SIMPLICIAL MATRIX-TREE THEOREMS

ART M. DUVAL, CAROLINE J. KLIVANS, AND JEREMY L. MARTIN

ABSTRACT. We generalize the definition and enumeration of spanning trees from the setting of
graphs to that of arbitrary-dimensional simplicial complexes A, extending an idea due to G. Kalai.
We prove a simplicial version of the Matrix-Tree Theorem that counts simplicial spanning trees,
weighted by the squares of the orders of their top-dimensional integral homology groups, in terms
of the Laplacian matrix of A. As in the graphic case, one can obtain a more finely weighted
generating function for simplicial spanning trees by assigning an indeterminate to each vertex
of A and replacing the entries of the Laplacian with Laurent monomials. When A is a shifted
complex, we give a combinatorial interpretation of the eigenvalues of its weighted Laplacian and
prove that they determine its set of faces uniquely, generalizing known results about threshold
graphs and unweighted Laplacian eigenvalues of shifted complexes.

1. INTRODUCTION
This article is about generalizing the Matrix-Tree Theorem from graphs to simplicial complexes.

1.1. The classical Matrix-Tree Theorem. We begin by reviewing the classical case; for a more
detailed treatment, see, e.g., [§]. Let G be a finite, simple, undirected graph with vertices V(G) =
[n] ={1,2,...,n} and edges E(G). A spanning subgraph of G is a graph T with V(T') = V(G) and
E(T) C E(G); thus a spanning subgraph may be specified by its edge set. A spanning subgraph T is
a spanning tree if (a) T is acyclic; (b) T is connected; and (c¢) |[E(T)| = |V(T)|—1. It is a fundamental
property of spanning trees (the “two-out-of-three theorem”) that any two of these three conditions
together imply the third.
The Laplacian of G is the n x n symmetric matrix L = L(G) with entries

dege (i) ifi = j,
Lijj =14 -1 if ¢, 7 are adjacent,

0 otherwise,

where deg (i) is the degree of vertex i (the number of edges having 7 as an endpoint). Equivalently,
L = 00*, where 0 is the (signed) vertex-edge incidence matrix and 0* is its transpose. If we regard G
as a one-dimensional simplicial complex, then 0 is just the simplicial boundary map from 1-faces to
0-faces, and 0* is the simplicial coboundary map. The matrix L is symmetric, hence diagonalizable,
so it has n real eigenvalues (counting multiplicities). The number of nonzero eigenvalues of L is
n — ¢, where c¢ is the number of components of G.

The Matrix-Tree Theorem, first observed by Kirchhoff [22] in his work on electrical circuits
(modern references include [§], [29] and [34, Chapter 5]), expresses the number 7(G) of spanning
trees of G in terms of L. The theorem has two equivalent formulations.

Theorem 1.1 (Classical Matrix-Tree Theorem). Let G be a connected graph with n vertices,
and let L be its Laplacian matriz.
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(1) If the eigenvalues of L are Ag = 0,A1,..., \n—1, then

=

7(G) =

(2) For1<i<mn, let L; be the reduced Laplacian obtained from L by deleting the i" row and
it" column. Then

7(GQ) = det L;.
Well-known corollaries of the Matrix-Tree Theorem include Cayley’s formula [9]
() =n""? (1)
where K, is the complete graph on n vertices, and Fiedler and Sedldgek’s formula [16]
(Kpm) =n™ tm"! (2)

where K, ,,, is the complete bipartite graph on vertex sets of sizes n and m.
The Matrix-Tree Theorem can be refined by introducing an indeterminate e;; = e;; for each pair

of vertices i, j, setting e;; = 0 if ¢, j do not share a common edge. The weighted Laplacian L is then
defined as the n x n matrix with entries

Zk:l €ik lf =7,
Lij = ¢ —eyj if ¢, 7 are adjacent,

0 otherwise.

Theorem 1.2 (Weighted Matrix-Tree Theorem). Let G be a graph with n vertices, and let L
be its weighted Laplacian matrix.

(1) If the eigenvalues of L are Ao = 0, \1,..., An_1, then

Ao A
> e

TET(G)ijeT

where T (Q) is the set of all spanning trees of G.
(2) For1<i<n, let L; be the reduced weighted Laplacian obtained from L by deleting the it

row and it" column. Then
Z H €ij = det Iil
TET(G) ijET

By making appropriate substitutions for the indeterminates e;;, it is often possible to obtain finer
enumerative information than merely the number of spanning trees. For instance, when G = K,,,
introducing indeterminates xi,...,x, and setting e;; = x;x; for all 4, j yields the Cayley-Priifer
Theorem, which enumerates spanning trees of K,, by their degree sequences:

Z Hx?ch(i) = 'In($1 N In)n72' (3)

TeT(G) i=1

Note that Cayley’s formula () can be recovered from the Cayley-Priifer Theorem by setting z; =
=z, =1

1.2. Simplicial spanning trees and how to count them. To extend the scope of the Matrix-
Tree Theorem from graphs to simplicial complexes, we must first say what “spanning tree” means
in arbitrary dimension. Kalai [20] proposed a definition that replaces the acyclicity, connectedness,
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and edge-count conditions with their analogues in simplicial homology. Our definition adapts Kalai’s
definition to a more general class of simplicial complexesﬂ

Let A be a d-dimensional simplicial complex, and let T C A be a subcomplex containing all
faces of A of dimension < d. We say that Y is a simplicial spanning tree of A if the following three
conditions hold:

Hy(Y,Z) =0, (4a)
|Hyq_1(Y,Z)| < oo, and (4b)
fa(T) = fa(A) = Ba(A) + Ba1(A), (4c)

where H; denotes reduced simplicial homology (for which see, e.g., [I8, §2.1]). (The conditions (Ez)
and (D) were introduced by Kalai in [20], while #@d) is more general, as we will explain shortly.)
When d = 1, the conditions (#al). .. Hd) say respectively that T is acyclic, connected, and has one
fewer edge than it has vertices, recovering the definition of the spanning tree of a graph. Moreover,
as we will show in Proposition B4 any two of the three conditions together imply the third.

