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Introduction to Grobner bases, I
Speaker: Jeremy Martin

1. REVIEW

Last time we were looking at a polynomial ring R = k[X},...,X,] and a proper ideal I C R. We chose a
term order < for R, which is a total order on monomials satisfying the properties
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With respect to this term order, we can define the initial term in. (f) of any nonzero polynomial f, and the
initial ideal of I as

in(I) = (in<(f) : fel).

I said last time that a finite set of generators (fi,..., fr) is a Grébner basis for I (with respect to a given
term order <) if
(1) (ln(f1)<771n<(f7“)) =1n<(1)

I'll often suppress the subscript < if we’re only talking about one term order.
Theorem 1. Let < be a term order on R. Then I has a Grébner basis with respect to <.

Proof. Let By = {f1,-.-, fr} be a set of generators for I, and Iy = (in(f1),...,in(f-)). If Iy = in(I), great.
If not, then there exists some g; € I such that in(g;) € Iy. Let By = Bo U {¢g1} and I; = Iy + (in(g1)).
Note that Iy C I;. If I; = in(I), great. If not, then there exists some g2 € I such that in(gs) € I;. So let
By = By U{g2} and I = I + (g2). And so on. But R is Noetherian, so this has to stop eventually. That
means that there is some k for which I, = in(I).

O

By the way, this use of the Noetherian property is typical in proving a lot of the results that make the
Grobner basis machine run smoothly. Another fact along these lines, which I will need later, is that term
orders are Artinian. That is, every set of monomials has a smallest element. This is completely clear for
term orders which refine the partial order by total degree—indeed, those term orders are well-orderings.
But in general, it’s not too hard to derive the Artinian property from the definition of a term order (see [2,
Lemma 15.2]).

Two brief asides:

1. The Grobner basis is by no means unique; indeed, by the proof, any finite subset of I which contains a
Grobner basis is itself a Grobner basis. It is not hard to see, however, that all minimal Grobner bases have
the same cardinality (with respect to a fixed term order), namely the minimal number of generators for the
initial ideal. In addition, there’s a particularly nice kind of minimal Grébner basis called a reduced Grébner
basis, which is unique (see Exercise 15.14 in [2]).

2. You may wonder what happens if we vary the term order. Using the Noetherian property, it can be
shown [3, Thm 1.2] that I has only finitely many initial ideals. That is, the term orders on R fall into
finitely many equivalence classes, such that in. (I) = in.,(I) if < and <’ are in the same equivalence class.



It follows that I has a universal Grébner basis, i.e., a finite subset which is a Grébner basis for all term
orders, obtained by taking the union

This is all very well, but how do you produce a Grébner basis to begin with? How do you decide whether
or not one of the B;’s is a Grobner basis? And if it isn’t, how do you get your hands on an element whose
initial term needs to be thrown in? Before I answer these (excellent) questions, let’s look at one of the easiest
problems to solve once you have a Grobner basis. (This may seem unnecessarily tantalizing, but actually
the algorithm for producing a Grobner basis in the first place depends on this construction.) The problem
in question is ideal membership, and I claim that the following algorithm solves it:

Input: {fi,---,fr} : Grobner basis for an ideal I C R
g : polynomial in R

Output: An answer to the question “Is g € I?”

Step 1: Ifin(g) € in() = (in(f1),...,in(fr)) (which is easy to check), then answer NO and terminate.
Step 2: Otherwise, find f; such that in(g) is divisible by f;.

Step 3: Set h:= iir?((fgl)) fiand g:=g' - h.

Step 4: If ¢’ =0, then answer YES and terminate. Otherwise, set g := ¢’ and go to Step 1.

Why does this work? First of all, ¢’ = g (mod I), so if the algorithm returns YES, then we have actually
produced an explicit R-linear combination of the f;’s which equals g. On the other hand, if in(g') & in(I),
then by definition g’ € I, so g ¢ I as well. Okay, but why is the algorithm guaranteed to terminate? The
key point is that after each iteration of Step 3, we have

in(g1) < in(g)

since g and h have the same leading term, so the leading term of g’ is some other monomial appearing in
one of g or h, which means that it is less than in(g). Since term orders are Artinian, the algorithm must
terminate eventually.

