

Stanley-Reisner Rings (10/24/02)

Speaker: Vic Reiner

$k(\Delta)$ associated a simplicial complex Δ on vertex set $V = k[x_v : v \in V]/I_\Delta$, where

$$I_\Delta = \{x_{v_1}, \dots, x_{v_r} : \{v_1, \dots, v_r\} \not\in \Delta\}$$

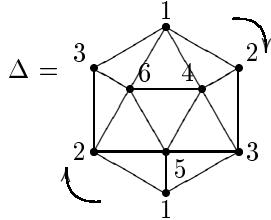
= arbitrary square-free monomial ideal

Motivation (i)

Arbitrary graded rings deform to $k[\Delta]$'s, leaving many properties (Knull dimension, Hilbert series, degree of projection embedding) unchanged; and having many homological invariants only increasing.

Motivation (ii)

For $k[d]$, almost any (ring-theoretic) homological invariant (e.g., $\text{Tor}^s(k[\Delta],)$, $H_m(k[\Delta])$ local cohomology) are computed via simplicial (co-) homology of Δ . E.g., dependence on the characteristic of the field k can be subtle for these ring invariants, but comes down to torsion for $H(\Delta, k)$.



$\Delta = \mathbb{R}P^2$ has $k[\Delta] = k[x_1, x_2, \dots, x_6]/(x_1x_2x_3, x_1x_2x_6, \dots)$
with most of its homological invariants
depending upon whether $\text{char}(k) = 2$ or not, since

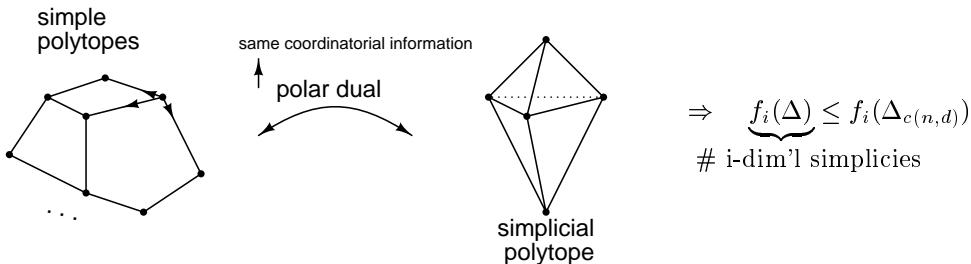
$$\tilde{H}_i(\Delta; k) = \begin{cases} 0 & i > 2 \\ k & i = 2 \\ k & i = 1 \\ 0 & i = 0 \end{cases} \quad \text{if } \text{char}(k) = 2$$

$$= 0 \quad \forall i, \quad \text{if } \text{char}(k) \neq 2.$$

Motivation (iii)

For some combinatorial problems about simplicial complexes Δ , the approach via $k[\Delta]$ is the easy way or the only way. E.g., The upper bound conjecture (UBC) for simplicial polytopes and spheres (Motzkin 1957?)

CONJ: Δ a simplicial $(d-1)$ -dimensional sphere (e.g., boundary of a simplicial convex polytope)



where

$\Delta_{c(n,d)}$ = boundary of the cyclic d -polytope $C(n,d)$ with n vertices
 = convex hull of any n points on the moment curve $\{(t, t^2, \dots, t^d) : t \in \mathbb{R}\} \subset \mathbb{R}^d$

e.g. $n = 6$

$$C(6, 1) \quad \bullet \bullet \bullet \bullet \bullet \bullet \rightarrow \mathbb{R}^1 \quad \{(t) : t \in \mathbb{R}\}$$

$$C(6, 2) \quad \begin{array}{c} 1 \\ / / / / / \\ 2 \quad 5 \\ \backslash \quad \backslash \\ 3 \quad 4 \end{array} \quad \mathbb{R}^2 \quad \{(t, t^2) : t \in \mathbb{R}\}$$

$$C(6, 3) \quad \begin{array}{c} 1 \\ / / / / / \\ 2 \quad 5 \\ \backslash \quad \backslash \\ 3 \quad 4 \\ \backslash \quad \backslash \\ 6 \end{array} \quad \mathbb{R}^3 \quad \{(t, t^2, t^3) : t \in \mathbb{R}\}$$

UBC is proven for convex polytopes by Peter McMullen in 1970 (?) using key observations about the n -vectors ...

