

Minimal free resolutions of Stanley-Reisner rings

Speaker: Vic Reiner

Scribe notes by Sandra Di Rocco, LaTeX'ed by Jeremy Martin

Outline: I. (Minimal) free resolutions and $\text{Tor}_r^S(\mathbf{k}[\Delta], \mathbf{k})$

II. Theorem for $\mathbf{k}[\Delta]$

III. Proof

For more details, see especially section 5.5 of [1].

Let Δ be the simplicial complex

so that

$$I_\Delta = (x_1x_2x_3, x_1x_4, x_2x_4)$$

and

$$\mathbf{k}[\Delta] = \underbrace{\mathbf{k}[x_1, \dots, x_4]}_S / I_\Delta.$$

The S -module $\mathbf{k}[\Delta]$ is \mathbb{Z}^n -graded; for $\alpha \in \mathbb{Z}^n$, the corresponding graded piece is the linear span of the monomial $\mathbf{x}^\alpha = x_1^{\alpha_1} \dots x_n^{\alpha_n}$. $\mathbf{k}[\Delta]$ has the following \mathbb{Z}^n -graded free resolution as an S -module:

(2)

$$0 \rightarrow S^1 \xrightarrow{\quad} S^3 \xrightarrow{\quad} S^3 \xrightarrow{\quad} S \rightarrow S/I_\Delta \rightarrow 0.$$

$$\begin{array}{ccc} f_1 & \begin{bmatrix} g \\ x_3 \end{bmatrix} & e_1 \begin{bmatrix} f_1 & f_2 & f_3 \\ 0 & x_4 & x_4 \\ x_2 & -x_2x_3 & 0 \end{bmatrix} \\ f_2 & \begin{bmatrix} 1 \end{bmatrix} & e_2 \\ f_3 & \begin{bmatrix} -1 \end{bmatrix} & e_3 \begin{bmatrix} -x_1 & 0 & -x_1x_3 \end{bmatrix} \\ & & \begin{bmatrix} e_1 & e_2 & e_3 \\ x_1x_2x_3 & x_1x_4 & x_2x_4 \end{bmatrix} \end{array}$$

Here the first copy of S^1 has basis element g of degree $x_1x_2x_3x_4$; the first copy of S^3 has basis $\{f_1, f_2, f_3\}$ of degrees $x_1x_2x_4, x_1x_2x_3x_4, x_1x_2x_3x_4$ respectively; and the second copy of S^3 has basis $\{e_1, e_2, e_3\}$ of degrees $x_1x_2x_3, x_1x_4, x_2x_4$ respectively.

The resolution (2) is not minimal. In a minimal free resolution (henceforth MFR), we want at each stage that the columns give a minimal generating set of the kernel. The following is an MFR of S/I_Δ :

(3)

$$0 \rightarrow S^2 \xrightarrow{\quad} S^3 \xrightarrow{\quad} S \rightarrow S/I_\Delta \rightarrow 0.$$

$$\begin{array}{ccc} e_1 & \begin{bmatrix} f_1 & f_2 \\ 0 & x_4 \end{bmatrix} & \begin{bmatrix} e_1 & e_2 & e_3 \\ x_1x_2x_3 & x_1x_4 & x_2x_4 \end{bmatrix} \\ e_2 & \begin{bmatrix} x_2 & -x_2x_3 \end{bmatrix} & \\ e_3 & \begin{bmatrix} -x_1 & 0 \end{bmatrix} & \end{array}$$

Proposition 1. Let R be a graded \mathbf{k} -algebra and M a graded R -module. Then a graded R -free resolution

$$\cdots \rightarrow R^{\beta_1} \rightarrow R^{\beta_0} \rightarrow M \rightarrow 0$$

is minimal if and only if the matrices only contain elements of

$$\mathfrak{m} := \bigoplus_{n>0} R_n$$

where R_n denotes the n th graded piece of R . (Note: \mathfrak{m} is also denoted R_+ and often called the irrelevant ideal of R .)

For instance, the resolution (2) is not minimal because of the 1 and -1 appearing in the leftmost map.

Note that in this MFR, the free module S^2 has S -basis $\{f_1, f_2\}$ of degrees $x_1x_2x_4, x_1x_2x_3x_4$. It can be shown that the degrees of the basis elements in the terms of an MFR are uniquely determined, even though the maps are not unique.

Corollary 2. The number of basis elements of R^{β_i} of degree \mathbf{x}^α in any MFR is

$$\dim_{\mathbf{k}} \text{Tor}_i^S(M, \mathbf{k})_{\mathbf{x}^\alpha},$$

where $\mathbf{k} = R/\mathfrak{m} = R/R_+$.

