

Local cohomology

Speaker: Anton Leykin

Scribe notes by Jeremy Martin

We work with the following objects throughout. Let \mathbf{k} be a field and R a finitely generated, \mathbb{N}^n -graded \mathbf{k} -algebra, i.e., $R = \bigoplus_{\alpha \in \mathbb{N}^n} R_\alpha$ with $R_\alpha R_\beta \subset R_{\alpha+\beta}$. The motivating example is $R = \mathbf{k}[\Delta]$, the Stanley-Reisner ring of a simplicial complex Δ . Define

$$R_+ := \bigoplus_{\alpha \neq 0} R_\alpha$$

the so-called **irrelevant ideal**. Finally, M will be a \mathbb{Z}^n -graded R -module, i.e., $M = \bigoplus_{\alpha \in \mathbb{Z}^n} M_\alpha$ with $R_\alpha M_\beta \subset M_{\alpha+\beta}$.

1. DEPTH AND COHEN-MACAULAYNESS

Definition 1. An element $a \in R$ is called a **nonzerodivisor** (or NZD) on M if $m \in M$, $am = 0$ implies $m = 0$. Equivalently, the map

$$M \xrightarrow{\cdot a} M$$

given by multiplication by a is one-to-one.

Definition 2. A sequence of homogeneous elements $\theta_1, \dots, \theta_s$ is a **regular M -sequence**, or M -sequence for short, if θ_{i+1} is a NZD on $M/(\theta_1, \dots, \theta_i)M$ for $i = 0, \dots, s-1$.

Definition 3. The **dimension** of M , denoted $\dim_R M$ or $\dim M$, is the Krull dimension of $R/\text{Ann}_R M$. The **depth** of M , denoted $\text{depth}_R M$ or $\text{depth } M$, is the length of a maximal M -sequence. It can be shown that every maximal M -sequence has the same length.

In general $\text{depth}_R M \leq \dim_R M$ (since any M -sequence of length s generates a height- s ideal of $R/\text{Ann } M$). Equality is an important “niceness” condition which gets its own name:

Definition 4. M is **Cohen-Macaulay** if $\text{depth}_R M = \dim_R M$.

2. LOCAL COHOMOLOGY

Define the **torsion functor** Γ by

$$\Gamma(M) := \{u \in M \mid R_+^n u = 0 \text{ for } n \gg 0\}.$$

It is routine to check that Γ is a covariant, left-exact functor. That is, a map $f : M \rightarrow N$ of graded R -modules induces a map $\Gamma(f) : \Gamma(M) \rightarrow \Gamma(N)$, and if f is injective then $\Gamma(f)$ is injective.

The i th local cohomology functor H^i (more precisely, $H_{R_+}^i$) can now be defined as the i th right derived functor of Γ :

$$H^i(M) = R^i \Gamma(M).$$

That is, one may calculate $H^i(M)$ by taking an injective resolution

$$I^\bullet : 0 \rightarrow M \rightarrow I^0 \rightarrow I^1 \rightarrow \dots,$$

applying Γ , and defining $H^i(M) := H^i(\Gamma I^\bullet)$. (See a textbook on homological algebra for more details.)

Lemma 5. For all i , the modules $H^i(M)$ are R_+ -torsion, i.e., they are killed by some power of R_+ .

Proof. By definition of Γ , every module of the form $\Gamma(N)$ is R_+ -torsion. In particular, if I^\bullet is an injective resolution, then every $\Gamma(I^i)$ is R_+ -torsion, so the same is true of the cohomology modules of $\Gamma(I^\bullet)$. \square

The local cohomology functors are useful because they detect depth and dimension. Specifically, we have the following fact.

Theorem 6. *Let $e = \operatorname{depth}_R M$ and $d = \dim_R M$. Then:*

$$(1) \quad H^i(M) = 0 \text{ unless } e \leq i \leq d.$$

$$(2) \quad H^e(M) \neq 0 \text{ and } H^d(M) \neq 0.$$

Proof. We'll prove only (1), which is the case we really need. We proceed by induction on e .

If $H^0(M) \neq 0$, then every element of R_+ is a zerodivisor on M , which is exactly the statement that $e = 0$.

If $e = 0$, then

$$R_+ \subset \bigcup_{P \in \operatorname{Ass} M} P,$$

so R_+ is itself an associated prime. It is immediate that $\Gamma(M) = H^0(M) \neq 0$ as desired.

For the inductive step, assume that (1) is true for all R -modules N with $\operatorname{depth} N < e$. Let $a \in R_+$ be a homogeneous NZD on M and let $N = M/aM$. Then $\operatorname{depth}_R N = e - 1$, so by induction $H^i(N) = 0$ for $i < e - 1$ and $H^{e-1}(N) \neq 0$.