A graph G has a spanning tree if and only if G is connected. The corresponding condition for a
simplicial complex A of dimension d is that ﬁi(A, Q) = 0 for all ¢ < d; that is, A has the rational
homology type of a wedge of d-dimensional spheres. We will call such a complex acyclic in positive
codimension, or APC for short. This condition, which we will assume throughout the rest of the
introduction, is much weaker than Cohen-Macaulayness (by Reisner’s theorem [30]), and therefore
encompasses many complexes of combinatorial interest, including all connected graphs, simplicial
spheres, shifted, matroid, and Ferrers complexes, and some chessboard and matching complexes.

For k < d, let 0 = 0, be the kth simplicial boundary matrix of A (with rows and columns indexed
respectively by (k — 1)-dimensional and k-dimensional faces of A), and let 0* be its transpose. The
(kth up-down) Laplacian of A is L = 00*; this can be regarded either as a square matrix of size
fr—1(A) or as a linear endomorphism on (k — 1)-chains of A. Define invariants

7 = m(A) = product of all nonzero eigenvalues of L,

n=nd)= 3 [Hea(0F,

where 75 (A) denotes the set of all k-trees of A (that is, simplicial spanning trees of the k-skeleton
of A).
Kalai [20] studied these invariants in the case that A is a simplex on n vertices, and proved the
formula
n—2
mi(4) = (") (5)
(of which Cayley’s formula () is the special case k¥ = 1). Kalai also proved a natural weighted
analogue of (H) enumerating simplicial spanning trees by their degree sequences, thus generalizing
the Cayley-Priifer Theorem (B]).

Given disjoint vertex sets V1,...,V,. (“color classes”), the faces of the corresponding complete
colorful complex T are those sets of vertices with no more than one vertex of each color. Equivalently,
T is the simplicial join Vi % Vo - - - % V,. of the 0-dimensional complexes V;. Adin [I] extended Kalai’s
work by proving a combinatorial formula for 74 (T"), which we shall not reproduce here, for every
1 <k < r. Note that when r = 2, the complex I is a complete bipartite graph, and if |V;| = 1 for
all 4, then I' is a simplex. Thus both () and @) can be recovered from Adin’s formula.

Kalai’s and Adin’s beautiful formulas inspired us to look for more results about simplicial spanning
tree enumeration, and in particular to formulate a simplicial version of the Matrix-Tree Theorem

IThere are many other definitions of “simplicial tree” in the literature, depending on which properties of trees one
wishes to extend; see, e.g., |4 [0} 15 M9 28|. By adopting Kalai’s idea, we choose a definition that lends itself well
to enumeration. The closest to ours in spirit is perhaps that of Masbaum and Vaintrob [28], whose main result is a
Matrix-Tree-like theorem enumerating a different kind of 2-dimensional tree using Pfaffians rather than Laplacians.
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that could be applied to as broad a class of complexes as possible. Our first main result generalizes
the Matrix-Tree Theorem to all APC simplicial complexes.

Theorem 1.3 (Simplicial Matrix-Tree Theorem). Let A be a d-dimensional APC simplicial
complex. Then:

(1) We have
- _ Ta(A)Ta—1(A)
R Ty

(2) Let U be the set of facets of a (d—1)-SST of A, and let Ly be the reduced Laplacian obtained
by deleting the rows and columns of L corresponding to U. Then

_ Haa(A)P

) = (8P

det LU.

We will prove these formulas in Section Hl

In the special case d = 1, the number 71 (A) is just the number of spanning trees of the graph A,
recovering the classical Matrix-Tree Theorem. When d > 2, there can exist spanning trees with
finite but nontrivial homology groups (the simplest example is the real projective plane). In this
case, 7;(A) is greater than the number of spanning trees, because these “torsion trees” contribute
more than 1 to the count. This phenomenon was first observed by Bolker [7], and arises also in the
study of cyclotomic matroids [26] and cyclotomic polytopes [B].

The Weighted Matrix-Tree Theorem also has a simplicial analogue. Introduce an indeterminate
xp for each facet (maximal face) F' € A, and for every set T of facets define monomials z7 =
[Irperzr and X7 = z2.. Construct the weighted boundary matriz d by multiplying each column of
0 by zp, where F is the facet of A corresponding to that column. Let 7y be the product of the
nonzero eigenvalues of ﬁ“A‘f w_1, and let

Fo=(A) = Y [Hpa(Y) Xy

Theorem 1.4 (Weighted Simplicial Matrix-Tree Theorem). Let A be a d-dimensional APC
simplicial complex. Then:
(1) We havdl
Ta(A)Tg—1(A
FalA) = 7a(A)7a 1(2)
[Ha—2(A))|

(2) Let U be the set of facets of a (d—1)-SST of A, and let Ly be the reduced Laplacian obtained
by deleting the rows and columns of L corresponding to U. Then

_ Haa )P s

T (A) = — det Li;.
) = e

We will prove these formulas in Section

Setting zp = 1 for all ' in Theorem[[CAlrecovers Theorem[[3 In fact, more is true; setting zp = 1
in the multiset of eigenvalues of the weighted Laplacian (reduced or unreduced) yields the eigenvalues
of the corresponding unweighted Laplacian. If the complex A is Laplacian integral, that is, its
Laplacian matrix has integer eigenvalues, then we can hope to find a combinatorial interpretation
of the factorization of 74(A) furnished by Theorem [[A An important class of Laplacian integral
simplicial complexes are the shifted complexes.