$$C(5, 3) \quad d=3 \quad \begin{array}{c} 2 \\ / / / / \\ 1 \quad 5 \\ \backslash \quad \backslash \\ 3 \quad 4 \\ \backslash \quad \backslash \\ 1 \quad 5 \\ \backslash \quad \backslash \\ 2 \quad 4 \\ \backslash \quad \backslash \\ 3 \quad 5 \\ \backslash \quad \backslash \\ 1 \quad 4 \\ \backslash \quad \backslash \\ 2 \quad 3 \\ \backslash \quad \backslash \\ 1 \quad 2 \end{array} \quad \cong \quad \begin{array}{c} 1 \quad 5 \\ 1 \quad 4 \quad 5 \\ 1 \quad 3 \quad 2 \quad 1 \\ \hline (1 \quad 2 \quad 2 \quad 1) = h(\Delta) \end{array}$$

$$f(\Delta)(f_{-1}, f_0, f_1, f_2) = (1, 5, 9, 6) \\ h(\Delta)(h_0, h_1, h_2, h_3) = (1, 2, 2, 1)$$

$$\begin{array}{cccccc} & & & 1 & & \\ & & & 1 & 5 & \\ & & & 1 & 4 & 9 \\ & & & 1 & 3 & 5 \\ \hline (1 & 2 & 2 & 1) & = h(\Delta) \end{array}$$

So

$$\begin{aligned}
\text{Hilb}(k[\Delta], t) &= f_{-1} + f_0 \left(\frac{t}{1-t} \right) + f_1 \left(\frac{t}{1-t} \right)^2 + f_2 \left(\frac{t}{1-t} \right)^3 \\
&= 1 + 5 \left(\frac{t}{1-t} \right) + 9 \left(\frac{t}{1-t} \right)^2 + 6 \left(\frac{t}{1-t} \right)^3 \\
&= \frac{h_0 + h_1 t + h_2 t^2 + h_3 t^3}{(1-t)^3} \\
&= \frac{1 + 2t + 2t^2 + t^3}{(1-t)^3}
\end{aligned}$$

McMullen's observation 1

UBC follows from

$$h_i(\Delta) \leq \binom{n-d+i-1}{i}$$

where $n = f_0 = \#$ of vertices.

(follows from explicit knowledge of f_i for boundary of $C(n, d)$ and a little mucking around...)

McMullen's observation 2

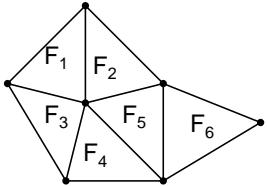
$h_i(\Delta) \leq \binom{n-d+i-1}{i}$ is easy to prove by induction on $f_{d-1} = \#$ of facets (=maximal faces) for Δ which are pure shellable simplicial complexes (of dimension $d-1$ with n vertices)

Δ is *shellable* if it can be built up by ordering facets F_1, F_2, \dots so that $\forall i \geq 2$,

$$\begin{aligned}
&F_i \cap \underbrace{(\cup_{j < i} F_j)}_{\text{sub complex gen'd by } F_1, F_2, \dots, F_{i-1}}
\end{aligned}$$

is pure of codimension inside F_i

When $d = 3$, $d-1 = 2$,



Brngesser & Mani (1969?), Boundary of convex polytopes are shellable (this proves UBC)

McMullen's observation 3

For Δ shellable, $h_i(\Delta)$ counts something: it is equal to the number of facets F_i is shelling having $d-i$ new walls, i old walls, where $d-i$ new walls are not in $\cup_{j < i} F_j$.

e.g.,

	facets	new walls	d :	# new walls
F_1	123	12, 13, 23	0	$\} h_0 = 1$
F_2	134	14, 34	1	$\} h_1 = 2$
F_3	145	15, 45	1	$\} h_2 = 2$
F_4	345	35	2	$\} h_3 = 1$
F_5	235	25	2	$\} h_4 = 1$
F_6	125	\emptyset	3	$\} h_5 = 1$

For shellable Δ ,

Cor 1: $h_i(\Delta) \geq 0$

Cor 2: $h_i(\Delta) = h_{d-i}(\Delta)$ (provided Δ is the boundary of a d -dimensional polytope, or more generally has a shelling order whose reverse is also a shelling order).

$\overbrace{\text{Dehn}}^{1905} - \overbrace{\text{Sommerville}}^{1927}$ equations. (The reverse of a Barg-Mani shelling is still a shelling, and “old” \leftrightarrow “new”)