Proof. To compute $\text{Tor}_i^S(M, \mathbf{k})$, we first write down an MFR of M as an S -module:

$$(4) \quad \cdots \xrightarrow{\phi} R^{\beta_i} \rightarrow R^{\beta_{i-1}} \rightarrow \cdots \rightarrow R^{\beta_0} \rightarrow M \rightarrow 0.$$

Here the matrix ϕ has all entries in \mathfrak{m} . Therefore, tensoring the complex (4) with \mathbf{k} over R produces

$$(5) \quad \cdots \rightarrow \mathbf{k}^{\beta_i} \xrightarrow{0} R^{\beta_{i-1}} \xrightarrow{0} \cdots \xrightarrow{0} R^{\beta_0} \rightarrow 0.$$

The i th homology of this complex is by definition $\text{Tor}_i^S(M, \mathbf{k})$; since all the maps are zero, we have $\text{Tor}_i^S(M, \mathbf{k}) = \mathbf{k}^{\beta_i}$. Note that \mathbf{k}^{β_i} still carries a grading, and the \mathbf{k} -basis vectors for $\mathbf{k}^{\beta_i} = \text{Tor}_i^S(M, \mathbf{k})$ have the same degrees as the R -basis elements for R^{β_i} . \square

Let Δ be a simplicial complex on vertices $[n]$. Recall that the *link* of a face is defined as

$$\text{lk}_\Delta F := \{G \in \Delta : G \cup F \in \Delta \text{ and } G \cap F = \emptyset\}.$$

For $S \subset [n]$, we define

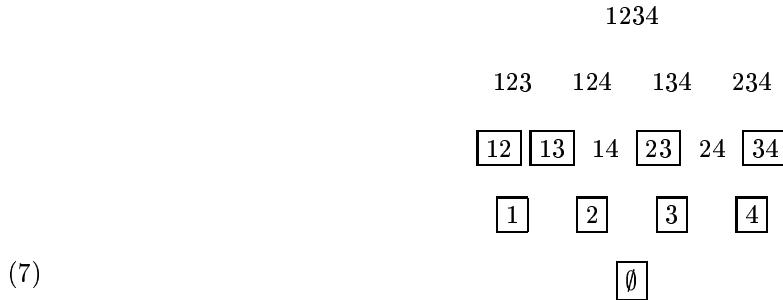
$$\Delta|_S := \{F \in \Delta : F \subset S\}.$$

The *dual complex* of Δ is

$$\Delta^\vee := \{F \in [n] : [n] - F \notin \Delta\}$$

For instance, if Δ is the simplicial complex of (1), then Δ^\vee is

One way to picture this is as follows. Draw the full Boolean algebra on $[4]$ (I'm not going to bother to put in all the edges):



The boxes indicate faces of Δ . The unboxed faces are the complements of faces in the dual complex.

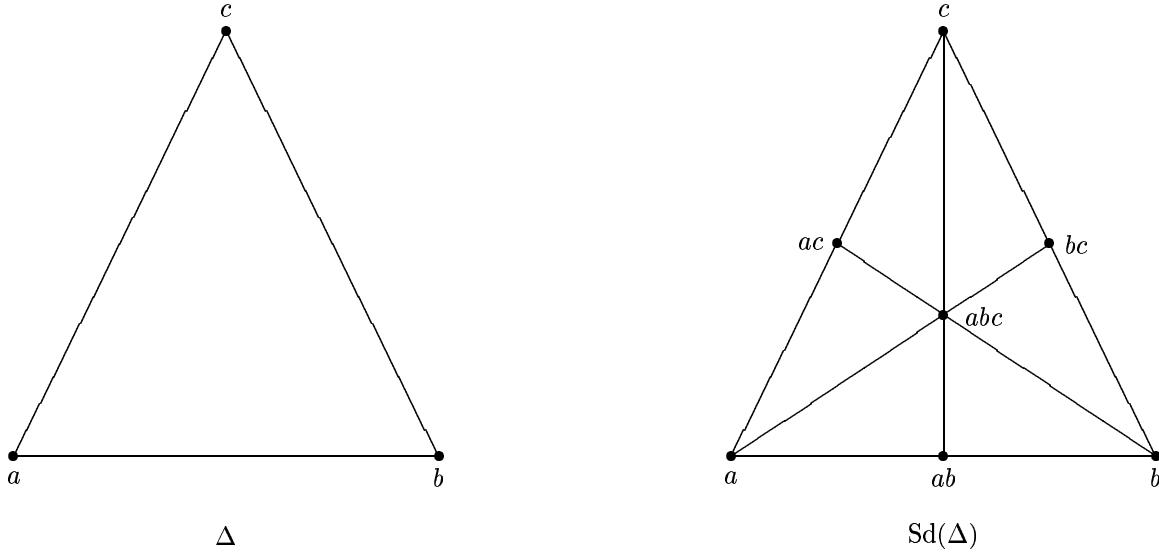
We will also need the notion of the *barycentric subdivision* $\text{Sd}(\Delta)$ of a simplicial complex Δ . Abstractly, this is the simplicial complex whose vertices are the nonempty faces of Δ and whose faces are the *flags* in Δ , that is, strictly increasing sequences

$$\emptyset \neq F_0 \subsetneq F_1 \subsetneq \cdots \subsetneq F_r$$

where $F_i \in \Delta$ for all i . (For those familiar with posets, the barycentric subdivision of Δ is the same thing as the order complex of the poset of faces of Δ .)

