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Abstract. We generalize the definition and enumeration of spanning trees from the setting of
graphs to that of arbitrary-dimensional simplicial complexes ∆, extending an idea due to G. Kalai.
We prove a simplicial version of the Matrix-Tree Theorem that counts simplicial spanning trees,
weighted by the squares of the orders of their top-dimensional integral homology groups, in terms
of the Laplacian matrix of ∆. As in the graphic case, one can obtain a more finely weighted
generating function for simplicial spanning trees by assigning an indeterminate to each vertex
of ∆ and replacing the entries of the Laplacian with Laurent monomials. When ∆ is a shifted
complex, we give a combinatorial interpretation of the eigenvalues of its weighted Laplacian and
prove that they determine its set of faces uniquely, generalizing known results about threshold
graphs and unweighted Laplacian eigenvalues of shifted complexes.

1. Introduction

This article is about generalizing the Matrix-Tree Theorem from graphs to simplicial complexes.

1.1. The classical Matrix-Tree Theorem. We begin by reviewing the classical case; for a more
detailed treatment, see, e.g., [8]. Let G be a finite, simple, undirected graph with vertices V (G) =
[n] = {1, 2, . . . , n} and edges E(G). A spanning subgraph of G is a graph T with V (T ) = V (G) and
E(T ) ⊆ E(G); thus a spanning subgraph may be specified by its edge set. A spanning subgraph T is
a spanning tree if (a) T is acyclic; (b) T is connected; and (c) |E(T )| = |V (T )|−1. It is a fundamental
property of spanning trees (the “two-out-of-three theorem”) that any two of these three conditions
together imply the third.

The Laplacian of G is the n× n symmetric matrix L = L(G) with entries

Lij =











degG(i) if i = j,

−1 if i, j are adjacent,

0 otherwise,

where degG(i) is the degree of vertex i (the number of edges having i as an endpoint). Equivalently,
L = ∂∂∗, where ∂ is the (signed) vertex-edge incidence matrix and ∂∗ is its transpose. If we regard G
as a one-dimensional simplicial complex, then ∂ is just the simplicial boundary map from 1-faces to
0-faces, and ∂∗ is the simplicial coboundary map. The matrix L is symmetric, hence diagonalizable,
so it has n real eigenvalues (counting multiplicities). The number of nonzero eigenvalues of L is
n− c, where c is the number of components of G.

The Matrix-Tree Theorem, first observed by Kirchhoff [22] in his work on electrical circuits
(modern references include [8], [29] and [34, Chapter 5]), expresses the number τ(G) of spanning
trees of G in terms of L. The theorem has two equivalent formulations.

Theorem 1.1 (Classical Matrix-Tree Theorem). Let G be a connected graph with n vertices,
and let L be its Laplacian matrix.
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(1) If the eigenvalues of L are λ0 = 0, λ1, . . . , λn−1, then

τ(G) =
λ1 · · ·λn−1

n
.

(2) For 1 ≤ i ≤ n, let Li be the reduced Laplacian obtained from L by deleting the ith row and
ith column. Then

τ(G) = detLi.

Well-known corollaries of the Matrix-Tree Theorem include Cayley’s formula [9]

τ(Kn) = nn−2 (1)

where Kn is the complete graph on n vertices, and Fiedler and Sedláçek’s formula [16]

τ(Kn,m) = nm−1mn−1 (2)

where Kn,m is the complete bipartite graph on vertex sets of sizes n and m.
The Matrix-Tree Theorem can be refined by introducing an indeterminate eij = eji for each pair

of vertices i, j, setting eij = 0 if i, j do not share a common edge. The weighted Laplacian L̂ is then
defined as the n× n matrix with entries

L̂ij =











∑n

k=1 eik if i = j,

−eij if i, j are adjacent,

0 otherwise.

Theorem 1.2 (Weighted Matrix-Tree Theorem). Let G be a graph with n vertices, and let L̂
be its weighted Laplacian matrix.

(1) If the eigenvalues of L̂ are λ̂0 = 0, λ̂1, . . . , λ̂n−1, then

∑

T∈T (G)

∏

ij∈T

eij =
λ̂1 · · · λ̂n−1

n

where T (G) is the set of all spanning trees of G.

(2) For 1 ≤ i ≤ n, let L̂i be the reduced weighted Laplacian obtained from L̂ by deleting the ith

row and ith column. Then
∑

T∈T (G)

∏

ij∈T

eij = det L̂i.

By making appropriate substitutions for the indeterminates eij , it is often possible to obtain finer
enumerative information than merely the number of spanning trees. For instance, when G = Kn,
introducing indeterminates x1, . . . , xn and setting eij = xixj for all i, j yields the Cayley-Prüfer
Theorem, which enumerates spanning trees of Kn by their degree sequences:

∑

T∈T (G)

n
∏

i=1

x
degT (i)
i = x1 · · ·xn(x1 + · · ·+ xn)n−2. (3)

Note that Cayley’s formula (1) can be recovered from the Cayley-Prüfer Theorem by setting x1 =
· · · = xn = 1.

1.2. Simplicial spanning trees and how to count them. To extend the scope of the Matrix-
Tree Theorem from graphs to simplicial complexes, we must first say what “spanning tree” means
in arbitrary dimension. Kalai [20] proposed a definition that replaces the acyclicity, connectedness,
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and edge-count conditions with their analogues in simplicial homology. Our definition adapts Kalai’s
definition to a more general class of simplicial complexes.1

Let ∆ be a d-dimensional simplicial complex, and let Υ ⊂ ∆ be a subcomplex containing all
faces of ∆ of dimension < d. We say that Υ is a simplicial spanning tree of ∆ if the following three
conditions hold:

H̃d(Υ, Z) = 0, (4a)

|H̃d−1(Υ, Z)| <∞, and (4b)

fd(Υ) = fd(∆)− β̃d(∆) + β̃d−1(∆), (4c)

where H̃i denotes reduced simplicial homology (for which see, e.g., [18, §2.1]). (The conditions (4a)
and (4b) were introduced by Kalai in [20], while (4c) is more general, as we will explain shortly.)
When d = 1, the conditions (4a). . . (4c) say respectively that Υ is acyclic, connected, and has one
fewer edge than it has vertices, recovering the definition of the spanning tree of a graph. Moreover,
as we will show in Proposition 3.5, any two of the three conditions together imply the third.

A graph G has a spanning tree if and only if G is connected. The corresponding condition for a
simplicial complex ∆ of dimension d is that H̃i(∆, Q) = 0 for all i < d; that is, ∆ has the rational
homology type of a wedge of d-dimensional spheres. We will call such a complex acyclic in positive
codimension, or APC for short. This condition, which we will assume throughout the rest of the
introduction, is much weaker than Cohen-Macaulayness (by Reisner’s theorem [30]), and therefore
encompasses many complexes of combinatorial interest, including all connected graphs, simplicial
spheres, shifted, matroid, and Ferrers complexes, and some chessboard and matching complexes.

For k ≤ d, let ∂ = ∂k be the kth simplicial boundary matrix of ∆ (with rows and columns indexed
respectively by (k − 1)-dimensional and k-dimensional faces of ∆), and let ∂∗ be its transpose. The
(kth up-down) Laplacian of ∆ is L = ∂∂∗; this can be regarded either as a square matrix of size
fk−1(∆) or as a linear endomorphism on (k − 1)-chains of ∆. Define invariants

πk = πk(∆) = product of all nonzero eigenvalues of L,

τk = τk(∆) =
∑

Υ∈Tk(∆)

|H̃k−1(Υ)|2,

where Tk(∆) denotes the set of all k-trees of ∆ (that is, simplicial spanning trees of the k-skeleton
of ∆).

Kalai [20] studied these invariants in the case that ∆ is a simplex on n vertices, and proved the
formula

τk(∆) = n(n−2

k ) (5)

(of which Cayley’s formula (1) is the special case k = 1). Kalai also proved a natural weighted
analogue of (5) enumerating simplicial spanning trees by their degree sequences, thus generalizing
the Cayley-Prüfer Theorem (3).

Given disjoint vertex sets V1, . . . , Vr (“color classes”), the faces of the corresponding complete
colorful complex Γ are those sets of vertices with no more than one vertex of each color. Equivalently,
Γ is the simplicial join V1 ∗V2 ∗ · · · ∗Vr of the 0-dimensional complexes Vi. Adin [1] extended Kalai’s
work by proving a combinatorial formula for τk(Γ), which we shall not reproduce here, for every
1 ≤ k < r. Note that when r = 2, the complex Γ is a complete bipartite graph, and if |Vi| = 1 for
all i, then Γ is a simplex. Thus both (2) and (5) can be recovered from Adin’s formula.

Kalai’s and Adin’s beautiful formulas inspired us to look for more results about simplicial spanning
tree enumeration, and in particular to formulate a simplicial version of the Matrix-Tree Theorem

1There are many other definitions of “simplicial tree” in the literature, depending on which properties of trees one
wishes to extend; see, e.g., [4, 10, 15, 19, 28]. By adopting Kalai’s idea, we choose a definition that lends itself well
to enumeration. The closest to ours in spirit is perhaps that of Masbaum and Vaintrob [28], whose main result is a
Matrix-Tree-like theorem enumerating a different kind of 2-dimensional tree using Pfaffians rather than Laplacians.
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that could be applied to as broad a class of complexes as possible. Our first main result generalizes
the Matrix-Tree Theorem to all APC simplicial complexes.

Theorem 1.3 (Simplicial Matrix-Tree Theorem). Let ∆ be a d-dimensional APC simplicial
complex. Then:

(1) We have

πd(∆) =
τd(∆)τd−1(∆)

|H̃d−2(∆)|2
.

(2) Let U be the set of facets of a (d−1)-SST of ∆, and let LU be the reduced Laplacian obtained
by deleting the rows and columns of L corresponding to U . Then

τd(∆) =
|H̃d−2(∆)|2

|H̃d−2(∆U )|2
detLU .

We will prove these formulas in Section 4.
In the special case d = 1, the number τ1(∆) is just the number of spanning trees of the graph ∆,

recovering the classical Matrix-Tree Theorem. When d ≥ 2, there can exist spanning trees with
finite but nontrivial homology groups (the simplest example is the real projective plane). In this
case, τk(∆) is greater than the number of spanning trees, because these “torsion trees” contribute
more than 1 to the count. This phenomenon was first observed by Bolker [7], and arises also in the
study of cyclotomic matroids [26] and cyclotomic polytopes [3].

The Weighted Matrix-Tree Theorem also has a simplicial analogue. Introduce an indeterminate
xF for each facet (maximal face) F ∈ ∆, and for every set T of facets define monomials xT =
∏

F∈T xF and XT = x2
T . Construct the weighted boundary matrix ∂̂ by multiplying each column of

∂ by xF , where F is the facet of ∆ corresponding to that column. Let π̂k be the product of the
nonzero eigenvalues of L̂ud

∆,k−1, and let

τ̂k = τ̂k(∆) =
∑

Υ∈Tk(∆)

|H̃k−1(Υ)|2XΥ.

Theorem 1.4 (Weighted Simplicial Matrix-Tree Theorem). Let ∆ be a d-dimensional APC
simplicial complex. Then:

(1) We have2

π̂d(∆) =
τ̂d(∆)τd−1(∆)

|H̃d−2(∆)|2
.

(2) Let U be the set of facets of a (d−1)-SST of ∆, and let L̂U be the reduced Laplacian obtained

by deleting the rows and columns of L̂ corresponding to U . Then

τ̂d(∆) =
|H̃d−2(∆)|2

|H̃d−2(∆U )|2
det L̂U .

We will prove these formulas in Section 5.
Setting xF = 1 for all F in Theorem 1.4 recovers Theorem 1.3. In fact, more is true; setting xF = 1

in the multiset of eigenvalues of the weighted Laplacian (reduced or unreduced) yields the eigenvalues
of the corresponding unweighted Laplacian. If the complex ∆ is Laplacian integral, that is, its
Laplacian matrix has integer eigenvalues, then we can hope to find a combinatorial interpretation
of the factorization of τ̂d(∆) furnished by Theorem 1.4. An important class of Laplacian integral
simplicial complexes are the shifted complexes.

2Despite appearances, there are no missing hats on the right-hand side of this formula! Only τd(∆) has been
replaced with its weighted analogue; τd−1(∆) is still just an integer.
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1.3. Results on shifted complexes. Let p ≤ q be integers, and let [p, q] = {i ∈ Z : p ≤ i ≤ q}. A
simplicial complex Σ on vertex set [p, q] is shifted if the following condition holds: whenever i < j are
vertices and F ∈ Σ is a face such that i 6∈ F and j ∈ F , then F\{j} ∪ {i} ∈ Σ. Equivalently, define
the componentwise partial order � on finite sets of positive integers as follows: A � B whenever
A = {a1 < · · · < am}, B = {b1 < · · · < bm}, and ai ≤ bi for all i. Then a complex is shifted precisely
when it is an order ideal with respect to the componentwise partial order. (See [33, chapter 3] for
general background on partially ordered sets.)

Shifted complexes were used by Björner and Kalai [5] to characterize the f -vectors and Betti
numbers of all simplicial complexes. Shifted complexes are also one of a small handful of classes
of simplicial complexes whose Laplacian eigenvalues are known to be integral. In particular, Duval
and Reiner [13, Thm. 1.1] proved that the Laplacian eigenvalues of a shifted complex Σ on [p, q] are
given by the conjugate of the partition (dp, dp+1, . . . , dq), where di is the degree of vertex i, that is,
the number of facets containing it.

In the second part of the article, Sections 6–10, we study factorizations of the weighted spanning
tree enumerator of Σ under the combinatorial fine weighting

xF =

k+1
∏

i=1

xi,vi

(described in more detail in Section 6), where F = {v1 < · · · < vk+1} is a k-dimensional face of Σ.
Thus the term of τk(Σ) corresponding to a particular simplicial spanning tree of Σ contains more
precise information than its vertex degrees alone (which can be recovered by further setting xi,j = xj

for all i, j).
For integer sets A and B as above, we call the ordered pair (A, B) a critical pair of Σ if A ∈ Σ,

B 6∈ Σ, and B covers A in the componentwise order. That is, B = {a1, . . . , ai−1, ai +1, ai+1, . . . , am}
for some i ∈ [m]. The long signature of (A, B) is the ordered pair σ̄(A, B) = (S, T ), where S =
{a1, . . . , ai−1} and T = [p, ai]. The corresponding z-polynomial is defined as

z(S, T ) =
1

↑XS

∑

j∈T

XS∪j

where XS = x2
S for each S, and the operator ↑ is defined by ↑(xi,j) = xi+1,j . (See Section 8.1 for

more details, and Example 1.7 for an example.) The set of critical pairs is especially significant for a
shifted family (and by extension, for a shifted complex). Since a shifted family is just an order ideal
with respect to the componentwise partial order �, the critical pairs identify the frontier between
members and non-members of F in the Hasse diagram of �. (See Example 1.7 or [23] for more
details.)

