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Graphs and Spanning Trees Definitions

Counting Spanning Trees
Weighted Spanning Tree Enumerators

Graphs and Spanning Trees

G = (V, E): simple connected graph
Definition A spanning tree of G is a subgraph (V, T) such that

1. (V, T) is connected (every pair of vertices is joined by a

path);
2. (V, T) is acyclic (contains no cycles);
3. |T|=1|V|-1.

Any two of these conditions together imply the third.
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Graphs and Spanning Trees Definitions

Counting Spanning Trees
Weighted Spanning Tree Enumerators

Counting Spanning Trees

Let 7(G) denote the number of spanning trees of G.

Graph G 7(G)
Any tree 1
Cy (cycle on n vertices) n
K, (complete graph on n vertices) n"=2 (Cayley)
Kp,q (complete bipartite graph) p9~1gP~1 (Fiedler-Sedlacek)
n
Qn (n-dimensional hypercube) 22" —k=1 H k()
k=2
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The Laplacian Matrix

Let G = (V,E) be a graph with V = [n] = {1,2,...,n}.
Definition The Laplacian of G is the n x n matrix L = [(;]:

degg(i) ifi=,
i = -1 if 7,/ are adjacent,

0 otherwise.

» L is a real symmetric matrix
» L= MM, where M is the signed incidence matrix of G
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The Matrix-Tree Theorem

Matrix-Tree Theorem, Version I: Let 0, A1, \p,..., A\,—1 be the
eigenvalues of L. Then

Ao A
n
Matrix-Tree Theorem, Version Il: Let L; be the reduced

Laplacian obtained by deleting the i*" row and i*" column of L.
Then

T(G) =det L;.

[Kirchhoff, 1847]
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The Matrix-Tree Theorem

Sketch of proof:

1. Expand det L; using the Binet-Cauchy formula:

det L; =det M; M{" = " (det M7)?
TCE
|T|=n—-1
where Mt = square submatrix of M; with columns T

2. Show that

det My — +1 if Tis .acyclic,
0 otherwise.
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Weighted Spanning Tree Enumerators

Idea: Let's record combinatorial information about a spanning tree
T by assigning it a monomial weight x7.

(e.g., vertex degrees; number of edges in specified sets; etc.)

Definition The weighted spanning tree enumerator of G is
the generating function
> Xt

Te7(G)

where 7 (G) denotes the set of spanning trees of G.
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Weighted Spanning Tree Enumerators

The weighted spanning tree enumerator of a graph

» reveals much more detailed combinatorial information about
spanning trees of G than merely counting them

» (particularly when it factors!)

> can suggest bijective proofs of formulas for 7(G)
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The Weighted Laplacian

Introduce an indeterminate e;; for each pair of vertices i, .
Set ejj = ej;, and if i, j are not adjacent, then set e; = 0.

The weighted Laplacian of G is the n x n matrix L = [/;;], where

D e ifi=],

i = JF#i
—ejj if i 5.

>

S

> Setting e; = 1 for each edge ij recovers the usual Laplacian L.

Duval-Klivans—Martin Simplicial Matrix-Tree Theorems



Graphs and Spanning Trees Definitions

Counting Spanning Trees
Weighted Spanning Tree Enumerators

The Weighted Matrix-Tree Theorem

~

Weighted Matrix-Tree Theorem I: If 0, A\, Ao, ..., \,_1 are the
eigenvalues of L, then

Ao A,
Z Heij: 12n n-1

Te7(G)ijeT

Weighted Matrix-Tree Theorem IlI: If Ly is obtained by
deleting the k" row and ¢ column of L, then

Z H e = (—1)F " det Ly

Te7(G) ijeT
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Example: The Cayley-Priifer Theorem

Weight spanning trees of complete graph K,, by degree sequence:
n .
XT = HX?egT(')
i=1

Theorem [Cayley-Priifer]

Z x1T = (xx2- - xp) (X1 + X2+ - 4 x,)"2
TeT(Kn)

(Setting x; = 1 for all i recovers Cayley's formula.)
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Example: The Cayley-Priifer Theorem

Theorem [Cayley-Priifer]

Z xT = (x1x2 - xp) (X1 + X2 + - 4 x) "2
TeT(Kn)

Combinatorial proof: the Priifer code, a bijection
P: 7 (Ky) — [n]"?