For example, if Δ is the 2-dimensional simplex on vertices $\{a, b, c\}$, then $\text{Sd}(\Delta)$ has six facets, namely the flags

$$\begin{array}{lll}
\{a\} \subset \{a, b\} \subset \{a, b, c\}, & \{b\} \subset \{a, b\} \subset \{a, b, c\}, & \{c\} \subset \{a, c\} \subset \{a, b, c\}, \\
\{a\} \subset \{a, c\} \subset \{a, b, c\}, & \{b\} \subset \{b, c\} \subset \{a, b, c\}, & \{c\} \subset \{b, c\} \subset \{a, b, c\}.
\end{array}$$



Proposition 3. *Each of Δ and Δ^\vee is homotopy equivalent to the complement of the other in $\partial\Delta^{n-1} \cong \mathbb{S}^{n-2}$. Consequently, their (co-)homology groups are related by Alexander duality:*

$$\tilde{H}_i(\Delta^\vee) \cong \tilde{H}^{n-3-i}(\Delta^\vee).$$

Idea of proof: It is possible to embed both barycentric subdivisions $\text{Sd}(\Delta)$ and $\text{Sd}(\Delta^\vee)$ simultaneously and disjointly inside $\text{Sd}(\partial\Delta^{n-1})$. For $\text{Sd}(\Delta^\vee)$ one must apply the antipodal map on the barycentric subdivision

before embedding it in the usual way. (This is unLaTeXable, but try it yourself with the complex Δ of (1).) \square

For this reason, the complex Δ^\vee may be called the *canonical Alexander dual* of Δ .

We now state and prove the main result.

Theorem 4. *Let Δ be a simplicial complex on vertices $[n]$, $S = \mathbf{k}[x_1, \dots, x_n]$, and $\alpha \in \mathbb{N}^n$. Then*

$$\begin{aligned} \mathrm{Tor}_i^S(\mathbf{k}[\Delta], \mathbf{k})_{\mathbf{x}^\alpha} &\cong \begin{cases} \tilde{H}_{|S|-i-1}(\Delta|_S; \mathbf{k}) & \text{if } \mathbf{x}^\alpha = \mathbf{x}^S \text{ for some } S \subset [n] \\ 0 & \text{otherwise} \end{cases} \\ &\cong \begin{cases} \tilde{H}_{i-2}(\mathrm{lk}_{\Delta^\vee}(F); \mathbf{k}) & \text{if } \mathbf{x}^\alpha = \mathbf{x}^{[n]-F} \text{ for some } F \in \Delta^\vee \\ 0 & \text{otherwise.} \end{cases} \end{aligned}$$

The first characterization of Tor is due to Hochster [3] and the second to Eagon and Reiner [2]. The equivalence of the two comes from Alexander duality after one checks that $(\Delta|_S)^\vee = \mathrm{lk}_{\Delta^\vee}(F)$ if $S = [n] - F$.

Proof. By general homological nonsense we have

$$(8) \quad \mathrm{Tor}_i^S(\mathbf{k}[\Delta], \mathbf{k}) = \mathrm{Tor}_i^S(S/I_\Delta, \mathbf{k}) \cong \mathrm{Tor}_{i-1}^S(I_\Delta, \mathbf{k}) \cong \mathrm{Tor}_{i-1}^S(\mathbf{k}, I_\Delta).$$

We compute the last module via the Koszul resolution of \mathbf{k} as an S -module:

$$(9) \quad 0 \rightarrow S \otimes \bigwedge^n \mathbf{k}^n \rightarrow \dots \rightarrow S \otimes \bigwedge^2 \mathbf{k}^n \rightarrow S \otimes \bigwedge^1 \mathbf{k}^n \rightarrow S \rightarrow \mathbf{k} \rightarrow 0,$$

where the boundary maps are defined S -linearly by

$$(10) \quad e_{i_1} \wedge \dots \wedge e_{i_r} \mapsto \sum_{j=1}^r (-1)^j x_r e_{i_1} \wedge \dots \wedge \widehat{e_{i_1}} \wedge \dots \wedge e_{i_r}$$