Thanks to Theorem 1.4, the enumeration of SST’s of a shifted complex reduces to computing the
determinant of the reduced combinatorial finely-weighted Laplacian. We show in Section 6 how this
computation reduces to the computation of the eigenvalues of the algebraic finely weighted Laplacian.
This modification of the combinatorial fine weighting, designed to endow the chain groups of Σ with
the structure of an algebraic chain complex, is described in detail in Section 6.3. Its eigenvalues turn
out to be precisely the z-polynomials associated with critical pairs.

Theorem 1.5. Let Σ be a d-dimensional shifted complex, and let 0 ≤ i ≤ d. Then the eigenvalues of
the algebraic finely weighted up-down Laplacian Lud

∆,i are precisely ↑d−i(z(S, T )), where (S, T ) ranges
over all long signatures of critical pairs of i-dimensional faces of Σ.

In turn, the z-polynomials are the factors of the weighted simplicial spanning tree enumerator τ̂d.
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Theorem 1.6. Let Σ be a d-dimensional shifted complex with initial vertex p. Then:

τ̂d(Σ) =





∏

F∈Λd−1

XF̃









∏

(S,T )∈σ̄(∆d)

z(S, T̃ )

X1,p





=





∏

F∈Λd−1

XF̃









∏

(S,T )∈σ̄(∆d)

∑

j∈T̃ XS∪j

XS̃





where F̃ = F ∪ {p}; ∆ = delp Σ = {F\{p} : F ∈ Σ}; and Λ = linkp Σ = {F : p 6∈ F, F̃ ∈ Σ}.

Theorems 1.5 and 1.6 are proved in Sections 8 and 9, respectively.

Example 1.7. As an example to which we will return repeatedly, consider the equatorial bipyramid,
the two-dimensional shifted complex B with vertices [5] and facets 123, 124, 125, 134, 135, 234, 235.
A geometric realization of B is shown in the figure on the left below. The figure on the right
illustrates how the facets of B can be regarded as an order ideal. The boldface lines indicate critical
pairs.
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The Laplacian eigenvalues corresponding to the critical pairs of B are as follows:

Critical pair (125, 126) (135, 136) (135, 145) (235, 236) (235, 245)
Eigenvalue z(12, 12345) z(13, 12345) z(1, 123) z(23, 12345) z(2, 123)

To show one of these eigenvalues in more detail,

z(13, 12345) =
X1,1X2,1X3,3 + X1,1X2,2X3,3 + X1,1X2,3X3,3 + X1,1X2,3X3,4 + X1,1X2,3X3,5

X2,1X3,3
.

The eigenvalues of this complex are explained in more detail in Section 8.4. Its spanning trees are
enumerated in Examples 9.1 (fine weighting) and 9.3 (coarse weighting).

We prove Theorem 1.5 by exploiting the recursive structure of shifted complexes. As in [13],
we begin by calculating the algebraic finely weighted eigenvalues of a near-cone in terms of the
eigenvalues of its link and deletion with respect to its apex (Proposition 7.6). We can then write
down a recursive formula (Theorem 8.2) for the nonzero eigenvalues of shifted complexes, thanks
to their characterization as iterated near-cones, simultaneously showing that these eigenvalues must
be of the form z(S, T ). Finally, we independently establish a recurrence (Corollary 8.8) for the long
signatures of critical pairs of a shifted complex, which coincides with the recurrence for the z(S, T ),
thus yielding a bijection between nonzero eigenvalues and critical pairs.

Corollary 8.10 shows what the eigenvalues look like in coarse weighting. Passing from weighted
to unweighted eigenvalues then easily recovers the Duval-Reiner formula for Laplacian eigenvalues
of shifted complexes in terms of degree sequences [13, Thm. 1.1]. Similarly, Corollary 9.2 gives the
enumeration of SST’s of a shifted complex in the coarse weighting.

We are also able to show that the finely-weighted eigenvalues (though not the coarsely-weighted
eigenvalues) are enough to recover the shifted complex (Corollary 8.9), or, in other words, that one
can “hear the shape” of a shifted complex.

Several known results can be obtained as consequences of the general formula of Theorem 1.6.
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• The complete d-skeleton of a simplex is easily seen to be shifted, and applying Theorem 1.6
to such complexes recovers Kalai’s generalization of the Cayley-Prüfer Theorem.
• The one-dimensional shifted complexes are precisely the threshold graphs, an important

class of graphs with many equivalent descriptions (see, e.g., [25]). When d = 1, Theorem 1.6
specializes to the weighted spanning tree enumerator for threshold graphs proved by Martin
and Reiner [26, Thm. 4] and following from an independent result of Remmel and Williamson
[31, Thm. 2.4].
• Thanks to an idea of Richard Ehrenborg, the formula for threshold graphs can be used to

recover a theorem of Ehrenborg and van Willigenburg [14], enumerating spanning trees in
certain bipartite graphs called Ferrers graphs (which are not in general Laplacian integral).

We discuss these corollaries in Section 10.
Some classes of complexes that we think deserve further study include matroid complexes, match-

ing complexes, chessboard complexes and color-shifted complexes. The first three kinds of complexes
are known to be Laplacian integral, by theorems of Kook, Reiner and Stanton [24], Dong and Wachs
[11], and Friedman and Hanlon [17] respectively. Every matroid complex is Cohen-Macaulay [32,
§III.3], hence APC, while matching complexes and chessboard complexes are APC for certain values
of their defining parameters (see [6]). Color-shifted complexes, which are a common generalization of
Ferrers graphs and complete colorful complexes, are not in general Laplacian integral; nevertheless,
their weighted simplicial spanning tree enumerators seem to have nice factorizations.

It is our pleasure to thank Richard Ehrenborg, Vic Reiner, and Michelle Wachs for many valuable
discussions. We also thank Andrew Crites and an anonymous referee for their careful reading of the
manuscript.

2. Notation and definitions

2.1. Simplicial complexes. Let V be a finite set. A simplicial complex on V is a family ∆ of
subsets of V such that

(1) ∅ ∈ ∆;
(2) If F ∈ ∆ and G ⊆ F , then G ∈ ∆.

The elements of V are called vertices of ∆, and the faces that are maximal under inclusion are
called facets. Thus a simplicial complex is determined by its set of facets. The dimension of a
face F is dimF = |F | − 1, and the dimension of ∆ is the maximum dimension of a face (or facet).
The abbreviation ∆d indicates that dim∆ = d. We say that ∆ is pure if all facets have the same
dimension; in this case, a ridge is a face of codimension 1, that is, dimension dim∆− 1.

We write ∆i for the set of i-dimensional faces of ∆, and set fi(∆) = |∆i|. The i-skeleton of ∆ is
the subcomplex of all faces of dimension ≤ i,

∆(i) =
⋃

−1≤j≤i

∆j ,

and the pure i-skeleton of ∆ is the subcomplex generated by the i-dimensional faces, that is,

∆[i] = {F ∈ ∆: F ⊆ G for some G ∈ ∆i}.

We assume that the reader is familiar with simplicial homology; see, e.g., [18, §2.1]. Let ∆d be
a simplicial complex and −1 ≤ i ≤ d. Let R be a ring (if unspecified, assumed to be Z), and let
Ci(∆) be the ith simplicial chain group of ∆, i.e., the free R-module with basis {[F ] : F ∈ ∆i}. We
denote the simplicial boundary and coboundary maps respectively by

∂∆,i : Ci(∆)→ Ci−1(∆),

∂∗
∆,i : Ci−1(∆)→ Ci(∆),

where we have identified cochains with chains via the natural inner product. We will abbreviate the
subscripts in the notation for boundaries and coboundaries whenever no ambiguity can arise. We will
often regard ∂i (resp. ∂∗

i ) as a matrix whose columns and rows (resp. rows and columns) are indexed
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by ∆i and ∆i−1 respectively. The ith (reduced) homology group of ∆ is H̃i(∆) = ker(∂i)/ im(∂i+1),

and the ith (reduced) Betti number β̃i(∆) is the rank of the largest free R-module summand of

H̃i(∆).

2.2. Combinatorial Laplacians. We adopt the notation of [13] for the Laplacian operators (or,
equivalently, matrices) of a simplicial complex. We summarize the notation and mention some
fundamental identities here.

We will often work with multisets (of eigenvalues or of vertices), in which each element occurs
with some non-negative integer multiplicity. For brevity, we drop curly braces and commas when
working with multisets of integers: for instance, 5553 denotes the multiset in which 5 occurs with
multiplicity three and 3 occurs with multiplicity one. The cardinality of a multiset is the sum of the

multiplicities of its elements; thus |5553| = 4. We write a
◦
= b to mean that the multisets a and b

differ only in their respective multiplicities of zero; for instance, 5553
◦
= 55530

◦
= 555300. Of course,

◦
= is an equivalence relation. The union operation ∪ on multisets is understood to add multiplicities:
for instance, 5553 ∪ 5332 = 55553332.

For −1 ≤ i ≤ dim∆, define linear operators Lud
∆,i, Ldu

∆,i, Ltot
∆,i on the vector space Ci(∆) by

Lud
∆,i = ∂i+1∂

∗
i+1 (the up-down Laplacian),

Ldu
∆,i = ∂∗

i ∂i (the down-up Laplacian),

Ltot
∆,i = Lud

∆,i + Ldu
∆,i (the total Laplacian).

The spectrum stot
i (∆) of Ltot

∆,i is the multiset of its eigenvalues (including zero); we define sud
i (∆)

and sdu
i (∆) similarly. Since each Laplacian operator is represented by a symmetric matrix, it is

diagonalizable, so

|stot
i (∆)| = |sud

i (∆)| = |sdu
i (∆)| = fi(∆).

The various Laplacian spectra are related by the identities

sud
i (∆)

◦
= sdu

i+1(∆),

stot
i (∆)

◦
= sud

i (∆) ∪ sdu
i (∆)

[13, eqn. (3.6)]. Therefore, each of the three families of multisets

{stot
i (∆): − 1 ≤ i ≤ dim∆}, {sud

i (∆): − 1 ≤ i ≤ dim∆}, {sdu
i (∆): − 1 ≤ i ≤ dim∆}

determines the other two, and we will feel free to work with whichever one is most convenient in
context.

Combinatorial Laplacians and their spectra have been investigated for a number of classes of
simplicial complexes. In particular, it is known that chessboard [17], matching [11], matroid [24],
and shifted [13] complexes are Laplacian integral, i.e., all their Laplacian eigenvalues are integers.
Understanding which complexes are Laplacian integral is an open question. As we will see, Laplacian
eigenvalues and spanning tree enumerators are inextricably linked.

3. Simplicial spanning trees

In this section, we generalize the notion of a spanning tree to arbitrary dimension using simplicial
homology, following Kalai’s idea. Our definition makes sense for any ambient complex that satisfies
the relatively mild APC condition.

Definition 3.1. Let ∆d be a simplicial complex, and let k ≤ d. A k-dimensional simplicial spanning
tree (for short, SST or k-SST) of ∆ is a k-dimensional subcomplex Υ ⊆ ∆ such that Υ(k−1) = ∆(k−1)
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and

H̃k(Υ) = 0, (6a)

|H̃k−1(Υ)| <∞, and (6b)

fk(Υ) = fk(∆)− β̃k(∆) + β̃k−1(∆). (6c)

We write Tk(∆) for the set of all k-SST’s of ∆d, omitting the subscript if k = d. Note that
Tk(∆) = Tk(∆(j)) for all j ≥ k.

A zero-dimensional SST is just a vertex of ∆. If ∆ is a 1-dimensional simplicial complex on
n vertices—that is, a graph—then the definition of 1-SST coincides with the usual definition of a
spanning tree of a graph: namely, a subgraph of ∆ which is connected, acyclic, and has n− 1 edges.
Next, we give a few examples in higher dimensions.

Example 3.2. If ∆d is a simplicial sphere (for instance, the boundary of a simplicial polytope),
then deleting any facet of ∆ while keeping its (d − 1)-skeleton intact produces a d-SST. Therefore
|T (∆)| = fd(∆).

Example 3.3. In dimension > 1, spanning trees need not be Z-acyclic, merely Q-acyclic. For
example, let ∆ be a triangulation of the real projective plane, so that dim∆ = 2, H̃1(∆, Z) ∼= Z/2Z,

and H̃1(∆, Q) = 0. Then ∆ satisfies the conditions of Definition 3.1 and is a 2-SST of itself (in fact,
the only such).

Example 3.4. Consider the equatorial bipyramid B of Example 1.7. A 2-SST of B can be con-
structed by removing two facets F, F ′, provided that F ∩ F ′ contains neither of the vertices 4,5. A
simple count shows that there are 15 such pairs F, F ′, so |T2(B)| = 15.

Before proceeding any further, we show that Definition 3.1 satisfies a “two-out-of-three theorem”
akin to that for spanning trees of graphs.

Proposition 3.5. Let Υ ⊂ ∆d be a k-dimensional subcomplex with Υ(k−1) = ∆(k−1). Then any
two of the conditions (6a), (6b), (6c) together imply the third.

Proof. First, note that

fℓ(Υ) = fℓ(∆) for ℓ ≤ k − 1 and β̃ℓ(Υ) = β̃ℓ(∆) for ℓ ≤ k − 2. (7)

Next, we use the standard fact that the Euler characteristic χ(Υ) can be calculated as the alternating
sum either of the f -numbers or of the Betti numbers. Thus

χ(Υ) =

k
∑

i=0

(−1)ifi(Υ)

= (−1)kfk(Υ) +

k−1
∑

i=0

(−1)ifi(∆)

= (−1)kfk(Υ) + χ(∆)− (−1)kfk(∆) (8)

and on the other hand,

χ(Υ) =
k
∑

i=0

(−1)iβ̃i(Υ)

= (−1)k(β̃k(Υ)− β̃k−1(Υ)) +

k−2
∑

i=0

(−1)iβ̃i(∆)

= (−1)k(β̃k(Υ)− β̃k−1(Υ)) + χ(∆)− (−1)k(β̃k(∆)− β̃k−1(∆)). (9)
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Equating (8) and (9) gives

fk(Υ)− fk(∆) = β̃k(Υ)− β̃k−1(Υ)− β̃k(∆) + β̃k−1(∆)

or equivalently
(

fk(Υ)− fk(∆) + β̃k(∆) − β̃k−1(∆)
)

− β̃k(Υ) + β̃k−1(Υ) = 0.

