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Outline: I. (Minimal) free resolutions and Tor® (k[A], k)

II. Theorem for k[A]
III. Proof

For more details, see especially section 5.5 of [1].

Let A be the simplicial complex

2
4
(1) 1 3
so that
In = (212223, T124, T2T4)
and
k[A] = k[{El, PN ,[E4] /IA
—_———
S

The S-module k[A] is Z™graded; for a € Z", the corresponding graded piece is the linear span of the
monomial x* = 27" ... 2%". k[A] has the following Z™-graded free resolution as an S-module:

(2)
0— 8! > 53 y 3 » S = S/Ixn — 0.
g bil fa f3 el e es
fi T3 ey 0 T4 T4 [12223 T1T4 ToT4]
f2 1 (D) T2 —I2X3 0
f3 -1 €3 —I1 0 —ZT1T3

Here the first copy of S! has basis element g of degree T1z22374; the first copy of S® has basis { f1, f2, f3} of
degrees 12Ty, T1T2T3T4, T1T22324 respectively; and the second copy of S® has basis {e1,€2,e3} of degrees
L1X2X3y L1T4, T2X4 respectively.

The resolution (2) is not minimal. In a minimal free resolution (henceforth MFR), we want at each stage
that the columns give a minimal generating set of the kernel. The following is an MFR of S/Ia:

(3) 0— S§? s §3 » S — S/In — 0.
f fa €1 €2 €3
€1 0 T4 [.’El.’L'Q.’L';; 124 1’2374]
€2 T2  —T2T3

€3 —I1 0



Proposition 1. Let R be a graded k-algebra and M a graded R-module. Then a graded R-free resolution
3 RP S RP S M0

is minimal if and only if the matrices only contain elements of

m:=®Rn

n>0

where R, denotes the nth graded piece of R. (Note: m is also denoted Ry and often called the irrelevant
ideal of R.)

For instance, the resolution (2) is not minimal because of the 1 and —1 appearing in the leftmost map.

Note that in this MFR, the free module S? has S-basis { f1, f2} of degrees &1 274, T1Z27324. It can be shown
that the degrees of the basis elements in the terms of an MFR are uniquely determined, even though the
maps are not unique.

Corollary 2. The number of basis elements of R5 of degree x* in any MFR is
dimy, Tory (M, k)xa,
where k = R/m = R/R..

Proof. To compute Torf (M, k), we first write down an MFR of M as an S-module:

(4) ---—>Rﬁ"?R55-1—>---—>R5°—>M—>0.

Here the matrix ¢ has all entries in m. Therefore, tensoring the complex (4) with k over R produces
(5) o k% L RAr D L RE g,

The ith homology of this complex is by definition Tor;9 (M,k); since all the maps are zero, we have
Tor? (M,k) = kP, Note that k5 still carries a grading, and the k-basis vectors for kA = Tor} (M, k)
have the same degrees as the R-basis elements for R%:. O

Let A be a simplicial complex on vertices [n]. Recall that the link of a face is defined as
knF:={Ge€A : GUFeAand GNF = {}.

For S C [n], we define
Als:={FeA : FCS}

The dual complex of A is
AV:i={F€n] : [n]-F¢A}

For instance, if A is the simplicial complex of (1), then AV is

(6) 1 3

One way to picture this is as follows. Draw the full Boolean algebra on [4] (I'm not going to bother to put
in all the edges):



1234

123 124 134 234

=) 1 3] 2 3]
™

The boxes indicate faces of A. The unboxed faces are the complements of faces in the dual complex.

We will also need the notion of the barycentric subdivision SA(A) of a simplicial complex A. Abstractly,
this is the simplicial complex whose vertices are the nonempty faces of A and whose faces are the flags in
A, that is, strictly increasing sequences

V#FRCFRC---CF,

where F; € A for all 4. (For those familiar with posets, the barycentric subdivision of A is the same thing
as the order complex of the poset of faces of A.)