By general homological nonsense, the short exact sequence of R -modules

$$(1) \quad 0 \rightarrow M \xrightarrow{\cdot a} M \rightarrow N \rightarrow 0$$

induces a long exact sequence on cohomology

$$(2) \quad \dots \rightarrow H^{i-1}(M) \rightarrow H^{i-1}(N) \rightarrow H^i(M) \xrightarrow{\cdot a} H^i(M) \rightarrow \dots$$

If $i < e$, then $H^{i-1}(N) = 0$, so a is a NZD on $H^i(M)$. But $H^i(M)$ is R_+ -torsion and so has depth 0. It follows that $H^i(M) = 0$.

On the other hand, if $i = e$ then the first three terms displayed in (2) are

$$0 \rightarrow H^{e-1}(N) \rightarrow H^e(M),$$

and $H^e(M) \neq 0$ since $H^{e-1}(N) \neq 0$. □

The local cohomology functors can be computed using the **Čech complex** $\check{C}^\bullet(x_1, \dots, x_n; M)$, which is defined as

$$(3) \quad \check{C}^\bullet(x_1, \dots, x_n; M) := \bigotimes_{i=1}^n ((0 \rightarrow R \rightarrow R_{x_i} \rightarrow 0) \otimes M).$$

where $R_+ = \sqrt{(x_1, \dots, x_n)}$ and $R_{x_i} = R[x_i^{-1}]$. The i th Čech module $\check{C}^i(x_1, \dots, x_n; M)$ may be described explicitly as follows. For $F \subset [n]$, define

$$x_F = \prod_{i \in F} x_i$$

and let

$$R_F = R[x_F^{-1}].$$

Then

$$(4) \quad \check{C}_i^\bullet(x_1, \dots, x_n; M) = \bigoplus_{\substack{F \subset [n] \\ |F|=i}} M_F$$

where $M_F = M \otimes R_F$ and the maps between adjacent terms in the Čech complex are given by the usual Koszul maps (just like simplicial cohomology.)

3. HOCHSTER'S THEOREM

Let Δ be a simplicial complex on vertices x_1, \dots, x_n , and $R = \mathbf{k}[\Delta] = \mathbf{k}[x_1, \dots, x_n]/I_\Delta$ its Stanley-Reisner ring. With respect to the obvious \mathbb{N}^n -grading, we have $R_+ = (x_1, \dots, x_n)$.

Definition 7. Let $F \in \Delta$. The **star** of F with respect to Δ is

$$\text{st}_\Delta F := \{G \in \Delta \mid G \cup F \in \Delta\}$$

and the **link** of F with respect to Δ is

$$\text{lk}_\Delta F := \{G \in \Delta \mid G \cup F \in \Delta, G \cap F = \emptyset\}.$$

We suppress the subscript when possible.

Note that both $\text{st } F$ and $\text{lk } F$ are simplicial complexes, and that $\text{st } F = \langle F \rangle * \text{lk } F$. For instance, if $\Delta = \langle 123, 14, 24 \rangle$ and $F = 12$, then $\text{lk } F = \langle 3 \rangle$ and $\text{st } F = \langle 123 \rangle$.

Let q_1, \dots, q_n be indeterminates. Denote by $\text{Hilb}(M; q)$ the finely graded Hilbert series of M , i.e.,

$$\text{Hilb}(M; q) := \sum_{\alpha \in \mathbb{Z}^n} q^\alpha \dim_{\mathbf{k}} M_\alpha,$$

where $q^\alpha = q_1^{\alpha_1} \dots q_n^{\alpha_n}$. Also, let $\tilde{H}_i(\Delta; \mathbf{k})$ denote the i th reduced simplicial homology of a simplicial complex Δ with coefficients in \mathbf{k} .

For $\alpha \in \mathbb{Z}^n$, define

$$\begin{aligned} F(\alpha) &= \{x_i \mid \alpha_i < 0\}, \\ G(\alpha) &= \{x_i \mid \alpha_i > 0\}, \\ \text{supp}(\alpha) &= F(\alpha) \cup G(\alpha) = \{x_i \mid \alpha_i \neq 0\}. \end{aligned}$$

Theorem 8 (Hochster). We have

$$\text{Hilb}(H^i(\mathbf{k}[\Delta]); q) = \sum_{F \in \Delta} \dim_{\mathbf{k}} \tilde{H}_{i-|F|-1}(\text{lk}_\Delta F; \mathbf{k}) \prod_{x_i \in F} \frac{q_i^{-1}}{1 - q_i^{-1}}.$$