2Dospitc appearances, there are no missing hats on the right-hand side of this formula! Only 74(A) has been
replaced with its weighted analogue; 74_1(A) is still just an integer.
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1.3. Results on shifted complexes. Let p < ¢ be integers, and let [p,q] ={i € Z: p<i<gq}. A
simplicial complex ¥ on vertex set [p, q] is shifted if the following condition holds: whenever i < j are
vertices and F' € ¥ is a face such that ¢ € F and j € F, then F\{j} U {i} € ¥. Equivalently, define
the componentwise partial order < on finite sets of positive integers as follows: A < B whenever
A={a1 < - <am}, B={by < -+ <bp}, and a; < b; for all i. Then a complex is shifted precisely
when it is an order ideal with respect to the componentwise partial order. (See [33, chapter 3| for
general background on partially ordered sets.)

Shifted complexes were used by Bjorner and Kalai [5] to characterize the f-vectors and Betti
numbers of all simplicial complexes. Shifted complexes are also one of a small handful of classes
of simplicial complexes whose Laplacian eigenvalues are known to be integral. In particular, Duval
and Reiner [[3, Thm. 1.1] proved that the Laplacian eigenvalues of a shifted complex ¥ on [p, g] are
given by the conjugate of the partition (dp, dpt1,. .., dq), where d; is the degree of vertex 4, that is,
the number of facets containing it.

In the second part of the article, Sections BHIT we study factorizations of the weighted spanning
tree enumerator of 3 under the combinatorial fine weighting

k+1

fL'F = H xi,’[}i
i=1

(described in more detail in Section B), where F' = {v; < -+ < vp41} is a k-dimensional face of X.
Thus the term of 7, (%) corresponding to a particular simplicial spanning tree of ¥ contains more
precise information than its vertex degrees alone (which can be recovered by further setting z; ; = x;
for all 4, 5).

For integer sets A and B as above, we call the ordered pair (A, B) a critical pair of ¥ if A € X,

B ¢ Y., and B covers A in the componentwise order. That is, B = {a1,...,a;—1,a;+1,ai41, ..., am}
for some i € [m]. The long signature of (A, B) is the ordered pair (4, B) = (S,T'), where S =
{a1,...,a;-1} and T = [p, a;]. The corresponding z-polynomial is defined as

1
Z(S, T) = TAX—S;XSU]

where Xg = z% for each S, and the operator 1 is defined by T(z; ;) = @;41,;. (See Section for
more details, and Example [T for an example.) The set of critical pairs is especially significant for a
shifted family (and by extension, for a shifted complex). Since a shifted family is just an order ideal
with respect to the componentwise partial order <, the critical pairs identify the frontier between
members and non-members of F in the Hasse diagram of <. (See Example [ or 23] for more
details.)

Thanks to Theorem [C4] the enumeration of SST’s of a shifted complex reduces to computing the
determinant of the reduced combinatorial finely-weighted Laplacian. We show in Section @l how this
computation reduces to the computation of the eigenvalues of the algebraic finely weighted Laplacian.
This modification of the combinatorial fine weighting, designed to endow the chain groups of ¥ with
the structure of an algebraic chain complex, is described in detail in Section Its eigenvalues turn
out to be precisely the z-polynomials associated with critical pairs.

Theorem 1.5. Let ¥ be a d-dimensional shifted complezx, and let 0 < i < d. Then the eigenvalues of
the algebraic finely weighted up-down Laplacian L‘id’i are precisely 197 (2(S,T)), where (S,T) ranges

over all long signatures of critical pairs of i-dimensional faces of .

In turn, the z-polynomials are the factors of the weighted simplicial spanning tree enumerator 7.
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Theorem 1.6. Let X be a d-dimensional shifted complex with initial vertex p. Then:

= [ Xz I1 #5.T)

FENg_, (S, T)€5(Ag) Xip
> ier Xsuj
= I x=)| I =% —
. 3
FeAg_q (S,T)E(T(Ad)

where = FU{p}; A =del, X = {F\{p}: F€X}; and A =link, X = {F: p¢ F, F € X}
Theorems [[H and [CH are proved in Sections B and [, respectively.

Example 1.7. As an example to which we will return repeatedly, consider the equatorial bipyramid,
the two-dimensional shifted complex B with vertices [5] and facets 123, 124, 125, 134, 135, 234, 235.
A geometric realization of B is shown in the figure on the left below. The figure on the right
illustrates how the facets of B can be regarded as an order ideal. The boldface lines indicate critical
pairs.
146 236 245
136 145 7 235
126 135 234 ¢
\/\/ H
{125 134
T~ —
124

The Laplacian eigenvalues corresponding to the critical pairs of B are as follows:

Critical pair || (125, 126) (135,136) | (135,145) | (235,236) | (235,245)
Eigenvalue || 2(12,12345) | 2(13,12345) | 2(1,123) | 2(23,12345) | 2(2,123)
To show one of these eigenvalues in more detail,

X011 X01 X33+ X11X00X33+ X111 X03X33+ X11X03X34+ X11X03X35
2(13,12345) = 20 .
2,1X3,3

The eigenvalues of this complex are explained in more detail in Section Its spanning trees are
enumerated in Examples (fine weighting) and (coarse weighting).

