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Overview

1. Gauss’s proof of the Fundamental Theorem of Algebra

2. Noncrossing matchings, bimatchings, and basketballs

3. The Inverse Basketball Theorem

4. Necklaces of basketballs



1. Gauss’s Proof of the FTA

Fundamental Theorem of Algebra:
Every complex polynomial f(z) of degree n has exactly n
complex roots (counting multiplicities).

Proof. (Gauss 1799; Gersten—Stallings 1988)

Consider the plane algebraic curves

R ={z: Ref(z) =0},
I={z: Imf(z) =0},

Re f(z) and Im f(z) are polynomials in z and ¥, and
RNI={z: f(z)=0}

In polar coordinates z = re',

Re f(2) = r" cosnd + O(r" 1),
Im f(2) = r"sinnd + O(r" ).






Choose p € R greater than the magnitude of every root of f.
Let D be a disk of radius > p, and .S = 9D its boundary circle.

R NS consists of 2n points whose arguments are approximately the
zeroes of cosnd, i.e.,

RNOS ~ {p7 pem/n7 p€2i7r/n7 o p6(2n—1)i7r/n.}
Similarly,
INoS ~ {pe’m/2n’ pe?>i7r/2n7 o p€(4n—1)i7r/2n.}

Outside D, the curve R (resp. I') consists of 2n disjoint half-branches,
asymptotic to the lines 8 = k7 /2n with n even (resp. odd).



Each half-branch of R (resp. I') must connect with another one inside
D to make n full branches.

Fach of the n branches of R has an odd number of half-branches
of I on either side of it, hence must meet some branch of I.

That is, f(2z) has at least n roots!



Possibilities for the curves R and 1
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2. Noncrossing Partitions and Matchings

Let V C N be a finite set of vertices.

'7Vk

A partition of V is a collection of pairwise disjoint sets V7, ..

(“blocks”) with [JV; = V.

Two blocks V,, V,

cross if forsomei < j <k </l €S,

1, kes,

1,0 €Sy,

and

The partition is noncrossing if no two blocks cross.
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A noncrossing matching (NCM) of order n is a noncrossing
partition of [2n] in which every block has size 2.

e Every NCM pairs even vertices with odd vertices.

o #{NCMs of order n} = _1|_ ; (Qn) .
n n



Bimatchings and Basketballs

Let B®, B° be noncrossing matchings on {0,2,4,...,2n — 2} and
{1,3,5,...,2n — 1} respectively. The pair B = (B®, B°) is called a
(noncrossing) bimatching (of order n).

Every pair of B¢ crosses an odd number of pairs of B°, and vice
versa. B is called a basketball if every pair of B® crosses exactly
one pair of B°.
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A combinatorial basketball

An NBA-approved basketball



Proposition The number of n-basketballs is
1 4
b(n) = ")
n+1\n

Sketch of proof: b(n) counts noncrossing partitions of 4n vertices
into n 4-blocks [Edelman 1980]. There is a bijection between n-
basketballs and such partitions.

Other objects enumerated by b(n):

e plane quaternary trees with n internal vertices
e dissections of a (3n + 2)-gon into n pentagons
e certain rooted plane maps [Liskovets-Walsh]

n 123 4 5 6 ..
b(n)|1 4 22 140 969 7084 ...




e For n > 2, every n-basketball contains at least two ears, or
pairs of pairs
{i,i+2},{i+ 1,7+ 3}.

e [Every basketball can be built up inductively by adding ears, one
at a time.
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The basketball of a complex polynomial

Let f(z) be a complex polynomial of degree n, and let 6 € R. Define

Colf) = {= | (e f(z)) = 0}.
So R = C,(f), I = Colf).

Fact Cy(f) is nonsingular for all but (n — 1) values of 6.

When Cy( f) is nonsingular, it gives rise to a well-defined noncrossing

matching M (f,0).

When R, I are both nonsingular, they determine a basketball



The Inverse Basketball Theorem

Let 0 <a< p<m,
and let B = (B¢, B°) be any (combinatorial) n-basketball.

Then there exists a polynomial f of degree n such that

B®=M(f,a) and  B°=M(f.5).

(In particular, there exists a polynomial f such that B = B(f).)



Sketch of the proof

Given a basketball B of order n, choose an ear £ C B.
By induction on n, there is a polynomial f(z) with B(f) = B—E.



e Replace f(2) with g(2) = f(2)(z — w),
where |w| is much greater than the magnitude of any root of f, and
arg(w) is chosen so as to insert £ in the right place.
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e Confirm that the pre-existing branches are sufficiently
unperturbed so that their topology remains the same.

)L

Checking this requires tools from analysis and metric topology.




Necklaces

Let f(z) be a polynomial of degree n with no repeated roots.

Let z1,..., 2,1 be the zeroes of f'(z), and suppose that

0<bi<by<---<b,1<m,

where 0, = arg z;. Recall that the curve

Co(f) = {z | Im(e"f(2)) =0},
is nonsingular for 6 & {61,...,0,_1}.

e The necklace of harmonic curves of f is the family

¢y = {Cilf) | 0€R/xTZ}
The matching M (Cy(f)) is a constant M; over each of the arcs

Al — (917‘92)7 SRR An—l - (‘971—17'91)-

e The necklace of matchings of f is
(Mh SR Mn—l):
regarded as a cyclically ordered (n — 1)-tuple.

— For every ¢, the matchings M, and M, are related by a double
transposition (“flip”).

Similarly, we can define the necklace of basketballs of f.



How many necklaces of matchings are there?

For n < 8, there are 2(2n)"~2 necklaces of order n (EIS sequence
A097629). This is the same as the number of unrooted directed trees
on n vertices, but we haven’t found a bijection.

What does the necklace tell you about the polynomial
f, or about the location of its roots?

What if you start with a rational function f instead of
a polynomial?

The curves Cy(f) may contain loops, so the corresponding combina-
torial object will be something more complicated than a noncrossing
matching.



