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We work with the following objects throughout. Let k be a field and R a finitely generated, N*-graded k-
algebra, i.e., R = @ cy» Ra With RyRg C Rayp. The motivating example is R = k[A], the Stanley-Reisner
ring of a simplicial complex A. Define

Ry := P Ra

a#0
the so-called irrelevant ideal. Finally, M will be a Z"-graded R-module, ie., M = @
RaMﬂ C Ma_;,_ﬂ.

wczm M, with

1. DEPTH AND COHEN-MACAULAYNESS

Definition 1. An element a € R is called a nonzerodivisor (or NZD) on M if m € M, am = 0 implies
m = 0. Equivalently, the map

M35 M
given by multiplication by r is one-to-one.
Definition 2. A sequence of homogeneous elements 61,...,05 is a regular M-sequence, or M-sequence
for short, if 6;11 is a NZD on M/(6:,...,0;)M fori=0,...,5s—1.
Definition 3. The dimension of M, denoted dimgp M or dim M, is the Krull dimension of R/ Anng M.
The depth of M, denoted depthy M or depth M, is the length of a mazimal M-sequence. It can be shown
that every maximal M -sequence has the same length.

In general depthy M < dimp M (since any M-sequence of length s generates a height-s ideal of R/ Ann M).
Equality is an important “niceness” condition which gets its own name:

Definition 4. M is Cohen-Macaulay if depthyp M = dimp M.

2. LocaL COHOMOLOGY

Define the torsion functor I" by
I'(M):={ueM | Riu=0forn>0}.

It is routine to check that T is a covariant, left-exact functor. That is, a map f : M — N of graded
R-modules induces a map I'(f) : T'(M) — ['(N), and if f is injective then I'(f) is injective.

The ith local cohomology functor H? (more precisely, Hfh) can now be defined as the ith right derived
functor of I':

HYM) = RT(M).
That is, one may calculate H(M) by taking an injective resolution
I*: 0 M —>1° 71" -5 ...,
applying T, and defining H*(M) := H*(T'I*). (See a textbook on homological algebra for more details.)
Lemma 5. For all i, the modules H*(M) are R, -torsion, i.e., they are killed by some power of R, .

Proof. By definition of T, every module of the form I'(IV) is R, -torsion. In particular, if I® is an injective
resolution, then every I'(I") is R, -torsion, so the same is true of the cohomology modules of T'(I*). O
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The local cohomology functors are useful because they detect depth and dimension. Specifically, we have
the following fact.

Theorem 6. Let e = depthy M and d = dimg M. Then:
(1) HY(M) =0 unlesse <i <d.

(2)  He(M) #0 and HY(M) # 0.

Proof. We'll prove only (1), which is the case we really need. We proceed by induction on e.
If HO(M) # 0, then every element of R, is a zerodivisor on M, which is exactly the statement that e = 0.

If e =0, then
rR,c | P
PeAss M
so R, is itself an associated prime. It is immediate that T'(M) = H°(M) # 0 as desired.

For the inductive step, assume that (1) is true for all R-modules N with depth N < e. Let a € Ry be a
homogeneous NZD on M and let N = M/aM. Then depthy N = e — 1, so by induction H*(N) = 0 for
i<e—1and H*}(N) #0.

By general homological nonsense, the short exact sequence of R-modules

(1) 0> M 35 M- N =0
induces a long exact sequence on cohomology
(2) ... = H"Y M) - H"YN) - H{(M) % H{(M) = ...

If i <e, then H=1(N) = 0, so a is a NZD on H{(M). But H!(M) is R-torsion and so has depth 0. It
follows that H¢(M) = 0.

On the other hand, if i = e then the first three terms displayed in (2) are
0 = HYN) = H¢(M),

and H¢(M) # 0 since H¢ " 1(N) # 0. O
The local cohomology functors can be computed using the Cech complex C*(z1,...,z,; M), which is
defined as

n
(3) C*(@1,. .. 2n; M) =) (0> R — Ry, = 0) @ M).

i=1

where R, = \/(z1,...,%,) and R, = R[z;']. The ith Cech module C¥(z1,...,2,; M) may be described
explicitly as follows. For F' C [n], define
rrp = H xI;

icF
and let
Rp = R[.’L';-l]
Then
(4) CP (@1, @n; M) = P Mp
FC[n]
|F|=i

where My = M ® Rp and the maps between adjacent terms in the Cech complex are given by the usual
Koszul maps (just like simplicial cohomology.)



3. HOCHSTER’S THEOREM

Let A be a simplicial complex on vertices z1,...,Zn, and R = k[A] = K[z1,...,2,]/Ia its Stanley-Reisner
ring. With respect to the obvious N"”-grading, we have Ry = (z1,...,Zy).

Definition 7. Let F € A. The star of F with respect to A is
stAF:={GeA | GUF € A}
and the link of F with respect to A is
lkn F:={GeA | GUF e A, GNF =0}.

We suppress the subscript when possible.

Note that both st F' and 1k F are simplicial complexes, and that st FF = (F) « 1k F. For instance, if A =
(123,14,24) and F = 12, then lk F = (3) and st F' = (123).

Let g1, .., g, be indeterminates. Denote by Hilb(M; ¢) the finely graded Hilbert series of M, i.e.,
Hilb(M; q) := Z q% dimy M,
aEZ™

where ¢* = ¢7'...q¢%~. Also, let H;(A; k) denote the ith reduced simplicial homology of a simplicial
complex A with coefficients in k.