We prove Theorem [[H by exploiting the recursive structure of shifted complexes. As in [I3],
we begin by calculating the algebraic finely weighted eigenvalues of a near-cone in terms of the
eigenvalues of its link and deletion with respect to its apex (Proposition [[). We can then write
down a recursive formula (Theorem B2) for the nonzero eigenvalues of shifted complexes, thanks
to their characterization as iterated near-cones, simultaneously showing that these eigenvalues must
be of the form z(S,T). Finally, we independently establish a recurrence (Corollary B) for the long
signatures of critical pairs of a shifted complex, which coincides with the recurrence for the z(S,T),
thus yielding a bijection between nonzero eigenvalues and critical pairs.

Corollary B0 shows what the eigenvalues look like in coarse weighting. Passing from weighted
to unweighted eigenvalues then easily recovers the Duval-Reiner formula for Laplacian eigenvalues
of shifted complexes in terms of degree sequences [I3, Thm. 1.1]. Similarly, Corollary gives the
enumeration of SST’s of a shifted complex in the coarse weighting.

We are also able to show that the finely-weighted eigenvalues (though not the coarsely-weighted
eigenvalues) are enough to recover the shifted complex (Corollary B9, or, in other words, that one
can “hear the shape” of a shifted complex.

Several known results can be obtained as consequences of the general formula of Theorem [CH
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e The complete d-skeleton of a simplex is easily seen to be shifted, and applying Theorem [[CO
to such complexes recovers Kalai’s generalization of the Cayley-Priifer Theorem.

e The one-dimensional shifted complexes are precisely the threshold graphs, an important
class of graphs with many equivalent descriptions (see, e.g., [25]). When d = 1, Theorem [0l
specializes to the weighted spanning tree enumerator for threshold graphs proved by Martin
and Reiner [26, Thm. 4] and following from an independent result of Remmel and Williamson
B1, Thm. 2.4].

e Thanks to an idea of Richard Ehrenborg, the formula for threshold graphs can be used to
recover a theorem of Ehrenborg and van Willigenburg [I4], enumerating spanning trees in
certain bipartite graphs called Ferrers graphs (which are not in general Laplacian integral).

We discuss these corollaries in Section [0

Some classes of complexes that we think deserve further study include matroid complexes, match-
ing complezes, chessboard compleres and color-shifted complexes. The first three kinds of complexes
are known to be Laplacian integral, by theorems of Kook, Reiner and Stanton [24], Dong and Wachs
IT1], and Friedman and Hanlon [I7] respectively. Every matroid complex is Cohen-Macaulay [32,
§II1.3], hence APC, while matching complexes and chessboard complexes are APC for certain values
of their defining parameters (see [f]). Color-shifted complexes, which are a common generalization of
Ferrers graphs and complete colorful complexes, are not in general Laplacian integral; nevertheless,
their weighted simplicial spanning tree enumerators seem to have nice factorizations.

It is our pleasure to thank Richard Ehrenborg, Vic Reiner, and Michelle Wachs for many valuable
discussions. We also thank Andrew Crites and an anonymous referee for their careful reading of the
manuscript.

2. NOTATION AND DEFINITIONS

2.1. Simplicial complexes. Let V be a finite set. A simplicial complex on V is a family A of
subsets of V' such that

(1) D e A;

(2) f Fe Aand G C F, then G € A.
The elements of V' are called vertices of A, and the faces that are maximal under inclusion are
called facets. Thus a simplicial complex is determined by its set of facets. The dimension of a
face F' is dim F' = |F| — 1, and the dimension of A is the maximum dimension of a face (or facet).
The abbreviation A¢ indicates that dim A = d. We say that A is pure if all facets have the same
dimension; in this case, a ridge is a face of codimension 1, that is, dimension dim A — 1.

We write A; for the set of i-dimensional faces of A, and set f;(A) = |A;|. The i-skeleton of A is
the subcomplex of all faces of dimension < i,
Ao = |J a4
—1<;<i
and the pure i-skeleton of A is the subcomplex generated by the i-dimensional faces, that is,
Ay ={F € A: F CG for some G € A;}.

We assume that the reader is familiar with simplicial homology; see, e.g., [T8, §2.1]. Let A? be
a simplicial complex and —1 < ¢ < d. Let R be a ring (if unspecified, assumed to be Z), and let
Ci(A) be the i" simplicial chain group of A, i.e., the free R-module with basis {[F]: F € A;}. We
denote the simplicial boundary and coboundary maps respectively by

3A,i : Oi(A) - ifl(A)a
i o Cima(A) = Ci(A),
where we have identified cochains with chains via the natural inner product. We will abbreviate the

subscripts in the notation for boundaries and coboundaries whenever no ambiguity can arise. We will
often regard 0; (resp. ;) as a matrix whose columns and rows (resp. rows and columns) are indexed
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by A; and A;_; respectively. The it" (reduced) homology group of A is H;(A) = ker(d;)/im(d;y1),
and the i*" (reduced) Betti number (3;(A) is the rank of the largest free R-module summand of
H;(A).