Proof. We compute $H^i(R)$ explicitly as the i th cohomology of the Čech complex $\check{C}^\bullet = \check{C}^\bullet(x_1, \dots, x_n; M)$. If $F \notin \Delta$, then the ring R_F is zero, because $x_F = 0$ in R . On the other hand, if $F \in \Delta$, then the variables in F become units in R_F , and those not in $\text{st}_\Delta F$ get killed (since they annihilate the unit x_F). That is,

$$R_F = \mathbf{k} [\{x_i, x_i^{-1} : i \in F\} \cup \{x_j : x_j \in \text{lk } F\}] \otimes R.$$

Let $\alpha \in \mathbb{Z}^n$. We will compute the α th graded piece \check{C}_α^\bullet of the Čech complex. If $\text{supp}(\alpha) \notin \Delta$, then $\check{C}_\alpha^\bullet = 0$, because $R_\alpha = 0$ and adjoining inverses doesn't change this. So suppose that $\text{supp}(\alpha) \in \Delta$. Let $F = F(\alpha)$, $j = |F|$, and $G = G(\alpha)$. A priori, we have

$$(5) \quad \check{C}_\alpha^r = \left[\bigoplus_{|F'|=r} R_{F'} \right]_\alpha = \bigoplus_{|F'|=r} [R_{F'}]_\alpha.$$

A whole bunch of these summands are zero. Specifically, for $R_{F'}$ to be nonzero, we must have $F' \in \Delta$ (as previously noted), $F' \supset F$ (since the variables in F must be units in the α th graded piece of the Čech complex), and $F' \cup G \in \Delta$ (so that x^α itself is nonzero). This is all equivalent to the condition that $F'' = F' \setminus F$ belong to $\text{lk}_{\text{st } G} F$, so we may write

$$(6) \quad \check{C}_\alpha^r = \left[\bigoplus_{\substack{F'' \in \text{lk}_{\text{st } G} F \\ |F''|=r-j}} R_{F \cup F''} \right]_\alpha.$$

The maps in \check{C}_α^r correspond to the usual coboundary maps of the simplicial cochain complex of $\text{lk}_{\text{st} G} F$, shifted by $j + 1$. That is,

$$(7) \quad [H^i(R)]_\alpha = \check{H}^{i-j-1}(\text{lk}_{\text{st} G} F; \mathbf{k})$$

$$(8) \quad \cong \check{H}_{i-j-1}(\text{lk}_{\text{st} G} F; \mathbf{k})$$

since this is a finite-dimensional \mathbf{k} -vector space, hence isomorphic to its dual. (The isomorphism is not canonical, but we don't care because we're really only interested in its dimension.)

If $G \neq \emptyset$, then $\text{lk}_{\text{st} G} F$ is a cone over G . In particular it is contractible, so $\check{H}_\bullet(\text{lk}_{\text{st} G} F; \mathbf{k}) = 0$. Therefore we only have nonzero terms when $G = \emptyset$, so $\text{lk}_{\text{st} G} F = \text{lk}_\Delta F$ and the last equation becomes

$$(9) \quad [H^i(R)]_\alpha \cong \check{H}_{i-j-1}(\text{lk} F; \mathbf{k}).$$

Therefore

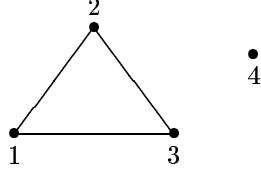
$$(10) \quad \text{Hilb}(H^i(\mathbf{k}[\Delta]); q) = \sum_{F \in \Delta} \sum_{\substack{\alpha: \\ \text{supp}(\alpha) = F}} \dim_{\mathbf{k}} \check{H}_{i-|F|-1}(\text{lk} F; \mathbf{k}) q^\alpha$$

$$(11) \quad = \sum_{F \in \Delta} \dim_{\mathbf{k}} \check{H}_{i-|F|-1}(\text{lk} F; \mathbf{k}) \sum_{\substack{\alpha: \\ \text{supp}(\alpha) = F}} q^\alpha$$

$$(12) \quad = \sum_{F \in \Delta} \dim_{\mathbf{k}} \check{H}_{i-|F|-1}(\text{lk} F; \mathbf{k}) \prod_{x_i \in F} \frac{q_i^{-1}}{1 - q_i^{-1}}$$

as desired. \square

Here's an example (from Stanley) of computing a Čech complex. Let Δ be the complex $\langle 12, 13, 23, 4 \rangle =$



(13)

and $R = \mathbf{k}[\Delta] = \mathbf{k}[x_1, x_2, x_3, x_4]/(x_1x_4, x_2x_4, x_3x_4, x_1x_2x_3)$. Then the Čech complex is

$$0 \rightarrow \underbrace{R}_{\check{C}^0} \rightarrow \underbrace{R_1 \oplus R_2 \oplus R_2 \oplus R_3 \oplus R_4}_{\check{C}^1} \rightarrow \underbrace{R_{12} \oplus R_{13} \oplus R_{23}}_{\check{C}^2} \rightarrow 0,$$

where $R_1 = R[x_1^{-1}]$, $R_{12} = R[x_1^{-1}, x_2^{-1}]$, etc.