This procedure is referred to as reduction, and is quite similar to (in fact, it generalizes) the division algorithm.
If feeding g into the algorithm produces ¢’ at some stage, we will say that “g can be reduced to ¢’ modulo
the f;,” and write

g9—49.
{fi}
(or just g — g').
This gives an idea of how we might construct an algorithm to enlarge a generating set {fi,..., fr} for I into

a Grobner basis. Start by pretending that it really is. Think up a polynomial g € I and reduce it modulo
{fi}- I g —» ¢’ and in(¢") & (in(f1),...,in(f,)), why then we just throw g into the putative Grobner basis,
enlarging the initial ideal.

There are a couple of problems. First, how do you go about thinking up appropriate g’s to feed into the
machine? After all, if g — 0, it just says that in(g) € (in(f1),...,in(f,)); that doesn’t mean that a different
g wouldn’t reduce to something outside in(I). Second of all, how do you know when to stop? The solution
is provided by Buchberger’s algorithm.

For f,g € R, define their S-polynomial (S stands for “syzygy”) to be

S(f,g) — ln(fZ) ln(fl)

lem(n(fy), m(7)) 1~ TemGn(f), m(f) *>

As before, we have rigged S(f, g) to ensure that the leading terms cancel. So this might be a way of producing
new elements of I whose initial term is not divisible by either in(f;) or in(fs). Of course, we have to take
S(f,g) and reduce it modulo our partial Grobner basis to find out whether we’ve really gotten something



new. Buchberger’s criterion says, in effect, that we don’t have to do anything fancier than compute and
reduce a bunch of S-polynomials. That is:

Theorem 2 (Buchberger). Let I = (f1,...,f.) CR. If, for every 1 <i<j<r,

then the f;’s form a Grobner basis for I.

I don’t intend to prove this (if you’re interested, it is Theorem 15.8 in [2]), but I do want to work through
an example. First, though, I want to tell you one way in which it’s related to Stanley-Reisner theory, which
is after all supposed to be the topic of this seminar.

Theorem 3. Let I C R. For any term order < on R, the set of monomials not in in<(I) form a basis for
R/I as a k-vector space.

Such monomials are called standard monomials for I (with respect to <).

Proof. 1t is clear that different linear combinations of standard monomials represent different elements of
R/I. On the other hand, any member of R is congruent to some such linear combination, by the reduction
algorithm. It O

Corollary 1. If I C R is a homogeneous ideal, so that R/I is a graded ring, then
Hilb(R/I;t) = Hilb(R/in<(I);t)

for all term orders <.

This is in itself a nice fact, because a homogeneous ideal I C k[X; ..., X,] corresponds to a subvariety of
projective (n—1)-space (at least if I is radical, but let’s not go there), and the Hilbert series encodes a bunch
of nice geometric invariants, such as the dimension, degree, and arithmetic genus. As we saw last time, the
Hilbert series of a monomial ideal can be computed explicitly.

If you're really lucky, the ideal I that you want to study might have a squarefree initial ideal. In this case,
you can in principle calculate the Hilbert series combinatorially by looking at the Stanley-Reisner complex.
For an example of this, see the speaker’s Ph.D. thesis!

Example 1. Let R = k[z,y, 2], and take < to be reverse-lex order with > y > z. Let I be the homogeneous
ideal generated by

fl = $_Z/ - 22,

fo = £ —z2.
(When working with explicit polynomials, it is convenient to underline the leading term.) The S-pair of the

two generators is

fa:=8(f1,f2) = yhi—afe = 2y’ -y’ —2y’ +2°2 = —y2’ + 22

Since

in(fs) = 2%z ¢ (in(f1),in(f2)) = (zy, %),

it follows by Buchberger that {fi, f2} is not a Grobner basis. However, as we will show, {fi, f2, f3} is a
Grobner basis. By Buchberger’s theorem, it is enough to check that S(f1, f3) and S(fs, f3) reduce to zero
modulo {f1, f2, f3}. Indeed,

S(fi,fs) = zzfi—yfs = —z2° +y*2°
- (—z22+y%2) -2 fo = 0




and

S(fa fs) = #*zfa—y’fs = —2°2 +9°2
- (=222 + ) +azfs = P22 —aydd
= (32 —ay2®) —ylf = 0.