(the hat denoting removal). Now, we tensor (9) with I_Δ over S , obtaining

$$(11) \quad \dots \rightarrow I_\Delta \otimes \bigwedge^r \mathbf{k}^n \rightarrow \bigwedge^{r-1} \mathbf{k}^n \rightarrow \dots$$

where the boundary maps are given by

$$(12) \quad \mathbf{x}^\beta \otimes e_{i_1} \wedge \dots \wedge e_{i_r} \mapsto \sum_{j=1}^r (-1)^j x_r e_{i_1} \wedge \dots \wedge \widehat{e_{i_1}} \wedge \dots \wedge e_{i_r}.$$

Denoting $e_{i_1} \wedge \dots \wedge e_{i_r}$ by e_G if $G = \{i_1, \dots, i_r\}$, we see that a \mathbf{k} -basis in degree \mathbf{x}^α for the complex (11) is

$$(13) \quad \{\mathbf{x}^\beta \otimes e_G : G \subset [n], \mathbf{x}^\beta \in I_\Delta, \mathbf{x}^\beta \mathbf{x}^G = \mathbf{x}^\alpha\}.$$

This shows that in degree \mathbf{x}^α , this complex coincides (up to shift in homological degree by 1) with the usual augmented chain complex for the simplicial complex

$$(14) \quad \Delta_\alpha := \left\{ G \subset [n] : \frac{\mathbf{x}^\alpha}{\mathbf{x}^G} \in I_\Delta \right\} = \left\{ G \subset [n] : \mathrm{supp} \left(\frac{\mathbf{x}^\alpha}{\mathbf{x}^G} \right) \notin \Delta \right\}.$$

Thus we have

$$(15) \quad \mathrm{Tor}_i^S(\mathbf{k}[\Delta], \mathbf{k})_{\mathbf{x}^\alpha} \cong \mathrm{Tor}_{i-1}^S(\mathbf{k}, I_\Delta)_{\mathbf{x}^\alpha} \cong \tilde{H}_{i-2}(\Delta_\alpha; \mathbf{k}).$$

Note that if \mathbf{x}^α is divisible by x_i^2 , then

$$\mathrm{supp} \left(\frac{\mathbf{x}^\alpha}{\mathbf{x}^G} \right) = \mathrm{supp} \left(\frac{\mathbf{x}^\alpha}{\mathbf{x}^{G \cup \{i\}}} \right)$$

so i will be a cone vertex for Δ_α . Hence without loss of generality $\mathbf{x}^\alpha = \mathbf{x}^S$ for some subset $S \subset [n]$. Let $F = [n] - S$; then

$$\begin{aligned} \frac{\mathbf{x}^S}{\mathbf{x}^G} \in I_\Delta &\iff G \subset S \text{ and } S - G \notin \Delta \\ &\iff G \cap F = \emptyset \text{ and } [n] - (G \cup F) \notin \Delta \\ &\iff G \in \text{lk}_{\Delta^\vee}(F). \end{aligned}$$

Therefore $\Delta_\alpha = \text{lk}_{\Delta^\vee}(F)$. \square

As an illustration, we can now go back and explain the degrees of the basis elements for the terms in the MFR:

Restricted complex	Homological observations
$\Delta _{1234} =$ 	$\tilde{H}_1 \neq 0$
$\Delta _{123} \cong$ 	$\tilde{H}_1 \neq 0$
$\Delta _{14} \cong \Delta _{23} \cong$ \vdots 	$\tilde{H}_0 \neq 0$
$\Delta _{124} \cong$ 	$\tilde{H}_0 \neq 0$

Link	Homological observations
$\Delta^\vee = \text{lk}_{\Delta^\vee}(\emptyset) =$ 	$\tilde{H}_0 \neq 0$
$\text{lk}_{\Delta^\vee}(3) \cong$ \vdots 	$\tilde{H}_0 \neq 0$
$\text{lk}_{\Delta^\vee}(4), \text{lk}_{\Delta^\vee}(23), \text{lk}_{\Delta^\vee}(13) = \{\emptyset\}$	$\tilde{H}_{-1} \neq 0$

REFERENCES

- [1] W. Bruns and J. Herzog. *Cohen-Macaulay rings*. Cambridge U. Press, 1993
- [2] J. Eagon and V. Reiner. *Resolutions of Stanley-Reisner rings and Alexander duality*. J. of Pure and Applied Algebra **130** (1998), 265–275.
- [3] M. Hochster. *Cohen-Macaulay rings, combinatorics, and simplicial complexes*. In B.R. McDonald and R.A. Morris, eds. *Ring theory II*, Lecture Notes in Pure and Applied Mathematics **26**, M. Dekker, 1977, pp. 171–223.