For a € Z™, define
Fla) = {z; | a; <0},
G(a) {zi | a;i >0},
supp(a) = F(a) U Gla) = {x; | o #0}.
Theorem 8 (Hochster). We have

Il

—1
Hilb(H'(K[A]); ¢) = Y dim H; 1 (ka F; k) [ —2—.
FeA z;€F l-g;

Proof. We compute H¢(R) explicitly as the ith cohomology of the Cech complex C* = C®(x1,...,zn; M).
If F ¢ A, then the ring Rp is zero, because zr = 0 in R. On the other hand, if FF € A, then the variables
in F become units in Rp, and those not in sta F get killed (since they annihilate the unit zz). That is,

Rr = k[{zi,z]" : i€ F} U {z; : z; €lkF}|®R.

Let a € Z™ We will compute the ath graded piece C’; of the Cech complex. If supp(a) € A, then C’; =0,
because R, = 0 and adjoining inverses doesn’t change this. So suppose that supp(a) € A. Let F = F(a),
j =|F|, and G = G(a). A priori, we have

(5) cr = @ Rp| = @ [Rr]a-

Fl=r [, F=r

A whole bunch of these summands are zero. Specifically, for Rp to be nonzero, we must have F' € A
(as previously noted), F' O F (since the variables in F' must be units in the ath graded piece of the Cech
complex), and F' UG € A (so that z* itself is nonzero). This is all equivalent to the condition that
F" = F'"\ F belong to lky g F, so we may write

(6) Cg = 6}) l%FUPW
F'€lky g F
|F" |=r—j



The maps in ég correspond to the usual coboundary maps of the simplicial cochain complex of lkg ¢ F,
shifted by j + 1. That is,

(7 [H'(R)]
(8) Hi_j 1(kgq F; k)

since this is a finite-dimensional k-vector space, hence isomorphic to its dual. (The isomorphism is not
canonical, but we don’t care because we’re really only interested in its dimension.)

Il

A= (kg g F; k)

«a

IR

If G # 0, then lkg  F is a cone over G. In particular it is contractible, so H, (Ikst ¢ F'; k) = 0. Therefore
we only have nonzero terms when G = (), so lks; ¢ F' = lka F' and the last equation becomes

9) [H(R)], = H;_;_1(kF; k).
Therefore
(10) Hilb(H'(K[A]); ¢) = > > dimy H;_|r—1 (k F; k)g®
FEA supp(a) 2 (a)=F
(11) = Y dimH g (kF k) Y ¢®
Fea supp(a)=F (a)=F
(12) = Y dimiH g (kF; k) ] 131' -
FeA z,EF 4
as desired. 0

Here’s an example (from Stanley) of computing a Cech complex. Let A be the complex (12, 13,23,4) =
2

= e

(13) 1 3

and R = k[A] = k[21, 22, 23, 24]/ (%124, T2T4, T3T4, T12223). Then the Cech complex is
00— R — \Rl@Rz@RQ@R3®Ré — ﬁu@RB@RQ?L — 0,
co A 2
where R; = R[z;'], Ri2 = R[z;*, x5 ], etc.

e For a=(0,0,0,0), so F(a) = G(a) = 0, we have
o F =lka§ = A,
so [H'(R)] = H;_1(A; k).
e For a=(-2,3,0,0), we have
F={x}, G = {x2}, kst ¢ F = (x2) (i-e., a point)
so [H'(R)] = H;_»(point) = 0.

4. REISNER’S THEOREM

Let A be a simplicial complex and R = —k[Delta]. Let d = dim R = 1+ dim A. We will say that A satisfies
Reisner’s criterion if for all F € A, and ¢ < dim(lk F'). we have

H;(Ik F; k) = 0.

Theorem 9. A is Cohen-Macaulay if and only if it satisfies Reisner’s criterion.



Remark: A is Gorenstein (a stronger condition than Cohen-Macaulayness) if in addition H;(lk F; k) = k
for i = dim(lk F).

Proof. First, we show that a Cohen-Macaulay complex is pure (i.e., all maximal faces have the same di-
mension). Indeed, if A is Cohen-Macaulay of dimension d — 1 and dim F < d — 1, then H_;(Ik F) = 0 by
Hochster’s theorem, so 1k F' # 0 and F is not maximal. (This can also be shown without Hochster’s theorem;
see Bruns and Herzog, p. 210.)

Next, we show that a complex A satisfying Reisner’s criterion is pure. If dim F' = 0 then there is nothing to
show. Otherwise, we induct on dimension. Reisner’s criterion gives Hy(A) = Hy(lk #) = 0, so A is connected.
Moreover, for every vertex v, the subcomplex lk{v} of A satisfies Reisner’s criterion and has dimension less
than that of A, so it is pure by induction. Now, for any maximal face F, let v,w € F’; we have

dimlk{v} =|F —v|—-1=|F —w| —1=dimlk{w};
by connectedness all links of vertices must have the same dimension, and the same equation implies that A
is pure.
By these two observations together, we may assume that A is pure, so |F| = d for all maximal faces and
dim(lk F) = d — |F| — 1 for all faces. So Cohen-Macaulayness
F is Cohen-Macaulay <= Kk[A] is Cohen-Macaulay
< H; p_1(kF;k)=0forj<d, FeA

which is exactly Reisner’s criterion (set j =4+ |F| + 1). O

By the way, a pure connected simplicial complex A certainly need not be Cohen-Macaulay (unless dim A < 1).
The “minimal” example is the complex (123, 345) =

2 &)

1 > 4

which is not Cohen-Macaulay because 1k(3) = (12,45) is disconnected, so has Hy # 0. (Also, the h-vector
of this complex can be computed as (1,2, —1). In a Cohen-Macaulay complex, every entry of the h-vector is
nonnegative.)