So {f1, f2, f3} really is a Grobner basis, and
in<(I) = (.Z'y,y2,$2 ) -

Let’s compute its Hilbert series. Let I’ = (zy,y?), so that in<(I) = I’ + (z%2). As described last time, there
is an exact sequence of maps

R[-3] Z% R/T' = R/in<(I) = 0

of graded R-modules (recall that R[—d] means the free R-module generated by a single element of degree
d). The kernel of the first map is

I':a?z & {WeER : 2*2zuel}

= (),

so we have the short exact sequence
0— S[-3] = R/I' - R/inc(I) = 0,

where S = R/(y) = k[z, 2], which says that
Hilb(R/I;¢) = Hilb(R/I';t) — Hilb(S[-3]; ).

The Hilbert series of S is just (1 —t)~2; however, the shift in grading means that we have to multiply by #3.
Meanwhile,

R/I' = K[z,y]/(zy,y)z],
T

3

and T is a k-vector space with basis {1,y,z,2% 2°,...}, so

L 1+t

: ) — ‘ 1.
Hilb(T;t) = t+ T = 1-3 and Hilb(R/I';t) = =R

Putting all this together, we get

1+t—¢2 t3
Hilb(R/I;t) = —
IbR/LD) = g -
o l4t—2 -8
(1—1t)?
1+ 2t + 2
® = Tior

We can read off quite a bit of information from this. First of all, dim R/I = 1, the order of the pole of
Hilb(R/I;t). In particular, codim I = 2, the number of generators of I, so I is a complete intersection (in
particular, it is Gorenstein and Cohen-Macaulay, if you know what those properties are). Its degree is 4,
which you can obtain by plugging in ¢ = 1 in the numerator of (2). (We would expect this; in general, the
degree of a complete intersection is the product of the degrees of the generators, and here they are both
quadratic.)



Example 2. Let R = k[a,b,¢,d,e, f], and let I = (bd—ae,cd—af,ce—bf). That is, I is the ideal generated
by the 2 x 2 minors of the matrix
a b c
[ d e f ] )

Believe it or not, these generators are a universal Grébner basis [3, Ex. 1.4]. If < is reverse-lex order, then
inc(I) = (ce, cd, bd).

This is squarefree, so we can associate with it a Stanley-Reisner simplicial complex A. Since no generator of
in<(I) is divisible by a or f, these vertices are cone points of A. That is, if ¥ is the simplex whose unique

facet is {a, f}, then

A=Axx ¥ (FUG: FeA, Gex}

for some simplicial complex A’ on {b,c,d,e}. The operator * is called “simplicial join,” and behaves fairly
nicely: in particular, joining A’ with a simplex does not change its h-vector. (By the way, the smallest
subcomplex A’ C A such that A is the join of A’ with a simplex is called the core of A.)

Meanwhile, A" = (b, be, de). Therefore,

It’s pretty easy to see that A’ is shellable, with h-vector (1,2). Thus the same holds for A. Moreover,
dimR/I = dim R/inc(I) = 1 + dim A = 4,

so
142t

Hilb(R/I;t) = A=)
By the way, I is not a complete intersection because its codimension (namely 6 — 4 = 2) is smaller than the
number of generators, namely 3. In addition, it is not Gorenstein, because the h-vector is not palindromic.
However, the fact that A is shellable implies that the Stanley-Reisner ring k[A] = R/in(I) is Cohen-
Macaulay, which in turn implies that R/I is Cohen-Macaulay. (That shellability implies CM-ness is far from
obvious, but may be proved later in this seminar. For details, see [1].)
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