2.2. Combinatorial Laplacians. We adopt the notation of [I3] for the Laplacian operators (or,
equivalently, matrices) of a simplicial complex. We summarize the notation and mention some
fundamental identities here.

We will often work with multisets (of eigenvalues or of vertices), in which each element occurs
with some non-negative integer multiplicity. For brevity, we drop curly braces and commas when
working with multisets of integers: for instance, 5553 denotes the multiset in which 5 occurs with
multiplicity three and 3 occurs with multiplicity one. The cardinality of a multiset is the sum of the
multiplicities of its elements; thus |5553| = 4. We write a = b to mean that the multisets a and b
differ only in their respective multiplicities of zero; for instance, 5553 = 55530 = 555300. Of course,
= is an equivalence relation. The union operation U on multisets is understood to add multiplicities:
for instance, 5553 U 5332 = 55553332.

For —1 <¢ < dim A, define linear operators LZ‘%Z-, LdA‘fi, LR, on the vector space C;(A) by

Llid,i = 0i410; 11 (the up-down Laplacian),
Liu,i =0;0; (the down-up Laplacian),
LtAofi = LuAd,i + L(iu)i (the total Laplacian).

The spectrum s{°*(A) of LYY is the multiset of its eigenvalues (including zero); we define s (A)

and s{"(A) similarly. Since each Laplacian operator is represented by a symmetric matrix, it is
diagonalizable, so

|57 (A)] = [s34(A)] = [s§(A)] = fi(A).

The various Laplacian spectra are related by the identities

S29(A) 2 s (),

K2

S(A) £ 519(A) Us(A)

K2

T3, eqn. (3.6)]. Therefore, each of the three families of multisets

{s°(A): —1<i<dimA}, {s'(A): —1<i<dimA}, {s{"(A): —1<i<dimA}

K2 3 K2

determines the other two, and we will feel free to work with whichever one is most convenient in
context.

Combinatorial Laplacians and their spectra have been investigated for a number of classes of
simplicial complexes. In particular, it is known that chessboard [I7], matching [IT], matroid [24],
and shifted [I3] complexes are Laplacian integral, i.e., all their Laplacian eigenvalues are integers.
Understanding which complexes are Laplacian integral is an open question. As we will see, Laplacian
eigenvalues and spanning tree enumerators are inextricably linked.

3. SIMPLICIAL SPANNING TREES

In this section, we generalize the notion of a spanning tree to arbitrary dimension using simplicial
homology, following Kalai’s idea. Our definition makes sense for any ambient complex that satisfies
the relatively mild APC condition.

Definition 3.1. Let A? be a simplicial complex, and let k < d. A k-dimensional simplicial spanning
tree (for short, SST or k-SST) of A is a k-dimensional subcomplex T C A such that Y1) = A1)
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and
Hy(Y) =0, (6a)
|Hj_1(Y)| < 00, and (6b)
Fe(X) = fr(A) = Br(A) + Be1 (D). (6c)

We write 7 (A) for the set of all k-SST’s of A, omitting the subscript if & = d. Note that

A zero-dimensional SST is just a vertex of A. If A is a 1-dimensional simplicial complex on
n vertices—that is, a graph—then the definition of 1-SST coincides with the usual definition of a
spanning tree of a graph: namely, a subgraph of A which is connected, acyclic, and has n — 1 edges.
Next, we give a few examples in higher dimensions.

Example 3.2. If A? is a simplicial sphere (for instance, the boundary of a simplicial polytope),
then deleting any facet of A while keeping its (d — 1)-skeleton intact produces a d-SST. Therefore

I T(A)] = fa(A).
Example 3.3. In dimension > 1, spanning trees need not be Z-acyclic, merely Q-acyclic. For
example, let A be a triangulation of the real projective plane, so that dim A =2, H1(A,Z) £ Z/27Z,

and Hi(A,Q) = 0. Then A satisfies the conditions of Definition Bl and is a 2-SST of itself (in fact,
the only such).

Example 3.4. Consider the equatorial bipyramid B of Example [l A 2-SST of B can be con-
structed by removing two facets F, F’, provided that F N F’ contains neither of the vertices 4,5. A
simple count shows that there are 15 such pairs F, F”, so |73(B)| = 15.

Before proceeding any further, we show that Definition Bl satisfies a “two-out-of-three theorem”
akin to that for spanning trees of graphs.

Proposition 3.5. Let T C A? be a k-dimensional subcomplex with T(k—1) = A—1)- Then any
two of the conditions (Gal), (6L), @d) together imply the third.

Proof. First, note that
fo(T) = fo(A) for £ <k—1 and  Be(Y) = Be(A) for £ <k —2. (7)
Next, we use the standard fact that the Euler characteristic x(Y) can be calculated as the alternating

sum either of the f-numbers or of the Betti numbers. Thus
k

X(0) = (—1)'£i(T)
1=0
k—1

= (=D*f(1) + D (-1 fi(A)

i=0
= (=1)Ffu(0) + x(A) = (=)*fi(A) (8)
and on the other hand,
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Equating @) and (@) gives
Fe(0) = fi(A) = Br(T) = Br1(T) = Br(A) + Br-1(A)

or equivalently
(fe() = fu(A) + Br(A) - kal(A)) — Br(T) + Br—1(T) = 0.