Since (6a) says that β̃k(Υ) = 0 (note that H̃k(Υ) must be free abelian) and (6b) says that β̃k−1(Υ) =
0, the conclusion follows. �

Definition 3.6. A simplicial complex ∆d is acyclic in positive codimension, or APC for short, if
β̃j(∆) = 0 for all j < d.

Equivalently, a complex ∆d is APC if it has the homology type of a wedge of zero or more d-
dimensional spheres. In particular, any Cohen-Macaulay complex is APC. The converse is very far
from true, because, for instance, an APC complex need not even be pure. For our purposes, the
APC complexes are the “correct” simplicial analogues of connected graphs for the following reason.

Proposition 3.7. For any simplicial complex ∆d, the following are equivalent:

(1) ∆ is APC.
(2) ∆ has a d-dimensional spanning tree.
(3) ∆ has a k-dimensional spanning tree for every k ≤ d.

Proof. It is trivial that (3) implies (2). To see that (2) implies (1), suppose that ∆ has a d-dimensional

spanning tree Υ. Then Υi = ∆i for all i ≤ d− 1, so H̃i(∆) = H̃i(Υ) = 0 for all i ≤ d− 2. Moreover,
in the diagram

Cd(∆)
∂∆,d

−−−→ Cd−1(∆)
∂∆,d−1

−−−−→ Cd−2(∆)
⋃

‖ ‖

Cd(Υ)
∂Υ,d

−−−→ Cd−1(Υ)
∂Υ,d−1

−−−−→ Cd−2(Υ)

we have ker ∂∆,d−1 = ker ∂Υ,d−1 and im ∂∆,d ⊇ im ∂Υ,d, so there is a surjection 0 = H̃d−1(Υ) →

H̃d−1(∆), implying that ∆ is APC.
To prove (1) implies (3), it suffices to consider the case k = d, because any skeleton of an APC

complex is also APC. We can construct a d-SST Υ by the following algorithm. Let Υ = ∆. If
H̃d(Υ) 6= 0, then there is some nonzero linear combination of facets of Υ that is mapped to zero

by ∂Υ,d. Let F be one of those facets, and let Υ′ = Υ\{F}. Then β̃d(Υ
′) = β̃d(Υ) − 1 and

β̃i(Υ
′) = β̃i(Υ) for i ≤ d− 2, and by the Euler characteristic formula, we have β̃d−1(Υ

′) = β̃d−1(Υ)

as well. Replacing Υ with Υ′ and repeating, we eventually arrive at the case H̃d(Υ) = 0, when Υ is
a d-SST of ∆. �

The APC condition is a fairly mild one. For instance, any Q-acyclic complex is clearly APC (and
is its own unique SST), as is any Cohen-Macaulay complex (in particular, any shifted complex).

4. Simplicial analogues of the Matrix-Tree Theorem

We now explain how to enumerate simplicial spanning trees of a complex using its Laplacian.
Throughout this section, let ∆d be an APC simplicial complex on vertex set [n]. For k ≤ d, define

πk = πk(∆) =
∏

06=λ∈sud
k−1

(∆)

λ, τk = τk(∆) =
∑

Υ∈Tk(∆)

|H̃k−1(Υ)|2.

We are interested in the relationships between these two families of invariants. When d = 1, the
relationship is given by Theorem 1.1. In the notation just defined, part (1) of that theorem says
that τ1 = π1/n, and part (2) says that τ1 = detLi (i.e., the determinant of the reduced Laplacian
obtained from Lud

∆,0 by deleting the row and column corresponding to any vertex i).
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The results of this section generalize both parts of the Matrix-Tree Theorem from graphs to all
APC complexes ∆d. Our arguments are closely based on those used by Kalai [20] and Adin [1] to
enumerate SST’s of skeletons of simplices and of complete colorful complexes.

We begin by setting up some notation. Abbreviate β̃i = β̃i(∆), fi = fi(∆), and ∂ = ∂∆,d. Let T

be a set of facets of ∆ of cardinality fd− β̃d + β̃d−1 = fd− β̃d, and let S be a set of ridges such that
|S| = |T |. Define

∆T = T ∪∆(d−1), S̄ = ∆(d−1) \ S, ∆S̄ = S̄ ∪∆(d−2),

and let ∂S,T be the square submatrix of ∂ with rows indexed by S and columns indexed by T .

Proposition 4.1. The matrix ∂S,T is nonsingular if and only if ∆T ∈ Td(∆) and ∆S̄ ∈ Td−1(∆).

Proof. We may regard ∂S,T as the top boundary map of the d-dimensional relative complex Γ =

(∆T , ∆S̄). So ∂S,T is nonsingular if and only if H̃d(Γ) = 0. Consider the long exact sequence

0→ H̃d(∆S̄)→ H̃d(∆T )→ H̃d(Γ)→ H̃d−1(∆S̄)→ H̃d−1(∆T )→ H̃d−1(Γ)→ · · · (10)

If H̃d(Γ) 6= 0, then H̃d(∆T ) and H̃d−1(∆S̄) cannot both be zero. This proves the “only if” direction.

If H̃d(Γ) = 0, then H̃d(∆S̄) = 0 (since dim∆S̄ = d − 1), so (10) implies H̃d(∆T ) = 0. Therefore

∆T is a d-tree, because it has the correct number of facets. Hence H̃d−1(∆T ) is finite. Then (10)

implies that H̃d−1(∆S̄) is finite. In fact, it is zero because the top homology group of any complex
must be torsion-free. Meanwhile, ∆S̄ has the correct number of facets to be a (d − 1)-SST of ∆,
proving the “if” direction. �

Proposition 4.2. If ∂S,T is nonsingular, then

| det ∂S,T | =
|H̃d−1(∆T )| · |H̃d−2(∆S̄)|

|H̃d−2(∆T )|
=
|H̃d−1(∆T )| · |H̃d−2(∆S̄)|

|H̃d−2(∆)|
.

Proof. As before, we interpret ∂S,T as the boundary map of the relative complex Γ = (∆T , ∆S̄). So

∂S,T is a map from Z|T | to Z|T |, and Z|T |/∂S,T (Z|T |) is a finite abelian group of order | det ∂S,T |. On
the other hand, since Γ has no faces of dimension ≤ d− 2, its lower boundary maps are all zero, so
| det ∂S,T | = |H̃d−1(Γ)|. Since H̃d−2(∆T ) is finite, the desired result now follows from the piece

0→ H̃d−1(∆T )→ H̃d−1(Γ)→ H̃d−2(∆S̄)→ H̃d−2(∆T )→ 0 (11)

of the long exact sequence (10). �

We can now prove the first version of the Simplicial Matrix-Tree Theorem, relating the quantities
πd and τd. Abbreviate L = Lud

∆,d−1.

Theorem 1.3 (Simplicial Matrix-Tree Theorem). Let ∆d be an APC simplicial complex. Then:

(1) We have

πd(∆) =
τd(∆)τd−1(∆)

|H̃d−2(∆)|2
.

(2) Let U be the set of facets of a (d − 1)-SST of ∆, and let LU denote the reduced Laplacian3

obtained by deleting the rows and columns of L corresponding to U . Then

τd(∆) =
|H̃d−2(∆)|2

|H̃d−2(∆U )|2
detLU .

3A warning: This notation for reduced Laplacians specifies which rows and columns to exclude (in analogy to the
notation Li in the statement of Theorem 1.1), in contrast to the notation ∂S,T for restricted boundary maps, which

specifies which rows and columns to include.
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Proof of Theorem 1.3 (1). The Laplacian L is a square matrix with fd−1 rows and columns, and

rank fd − β̃d = fd − β̃d + β̃d−1 (because ∆ is APC). Let χ(L; y) = det(yI − L) be its characteristic
polynomial (where I is an identity matrix), so that πd(∆), the product of the nonzero eigenvalues

of L, is given (up to sign) by the coefficient of yfd−1−fd+β̃d in χ(L; y). Equivalently,

πd =
∑

S⊂∆d−1

|S|=rankL

detLU =
∑

S⊂∆d−1

|S|=fd−β̃d

detLU (12)

where U = ∆d−1\S in each summand. By the Binet-Cauchy formula, we have

detLU =
∑

T⊂∆d

|T |=|S|

(det ∂S,T )(det ∂∗
S,T ) =

∑

T⊂∆d

|T |=|S|

(det ∂S,T )2. (13)

Combining (12) and (13), applying Proposition 4.1, and interchanging the sums, we obtain

πd =
∑

T :∆T ∈Td(∆)

∑

S:∆S̄∈Td−1(∆)

(det ∂S,T )2

and now applying Proposition 4.2 yields

πd =
∑

T :∆T∈Td(∆)

∑

S:∆S̄∈Td−1(∆)

(

|H̃d−1(∆T )| · |H̃d−2(∆S̄)|

|H̃d−2(∆)|

)2

=





∑

T :∆T∈Td(∆)

|H̃d−1(∆T )|2









∑

S:∆S̄∈Td−1(∆)

|H̃d−2(∆S̄)|





|H̃d−2(∆)|2

as desired. �

In order to prove the “reduced Laplacian” part of Theorem 1.3, we first check that when we delete
the rows of ∂ corresponding to a (d− 1)-SST, the resulting reduced Laplacian has the correct size,
namely, that of a d-SST.

Lemma 4.3. Let U be the set of facets of a (d − 1)-SST of ∆, and let S = ∆d−1\U . Then

|S| = fd(∆) − β̃d(∆), the number of facets of a d-SST of ∆.

Proof. Let Γ = ∆(d−1). By Proposition 3.5 and the observation (7), |U | = fd−1(Γ) − β̃d−1(Γ) +

β̃d−2(Γ) = fd−1(∆)− β̃d−1(Γ), so |S| = β̃d−1(Γ). The Euler characteristics of ∆ and Γ are

χ(∆) =

d
∑

i=0

(−1)ifi(∆) =

d
∑

i=0

(−1)iβ̃i(∆),

χ(Γ) =
d−1
∑

i=0

(−1)ifi(Γ) =
d−1
∑

i=0

(−1)iβ̃i(Γ).

By (7), we see that

χ(∆)− χ(Γ) = (−1)dfd(∆) = (−1)dβ̃d(∆) + (−1)d−1β̃d−1(∆)− (−1)d−1β̃d−1(Γ)

from which we obtain fd(∆) = β̃d(∆)− β̃d−1(∆) + β̃d−1(Γ). Since ∆ is APC, we have β̃d−1(∆) = 0,

so |S| = β̃d−1(Γ) = fd(∆)− β̃d(∆) as desired. �
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Proof of Theorem 1.3 (2). By the Binet-Cauchy formula, we have

detLU =
∑

T : |T |=|S|

(det ∂S,T )(det ∂∗
S,T ) =

∑

T : |T |=|S|

(det ∂S,T )2.

By Lemma 4.3 and Proposition 4.1, ∂S,T is nonsingular exactly when ∆T ∈ Td(∆). Hence
Proposition 4.2 gives

detLU =
∑

T :∆T∈Td(∆)

(

|H̃d−1(∆T )| · |H̃d−2(∆U )|

|H̃d−2(∆)|

)2

=
|H̃d−2(∆U )|2

|H̃d−2(∆)|2

∑

T :∆T∈Td(∆)

|H̃d−1(∆T )|2 =
|H̃d−2(∆U )|2

|H̃d−2(∆)|2
τd(∆),

which is equivalent to the desired formula. �

Remark 4.4. Suppose that H̃d−2(∆) = 0 (for example, if ∆ is Cohen-Macaulay). Then the two
versions of Theorem 1.3 assert that

τd =
πd

τd−1
=

detLU

|H̃d−2(∆U )|2
,

from which it is easy to recognize the two different versions of the classical Matrix-Tree Theorem,
Theorem 1.1. (A graph is Cohen-Macaulay as a simplicial complex if and only if it is connected.)
Moreover, the recurrence τd = πd/τd−1 leads to an expression for τd as an alternating product of
eigenvalues:

τd =
πdπd−2 · · ·

πd−1πd−3 · · ·
=

d
∏

k=0

π
(−1)d−k

k . (14)

This formula is reminiscent of the Reidemeister torsion of a chain complex or CW-complex (although
τd is of course not a topological invariant); see, e.g., [35]. Furthermore, (14) is in practice an efficient
way to calculate τd.

Example 4.5. For the equatorial bipyramid B, we have

π0(B) = 5, π1(B) = 5 · 5 · 5 · 3 = 375, π2(B) = 5 · 5 · 5 · 3 · 3 = 1125.

These numbers can be checked by computation, and also follow from the Duval-Reiner formula for
Laplacian eigenvalues of a shifted complex. Applying the alternating product formula (14) yields

τ0(B) = 5, τ1(B) = 375/5 = 75, τ2(B) =
1125 · 5

375
= 15.

Indeed, τ0(B) is the number of vertices. Cayley’s formula implies that deleting any one edge e from
Kn yields a graph with (n − 2)nn−3 spanning trees (because e itself belongs to (n − 1)/

(

n
2

)

of the
spanning trees of Kn), and the 1-skeleton B(1) is such a graph with n = 5, so τ1(B) = 75. Finally,
we have seen in Example 3.4 that τ2(B) = 15.

5. Weighted enumeration of simplicial spanning trees

We can obtain much finer enumerative information by labeling the facets of a complex with
indeterminates, so that the invariant τk becomes a generating function for its SST’s.

Let ∆d be an APC simplicial complex, and let ∂ = ∂∆,d. Introduce an indeterminate xF for each
facet F of maximum dimension, and let XF = x2

F . For every T ⊆ ∆d, let xT =
∏

F∈T xF and

let XT = x2
T . To construct the weighted boundary matrix ∂̂ from ∂, multiply each column of ∂̂ by

xF , where F is the facet of ∆ corresponding to that column. The weighted coboundary ∂̂∗ is the

transpose of ∂̂. We can now define weighted versions of Laplacians, the various submatrices of the
boundary and coboundary matrices used in Section 4, and the invariants πk and τk. We will notate
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each weighted invariant by placing a hat over the symbol for the corresponding unweighted quantity.
Thus π̂k is the product of the nonzero eigenvalues of L̂ud

∆,k−1, and

τ̂k = τ̂k(∆) =
∑

Υ∈Tk(∆)

|H̃k−1(Υ)|2XΥ.