- For $\alpha = (0, 0, 0, 0)$, so $F(\alpha) = G(\alpha) = \emptyset$, we have

$$\text{lk}_{\text{st} G} F = \text{lk}_\Delta \emptyset = \Delta,$$

so $[H^i(R)]_\alpha = \check{H}_{i-1}(\Delta; \mathbf{k})$.

- For $\alpha = (-2, 3, 0, 0)$, we have

$$F = \{x_1\}, \quad G = \{x_2\}, \quad \text{lk}_{\text{st} G} F = \langle x_2 \rangle \text{ (i.e., a point)}$$

so $[H^i(R)]_\alpha = \check{H}_{i-2}(\text{point}) = 0$.

4. REISNER'S THEOREM

Let Δ be a simplicial complex and $R = -\mathbf{k}[\Delta]$. Let $d = \dim R = 1 + \dim \Delta$. We will say that Δ satisfies **Reisner's criterion** if for all $F \in \Delta$, and $i < \dim(\text{lk} F)$. we have

$$\check{H}_i(\text{lk} F; \mathbf{k}) = 0.$$

Theorem 9. Δ is Cohen-Macaulay if and only if it satisfies Reisner's criterion.

Remark: Δ is **Gorenstein** (a stronger condition than Cohen-Macaulayness) if in addition $\tilde{H}_i(\text{lk } F; \mathbf{k}) \cong \mathbf{k}$ for $i = \dim(\text{lk } F)$.

Proof. First, we show that a Cohen-Macaulay complex is pure (i.e., all maximal faces have the same dimension). Indeed, if Δ is Cohen-Macaulay of dimension $d - 1$ and $\dim F < d - 1$, then $\tilde{H}_{-1}(\text{lk } F) = 0$ by Hochster's theorem, so $\text{lk } F \neq 0$ and F is not maximal. (This can also be shown without Hochster's theorem; see Bruns and Herzog, p. 210.)

Next, we show that a complex Δ satisfying Reisner's criterion is pure. If $\dim F = 0$ then there is nothing to show. Otherwise, we induct on dimension. Reisner's criterion gives $\tilde{H}_0(\Delta) = \tilde{H}_0(\text{lk } \emptyset) = 0$, so Δ is connected. Moreover, for every vertex v , the subcomplex $\text{lk}\{v\}$ of Δ satisfies Reisner's criterion and has dimension less than that of Δ , so it is pure by induction. Now, for any maximal face F , let $v, w \in F$; we have

$$\dim \text{lk}\{v\} = |F - v| - 1 = |F - w| - 1 = \dim \text{lk}\{w\};$$

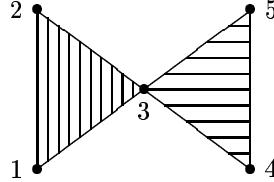
by connectedness all links of vertices must have the same dimension, and the same equation implies that Δ is pure.

By these two observations together, we may assume that Δ is pure, so $|F| = d$ for all maximal faces and $\dim(\text{lk } F) = d - |F| - 1$ for all faces. So Cohen-Macaulayness

$$\begin{aligned} F \text{ is Cohen-Macaulay} &\iff \mathbf{k}[\Delta] \text{ is Cohen-Macaulay} \\ &\iff \tilde{H}_{j-|F|-1}(\text{lk } F; \mathbf{k}) = 0 \text{ for } j < d, F \in \Delta \end{aligned}$$

which is exactly Reisner's criterion (set $j = i + |F| + 1$). □

By the way, a pure connected simplicial complex Δ certainly need not be Cohen-Macaulay (unless $\dim \Delta \leq 1$). The “minimal” example is the complex $\langle 123, 345 \rangle$ =



which is not Cohen-Macaulay because $\text{lk}(3) = \langle 12, 45 \rangle$ is disconnected, so has $\tilde{H}_0 \neq 0$. (Also, the h -vector of this complex can be computed as $(1, 2, -1)$. In a Cohen-Macaulay complex, every entry of the h -vector is nonnegative.)