Since (B) says that 3;,(Y) = 0 (note that Hy(T) must be free abelian) and (BH) says that 31 (Y) =
0, the conclusion follows. O

Definition 3.6. A simplicial complex A% is acyclic in positive codimension, or APC for short, if
Bi(A) =0 for all j < d.

Equivalently, a complex A? is APC if it has the homology type of a wedge of zero or more d-
dimensional spheres. In particular, any Cohen-Macaulay complex is APC. The converse is very far
from true, because, for instance, an APC complex need not even be pure. For our purposes, the
APC complexes are the “correct” simplicial analogues of connected graphs for the following reason.

Proposition 3.7. For any simplicial complex A?, the following are equivalent:
(1) A is APC.
(2) A has a d-dimensional spanning tree.
(3) A has a k-dimensional spanning tree for every k < d.

Proof. Tt is trivial that (3) implies (2). To see that (2) implies (1), suppose that A has a d-dimensional
spanning tree Y. Then T; = A, for all i < d—1, so H;(A) = H;(T) =0 for all i« < d — 2. Moreover,
in the diagram
Ca(A) Do, Ca-1(A) Do, Ca—2(A)
U , | , |
Ca(Y) —5 Cya(Y) —= Caa(Y)

we have ker Oa q—1 = ker Oy g—1 and im0da ¢ 2 im Oy 4, so there is a surjection 0 = ﬁd,l(T) —
Hy_1(A), implying that A is APC.

To prove (1) implies (3), it suffices to consider the case k = d, because any skeleton of an APC
complex is also APC. We can construct a d-SST T by the following algorithm. Let T = A. If
fld('f) # 0, then there is some nonzero linear combination of facets of T that is mapped to zero
by dr.4. Let F be one of those facets, and let Y = T\{F}. Then G4(Y") = B4(Y) — 1 and
Bi(Y") = Bi(Y) for i < d — 2, and by the Euler characteristic formula, we have 84_1(Y’) = Ba_1(Y)
as well. Replacing T with Y’ and repeating, we eventually arrive at the case Hg(T) = 0, when T is
a d-SST of A. O

The APC condition is a fairly mild one. For instance, any Q-acyclic complex is clearly APC (and
is its own unique SST), as is any Cohen-Macaulay complex (in particular, any shifted complex).

4. SIMPLICIAL ANALOGUES OF THE MATRIX-TREE THEOREM

We now explain how to enumerate simplicial spanning trees of a complex using its Laplacian.
Throughout this section, let A? be an APC simplicial complex on vertex set [n]. For k < d, define

m=m(A) = J[ A Te=m(A)= Y [Hy (1)

Oyékeszil(A) TeT(A)

We are interested in the relationships between these two families of invariants. When d = 1, the
relationship is given by Theorem [[TJl In the notation just defined, part (1) of that theorem says
that 71 = 71 /n, and part (2) says that 7, = det L; (i.e., the determinant of the reduced Laplacian
obtained from de,o by deleting the row and column corresponding to any vertex 7).



SIMPLICIAL MATRIX-TREE THEOREMS 11

The results of this section generalize both parts of the Matrix-Tree Theorem from graphs to all
APC complexes A?. Our arguments are closely based on those used by Kalai [20] and Adin [] to
enumerate SST’s of skeletons of simplices and of complete colorful complexes.

We begin by setting up some notation. Abbreviate 8; = 5;(A), fi = fi(A), and 0 = Oaq. Let T
be a set of facets of A of cardinality fq — B4 + Ba—1 = fa — B4, and let S be a set of ridges such that
|S| = |T'|. Define

Ar =T UA@g-1), S=Awu-1n\S, Ag=SUA4_),
and let Og r be the square submatrix of 0 with rows indexed by S and columns indexed by T'.
Proposition 4.1. The matriz Ogr is nonsingular if and only if Ap € Tg(A) and Ag € Tg_1(A).

Proof. We may regard Osr as the top boundary map of the d-dimensional relative complex I' =
(Ar,Ag). So Os,r is nonsingular if and only if Hy4(I") = 0. Consider the long exact sequence

0 — Ha(Ag) = Ho(Ar) — Ha(T) — Ha-1(A5) — Hi-1(Ar) — Haa(T) — -+ (10)

If fld(}") # 0, then fld(NAT) and Hy_1(Ag) cannot both be zero. This proves the “only if” direction.
If Hy(T') =0, then Hy(Ag) = 0 (since dimAg = d — 1), so [[) implies Hq(Ar) = 0. Therefore
Ar is a d-tree, because it has the correct number of facets. Hence Hq—1(A7) is finite. Then (I0)
implies that Hy_1(Ag) is finite. In fact, it is zero because the top homology group of any complex

must be torsion-free. Meanwhile, Az has the correct number of facets to be a (d — 1)-SST of A,
proving the “if” direction. O

Proposition 4.2. If 0s 1 is nonsingular, then

_ Haa (A7) |Ha2(Ag)| _ [Haa(A7)| - [Haa(Ds)|
|Ha—2(A7)| [Ha—2(A))|

| det (957T|

Proof. As before, we interpret ds r as the boundary map of the relative complex I" = (Ap, Ag). So
Os,7 is a map from Z\Tl to ZIT! and Z|T|/85)T(Z‘T‘) is a finite abelian group of order | det ds r|. On
the other hand, since I" has no faces of dimension < d — 2, its lower boundary maps are all zero, so
|det @s.7| = |Hq_1(T)|. Since Hy_o(Ar) is finite, the desired result now follows from the piece

O—»Hd,l(AT) —>]~{d,1(F) —>]~{d,2(A§) —’Hd72(AT) — 0 (11)

of the long exact sequence ([[T). O

We can now prove the first version of the Simplicial Matrix-Tree Theorem, relating the quantities
mq and 74. Abbreviate L = LuAd,dfl'

Theorem 1.3 (Simplicial Matrix-Tree Theorem). Let A? be an APC simplicial complex. Then:
(1) We have
Ta(A)Ta—1(A)
[Ha—2(A)2
(2) Let U be the set of facets of a (d —1)-SST of A, and let Ly denote the reduced Laplaciarf]
obtained by deleting the rows and columns of L corresponding to U. Then
(A
|Hi—2(Av)P?

ma(A) =

Td( det L.