To recover any unweighted quantity from its weighted analogue, set xF = 1 for all F ∈ ∆d.

Proposition 5.1. Let T ⊂ ∆d and S ⊂ ∆d−1, with |T | = |S| = fd−β̃d. Then det ∂̂S,T = xT det ∂S,T

is nonzero if and only if ∆T ∈ Td(∆) and ∆S̄ ∈ Td−1(∆). In that case,

± det ∂̂S,T =
|H̃d−1(∆T )| · |H̃d−2(∆S̄)|

|H̃d−2(∆T )|
xT =

|H̃d−1(∆T )| · |H̃d−2(∆S̄)|

|H̃d−2(∆)|
xT . (15)

Proof. The first claim follows from Proposition 4.1, and the second from Proposition 4.2. �

It is now straightforward to adapt the proofs of both parts of Theorem 1.3 to the weighted setting.

For convenience, we restate the result. Let L̂ = L̂ud
∆,d−1.

Theorem 1.4 (Weighted Simplicial Matrix-Tree Theorem). Let ∆d be an APC simplicial
complex. Then:

(1) We have

π̂d(∆) =
τ̂d(∆)τd−1(∆)

|H̃d−2(∆)|2
.

(2) Let U be the set of facets of a (d−1)-SST of ∆, and let L̂U be the reduced Laplacian obtained

by deleting the rows and columns of L̂ corresponding to U . Then

τ̂d(∆) =
|H̃d−2(∆)|2

|H̃d−2(∆U )|2
det L̂U .

Proof. For assertion (1), we use a weighted version of the argument of part (1) of Theorem 1.3. By
the Binet-Cauchy formula and Proposition 5.1, we have

π̂d =
∑

S⊂∆d−1

∑

T⊂∆d

|T |=|S|

(det ∂̂∗
T,S)(det ∂̂S,T ) =

∑

S

∑

T

(det ∂̂S,T )2

=
∑

T :∆T∈Td(∆)

∑

S:∆S̄∈Td−1(∆)

(det ∂̂S,T )2

=
∑

T :∆T∈Td(∆)

∑

S:∆S̄∈Td−1(∆)

(

|H̃d−1(∆T )| · |H̃d−2(∆S̄)|

|H̃d−2(∆)|

)2

XT =
τ̂d(∆)τd−1(∆)

|H̃d−2(∆)|2
.

The proof of assertion (2) of the theorem is identical to that of part (2) of Theorem 1.3, using
Proposition 5.1 instead of Proposition 4.2. �

Example 5.2. We return to the equatorial bipyramid B of Example 1.7. Weight each facet F =
{i, j, k} by the monomial xF = xixjxk. Let U = {12, 13, 14, 15} be the facets of a 1-SST of B(1).

Then the reduced Laplacian L̂U is
0

B

B

B

B

@

x2x3(x1 + x4 + x5) −x2x3x5 x2x3x4 x2x3x5 −x2x3x4

−x2x3x4 x2x5(x1 + x3) 0 −x2x3x5 0
x2x3x4 0 x3x4(x1 + x2) 0 −x2x3x4

x2x3x5 −x2x3x5 0 x3x5(x1 + x2) 0
−x2x3x4 0 −x2x3x4 0 x2x4(x1 + x3)

1

C

C

C

C

A
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and the generating function for 2-SST’s by their degree sequences is

τ̂2(B) = det L̂S =
∑

Υ∈T (B)

∏

i∈[5]

x
degB(i)
i = x3

1x
3
2x

3
3x

2
4x

2
5(x1 + x2 + x3)(x1 + x2 + x3 + x4 + x5)

where degB(i) means the number of facets of B containing vertex i. Setting xi = 1 for every i
recovers the unweighted equality τ2(B) = 15 (see Examples 3.4 and 4.5).

6. Shifted complexes

6.1. General definitions. In the next several sections of the paper, we apply the tools just devel-
oped to the important class of shifted complexes. We begin by reviewing some standard facts about
shifted complexes and shifted families; for more details, see, e.g., [21].

Let k be an integer. A k-set is a set of integers of cardinality k. A k-family is a set of k-sets
(for example, the set of (k − 1)-dimensional faces of a simplicial complex). The componentwise
partial order � on k-sets of integers is defined as follows: if A = {a1 < a2 < · · · < ak} and
B = {b1 < b2 < · · · < bk}, then A � B if aj ≤ bj for all j. A k-family F is shifted if B ∈ F and
A � B together imply A ∈ F . Equivalently, F is shifted if it is an order ideal with respect to the
componentwise partial order. A simplicial complex Σ is shifted if Σi is shifted for all i. Accordingly,
we may specify a shifted complex by the list of its facets that are maximal with respect to �, writing
Σ = 〈F1, . . . , Fn〉. For example, the bipyramid of Example 1.7 is the shifted complex 〈235〉. We will
not lose any generality by assuming that the vertex set for every shifted complex we encounter is an
integer interval [p, q] = {p, p + 1, . . . , q}; in particular, we will use the symbol p throughout for the
vertex with the smallest index.

The deletion and link of Σ with respect to p are defined to be the subcomplexes

∆ = delp Σ = {F\{p} : F ∈ Σ},

Λ = linkp Σ = {F : p 6∈ F, F ∪ {p} ∈ Σ}.

It is easy to see that the deletion and link of a shifted complex on [p, q] are themselves shifted
complexes4 on [p + 1, q].

A complex Σ on vertex set V is called a near-cone with apex p if it has the following property: if
F ∈ delp Σ and v ∈ F , then F\{v} ∈ linkp Σ (equivalently, F\{v}∪{p} ∈ Σ). It is easy to see that a
shifted complex on [p, q] is a near-cone with apex p. Björner and Kalai [5, Theorem 4.3] showed that
the Betti numbers of a shifted complex Σ (indeed, of a near-cone) with initial vertex p are given by

β̃i(Σ) = |{F ∈ Σi : p 6∈ F, F ∪̇ {p} 6∈ Σ}|. (16)

6.2. The combinatorial fine weighting. Let {xi,j} be a set of indeterminates, indexed by integers
i, j. Let k be the field of rational functions in the xi,j with coefficients in C (or in any other field
of characteristic zero). Since these indeterminates will often appear squared, we set Xi,j = x2

i,j .

The combinatorial fine weighting assigns to a multiset of vertices S = {i1 ≤ i2 ≤ · · · ≤ im} the
monomials

xS = x1,i1x2,i2 · · ·xm,im
and XS = X1,i1X2,i2 · · ·Xm,im

. (17)

Our goal is to describe the generating function

τ̂d(Σ) =
∑

Υ∈T (Σ)

|H̃d−1(Σ, Z)|2XΥ

of a shifted complex Σ, where, for each simplicial spanning tree Υ, the monomial

XΥ =
∏

facets F∈Υ

XF

4This is also true for the deletion and link with respect to any vertex, not just p, but then the resulting vertex set
is no longer a set of consecutive integers. Since we will not have any need to take the deletion and link with respect
to any vertex other than p, we won’t worry about that, and instead enjoy the resulting simplicity of specifying the
new minimal vertex of the deletion and link.
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records both the number of facets of Υ containing each vertex of Σ, as well as the order in which
the vertices appear in facets.

Define the “raising operator” ↑ by ↑xi,j = xi+1,j for i ≤ d and ↑xd+1,j = 0. We extend ↑ linearly
and multiplicatively to an operator on all of k. The raising operator can also be applied to a k-linear
operator f by the rule

(↑f)(V ) =↑(f(↑−1(V ))) (18)

for any vector V over k. The ath iterate of ↑ is denoted ↑a.
The following identities will be useful. Let S̃ = S ∪ {p}, where ∪ denotes the union as multisets,

so that the multiplicity of p in S̃ is one more than its multiplicity in S. Then, for all integers a, j,

↑ax1,p · ↑
a+1xS∪j = ↑a

(

x1,p · ↑xS∪j

)

= ↑axS̃∪j (19a)

and
↑axS̃

↑a+1xS

= xa+1,p = ↑ax1,p. (19b)

The same identities hold if x is replaced with X .
Now, define the combinatorially finely weighted simplicial boundary map of Σ as the homomor-

phism ∂̂ = ∂̂Σ,i : Ci(Σ)→ Ci−1(Σ) which acts on generators [F ] (for F ∈ Σi) by

∂̂[F ] =
∑

j∈F

ε(j, F ) ↑d−ixF [F\j]. (20)

Here we have set ε(v, F ) = (−1)j+1 if v is the jth smallest vertex of F , and ε(v, F ) = 0 if v 6∈ F .

Similarly define the finely weighted simplicial coboundary map ∂̂∗ = ∂̂∗
F,i+1 : Ci(Σ)→ Ci+1(Σ) by

∂̂∗[F ] =
∑

j∈V \F

ε(j, F ∪ j) ↑d−i−1xF∪j [F ∪ j]. (21)

These maps do not make the chain groups of Σ into an algebraic chain complex, because ∂̂∂̂ and

∂̂∗∂̂∗ do not vanish in general. (We will fix this problem in Section 6.3.) On the other hand, they
have combinatorial significance, because we will be able to apply part (2) of Theorem 1.4 to the

finely weighted up-down Laplacian L̂ud = ∂̂d∂̂
∗
d . This Laplacian may be regarded as a matrix whose

rows and columns are indexed by Σd−1. It is not hard to check that for each F, G ∈ Σd−1, the

corresponding entry of L̂ud is

(L̂ud)FG =















ε(j, H) ε(i, H) XH if H = F ∪ j = G ∪ i ∈ Σ,
∑

j : F∪j∈Σ

XF∪j if F = G,

0 otherwise.

(22)

Let U be the simplicial spanning tree of Σ(d−1) consisting of all ridges containing vertex p. (This
subcomplex is an SST because it has a complete (d − 2)-skeleton and is a cone over p, hence

contractible.) Let L̂ud
U be the reduced Laplacian obtained from L̂ud by deleting the corresponding

rows and columns, so that the remaining rows and columns are indexed by the facets of Λ = linkp Σ.

Then part (2) of Theorem 1.4 asserts that τ̂d(Σ) = det L̂ud
U .

Let N = N(Σ) be the matrix obtained from L̂ud
U by dividing each row F by ↑xF and dividing

each column G by ↑xG. The (F, G) entry of N is thus

NFG =











































ε(j, H) ε(i, H)
XH

↑xF ↑xG

if H = F ∪ j = G ∪ i ∈ Σ,

∑

j : F∪j∈Σ

XF∪j

↑XF

if F = G,

0 otherwise.

(23)
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Moreover,

τ̂d(Σ) = det L̂ud
U =





∏

F∈Λd−1

↑XF



detN. (24)

We will shortly see (Lemma 6.3) that N is almost identical to the (full) Laplacian of the deletion
∆ = delp Σ.

6.3. The algebraic fine weighting. The combinatorial fine weighting just defined is awkward to
work with directly, because the simplicial boundary and coboundary maps (20) and (21) do not
fit together into an algebraic chain complex. Therefore, we introduce a new weighting by Laurent
monomials, the algebraic fine weighting, that does give the structure of a chain complex, behaves well
with respect to cones and near-cones, and is easy to translate into the combinatorial fine weighting.

Definition 6.1. Let ∆d be a simplicial complex on vertices V ⊂ N. The algebraic finely weighted
simplicial boundary map of ∆ is the homomorphism ∂∆,i : Ci(∆)→ Ci−1(∆) given by

∂∆,i[F ] =
∑

j∈F

ε(j, F )
↑d−i(xF )

↑d−i+1(xF\j)
[F\j] (25)

and similarly the algebraic finely weighted simplicial coboundary map ∂
∗
∆,i+1 : Ci(∆)→ Ci+1(∆) is

given by

∂
∗
∆,i+1[F ] =

∑

j∈V \F

ε(j, F ∪ j)
↑d−i−1(xF∪j)

↑d−i(xF )
[F ∪ j]. (26)

We will sometimes drop one or both subscripts when no confusion can arise. By the formula (18),
we can apply the raising operator ↑to ∂ and ∂

∗ by applying it to each matrix entry. That is, for
[F ] ∈ Ci(∆) and a ∈ N, we have

↑a∂∆,i[F ] =
∑

j∈F

ε(j, F )
↑d−i+a(xF )

↑d−i+a+1(xF\j)
[F\j], (27)

↑a∂
∗
∆,i[F ] =

∑

j∈V \F

ε(j, F ∪ j)
↑d−i+a−1(xF∪j)

↑d−i+a(xF )
[F ∪ j]. (28)

Lemma 6.2. Let a ∈ N. Then ↑a∂ ◦ ↑a∂ = 0 and ↑a∂
∗◦ ↑a∂

∗ = 0. That is, the algebraic finely
weighted boundary and coboundary operators induce chain complexes

· · · → Ci+1(∆)
∂∆,i+1

−−−−→ Ci(∆)
∂∆,i

−−−→ Ci−1(∆)→ · · ·

· · · ← Ci+1(∆)
∂

∗

∆,i+1

←−−−− Ci(∆)
∂

∗

∆,i

←−−− Ci−1(∆)← · · ·
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Proof. Since the matrices that represent the maps ∂ and ∂
∗ are mutual transposes, it suffices to

prove the first assertion. For F ∈ ∆i, we have by (27)

↑a∂∆,i−1(↑
a
∂∆,i([F ])) = ↑a∂∆,i−1





∑

j∈F

ε(j, F )
↑d−i+a(xF )

↑d−i+a+1(xF\j)
[F\j]





=
∑

j∈F

ε(j, F )
↑d−i+a(xF )

↑d−i+a+1(xF\j)
· ↑a∂∆,i−1([F\j])

=
∑

j∈F

ε(j, F )
↑d−i+a(xF )

↑d−i+a+1(xF\j)

∑

k∈F\j

ε(k, F\j)
↑d−i+a+1(xF\j)

↑d−i+a+2(xF\j\k)
[F\j\k]

=
∑

j∈F

∑

k∈F\j

ε(j, F )ε(k, F\j)
↑d−i+a(xF )

↑d−i+a+2(xF\j\k)
[F\j\k]

=
∑

j,k∈F
j 6=k

(

ε(j, F )ε(k, F\j) + ε(k, F )ε(j, F\k)
) ↑d−i+a(xF )

↑d−i+a+2(xF\j\k)
[F\j\k]

and it is a standard fact of simplicial homology theory that the parenthesized expression is zero. �

Define the algebraic finely weighted up-down, down-up, and total Laplacians by

Lud
∆,i = ∂∆,i+1∂

∗
∆,i+1, Ldu

∆,i = ∂
∗
∆,i∂∆,i, Ltot

∆,i = Lud
∆,i + Ldu

∆,i.

