrix of transcendentals (regarded as a “generic” linear map $\mathbb{F}^r \rightarrow \mathbb{F}^d$).

Defn: The **d -rigidity matroid $\mathcal{R}^d(M)$** is represented over $\mathbb{F}(\psi)$ by the vectors

$$\{v_i \otimes \psi(v_i) : i \in [n]\}$$

in $\mathbb{F}^r \otimes \mathbb{F}(\psi)^d$. (This generalizes the construction of $\mathcal{R}^d(G)$.)

Theorem 9 (The Nesting Theorem) Let M be a representable matroid and $d > 1$ an integer. Then:

$$\mathcal{S}^{1,d}(M) \subseteq \mathcal{R}^d(M) \subseteq \mathcal{L}^d(M) \subseteq \mathcal{S}^{d-1,d}(M).$$

Corollary 10 Equality holds throughout when $d = 2$.

(This generalizes both Laman’s Theorem and the Planar Duality Theorem.)

Uniform Matroids

Let $|E| = n$. The **uniform matroid** $U_{r,n}$ is defined as

$$\{S \subset E : |S| \leq r\}.$$

- Every $U_{r,n}$ is representable over a suitable field (e.g., \mathbb{R}).
- $\mathcal{L}^d(U_{r,n})$ and $\mathcal{S}^{k,d}(U_{r,n})$ are uniform matroids for all k, d .

Example 1: $U_{2,3}$ (= graphic matroid of 3-cycle)

$$\mathcal{L}^d(U_{2,3}) = \begin{cases} U_{2,3} & \text{if } 1 < d \leq \frac{3}{2} \\ U_{3,3} & \text{if } d > \frac{3}{2} \end{cases}$$

$$\mathcal{S}^{1,d}(U_{2,3}) = \begin{cases} U_{3,3} & \text{if } d = 2 \\ U_{2,3} & \text{if } d = 3, 4, \dots \end{cases}$$

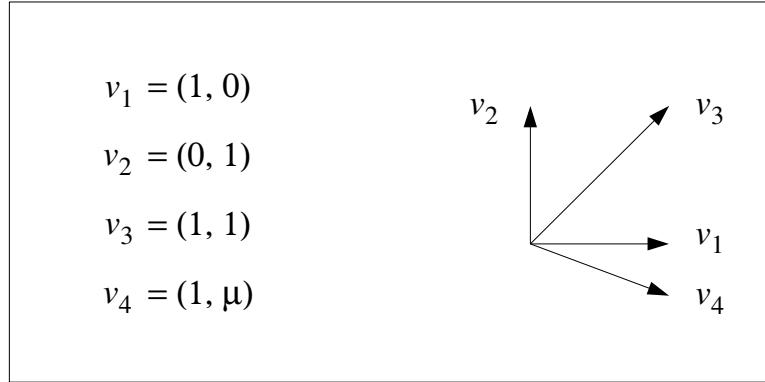
- For $\phi : \mathbb{F}^2 \rightarrow \mathbb{F}^2$, the slopes of the $\phi(v_i)$ may be specified freely
- For $\phi : \mathbb{F}^2 \rightarrow \mathbb{F}^d$ ($d > 2$), the three lines $\phi(v_i)$ must be coplanar

$$\mathcal{R}^d(U_{2,3}) = \begin{cases} U_{3,3} & \text{if } d = 1 \\ U_{2,3} & \text{if } d = 2, 3, \dots \end{cases}$$

- Two sides of a triangle determine the third iff the triangle is flat!

Uniform Matroids (II)

Example 2: $U_{2,4}$, represented as follows. (All representations are projectively equivalent to this one, up to the choice of μ .)



$$\mathcal{L}^d(U_{2,4}) = \begin{cases} U_{2,4} & \text{if } 1 \leq d \leq \frac{3}{2} \\ U_{3,4} & \text{if } \frac{3}{2} < d \leq 2 \\ U_{4,4} & \text{if } d > 2 \end{cases}$$

$$\mathcal{S}^{1,d}(U_{2,4}) = \begin{cases} U_{3,4} & \text{if } d = 2 \\ U_{2,4} & \text{if } d = 3, 4, \dots \end{cases}$$

- For $d > 1$, each $\phi : \mathbb{F}^2 \rightarrow \mathbb{F}^d$ preserves the cross-ratio μ , so there is an additional constraint on the slopes of the $\phi(v_i)$. Therefore

$$\mathcal{R}^d(U_{2,4}) = \begin{cases} U_{2,4} & \text{if } d = 1 \\ U_{3,4} & \text{if } d = 2, 3, \dots \end{cases}$$

Open Questions

1. Is $\mathcal{R}^d(M)$ a combinatorial invariant of M ? That is, is it independent of the choice of representation of M , or at least of the ground field \mathbb{F} ? Is the question easier if M is required to be graphic?

2. Give a combinatorial explanation for the identity

$$q^{d \cdot r(M)} |X_{d-k,d}(M^\perp)| = q^{(d-k)n} |X_{k,d}(M)|$$

where r is the rank of M and M^\perp is the dual matroid.

3. Describe the defining equations of the photo space. (These polynomials may be generating functions for certain bases of M .) What geometric invariants (such as the cross ratio) show up?

4. Study the singular locus of the photo space. (It is smooth iff M contains only loops and coloops.)

5. Explain the “dimension scaling phenomenon”

$$\mathcal{S}^{k,d}(M) = \mathcal{S}^{\lambda k, \lambda d}(M).$$

6. Generalize other rigidity-theoretic facts to the setting of matroids: for example, Henneberg’s and Crapo’s constructions of \mathcal{L}^2 .