3A warning: This notation for reduced Laplacians specifies which rows and columns to ezclude (in analogy to the
notation L; in the statement of Theorem [[I)), in contrast to the notation dg 7 for restricted boundary maps, which
specifies which rows and columns to include.
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Proof of Theorem L3 (1). The Laplacian L is a square matrix with f;_; rows and columns, and
rank fg — fBa = fa — fa + Ba_1 (because A is APC). Let x(L;y) = det(yI — L) be its characteristic
polynomial (where I is an identity matrix), so that m4(A), the product of the nonzero eigenvalues

of L, is given (up to sign) by the coefficient of y/¢-1=fa+Ba in y(L;y). Equivalently,

g = Z det Ly = Z det Ly (12)
SCAg—1 SCAd7£
|S|=rank L |S|=fa—PBa

where U = Ayz-1\S in each summand. By the Binet-Cauchy formula, we have

detLy = Y (detdsr)(detds,) = Y (detdsr)>. (13)
TCA, TCA4
IT|=1$] ITI=1$|

Combining ([[2) and ([3), applying Proposition 1], and interchanging the sums, we obtain

g = Z Z (det (95)7“)2

T:ATGTd(A) S:AgGTdfl(A)

and now applying Proposition yields

~ ~ 2
- [y 1 (Ar)| - [Ha o(Ag)]
=2 2 ( [y a(D)] )

T:ATer(A) S:Agerfl(A)

> |Haa(Ap)P? > |Ha2(Ag)l

T:ATGTd(A) S:AgGTdfl(A)
|y o(A)]?
as desired. O

In order to prove the “reduced Laplacian” part of Theorem [ we first check that when we delete
the rows of 0 corresponding to a (d — 1)-SST, the resulting reduced Laplacian has the correct size,
namely, that of a d-SST.

Lemma 4.3. Let U be the set of facets of a (d —1)-SST of A, and let S = Ag_1\U. Then
|S| = fa(A) — Ba(A), the number of facets of a d-SST of A.

Proof. Let I' = A(g_1). By Proposition B and the observation (@), |U| = fq—1(I') — Bd_l(l") +
Ba—2(T) = fa_1(A) = Ba_1(T"), so |S| = B4_1(T). The Euler characteristics of A and T" are

d d
A) =Y (=1 fild) =D (=1)'Bi(A),

1=0 =0

d—1 d—1 ~
X(T) =) (~1D)'fi(0) =) (~1)'5(T)

=0 =0

By (@), we see that
X(A) =x(T) = (=D)%fa(A) = (=D)Ba(A) + (=1)* ' Ba1(A) = (=) Bar (T)

from which we obtain fq(A) = Ba(A) = Ba_1(A) + B4-1(T). Since A is APC, we have 84_1(A) =0,
50 |S] = Ba_1(T) = fa(A) — Ba(A) as desired. O
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Proof of Theorem 3 (2). By the Binet-Cauchy formula, we have

detLy = Y (detdsz)(detdsr)= Y (detdsr)”.
T: |T|=|S| T: |T|=|S|

By Lemma and Proposition Bl Og,r is nonsingular exactly when Ap € 73(A). Hence
Proposition gives

detLy = % (Iﬁdl(AT)|.|ﬁd2(AU)|>2

T:AT€Ty(A) [Ha—2(A)]

B |ﬁd—2(A)|2 Z |Ha1(A7)[" = |ﬁd—2(A)|2 Ta(A)

)

T:AreTy(A)

which is equivalent to the desired formula. O

Remark 4.4. Suppose that Hy_o(A) = 0 (for example, if A is Cohen-Macaulay). Then the two
versions of Theorem assert that

Td det Ly

Td—1 |f{d,2(AU)|27

from which it is easy to recognize the two different versions of the classical Matrix-Tree Theorem,
Theorem [l (A graph is Cohen-Macaulay as a simplicial complex if and only if it is connected.)
Moreover, the recurrence 74 = mq/74—1 leads to an expression for 74 as an alternating product of
eigenvalues:

Td =

d

_ Mamg-2-cc (~1)d-k

Td T kl;[owk . (14)
This formula is reminiscent of the Reidemeister torsion of a chain complex or CW-complex (although
74 1s of course not a topological invariant); see, e.g., [35]. Furthermore, [[d) is in practice an efficient
way to calculate 7.

Example 4.5. For the equatorial bipyramid B, we have
mo(B) = 5, m(B)=5-5-5-3 =375, m(B)=5-5-5-3-3=1125.

These numbers can be checked by computation, and also follow from the Duval-Reiner formula for
Laplacian eigenvalues of a shifted complex. Applying the alternating product formula [[d) yields

1125-5
10(B) =5, 11 (B) = 375/5 = 75, 2(B) = == 15.