Each of these is a linear endomorphism of Ci(∆), represented by a symmetric matrix, hence diag-
onalizable. Let sud

i (∆), sdu
i (∆), and stot

i (∆) denote the spectra (multisets of eigenvalues) of Lud
∆,i,

Ldu
∆,i, and Ltot

∆,i respectively. We will use the abbreviations Lud, Ldu, Ltot, sud, sdu, stot when no
confusion can arise.

If we regard Lud
∆,d−1 as a matrix with rows and columns indexed by ∆d−1, then it is not hard to

check that its (F, G) entry is

(Lud
∆,d−1)FG =











































ε(j, H) ε(i, H)
XH

↑xF ↑xG

if H = F ∪ j = G ∪ i ∈ ∆,

∑

j : F∪j∈∆

XF∪j

↑XF

if F = G,

0 otherwise.

(29)

This matrix is almost identical to the matrix N(Σ) defined in (23) when ∆ = delp Σ, as we now
explain.

Lemma 6.3. Let Σd be a pure shifted complex with initial vertex p, and let Λ = linkp Σ and
∆ = delp Σ. Then

τ̂d(Σ) =





∏

F∈Λd−1

↑XF





∏

λ∈s
ud
∆,d−1

(X1,p + λ).

Proof. First, note that L = Lud
∆,d−1 is indexed by the faces of ∆d−1 and N = N(Σ) is indexed by

the faces of Λd−1. These indexing sets coincide because Σ is shifted and pure of dimension d.
Second, we show that the off-diagonal entries (the first cases in (23) and (29)) coincide. Suppose

that F, G are distinct faces in ∆d−1 = Λd−1, and that H = F ∪ i = G ∪ j. Suppose that i 6= j and
H = F ∪ i = G ∪ j. We must show that H ∈ ∆ if and only if H ∈ Σ. The “only if” direction is
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immediate because ∆ ⊂ Σ. On the other hand, H = F ∪ G and no element of ∆d−1 contains p.
Therefore, if H ∈ Σ, then H ∈ ∆, as desired.

Third, we compare the entries on the main diagonals of L and N . Their only difference is that
the summand with j = p occurs in the second case of (23), but not in (29). Hence

NFF = LFF +
XF∪p

↑XF

= LFF + X1,p (30)

by (19b). Therefore N = L + X1,pI, where I is an identity matrix of size fd−1(∆), and

detN = χ(−L, X1,p) =
∏

λ∈s
ud
∆,d−1

(X1,p + λ),

where χ denotes the characteristic polynomial of −L in the variable X1,p. The lemma now follows
from equation (24). �

The goal of the next two sections is to compute Lud
∆,d−1.

7. Cones and near-cones

A shifted complex is an iterated near-cone, so we want to describe the Laplacian eigenvalues of a
near-cone in terms of its base. Before we do so, we must consider the case of a cone. Proposition 7.2
provides the desired recurrence for cones, and Proposition 7.6 for near-cones.

7.1. Boundary and coboundary operators of cones. Let Γ be the simplicial complex with the
single vertex 1, and let ∆d be any complex on V = [2, n]. For a face F ∈ ∆, write F̃ = 1 ∪ F . The
corresponding cone is

Σ = 1 ∗∆ = Γ ∗∆ = {F, F̃ : F ∈ ∆}.

We will make use of the identification

Ci(Σ) ∼= (C−1(Γ)⊗ Ci(∆))⊕ (C0(Γ)⊗ Ci−1(∆)).

By (27) and (28), the (raised) boundary and coboundary maps on Γ are given explicitly by

↑a∂Γ[1] = xa+1,1[∅], ↑a∂
∗
Γ[1] = 0,

↑a∂Γ[∅] = 0, ↑a∂
∗
Γ[∅] = xa+1,1[1].

Next, we give explicit formulas for the maps ∂Σ,i and ∂
∗
Σ,i+1. How these maps act on a face of

Σ depends on whether it is of the form F , for F ∈ ∆i, or F̃ , for F ∈ ∆i−1. Note that in any case

ε(1, F̃ ) = 1, and that for all v ∈ F we have ε(v, F ) = −ε(v, F̃ ). Therefore,

∂Σ,i([∅]⊗ [F ]) =
∑

j∈F

ε(j, F )
↑d−i+1(xF )

↑d−i+2(xF\j)
[∅]⊗ [F\j]

=↑





∑

j∈F

ε(j, F )
↑d−i(xF )

↑d−i+1(xF\j)
[∅]⊗ [F\j]





= (id⊗ ↑∂∆,i)([∅]⊗ [F ]), (31a)
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∂Σ,i([1]⊗ [F ]) = ε(1, F̃ )
↑d−i+1(xF̃ )

↑d−i+2(xF )
[∅]⊗ [F ] +

∑

j∈F

ε(j, F̃ )
↑d−i+1(xF̃ )

↑d−i+2(xF̃\j)
[1]⊗ [F\j]

= xd−i+2,1[∅]⊗ [F ]−
∑

j∈F

ε(j, F )
xd−i+2,1

xd−i+3,1

↑d−i+2(xF )

↑d−i+3(xF\j)
[1]⊗ [F\j]

= xd−i+2,1[∅]⊗ [F ]−
xd−i+2,1

xd−i+3,1
↑





∑

j∈F

ε(j, F )
↑d−i+1(xF )

↑d−i+2(xF\j)
[1]⊗ [F\j]





=

(

↑d−i+1
∂Γ ⊗ id−

xd−i+2,1

xd−i+3,1
id⊗ ↑∂∆,i−1

)

([1]⊗ [F ]), (31b)

∂
∗
Σ,i+1([∅]⊗ [F ]) = ε(1, F̃ )

↑d−i(xF̃ )

↑d−i+1(xF )
[1]⊗ [F ] +

∑

j∈V \F

ε(j, F ∪ j)
↑d−i(xF∪j)

↑d−i+1(xF )
[∅]⊗ [F ∪ j]

= xd−i+1,1[1]⊗ [F ]+ ↑





∑

j∈V \F

ε(j, F ∪ j)
↑d−i−1(xF∪j)

↑d−i(xF )
[∅]⊗ [F ∪ j]





=
(

↑d−i
∂
∗
Γ ⊗ id + id⊗ ↑∂∗

∆,i+1

)

([∅]⊗ [F ]), (31c)

∂
∗
Σ,i+1([1]⊗ [F ]) =

∑

j∈V \F

ε(j, F̃ ∪ j)
↑d−i(xF̃∪j)

↑d−i+1(xF̃∪j)
[1]⊗ [F ∪ j]

= −
∑

j∈V \F

ε(j, F ∪ j)
↑d−i(x1,1)

↑d−i+1(x1,1)

↑d−i+1(xF∪j)

↑d−i+2(xF )
[1]⊗ [F ∪ j]

= −
xd−i+1,1

xd−i+2,1
· ↑





∑

j∈V \F

ε(j, F ∪ j)
↑d−i(xF∪j)

↑d−i+1(xF )
[1]⊗ [F ∪ j]





=

(

−
xd−i+1,1

xd−i+2,1
id⊗ ↑∂∗

∆,i

)

([1]⊗ [F ]). (31d)

7.2. Eigenvectors of cones. In order to describe the Laplacian eigenvalues and eigenvectors of
1 ∗ ∆ in terms of those of ∆, we first need some basic facts about the Laplacians of an arbitrary
simplicial complex. The following proposition does not depend on fine weighting, and works with
any weighted boundary map that satisfies ∂2 = 0.

Proposition 7.1. Let Ωd be a simplicial complex, and let −1 ≤ i ≤ d. Let Lud
i = Lud

Ω,i, Ldu
i = Ldu

Ω,i,

∂i = ∂Ω,i, and ∂
∗
i = ∂

∗
Ω,i.

(1) The chain group Ci(Ω) decomposes as a direct sum

Ci(Ω) = Cud
i (Ω)⊕ Cdu

i (Ω)⊕ C0
i (Ω) (32)

where
• Cud

i (Ω) has a basis consisting of eigenvectors of Lud
i whose eigenvalues are all nonzero,

and on which Ldu
i acts by zero;

• Cdu
i (Ω) has a basis consisting of eigenvectors of Ldu

i whose eigenvalues are all nonzero,
and on which Lud

i acts by zero; and
• Lud

i and Ldu
i both act by zero on C0

i (Ω).
(2) ker(Lud

i ) = ker(∂∗
i+1) and ker(Ldu

i ) = ker(∂i).

(3) dim C0
i (Ω) = β̃i(Ω), the ith Betti number of Ω.
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(4) Each of the spectra sud
i , sdu

i , stot
i of Ω has cardinality fi(Ω) as a multiset, and

sdu
i

◦
= sud

i−1, and (33a)

stot
i

◦
= sud

i ∪ sdu
i

◦
= sud

i ∪ sud
i−1. (33b)

Proof. For assertion (1), note that Lud
i Ldu

i = ∂∂
∗
∂
∗
∂ = 0 and Ldu

i Lud
i = ∂

∗
∂∂∂

∗ = 0. Thus
we may simply take Cud

i (Ω) and Cdu
i (Ω) to be the spans of the eigenvectors of Lud

i and Ldu
i with

nonzero eigenvalues.
For assertion (2), the operators Lud

i and ∂
∗
i+1 act on the same space, namely Ci(Ω), and they

have the same rank (this is just the linear algebra fact that rank(MMT ) = rankM for any matrix
M). Therefore, their kernels have the same dimension. Clearly ker(Lud

i ) ⊇ ker(∂∗
i+1), so we must

have equality. The same argument shows that ker(Ldu
i ) = ker(∂i).

Assertion (3) follows from the calculation

β̃i(Ω) = dim H̃i(Ω, Q) = (dim ker∂i)− (dim im∂i+1)

= (fi − rank∂i)− (rank∂i+1)

= dimCi − dimCud
i − dimCdu

i = dimC0
i .

For assertion (4), first note that dimCi(Ω) = fi(Ω), and that the matrix representing each
spectrum is symmetric, hence diagonalizable. The identity (33a) is a standard fact in linear algebra,
and (33b) is a consequence of the decomposition (32). �

Proposition 7.2. As in Section 7.1, let ∆d be a simplicial complex on vertex set [2, n], and let
Σ = 1 ∗∆. Then

sud
i (Σ)

◦
=
{

Xd−i+1,1+ ↑λ : λ ∈ sud
i (∆), λ 6= 0

}

∪

{

Xd−i+1,1 +
Xd−i+1,1

Xd−i+2,1
↑µ : µ ∈ sud

i−1(∆), µ 6= 0

}

∪ {Xd−i+1,1}
β̃i(∆)

.

(34)

Here the symbol ∪ denotes multiset union, and the superscript in the last line indicates multi-
plicity.

Proof. Throughout the proof, we abbreviate Lud
Σ,i by L. All other Laplacians that arise will be

specified precisely.
First, let V ∈ Cud

i (∆) be an eigenvector of Lud
∆,i with eigenvalue λ 6= 0. Then ↑Lud

∆,i(↑V ) =↑λ ↑V ,
and, by Lemma 6.2,

↑∂∆,i(↑V ) =
1

↑λ
↑∂∆,i

(

↑∂∆,i+1(↑∂
∗
∆,i+1(↑V ))

)

= 0. (35)

Using (31a). . . (31d) and (35), we calculate

L ([∅]⊗ ↑V ) = ∂Σ,i(∂
∗
Σ,i([∅]⊗ ↑V ))

= ∂Σ,i

(

↑d−i
∂
∗
Γ[∅]⊗ ↑V + [∅]⊗ ↑∂∗

∆,i+1(↑V )
)

= xd−i+1,1∂Σ,i+1 ([1]⊗ ↑V ) + ∂Σ,i+1

(

[∅]⊗ ↑∂∗
∆,i+1(↑V )

)

= xd−i+1,1

(

↑d−i
∂Γ[1]⊗ ↑V −

xd−i+1,1

xd−i+2,1
[1]⊗ ↑∂∆,i(↑V )

)

+ [∅]⊗ ↑∂∆,i+1(↑∂
∗
∆,i+1(↑V ))

= (Xd−i+1,1+ ↑λ) ([∅]⊗ ↑V ) . (36)

Therefore, [∅]⊗ ↑V ∈ Ci(Σ) is an eigenvector of L, with eigenvalue Xd−i+1,1+ ↑λ. Notice that this
eigenvalue cannot be zero: since 1 6∈ ∆, no Laplacian eigenvalue of ∆ can possibly equal −Xd−i,1.
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Second, let W be an eigenvector in Cdu
i (∆) with nonzero eigenvalue µ. That is, Ldu

∆i
(W ) =

∂
∗
∆,i(∂∆,i(W )) = µW , and ∂

∗
∆,i+1(W ) = 0 by a computation similar to (35). Define

A = [∅]⊗ ↑W, B = [1]⊗ ↑∂∆,i(↑W ).

Note that these are both nonzero elements of Ci(Σ). Then

L(A) = ∂Σ,i+1

(

∂
∗
Σ,i+1([∅]⊗ ↑W )

)

= ∂Σ,i+1

(

↑d−i
∂
∗
Γ[∅]⊗ ↑W + [∅]⊗ ↑∂∗

∆,i+1(↑W )
)

= xd−i+1,1∂Σ,i+1 ([1]⊗ ↑W ) (37a)

= xd−i+1,1

(

↑d−i
∂Γ[1]⊗ ↑W −

xd−i+1,1

xd−i+2,1
[1]⊗ ↑∂∆,i(↑W )

)

= Xd−i+1,1A−

(

Xd−i+1,1

xd−i+2,1

)

B (37b)

and

L(B) = ∂Σ,i+1

(

∂
∗
Σ,i+1([1]⊗ ↑∂∆,i(↑W ))

)

= ∂Σ,i+1

(

−
xd−i+1,1

xd−i+2,1
[1]⊗ ↑∂∗

∆,i(↑∂∆,i(↑W ))

)

= −
xd−i+1,1

xd−i+2,1
↑µ · ∂Σ,i+1 ([1]⊗ ↑W )

=

(

−
Xd−i+1,1

xd−i+2,1
↑µ

)

A +

(

Xd−i+1,1

Xd−i+2,1
↑µ

)

B,

where the last step follows by the equality of (37a) and (37b). Letting

f = Xd−i+1,1, g = −
Xd−i+1,1

xd−i+2,1
, h = −

↑µ

xd−i+2,1
,

the calculations above say that

L(A) = fA + gB, L(B) = h(fA + gB),

which implies that

L(fA + gB) = fL(A) + gL(B) = f(fA + gB) + gh(fA + gB) = (f + gh)(fA + gB).