where deg (i) = 1 4+ number of i's in P(T).
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More Weighted Spanning Tree Enumerators

> K, g degree sequence (bijection: Hartsfield-Werth)

» Threshold graphs: degree sequence and more
(Remmel-Williamson)

» Ferrers graphs: degree sequence
(Ehrenborg—van Willigenburg)

» Hypercubes: direction and facet degrees (JLM—-Reiner;
bijection??)
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Weighted SST Enumeration

Simplicial Complexes

Definition A simplicial complex on vertex set V is a family A
of subsets of V such that

» {v} € A for every v € V;
» If FEAand G C F, then G € A.

{©.1,2.3.4,5,
12, 13, 23, 34, 35, 45,
123}
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Simplicial Complexes

>

Elements of A are called faces.

Maximal faces are called facets.

v

v

dmF =|F| -1, dmA=max{dimF | F e A}.

v

A is pure if all facets have equal dimension.

v

fi(A) = number of i-dimensional faces.

v

The k-skeleton is Ay = {FeA | dimF < k}.

v

A graph is just a simplicial complex of dimension 1.
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Simplicial Complexes and Homology
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Simplicial Ma -Tree Theorems
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pure; dim=2 not pure; dim=2 pure; dim=1
f(8)=(5,9,7) f(A)=(5.6,1) f(A)=(5.7)
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Simplicial Homology

R = commutative ring with identity (typically Z or Q)
Ci(A) = free R-module on i-dimensional faces of A

A has natural boundary and coboundary maps
9; : G — Gy, :Ga—G

such that
0 0041 =0i4100; =0.
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Simplicial Homology

Definition The i*" reduced simplicial homology group of A is

Hi(A; R) = ker 0; /im 0y 1.

» Homology groups over Q measure the holes in A.

» Homology groups over Z measure holes (the free part) and
“twisting” (the torsion part).

Definition The /" Betti number of A is

Bi(A) = dimg H;(A, Q).
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Simplicial Homology

Let G be a graph (a 1-dimensional simplicial complex).

> Bo(G) = (number of connected components of G) — 1

> (1(G) = number of edges that need to be deleted to make G
acyclic

> 0, is the signed vertex-edge incidence matrix M.

» The Laplacian of G is L = 0, 05.
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Simplicial Spanning Trees

Let A? be a simplicial complex (i.e., dim A = d).
Let T C A be a subcomplex with T(y_1) = Ay_1).

Definition 7T is a simplicial spanning tree (SST) of A if
1. Hy(";2) =0;
2. Hg_1(T;Q) = 0;
3. f4(T) = fg(A) = Ba(B) + Ba-1(A).
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Simplicial Spanning Trees

Conditions for T < A9 to be an SST:

- T@-1) = Aw-1) ("spanning”);

- Hy(r;Z) =0 (“acyclic");

CHy_1(T;Q)=0 (“connected");

- () = fg(8) = By (D) + Fyg-1(A)  (“count”).

w NN = O

» Any two of these conditions together imply the third

» When d = 1, coincides with the usual definition
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Metaconnectedness

Denote by .7(A) the set of simplicial spanning trees of A.

Proposition 7 (A) # ) if and only if A has the homology type
of a wedge of d-spheres:

Bi(A)=0  Vj<dimA.
Equivalently,
|H;(AZ)| <00 Vj <dimA.

Such a complex is called metaconnected.
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Metaconnectedness

» Every acyclic complex is metaconnected.

» Every Cohen-Macaulay complex is metaconnected (by
Reisner's theorem), including:
» 0-dimensional complexes
connected graphs
simplicial spheres
shifted complexes
matroid complexes
many other complexes arising in algebra and combinatorics

vV vy vy VvYyy
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W0|°htcd SST Enumeration

Examples of SSTs

Example If dimA =0, then 7 (A) = {vertices of A}.

Example If A is Q-acyclic, then 7 (A) = {A}.

> Includes complexes that are not Z-acyclic, such as RP?.

Example If A is a simplicial sphere, then

T(A)={A\{F} | F afacet of A}.

» Simplicial spheres are the analogues of cycle graphs.
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Kalai's Theorem

Let A be the d-skeleton of the n-vertex simplex:
A={FC|[n] | dimF <d}.
Theorem [Kalai 1983]

S |Haa (T )P = a0

TeT (D)

» Reduces to Cayley's formula when d =1 (A = Kj,).