For example, if A is the 2-dimensional simplex on vertices {a, b, c}, then SA(A) has six facets, namely the
flags

{a} C {a,b} C {a,b,c}, {b} C {a,b} C {a,b,c}, {c} C {a,c} C {a,b,c},
{a} C {a,c} C {a,b,c}, {b} C {b,c} C {a,b,c}, {c} C{b,c} C{a,b,c}.
ac be
a b a ab b
A Sd(A)

Proposition 3. Each of A and AV is homotopy equivalent to the complement of the other in JA™~1 = §n—2,
Consequently, their (co-)homology groups are related by Alexander duality:

Hy(AV) = An=3-i(AY).

Idea of proof: Tt is possible to embed both barycentric subdivisions Sd(A) and Sd(AY) simultaneously and
disjointly inside Sd(OA™1). For Sd(AV) one must apply the antipodal map on the barycentric subdivison



before embedding it in the usual way. (This is unLaTeXable, but try it yourself with the complex A of

(1).) O
For this reason, the complex AV may be called the canonical Alezander dual of A.

We now state and prove the main result.

Theorem 4. Let A be a simplicial complex on vertices [n], S = k[z1,...,2Z,], and a € N*. Then
_ﬁ' . Alc: k ; [
Torf(k[A],k)xa o~ 1s|—i—1(Als; k) ifx ‘x for some S C [n]
0 otherwise

IR

H;_y(Ikav(F); k) if x* = x["=F for some F € AV
0 otherwise.

The first characterization of Tor is due to Hochster [3] and the second to Eagon and Reiner [2]. The
equivalence of the two comes from Alexander duality after one checks that (A|s)Y = lkav(F)if S = [n]—F.

Proof. By general homological nonsense we have

(8) Tor? (k[A], k) = Tor; (S/Ia,k) = Torf ,(Ia,k) = Tor; ,(k,Ia).
We compute the last module via the Koszul resolution of k as an S-module:
9) 0 SON'K" -5 SONK' 5 SON K>S > k—0,

where the boundary maps are defined S—linea,rly by
(10) e, N---Nei, +— Z Yare, N---Neg A---Nei,

(the hat denoting removal). Now, we tensor (9) with Ia over S, obtaining
(11) o NON K - NIRRT o L

where the boundary maps are given by
(12) Qe AN--Nei, = Z e, Ao Neg A Aes, .

Denoting e;, A---Ae;, by eg if G = {i1,...,ir}, we see that a k-basis in degree x* for the complex (11) is
(13) {x’®ec : GCn], x° €Ia, xPx% =x*} .

This shows that in degree x®, this complex coincides (up to shift in homological degree by 1) with the usual
augmented chain complex for the simplicial complex

(14) Ay = {Gc[n] —QEIA}:{GC[H] : supp(xa) ¢A}
Thus we have
(15) Tor (K[A] K)xe = Tory | (k,In)xe = H;_2(Ag; k).

Note that if x* is divisible by z7, then

x% x%
Supp (X_G) = Supp (xGU{i}>




so i will be a cone vertex for A,. Hence without loss of generality x* = x° for some subset S C [n]. Let
F =[n] — S; then

S
z—GeIA — GCcSandS-G¢A

<~ GNF=0and[n]— (GUF)¢A
< G elkav(F).
Therefore A, = lkav (F). O

As an illustration, we can now go back and explain the degrees of the basis elements for the terms in the
MFR:

Restricted complex Homological observations
2
A = .
|1234 N B #0
1 3
A = fi .
123 40
A = A o [ ~
|14 |23 o 40
[ ]
A = .
124 I N o £0
Link Homological observations
2
AV = lkAv @ = [ ] ~
® \, 4 Ho #0
1 3
lkav(3) = .
av(3) . o 40

Tkav (4),Ikav (23),lkav (13) = {0} 40
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