That is, fA + gB is an eigenvector of L with eigenvalue

f + gh = Xd−i+1,1 +
Xd−i+1,1

Xd−i+2,1
↑µ.

As before, this quantity cannot be zero because ∆ does not contain the vertex 1.
Third, let Z ∈ C0

i (∆); we will show that [∅]⊗ ↑Z is an eigenvector of L with eigenvalue Xd−i+1,1.
Indeed, by (2) of Proposition 7.1, we have ∂∆,i(Z) = ∂

∗
∆,i+1(Z) = 0, so that

↑∂∆,i(↑Z) =↑∂∗
∆,i+1(↑Z) = 0.

Therefore

L([∅]⊗ ↑Z) = ∂Σ,i+1(∂
∗
Σ,i+1([∅]⊗ ↑Z))

= ∂Σ,i+1

(

(↑d−i
∂
∗
Γ[∅]⊗ ↑Z) + [∅]⊗ ↑∂∗

∆,i+1(↑Z)
)

= xd−i+1,1∂Σ,i+1([1]⊗ ↑Z)

= xd−i+1,1 ·

(

↑d−i
∂Γ[1]⊗ ↑Z −

xd−i+1,1

xd−i+2
[1]⊗ ↑∂∆,i(↑Z)

)

= Xd−i+1,1([∅]⊗ ↑Z), (38)
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as desired. By assertion (3) of Proposition 7.1, the multiplicity of this eigenvalue is dimC0
i (∆) =

β̃i(∆).

At this point, we have proven that (34) is true if “
◦
=” is replaced with “⊇”. On the other hand,

we have accounted for

dimCud
i (∆) + dimCdu

i (∆) + dim C0
i (∆) = dimCi(∆) = fi(∆)

nonzero eigenvalues in sud
i (Σ). Since the preceding calculations hold for all i, we also know fi−1(∆)

nonzero eigenvalues of Lud
Σ,i−1 (

◦
= Ldu

Σ,i). By (33b), we have accounted for all fi(∆) + fi−1(∆) =

fi(Σ) = dimCi(Σ) eigenvalues of Ltot
Σ,i. So we have indeed found all the nonzero eigenvalues of L. �

One can obtain explicit formulas for the spectra sdu
i (Σ) and stot

i (Σ) by applying (33a) and (33b)
to the formula (34); we omit the details.

7.3. Eigenvalues of near-cones. The next step is to establish a recurrence (Proposition 7.6) for
the Laplacian eigenvalues of near-cones, in terms of the eigenvalues of the deletion and the link of the
apex. Our method is based on that of Lemma 5.3 of [13]. By itself, Proposition 7.6 is not a proper
recurrence, in the sense that it computes the eigenvalues of a pure complex in terms of complexes
that are not necessarily pure. Therefore, it cannot be applied recursively; the proper recurrence for
shifted complexes will have to wait until Theorem 8.2. Since we will be comparing complexes with
similar face sets but of different dimensions, we begin by describing how their Laplacian spectra are
related.

Lemma 7.3. Let Σd be a simplicial complex, and let j < i ≤ d. Then sud
j (Σ) =↑d−isud

j (Σ(i)).

Proof. The complexes Σ(i) and Σ have the same face sets for every dimension ≤ i, but dimΣ(i) =
dimΣ − (d − i). Therefore, the algebraic finely weighted boundary maps and Laplacians of Σ can
be obtained from those of Σ(i) by applying ↑d−i, from which the lemma follows. �

Recall that the pure i-skeleton of Σ is the subcomplex Σ[i] generated by the i-dimensional faces
of Σ.

Lemma 7.4. Let Σd be a simplicial complex. Then sud
d−1(Σ)

◦
= sud

d−1(Σ[d]).

Proof. This result is proved in [12, Lemma 3.2], but we sketch the proof here for completeness. First,
observe that Lud

d−1 depends only on (d − 1)- and d-dimensional faces. Letting Ω = Σ[d], we have

Ωd = Σd and Ωd−1 ⊆ Σd−1, and indeed Lud
Σ,d−1[F ] = Lud

Ω,d−1[F ] for any F ∈ Ωd−1. On the other

hand, Σd−1\Ωd−1 consists precisely of those faces G not contained in any d-dimensional faces of Σ.
But Lud

Σ,d−1 acts by zero on any such G, and the lemma follows immediately. �

Corollary 7.5. Let Σd be a simplicial complex. Then sud
i−1(Σ)

◦
= ↑d−isud

i−1(Σ[i]).

Proof. We have sud
i−1(Σ) = ↑d−isud

i−1(Σ(i))
◦
= ↑d−isud

i−1((Σ(i))[i]) = ↑d−isud
i−1(Σ[i]) by Lemmas 7.3

and 7.4. (Note that (Σ(i))[i] = Σ[i].) �

Proposition 7.6. Let Σd be a pure near-cone with apex p, and let ∆ = delp Σ and Λ = linkp Σ be
the deletion and link, respectively, of Σ with respect to vertex p. Then

sud
d−1(Σ)

◦
=
{

X1,p + λ : λ ∈ sud
d−1(∆), λ 6= 0

}

∪

{

X1,p +
X1,p

X2,p

↑µ : µ ∈ sud
d−2(Λ), µ 6= 0

}

∪ {X1,p}
β̃d−1(∆)

.
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Proof. If Σ is a cone, then the result follows from direct application of Proposition 7.2. (Note that
sud
d−1(∆) consists of only 0’s in this case, since ∆ is only (d − 1)-dimensional.) Thus, we may as

well assume for the remainder of the proof that Σ is not a cone. In this case, dim∆ = d and
dimΛ = d− 1. It is not difficult to see that

∆(d−1) = Λ, and (39)

Σ(d) = Σ = (p ∗∆)(d). (40)

Applying Lemma 7.3 to equation (40) (keeping in mind that dim(p ∗∆) = d+1), and then applying
Proposition 7.2, we find that

↑sud
d−1(Σ) = sud

d−1(p ∗∆)
◦
=
{

X2,p+ ↑λ : λ ∈ sud
d−1(∆), λ 6= 0

}

∪

{

X2,p +
X2,p

X3,p

↑µ : µ ∈ sud
d−2(∆), µ 6= 0

}

∪ {X2,p}
β̃d−1(∆)

so that

sud
d−1(Σ) =

{

X1,p + λ : λ ∈ sud
d−1(∆), λ 6= 0

}

∪

{

X1,p +
X1,p

X2,p

µ : µ ∈ sud
d−2(∆), µ 6= 0

}

∪ {X1,p}
β̃d−1(∆) .

The desired result now follows from applying Lemma 7.3 to equation (39). �

8. The Laplacian spectrum of a shifted complex

In this section, we explicitly describe the eigenvalues of the algebraic finely weighted Laplacians
of a shifted complex Σ. The eigenvalues are Laurent polynomials called z-polynomials, which are
in one-to-one correspondence with the critical pairs of the complex: pairs (A, B) such that A ∈ Σ,
B 6∈ Σ, and B covers A in the componentwise partial order. The main result, Theorem 1.5, is
proved by establishing identical recurrences for the z-polynomials (Theorem 8.2) and critical pairs
(Corollary 8.8).

8.1. z -polynomials. Let S and T be multisets of integers. Define a Laurent polynomial z(S, T ) by
the formula

z(S, T ) =
1

↑XS

∑

j∈T

XS∪j , (41)

where as usual the symbol ∪ denotes multiset union. An example was given at the end of Exam-
ple 1.7.

Proposition 8.1. Let d > i be integers, and let S, T be sets of integers greater than p. Then

Xd−i+1,p+ ↑
d−iz(S, T ) = ↑d−iz(S, T̃ ) (42)

and

Xd−i+1,p +
Xd−i+1,p

Xd−i+2,p

↑d−i+1z(S, T ) = ↑d−iz(S̃, T̃ ) (43)

where S̃ = S ∪ {p} and T̃ = T ∪ {p}.



SIMPLICIAL MATRIX-TREE THEOREMS 25

Proof. We will use the identity (19a) repeatedly in the calculations. For (42), observe that

Xd−i+1,p+ ↑
d−iz(S, T ) = Xd−i+1,p +

1

↑d−i+1XS

∑

j∈T

↑d−iXS∪j

=
1

↑d−i+1XS



Xd−i+1,p· ↑
d−i+1XS +

∑

j∈T

↑d−iXS∪j





=
1

↑d−i+1XS



↑d−iXS̃ +
∑

j∈T

↑d−iXS∪j





=
1

↑d−i+1XS

∑

j∈T̃

↑d−iXS∪j

=↑d−iz(S, T̃ ),

and for (43), observe that

Xd−i+1,p +
Xd−i+1,p

Xd−i+2,p

↑d−i+1z(S, T ) = Xd−i+1,p +
Xd−i+1,p

Xd−i+2,p· ↑d−i+2XS

∑

j∈T

↑d−i+1XS∪j

= Xd−i+1,p +
Xd−i+1,p

↑d−i+1XS̃

∑

j∈T

↑d−i+1XS∪j

=
1

↑d−i+1XS̃



Xd−i+1,p· ↑
d−i+1XS̃ +

∑

j∈T

Xd−i+1,p· ↑
d−i+1XS∪j





=
1

↑d−i+1XS̃



↑d−iXS̃∪p +
∑

j∈T

↑d−iXS̃∪j





=
1

↑d−i+1XS̃

∑

j∈T̃

↑d−iXS̃∪j

=↑d−iz(S̃, T̃ ).

�

Theorem 8.2. Let Σd be a shifted simplicial complex. Then every nonzero eigenvalue of sud
i−1(Σ)

has the form of a z-polynomial. Moreover, the spectrum sud
i−1(Σ) is determined recursively as follows.

If Σ has no vertices, then sud
i−1(Σ) has no nonzero elements.

Otherwise,

sud
i−1(Σ)

◦
=
{

↑d−iz(S, T̃ ) : 0 6= z(S, T ) ∈ sud
i−1(∆)

}

∪
{

↑d−iz(S̃, T̃ ) : 0 6= z(S, T ) ∈ sud
i−2(Λ)

}

∪
{

↑d−iz(∅, ∅̃)
}β̃i−1(∆)

(44)

where p is the initial vertex of Σ[i]; S̃ = S ∪ p; T̃ = T ∪ p; ∆ = delp Σ[i]; and Λ = linkp Σ[i].

Proof. The proof is by induction on the number of vertices of Σ. When Σ has no vertices, Σ is either
the empty complex with no faces, or the trivial complex whose only face is the empty face. In either
case sud

i−1(Σ) has no nonzero elements.
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We now assume that Σ has at least one vertex. Then

sud
i−1(Σ[i])

◦
=
{

X1,p + λ : λ ∈ sud
i−1(∆), λ 6= 0

}

∪

{

X1,p +
X1,p

X2,p

↑µ : µ ∈ sud
i−2(Λ), µ 6= 0

}

∪ {X1,p + 0}β̃i−1(∆)

=
{

X1,p + z(S, T ) : z(S, T ) ∈ sud
i−1(∆), z(S, T ) 6= 0

}

∪

{

X1,p +
X1,p

X2,p

z(S, T ) : z(S, T ) ∈ sud
i−2(Λ), z(S, T ) 6= 0

}

∪ {X1,p + z(∅, ∅)}β̃i−1(∆)

=
{

z(S, T̃ ) : 0 6= z(S, T ) ∈ sud
i−1(∆)

}

∪
{

z(S̃, T̃ ) : 0 6= z(S, T ) ∈ sud
i−2(Λ)

}

∪
{

z(∅, ∅̃)
}β̃i−1(∆)

.

The
◦
=-equivalence above is by Proposition 7.6. The following equality is justified by the identity

z(∅, ∅) = 0 and induction on the number of vertices, since ∆ and Λ each have one fewer vertex than
Σ. Note that λ and µ are each replaced by z(S, T ), with no raising operator, because dim∆ ≤ i
and dimΛ = i − 1. The final equality comes from Proposition 8.1. The result now follows from
Corollary 7.5. �

8.2. Critical pairs. Throughout this section, let F be a k-family of sets of integers, and let p be
the smallest integer occurring in any element of F .

Definition 8.3. A critical pair for F is an ordered pair (A, B), where A = {a1 < a2 < · · · < ak}
and B = {b1 < b2 < · · · < bk} are sets of integers such that A ∈ F , B 6∈ F , and B covers
A in componentwise order. That is, bi = ai + 1 for exactly one i, and bj = aj for all j 6= i.
(Note that bi need not be in the vertex set of F .) The signature of (A, B) is the set of vertices
σ(A, B) = {a1, . . . , ai−1, ai}. The long signature is the ordered pair of sets σ̄(A, B) = (S, T ), where
S = {a1, . . . , ai−1} and T = {j : p ≤ j ≤ ai}. The multisets of signatures and long signatures of
critical pairs of F are denoted σ(F) and σ̄(F) respectively.

As described in the Introduction and Example 1.7, critical pairs are especially significant for
shifted simplicial complexes. We will soon see that the critical pairs of a shifted complex are in
bijection with the eigenvalues of its algebraic finely weighted Laplacian.

Definition 8.4. The degree of vertex v in the family F is degF(v) = |{F ∈ F : v ∈ F}|.

Proposition 8.5. Let F be a shifted family. Then degF (v) − degF(v + 1) counts the number of
signatures of F whose greatest element is v.

Proof. Let S = {F ∈ F : v ∈ F} and T = {F ∈ F : v + 1 ∈ F}. Partition S = S1 ∪̇S2 ∪̇S3 and
T = T1 ∪̇T2 ∪̇T3 as follows:

S1 = {F ∈ F : v, v + 1 ∈ F},
S2 = {F ∈ F : v ∈ F, v + 1 6∈ F, F\{v} ∪̇ {v + 1} ∈ F},
S3 = {F ∈ F : v ∈ F, v + 1 6∈ F, F\{v} ∪̇ {v + 1} 6∈ F},

T1 = {F ∈ F : v, v + 1 ∈ F},
T2 = {F ∈ F : v 6∈ F, v + 1 ∈ F, F\{v + 1} ∪̇ {v} ∈ F},
T3 = {F ∈ F : v 6∈ F, v + 1 ∈ F, F\{v + 1} ∪̇ {v} 6∈ F}.
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Then S1 = T1, and there is an obvious bijection between S2 and T2. Since F is shifted, T3 = ∅, so
degF (v)− degF(v + 1) = |S| − |T | = |S3|.