» Adin (1992): Analogous formula for complete colorful
complexes (generalizing Fiedler-Sédlagek formula for K, ¢)

Duval-Klivans—Martin Simplicial Matrix-Tree Theorems



Simplicial Complexes and Homology
From Graphs to Simplicial Complexes Simplicial Spanning Trees

Simplicial Matrix-Tree Theorems

Weighted SST Enumeration

Simplicial Analogues of Graph Invariants

Let A? be a metaconnected simplicial complex.

o 0,
Gi1(8) = G(A) = Gia(B)

L;i = 0; 0F (the up-down Laplacian)

s; = product of nonzero eigenvalues of L;

hi= Y [Hia(M)P

TE?(A(,))
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The Simplicial Matrix-Tree Theorem — Version |

s; = product of nonzero eigenvalues of Laplacian L;

hi= Y |H-(T)P

TE?(A(,))

Theorem [Duval-Klivans—JLM 2006]

S, ~
hy = hd |Hy_a(A; 7).
d—1

Duval-Klivans—Martin Simplicial Matrix-Tree Theorems



Simplicial Complexes and Homology
From Graphs to Simplicial Complexes Simplicial Spanning Trees

Simplicial Matrix-Tree Theorems

Weighted SST Enumeration

Special Cases

» When A is a graph on n vertices, the theorem says that

51, ~ 2 51
hi = —|H_1(A = =
1 ho| 1(A)] -

which is the classical Matrix-Tree Theorem.

> If H:(A,Z)=0fori <d—2, then

Sdsd_z...

hy = ————
Sd—15d-3 "
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The Simplicial Matrix-Tree Theorem — Version ||

A9 = simplicial complex

re 7(Aw@-1)

O = restriction of 0, to faces not in I
Lr = 0,0

Theorem [Duval-Klivans—JLM 2006]

. Hy_o(A;Z)2
ha = > |Hea(M)P = [Pl Z)T )|2 det Lr.
Te7(n) |Ha—2(T Z)]

Duval-Klivans—Martin Simplicial Matrix-Tree Theorems



Simplicial Complexes and Homology
From Graphs to Simplicial Complexes Simplicial Spanning Trees

Simplicial Matrix-Tree Theorems

Weighted SST Enumeration

Simplicial Matrix-Tree Theorems

Theorem (SMTT-I: product of eigenvalues)

S, ~
hy = hd |Hg—a(A; Z)
d—1

Theorem (SMTT-II: reduced Laplacian)

; Ha—o(A; Z) 2
hy = By ()2 = |:“—detL
d > [Ha—a (1) FaaT 2) r

» Version Il is more useful for computing hy directly.

» In many cases, the Hy_5 terms are trivial.
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Weighted SST Enumeration

» Introduce an indeterminate xg for each face F € A

» Weighted boundary @: multiply the F* column of @ by x¢
» Weighted Laplacian L = 99"

» Weighted analogues of s; and h; :

s; = product of nonzero eigenvalues of L;

hi= Y [Hia(MP ] ¢

Téey(A(;)) FeT
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Weighted Simplicial Matrix-Tree Theorems

Weighted Simplicial Matrix-Tree Theorem |

Weighted Simplicial Matrix-Tree Theorem Il
he — |Hi_o (A; Z)?
1 —_ —~
H;—>

> det Lp
[Hi—2 (T3 Z)|
where ' € T (A(j_1))
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Weighted SST Enumeration

As in the graphic case, we can use weights to obtain finer
enumerative information about simplicial spanning trees.

In order for the weighted simplicial spanning tree enumerators to
factor, we need L to have integer eigenvalues.

That is, A must be Laplacian integral.
» Shifted complexes

» Matroid complexes
» Others?

Duval-Klivans—Martin Simplicial Matrix-Tree Theorems
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Example: The Bipyramid With Equator

Vertices: 1, 2,3, 4,5
Edges: All but 45

Facets: 123, 124, 134, 234,
125, 135, 235

f(A)=(5,9,7)

“Equator”: the facet 123

Duval-Klivans—Martin Simplicial Matrix-Tree Theorems
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Example: The Bipyramid With Equator

A = bipyramid with equator
= (123,124,134,234,125,135,235)
» For each facet F = jjk, set xF = xjxjxy.