Finally, if F ∈ S3, then (F, G) is a critical pair, where G = F\{v} ∪̇ {v + 1}. For each such
critical pair, the greatest element of the signature is v. Conversely, if (A, B) is a critical pair whose
signature’s greatest element is v, then A ∈ S3. �

Corollary 8.6. Let Σd be a pure shifted simplicial complex with initial vertex p. Then degΣd
(p)−

degΣd
(p + 1) = β̃d−1(delp Σ).

Proof. Just as in the proof of Proposition 8.5 above,

degΣd
(p)− degΣd

(p + 1) = |S3|,

where

S3 = {F ∈ Σd : p ∈ F, p + 1 6∈ F, F\{p} ∪̇ {p + 1} 6∈ Σd}.

There is a bijection between S3 and the set

S′
3 = {G ∈ (delp Σ)d−1 : p + 1 6∈ G, G ∪̇ {p + 1} 6∈ delp Σ}

given by G = F\{p}. Then, by equation (16),

β̃d−1(delp Σ) = |S′
3|.

Combining the four displayed equations yields the desired result. �

Proposition 8.7. Let Σ be a shifted complex with initial vertex p. Let ∆ = delp Σ and Λ = linkp Σ.
Then

σ(Σi) = σ(∆i) ∪ {p ∪̇F : F ∈ σ(Λi−1)} ∪ {p}
degΣi

(p)−degΣi
(p+1),

where ∪ denotes multiset union.

Proof. The multiplicity of the signature {p} follows from Proposition 8.5.
Suppose that A ∈ ∆i, B 6∈ ∆i, and B covers A in the componentwise partial order. Then A ∈ Σi

and p 6∈ A. Since p 6∈ A and A ≺ B, we conclude that p 6∈ B, and so B 6∈ Σi. Hence we have a
one-to-one map of multisets

σ(∆i)→ σ(Σi).

On the other hand, suppose that A ∈ Λi−1, B 6∈ Λi−1, and B covers A in the componentwise

partial order. Then p 6∈ A and Ã = A ∪̇ {p} ∈ Σi. The critical pair (A, B) of Λi−1 gives rise to the

critical pair (Ã, B̃) of Σi, and it is clear that σ(Ã, B̃) = σ(A, B) ∪̇ {p}. Furthermore, B̃ 6∈ Σi because
B 6∈ Λi−1. Hence we have a one-to-one map of multisets

{p ∪̇F : F ∈ σ(Λi−1)} → σ(Σi).

Now we must show, conversely, that every signature F 6= {p} of Σi arises in one of these two
ways. Let F be such a signature of Σi, with critical pair (A, B). So A ∈ Σi; B 6∈ Σi (so B 6∈ ∆i);
and B covers A in the componentwise partial order.

First, if p 6∈ F , then p 6∈ A and so A ∈ ∆i. Thus (A, B) is a critical pair for ∆i.
Second, if p ∈ F , then F = F ′ ∪̇ {p} for some F ′ 6= ∅. In this case, we have p ∈ A and p ∈ B for

the critical pair (A, B) whose signature is F . Indeed, p ∈ F directly implies that p ∈ A. If p 6∈ B,
then F = σ(A, B) = {p}. Accordingly, let A′ = A\{p} and B′ = B\{p}. Then A′ ∈ Λi−1 and
B 6∈ Σi, so B′ 6∈ Λi−1, and (A, B) is a critical pair for Λi−1. �

Corollary 8.8. Let Σd be a shifted simplicial complex, and let i ≤ d. Then the multiset σ̄(Σi) is
determined by the following recurrence.

If Σ has no vertices, then σ̄(Σi) = ∅.
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Otherwise,

σ̄(Σi) = {(S, T̃ ) : (S, T ) ∈ σ̄(∆i)}

∪ {(S̃, T̃ ) : (S, T ) ∈ σ̄(Λi−1)}

∪ {(∅, ∅̃)}β̃i−1(∆)

(45)

where p is the initial vertex of Σ[i]; S̃ = S ∪ p; T̃ = T ∪ p; ∆ = delp Σ[i]; and Λ = linkp Σ[i].

Proof. If σ(A, B) = {p}, then σ̄(A, B) = (∅, {p}) = (∅, ∅̃). So the third term in (45) arises from
applying Corollary 8.6 to the pure i-dimensional shifted complex Σ[i]. (Indeed, Σ[i] is shifted when
Σ is, or even just when Σi is.)

For the first two terms in (45), the only hard part is to note that if the first vertex of Σi is p,
then p+ 1 is the first vertex of ∆i and Λi−1 (unless ∆i = ∅, but in that case we don’t have to worry

about the first set). This accounts for the T̃ ’s.
Even though Proposition 8.7 above defines ∆ and Λ somewhat differently than here, it is not a

problem because (delp Σ)i = (delp Σ[i])i and (linkp Σ)i−1 = (linkp Σ[i])i−1. Then, since ∆ and Λ only
appear as ∆i and Λi−1, it doesn’t matter whether we set them to be the deletion and link of Σ or
of Σ[i]. �

8.3. Theorem 1.5 and its consequences. We can finally prove Theorem 1.5, which characterizes
the Laplacian spectra sud

i−1(Σ) in terms of z-polynomials of critical pairs. In the notation we have
developed, the theorem can be restated as follows:

Theorem 1.5. Let Σd be a shifted simplicial complex. Then, for each 0 ≤ i ≤ d,

sud
i−1(Σ)

◦
= ↑d−i{z(S, T ) : (S, T ) ∈ σ̄(Σi)}. (46)

Proof. Simply note that the recursions in Theorem 8.2 and Corollary 8.8 are identical. �

One corollary to Theorem 1.5 is that you can “hear the shape” of a shifted complex (Corollary 8.9),
but only if your ears are fine enough (Remark 8.11).

Corollary 8.9. A shifted complex Σd is completely determined by its spectra {sud
i−1(Σ)}di=0.

Proof. By Theorem 1.5, the spectra {sud
i−1(Σ)}di=0 determine the z-polynomials z(S, T ), and it is

easy to see that the long signature (S, T ) can be recovered from z(S, T ). Furthermore the (short)
signature is even more easily recovered from the long signature. When F = {v1 < . . . < vi} is a face
of Σ that is �-maximal, then (F, F\{vi} ∪̇ {vi+1}) is a critical pair, with (short) signature F . Thus,
among all the (short) signatures of Σ, we will find all �-maximal faces. Furthermore, every (short)
signature is a face of Σ, by definition. Thus, the union ∪F∈σ(Σ){G : G � F} of all �-order ideals
will yield all the non-empty faces of Σ. �

In fact, if Σd is a pure shifted complex, then it is determined uniquely by its top Laplacian
spectrum sud

d−1(Σ).
Specializing (or “coarsening”) the algebraic fine weighting, we obtain as another corollary to

Theorem 1.5 Duval and Reiner’s description of the unweighted Laplacian eigenvalues of a shifted
complex [13, Thm. 1.1], as we now explain.

The coarse weighting is obtained from the algebraic fine weighting by omitting all first subscripts,
i.e., replacing xi,j = xj and Xi,j = Xj . (Thus the monomial corresponding to a facet or set of
facets records the degree of each vertex, but forgets the information about the order of vertices in
facets.) Note that if T = [1, t], then every z-polynomial z(S, T ) specializes to the linear form Et =
X1 + · · ·+ Xt in the coarse weighting.

For a partition λ (a weakly decreasing list of positive integers), let Eλ be the multiset in which
each part i of λ is replaced by Ei. Recall that the conjugate of λ is the partition λ′ in which each
part t occurs with multiplicity λt − λt+1.



SIMPLICIAL MATRIX-TREE THEOREMS 29

Corollary 8.10. Let Σd be a shifted simplicial complex on vertices [n]. Then

ŝud
d−1(Σ)

◦
= E(degΣd

)′

where the left-hand side denotes the multiset of coarsely weighted Laplacian eigenvalues, and the
right-hand side is the conjugate of the partition (degΣd

(1), . . . , degΣd
(n)).

Proof. Theorem 1.5 and the preceding discussion imply that ŝud
d−1(Σ) is

◦
=-equivalent to the multiset

in which Et occurs with multiplicity equal to the number of critical pairs (A, B) of Σd such that
t = max σ(A, B). By Proposition 8.5, that multiplicity is degΣd

(t) − degΣd
(t + 1). The result now

follows from the definition of conjugate partition. �

Passing to the unweighted setting by setting xi = 1 for all i recovers the theorem of Duval and
Reiner [13, Thm. 1.1], which states that the Laplacian eigenvalues of a shifted complex Σ are given
by the conjugate of the partition degΣd

.

Remark 8.11. Duval and Reiner also showed [13, Example 10.2] that there are two non-isomorphic
2-dimensional shifted complexes with the same degree sequence. Corollary 8.10 then shows that, in
contrast to Corollary 8.9, the coarsely-weighted eigenvalues are not enough to determine a shifted
complex.

8.4. An example: the equatorial bipyramid. To illustrate Theorems 8.2 and 1.5, we calculate
the top-dimensional up-down Laplacian spectrum of the bipyramid B = 〈235〉 (see Examples 1.7, 3.4
and 5.2). In our recursive calculation, we will encounter the subcomplexes B2, . . . , B7 of B = B1

shown in the following figure, and B8, the simplicial complex whose only face is the empty face.
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Observe that

• B1 is a near-cone with apex 1, del1 B1 = B2, and link1 B1 = B3;
• B2 = 2 ∗B4;
• B3 is a near-cone with apex 2, del2 B3 = B4, and link2 B3 = B5;
• B4 = 3 ∗B6;
• B5 is a near-cone with apex 3, del3 B5 = B6, and link3 B5 = B8;
• B6 is a near-cone with apex 4, del4 B6 = B7, and link4 B6 = B8; and
• B7 = 5 ∗B8.

The critical pairs, signatures, and nonzero top-dimensional Laplacian eigenvalues of the bipyramid
B = B1 and its subcomplexes B2, . . . , B7 are listed in the following table. This information can be
obtained either recursively (using Theorem 8.2 repeatedly) or bijectively (from Theorem 1.5).
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Subcomplex Dimension Vertices Critical pairs Signatures Eigenvalues
B7 0 {5} (5, 6) 5 z(∅, 5)
B6 0 {4, 5} (5, 6) 5 z(∅, 45)
B5 0 {3, 4, 5} (5, 6) 5 z(∅, 345)
B4 1 {3, 4, 5} (35, 45) 3 z(∅, 3)

(35, 36) 35 z(3, 345)
B3 1 {2, 3, 4, 5} (25, 26) 25 z(2, 2345)

(35, 36) 35 z(3, 2345)
(35, 45) 3 z(∅, 23)

B2 2 {2, 3, 4, 5} (235, 236) 235 z(23, 2345)
(235, 245) 23 z(2, 23)

B1 2 {1, 2, 3, 4, 5} (125, 126) 125 z(12, 12345)
(135, 136) 135 z(13, 12345)
(135, 145) 13 z(1, 123)
(235, 236) 235 z(23, 12345)
(235, 245) 23 z(2, 123)

We also see from the above table that the coarsely-weighted eigenvalues ŝud
1 (B1) are

◦
=-equivalent

to E5, E5, E5, E3, E3 (each E5 coming from a z(S, 12345) in B1, and each E3 coming from a z(S, 123)
in B1), corresponding to the transpose of the degreee sequence of the facets, 55533. (In this case,
both the degree sequence and its transpose are 55533.)

9. Enumerating spanning trees of shifted complexes

We now translate Theorem 1.5 from the algebraic to the combinatorial fine weighting, in order to
obtain a factorization of the finely weighted spanning tree enumerator τ̂(Σ) of a shifted complex Σ.

Recall that the long signature σ̄(F) of a family F is the multiset of long signatures of its critical
pairs.

Theorem 1.6. Let Σd be a shifted complex with initial vertex p. Then:

τ̂d(Σ) =





∏

F∈Λd−1

XF̃









∏

(S,T )∈σ̄(∆d)

z(S, T̃ )

X1,p



 (47)

=





∏

F∈Λd−1

XF̃









∏

(S,T )∈σ̄(∆d)

∑

j∈T̃ XS∪j

XS̃



 (48)

where F̃ = F ∪ p, ∆ = delp Σ, and Λ = linkp Σ.

Proof. Since the complex Σ is APC, its spanning trees are precisely those of its pure d-skeleton Σ[d].
Similarly, passing from Σ to Σ[d] does not affect ∆d or Λd−1. Therefore, we may assume without
loss of generality that Σ is pure.

By Lemma 6.3 and Theorem 1.5, we have

τ̂d(Σ) =





∏

F∈linkp Σ

↑XF









∏

(S,T )∈σ̄(∆d)

(X1,p + z(S, T ))



Xm
1,p

where m is the number of zero eigenvalues of Lud
∆,d−1. Since Lud

∆,d−1 acts on ∆d−1, but has σ̄(∆d)

nonzero eigenvalues (including multiplicity), m = |∆d−1| − |σ̄(∆d)| = |Λd−1| − |σ̄(∆d−1)|, since
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∆d−1 = Λd−1 by equation (39). Thus,

τ̂d(Σ) = X
|Λd−1|
1,p





∏

F∈Λd−1

(↑XF )



X
−|σ̄(∆d)|
1,p





∏

(S,T )∈σ̄(∆d)

X1,p + z(S, T )





=
∏

F∈Λd−1

(X1,p ↑XF )
∏

(S,T )∈σ̄(∆d)

X1,p + z(S, T )

X1,p

.

Equation (47) now follows from equations (19a) and (42). Equation (48) then follows from the
definition of z-polynomial (41) and from (19a) again, because

z(S, T̃ )

X1,p

=
1

X1,p

∑

j∈T̃ XS∪j

↑XS

=

∑

j∈T̃ XS∪j

XS̃

.

�

Example 9.1. We return to our running example, the equatorial bipyramid B. Here d = 2 and
p = 1, and in the notation of Section 8.4, we have ∆ = B2 and Λ = B3. Moreover, σ̄(∆d) =
{(2, 23), (23, 2345)}. Hence equation (48) yields

τ̂ (B) = X123X124X134X125X135

(

X12 + X22 + X23

X12

)(

X123 + X223 + X233 + X234 + X235

X123

)

.

Note that this is a genuine polynomial (not just a Laurent polynomial) in the indeterminates Xi,j .

Corollary 9.2. Let Σd be a shifted complex with initial vertex 1. Let ∆ = del1 Σ, ∆̃ = 1 ∗ ∆,
Λ = link1 Σ, and Λ̃ = 1 ∗ Λ. Then, in the coarse weighting,

τ̂d(Σ) = Xdeg Λ̃d

∏

i

(Ei/X1)
(deg ∆̃d+1)

′

i ,

where Ei = X1 + · · ·+ Xi and, for a partition λ, we set Xλ :=
∏

i Xλi

i .

Proof. Upon coarsening the weighting, the first product in (48) becomes Xdeg Λ̃d and the second
product becomes

∏

(S,T )∈σ̄(∆d)

∑

j∈T̃ Xj

X1
=

∏

(S,T )∈σ̄(∆d)

E|T |+1/X1.

We now claim that
∏

(S,T )∈σ̄(∆d)

E|T |+1/X1 =
∏

(S,T )∈σ̄(∆̃d+1)

E|T |/X1.

Indeed, by Proposition 8.7,

σ(∆̃d+1) = {1 ∪̇F : F ∈ σ(∆d)} ∪ {1}m

for some m, since ∆ = link1(∆̃) and dim(del1(∆̃)) = dim∆ < d + 1. It now follows that
∏

(S,T )∈σ̄(∆̃d+1)

E|T |/X1 =
∏

(S,T )∈σ̄(∆d)

(E|T |+1/X1)(X1/X1)
m,

implying the claim. Finally, by Proposition 8.5 and the definition of conjugate partition, we obtain
∏

(S,T )∈σ̄(∆̃d+1)

E|T |/X1 =
∏

t

(Et/X1)
deg

∆̃d+1
(t)−deg∆̃d+1

(t+1)
=
∏

i

(Ei/X1)
(deg ∆̃d+1)

′

i .

�
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Example 9.3. Once again, let B be the equatorial bipyramid. Here Λ̃d = {123, 124, 125, 134, 135}.
Its degree sequence is 53322. Thus the monomial factor in Corollary 9.2 is

X123X124X125X134X135 = X5
1X3

2X3
3X2

4X2
5 .

Meanwhile, ∆̃d+1 = {1234, 1235}. Its degree sequence is 22211, with conjugate 53. The product
factor in Corollary 9.2 is therefore

(E5/X1)(E3/X1) = (X1 + X2 + X3 + X4 + X5)(X1 + X2 + X3)/X2
1 .

Putting these terms together yields

τ̂d(Σ) = X3
1X3

2X3
3X2

4X2
5 (X1 + X2 + X3 + X4 + X5)(X1 + X2 + X3)

which matches Example 5.2.

10. Corollaries

We conclude by showing how several known tree enumerators—for skeletons of simplices, threshold
graphs, and Ferrers graphs—can be recovered from our results.

10.1. Skeletons of simplices. Let Σ be the d-skeleton of the simplex on vertices [n], so that the

set of facets of Σ is
(

[n]
d+1

)

, the set of all subsets of [n] of cardinality d + 1. Note that Σ is generated

as a shifted complex by the single facet [n− d, n]. The critical pairs of Σ are
{

(A ∪ {n}, A ∪ {n + 1}) : A ∈

(

[n− 1]

d

)}

and the corresponding long signatures are

σ̄(Σd) =

{

(A, [n]) : A ∈

(

[n− 1]

d

)}

.

Setting Λ = link1 Σ and ∆ = del1 Σ, we have

Λd−1 =

(

[2, n]

d

)

;

∆d =

(

[2, n]

d + 1

)

;

σ̄(∆d) =

{

(B, [2, n]) : B ∈

(

[2, n− 1]

d

)}

.

Applying equation (48), we obtain

τ̂d(Σ) =









∏

C⊆[2,n]
|C|=d

XC̃

















∏

B⊆[2,n−1]
|B|=d

∑n
j=1 XB∪j

XB̃









.

The denominators in the second product cancel the factors XC̃ in the first product with n 6∈ C̃,

leaving only those for which n ∈ C̃. Therefore,

τ̂d(Σ) =













∏

C⊆[2,n]
n∈C
|C|=d

XC̃





















∏

B⊆[2,n−1]
|B|=d

n
∑

j=1

XB∪j









=















∏

C⊆[n]
1,n∈C

|C|=d+1

XC























∏

B⊆[2,n−1]
|B|=d

z(B, [n])









.
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Passing to the coarse weighting by setting Xi,j = Xj for every i, j, we obtain

τ̂d(Σ) =
(

(X1Xn)(
n−2

d−1)(X2 · · ·Xn−1)
(n−3

d−2)
)(

(X2 · · ·Xn−1)
(n−3

d−1)(X1 + · · ·+ Xn)(
n−2

d )
)

= (X1 · · ·Xn)(
n−2

d−1)(X1 + · · ·+ Xn)(
n−2

d ),

which is Theorem 3′ of Kalai’s paper [20]. Furthermore, setting Xi = 1 for all i recovers Kalai’s

generalization of Cayley’s formula: τd(Σ) = n(n−2

d ).

10.2. Threshold graphs. A threshold graph is a one-dimensional shifted complex Σ. For simplicity,
we assume that the vertex set of Σ is [1, n]. We may also assume that Σ is connected, so that
every vertex is adjacent to vertex 1. Martin and Reiner [27, Theorem 4] found a factorization of the
combinatorially finely weighted spanning tree enumerator of Σ, which may be stated in our notation5

as:

τ̂ (Σ) = X{1,n}

n−1
∏

v=2

(deg Σ)′v
∑

j=1

X{v,j}. (49)

A somewhat more general result was obtained independently by Remmel and Williamson [31, The-
orem 2.4]. We will show how this formula can be recovered from Theorem 1.6.

The first product in equation (48) is just X{1,2}X{1,3} · · ·X{1,n}. For the second product, we
must identify the critical pairs of ∆ = del1 Σ. Note that ∆ is a threshold graph with vertices [2, n].

As is often the case with threshold graphs (and their degree sequences, which we will soon en-
counter), we need to sort vertices by their relation to the size of the Durfee square of Σ, the largest
square that fits in the Ferrers diagram of its degree sequence. The side length m of the Durfee square
is the largest number such that {m, m + 1} is an edge of Σ. If m = 1, then Σ is a star graph, the
Ferrers diagram of its degree sequence is a hook, and equations (48) and (49) both easily reduce to

τ̂d(Σ) =

n
∏

v=2

X{1,v}.

Therefore, we henceforth assume that m ≥ 2. Note that every edge has at least one endpoint ≤ m
(because {m+1, m+2} 6∈ Σ, and that edge is the unique �-minimal edge with both endpoints > m).

For each vertex v of Σ, let

w(v) = max{u : {u, v} ∈ Σ}.

Note that if v ≤ m, then {v, m + 1} � {m, m + 1} ∈ Σ, so w(v) ≥ m. On the other hand, if v > m,
then w(v) < v.

Lemma 10.1. The critical pairs of ∆ = del1 Σ are as follows.
For each v1 ∈ [2, m], there is a “type I” critical pair ({v1, v2}, {v1, v2 + 1}) where v2 = w(v1).
For each v2 ∈ [m + 2, w(2)], there is a “type II” critical pair ({v1, v2}, {v1 + 1, v2}), where v1 =

w(v2).
Furthermore, every critical pair is of one of these forms.

Proof. It is immediate from the definition of w(v) that each such pair is critical. Suppose now that
(A, B) is a critical pair of ∆, with A = {v1 < v2}. Then either B = {v1, v2 + 1} or B = {v1 + 1, v2}.

If B = {v1, v2 + 1}, then we have already observed that A has at least one endpoint in [2, m]. In
particular, v1 ≤ m, and the pair (A, B) is of type I.

If B = {v1 + 1, v2}, then A ∈ ∆ and B 6∈ ∆, so by definition v1 = w(v2). Moreover, m + 2 ≤ v2

(because v1 + 1 ≤ v2 − 1, so {v2 − 1, v2} � B 6∈ ∆) and v2 ≤ w(2) (because {2, v2} � A, so
{2, v2} ∈ ∆). Hence the pair (A, B) is of type II. �

5Note the distinction between the variable Xi,j , which corresponds to vertex j as the ith smallest vertex in a face,
and the quadratic monomial X{i,j}, which corresponds to the edge {i, j}, and which equals X1,iX2,j if i ≤ j but

equals X1,jX2,i if j ≤ i.
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If (A, B) is a critical pair of type I, then σ(A, B) = {v1, v2} and σ̄(A, B) = ({v1}, [2, v2]). If (A, B)
is a critical pair of type II, then σ(A, B) = {v1} and σ̄(A, B) = (∅, [2, v1]). Therefore, formula (48)
yields

τ̂d(Σ) =

n
∏

v=2

X{1,v}

m
∏

v1=2

∑w(v1)
j=1 X{v1,j}

X{1,v1}

w(2)
∏

v2=m+2

∑w(v2)
j=1 X{j}

X{1}

=
n
∏

v=2

X{1,v}

m
∏

v1=2

∑w(v1)
j=1 X{v1,j}

X{1,v1}

n
∏

v2=m+2

∑w(v2)
j=1 X{j}

X{1}

= X{1,n}

(

m
∏

v1=2

X{1,v1}

∑w(v1)
j=1 X{v1,j}

X{1,v1}

)(

n
∏

v2=m+2

X{1,v2−1}

∑w(v2)
j=1 X{j}

X{1}

)

. (50)

The second equality follows because w(v) = 1 whenever v > w(2), and the third equality comes
from redistributing most of the first product among the other two. Now, when v2 > m + 1, we have

X{1,v2−1}

∑w(v2)
j=1 X{j}

X{1}
=

X1,1X2,v2−1

X1,1

w(v2)
∑

j=1

X1,j =

w(v2)
∑

j=1

X1,jX2,v2−1 =

w(v2)
∑

j=1

X{j,v2−1}

since j ≤ w(v2) ≤ m < v2 − 1. Thus we may rewrite (50) as

τ̂d(Σ) =





m
∏

v1=2

w(v1)
∑

j=1

X{v1,j}









n
∏

v2=m+2

w(v2)
∑

j=1

X{j,v2−1}



X{1,n}. (51)

If v1 ≤ m, then w(v1) > v1, so w(v1) has degree at least v1, as does every vertex less than w(v1).
On the other hand, {v1, w(v1) + 1} 6∈ Σ, so vertex w(v1) + 1 has degree less than v1, as does every
vertex greater than w(v1) + 1. Therefore, (deg Σ)′v1

= w(v1).
Similarly, if v2 > m + 1, then ({w(v2), v2)}, {w(v2) + 1, v2}) is a critical pair, so w(v2) has degree

at least v2−1, as does every vertex less than w(v2). On the other hand, vertex w(v2)+1 has degree
less than v2 − 1, as does every vertex greater than w(v2) + 1. Therefore, (deg Σ)′v2−1 = w(v2).

Using these observations to rewrite (51) in terms of the partition (deg Σ)′ recovers the Martin-
Reiner formula (49).

10.3. From threshold graphs to Ferrers graphs. Let λ = (λ1 ≥ · · · ≥ λℓ) be a partition. The
corresponding Ferrers graph is the bipartite graph with vertices x1, . . . , xλ1

, y1, . . . , yℓ and edges
{xiyj : i ≤ λj}. That is, the vertices correspond to rows and columns of the Ferrers diagram of λ,
and the edges to squares appearing in the diagram. Ehrenborg and van Willigenburg [14] considered
Ferrers graphs and (among other results) described how a certain weighted spanning tree enumerator
splits into linear factors. Another proof of their formula can be obtained from the foregoing formulas
for threshold graphs, as we now explain. The key idea is due to Richard Ehrenborg.

Let G be a connected threshold graph on vertices [n], and let m be the side length of the Durfee
square of G. Then the vertices 1, 2, . . . , m are pairwise adjacent, while m + 1, . . . , n are pairwise
nonadjacent. Moreover, if m + 1 ≤ i < j ≤ n, then every neighbor of j is a neighbor of i. Construct
a graph F by deleting all edges ij such that i, j ≤ m. Then F is a Ferrers graph; furthermore, all
Ferrers graphs can be constructed in this way. Thus, if we begin with the weighted enumerator for
G and set to zero all indeterminates corresponding to edges between vertices 1, 2, . . . , m, we recover
the weighted enumerator for the corresponding Ferrers graph F . Specifically, Theorem 1.6 yields

τ̂(G) = X1,1Xn,2

n−1
∏

i=2





dT
i (G)
∑

r=1

Xmin(i,r),1Xmax(i,r),2



 (52)
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(this is also [27, Theorem 4]). Breaking up the product in (52) around the parameter m gives

τ(G) = X1,1Xn,2





m
∏

i=2





m
∑

r=1

Xmin(i,r),1Xmax(i,r),2 +

dT
i (G)
∑

r=m+1

Xmin(i,r),1Xmax(i,r),2







×





n−1
∏

i=m+1

dT
i (G)
∑

r=1

Xmin(i,r),1Xmax(i,r),2



 .

This expression is well defined because dT
i (G) ≥ m whenever i ≤ m. If i ≤ m and r ≤ m, then

max(i, r) ≤ m, and these are exactly the terms we wish to set to zero. Therefore,

τ(F ) = X1,1Xn,2





m
∏

i=2

dT
i (G)
∑

r=m+1

Xi,1Xr,2









n−1
∏

i=m+1

dT
i (G)
∑

r=1

Xmin(i,r),1Xmax(i,r),2



 . (53)

For i ≥ m + 1, we have dT
i (G) < m < i. Thus r < i for r ≤ dT

i (G), and (53) yields

τ(F ) = X1,1Xn,2





m
∏

i=2

Xi,1

m
∏

i=2

dT
i (G)
∑

r=m+1

Xr,2









n−1
∏

i=m+1

Xi,2

n−1
∏

i=m+1

dT
i (G)
∑

r=1

Xr,1





= (X1,1X2,1 . . . Xm,1)(Xm+1,2Xm+2,2 . . .Xn,2)





m
∏

i=2

dT
i (G)
∑

r=m+1

Xr,2









n−1
∏

i=m+1

dT
i (G)
∑

r=1

Xr,1



 . (54)

By construction, the vertex degrees in G and F are related by the formula

degF (i) =

{

degG(i)−m if 1 ≤ i ≤ m,

degG(i) if m + 1 ≤ i ≤ n.

To simplify the notation, set Xr,1 = xr and yr−m = Xr,2 = yr−m. (From this perspective, the
two partite sets of F correspond to the indeterminates {x1, . . . xm} and {y1, . . . yn−m}. Therefore,

τ(F ) = (x1 . . . xm)(y1 . . . yn−m)





m
∏

i=2

dT
i (F2)
∑

r=1

yr









n−m
∏

i=2

dT
i (F1)
∑

r=1

xr





which is Theorem 2.1 of [14].
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