Enumeration of SSTs of A by degree sequence:

hy = Z ngiegr(i)

Te7(A) ieV

= xf’xg’xgxfxg(xl + x2 + x3)(x1 + X2 + x3 + X4 + X5)

Duval-Klivans—Martin Simplicial Matrix-Tree Theorems
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Shifted Complexes

Definition A simplicial complex A on vertices [n] is shifted if
forall FEA, i€, j& A, andj <,
we have F\ {i} U {j} € A.

Example If A is shifted and 235 € A, then A must also contain
the faces 234, 135, 134, 125, 124, 123.

» Shifted complexes of dimension 1 are threshold graphs.

Duval-Klivans—Martin Simplicial Matrix-Tree Theorems



initions of Shiftedness
Fine Weightings
Shifted Simplicial Complexes Critical Pairs
SST Enumeration

Shifted Complexes

Define the componentwise (partial) order on (d + 1)-sets of
positive integers

A:{31<32<"'<ad+1},
B:{b1<b2<---<bd+1}
by

A=<B <= a;<b;foralli.

» The set of facets of a shifted complex is a lower order ideal
with respect to <.
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Shiftedness

Shifted Simplicial Complexes

146 236 245
[T ]
136 145 235
T
126 135 234
N
125 134
\124/

123

Duval-Klivans—Martin Simplicial Matrix-Tree Theorems



Shiftedness

Shifted Simplicial Complexes
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Definitions of Shiftedness
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Shifted Complexes

Proposition Shifted complexes are shellable, hence
Cohen-Macaulay, hence metaconnected.

Theorem [Duval-Reiner 2001]
For A shifted, the eigenvalues of the unweighted Laplacian L are
given by the transpose of the vertex/facet degree sequence.

» In particular, shifted complexes are Laplacian integral.

Duval-Klivans—Martin Simplicial Matrix-Tree Theorems
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The Combinatorial Fine Weighting

Let A9 be a shifted complex on vertices [n].
For each facet A= {a; < a» < -+ < ag41}, define

d+1

XA — H Xj.aj -
i=1

Example If T = (123,124,134,135,235) is a simplicial spanning
tree of A, its contribution to hy is

4 2 .3 2 2
X1,1X1,2X0,2X2 3X3 3X3 4X3 5 -
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The Algebraic Fine Weighting

For faces AC B € A withdimA=i—1, dim B =/, define
Xap = 1=t
where TX; ; = Xj41,;-

» Weighted boundary maps 9 satisfy 89 = 0.

» Laplacian eigenvalues are the same as those for the
combinatorial fine weighting, except for denominators.

Duval-Klivans—Martin Simplicial Matrix-Tree Theorems



Definitions of Shiftedness
Fine Weightings

Shifted Simplicial Complexes Critical Pairs
SST Enumeration

Critical Pairs

Definition A critical pair of a shifted complex A9 is an ordered
pair (A, B) of (d + 1)-sets of integers, where

» Ac A and B¢ A; and
» B covers A in componentwise order.
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146 236 245
[T ]
136 145 235
T
126 135 234
N
125 134
\124/

123
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The Signature of a Critical Pair

Let (A, B) be a critical pair of a complex A:

A={ag<apy<---<a<--<agu1},

B =A\{a}U{a+1}.

Definition The signature of (A, B) is the ordered pair

({31,32,"'73,'—1}, ai)~

Duval-Klivans—Martin Simplicial Matrix-Tree Theorems
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Finely Weighted Laplacian Eigenvalues

Theorem [Duval-Klivans—JLM 2007]
Let A? be a shifted complex.

Then the finely weighted Laplacian eigenvalues of A are specified
completely by the signatures of critical pairs of A.

1
signature (S,a) =  eigenvalue TXs ZXSuj
s

Duval-Klivans—Martin Simplicial Matrix-Tree Theorems
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Examples of Finely Weighted Eigenvalues

» Critical pair (135,145);  signature (1,3):

X11Xo1 + X11X00 + X11X03
Xo1

» Critical pair (235,236); signature (23,5):

X11 X220 X33 4+ X12X00 X33 + X120 X23X33 + X120 X203 X34 + X12X23 X35
X2 X33

Duval-Klivans—Martin Simplicial Matrix-Tree Theorems



Definitions of Shiftedness
Fine Weightings

Shifted Simplicial Complexes Critical Pairs
SST Enumeration

Sketch of Proof

» Calculate eigenvalues of A in terms of eigenvalues of the
deletion and link:

deh A={FeA | 1¢F},
linky A={FeA | 1¢F, FU{l} € A}.

» If A is shifted, then so are del; A and link; A.

Duval-Klivans—Martin Simplicial Matrix-Tree Theorems
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Sketch of Proof

» Calculate eigenvalues of A in terms of eigenvalues of the
deletion and link:

deh A={FeA | 1¢F},
linky A={FeA | 1¢F, FU{l} € A}.

» If A is shifted, then so are del; A and link; A.

» Establish a recurrence for critical pairs of A in terms of those
of del; A and link; A
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Definitions of Shiftedness
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Sketch of Proof

» Calculate eigenvalues of A in terms of eigenvalues of the
deletion and link:

deh A={FeA | 1¢F},
linky A={FeA | 1¢F, FU{l} € A}.

» If A is shifted, then so are del; A and link; A.

» Establish a recurrence for critical pairs of A in terms of those
of del; A and link; A

» “Here see ye two recurrences, and lo! they are the same.”
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Consequences of the Main Theorem

> Passing to the unweighted version (by setting x; ; = 1 for all
i,J) recovers the Duval-Reiner theorem.

» Special case d = 1: recovers known weighted spanning tree
enumerators for threshold graphs (Remmel-Williamson 2002;
JLM—Reiner 2003).

» A shifted complex is determined by its set of signatures, so we
can “hear the shape of a shifted complex” from its Laplacian
spectrum.
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Ferrers Graphs

A Ferrers graph is a bipartite graph whose vertices correspond to
the rows and columns of a Ferrers diagram.
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Ferrers Graphs
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Ferrers Graphs

A Ferrers graph is a bipartite graph whose vertices correspond to
the rows and columns of a Ferrers diagram.

1 2 3 45
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Ferrers Graphs

A Ferrers graph is a bipartite graph whose vertices correspond to
the rows and columns of a Ferrers diagram.

1 2 3 4 5
.Wl
Vie ® w,
Vo @ ® w,
3
EX ® v,
.W5

Duval-Klivans—Martin Simplicial Matrix-Tree Theorems
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More Applications F

Ferrers Graphs

A Ferrers graph is a bipartite graph whose vertices correspond to
the rows and columns of a Ferrers diagram.

1 2 3 4 5
Wq
vy w,
Vo w
3 3
V3 w,
Wg
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Ferrers Graphs

A Ferrers graph is a bipartite graph whose vertices correspond to
the rows and columns of a Ferrers diagram.
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Ferrers Graphs

Ferrers graphs are bipartite analogues of threshold graphs.

» Degree-weighted spanning tree enumerator for Ferrers graphs:
Ehrenborg and van Willigenburg (2004)

» Formula can also be derived from our finely weighted spanning
tree enumerator for a threshold graph

» Higher-dimensional analogues?
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Color-Shifted Complexes

Let A be a complex on V = U,- V;, where
V1 = {V117~~~ y V1r1}7 PN Vn = {V,,l,... y Vnrn}~

are disjoint vertex sets (“color classes”).

Definition A is color-shifted if
» no face contains more than one vertex of the same color; and
> if {Vip,..., Vap, } € A and a; < b; for all 7, then
{Viags -+, Vna, } € A.
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Color-Shifted Complexes

» Color-shifted complexes generalize Ferrers graphs
(Ehrenborg—van Willigenburg) and complete colorful
complexes (Adin)

» Not in general Laplacian integral. ..

» ...but they do seem to have nice degree-weighted spanning
tree enumerators.
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Matroid Complexes

Definition A pure simplicial complex A is a matroid complex if
its facets form a matroid basis system:

» if F,G are facetsand j € F\ G,
> then there exists j € G \ F such that F\ {i} U {j} is a facet.

Theorem [Kook—Reiner-Stanton 1999] Matroid complexes are
Laplacian integral.

» Experimentally, degree-weighted spanning tree enumerators
seem to have nice factorizations.
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