Indeed, 79(B) is the number of vertices. Cayley’s formula implies that deleting any one edge e from
K, yields a graph with (n — 2)n"~3 spanning trees (because e itself belongs to (n —1)/(}) of the
spanning trees of K,,), and the 1-skeleton By is such a graph with n = 5, so 71(B) = 75. Finally,

we have seen in Example B4l that 72(B) = 15.

5. WEIGHTED ENUMERATION OF SIMPLICIAL SPANNING TREES

We can obtain much finer enumerative information by labeling the facets of a complex with
indeterminates, so that the invariant 7, becomes a generating function for its SST’s.
Let A? be an APC simplicial complex, and let @ = Oa 4. Introduce an indeterminate x5 for each

facet F' of maximum dimension, and let Xp = x% For every T' C Ay, let xp = HFGT rp and

let X7 = 22. To construct the weighted boundary matriz d from 9, multiply each column of 0 by
xr, where F' is the facet of A corresponding to that column. The weighted coboundary d* is the
transpose of d. We can now define weighted versions of Laplacians, the various submatrices of the
boundary and coboundary matrices used in Section H, and the invariants 73 and 7. We will notate
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each weighted invariant by placing a hat over the symbol for the corresponding unweighted quantity.
Thus 7y is the product of the nonzero eigenvalues of L‘Ad) w_1, and

Fo=m(A)= Y |Hp (1) Xr.
TeT,(A)

To recover any unweighted quantity from its weighted analogue, set zp = 1 for all F' € Ay.

Proposition 5.1. LetT C Ag and S C Ay—1, with |T| = |S| = fd—Bd. Then det 35,T =zrdetdgr
is nonzero if and only if Ap € T4(A) and Ag € Ty_1(A). In that case,

. Hy1(A7)| - |Ha—2(Ag Hy1(A7)| - |Ha—2(Ag
idetas)T:| d 1( ~T)l | d 2( S)|ZET:| d 1( Z“)l | d 2( S)l (15)
|Ha—2(Ar)] |Ha—2(A)]
Proof. The first claim follows from Proposition Bl and the second from Proposition g

It is now straightforward to adapt the proofs of both parts of Theorem [[3 to the weighted setting.
For convenience, we restate the result. Let L = L‘Ed_l.

Theorem 1.4 (Weighted Simplicial Matrix-Tree Theorem). Let A% be an APC simplicial
complex. Then:

(1) We have
N Ta(A)1g—1(A
Wd(A) _ d(~ ) d 1(2).
|Ha—2(A))|
(2) Let U be the set of facets of a (d—1)-SST of A, and let Ly be the reduced Laplacian obtained
by deleting the rows and columns ofli corresponding to U. Then
_ IHa ()
|Ha—2(Au)/[?

Proof. For assertion (1), we use a weighted version of the argument of part (1) of Theorem By
the Binet-Cauchy formula and Proposition 1l we have

fa= Y. > (detdhg)(detdsr) =Y > (detds 1)’
s T

SCAq_;1 TCAy
IT|=I5]

T S (detdsr)?

T:ATGTd(A) S:ASGTdfl(A)

- ~ 2
|Hy 1 (A7)| - |Hqa—2(Ag)] ~ Ta(A)Ta-1(A)
2. 2 ( Hya(D) ) AT NN

det ZA;U.

7a(A)

T:ATGTd(A) S:ASGTdfl(A)
The proof of assertion (2) of the theorem is identical to that of part (2) of Theorem [[3 using
Proposition Bl instead of Proposition a

Example 5.2. We return to the equatorial bipyramid B of Example [l Weight each facet F' =
{i,j,k} by the monomial xp = x;x;75. Let U = {12,13,14,15} be the facets of a 1-SST of B(y).

Then the reduced Laplacian Ly is

x2x3(x1 + T4 + T5) —Z2X3T5 T2X3T4 T2X3T5 —Z2X3%4
—X2X3T4 ToTs (501 + :Cg) 0 —X2X3T5 0
XToX3T4 0 :L’3:L’4(:171 =+ :L’z) 0 —X2X3T4
XT2XT3T5 —T2X3T5 0 xr3Ts (:El + :Ez) 0

—X2X3T4 0 —X2X3T4 0 1’21}4(1}1 + 1’3)
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and the generating function for 2-SST’s by their degree sequences is

72(B) = det Lg = Z H x?egB(i) = x?x%x%xix%(ml +xo + x3) (21 + 22 + 25 + 24 + 25)
YeT(B)i€[5]
where degp (i) means the number of facets of B containing vertex i. Setting x; = 1 for every 14
recovers the unweighted equality 72(B) = 15 (see Examples B and ELH).

6. SHIFTED COMPLEXES

6.1. General definitions. In the next several sections of the paper, we apply the tools just devel-
oped to the important class of shifted complezes. We begin by reviewing some standard facts about
shifted complexes and shifted families; for more details, see, e.g., [Z1].

Let k be an integer. A k-set is a set of integers of cardinality k. A k-family is a set of k-sets
(for example, the set of (kK — 1)-dimensional faces of a simplicial complex). The componentwise
partial order < on k-sets of integers is defined as follows: if A = {a1 < a2 < -+ < ax} and
B ={b <by<---<bg}, then A< Bifa; <b;for all j. A k-family F is shifted if B € F and
A < B together imply A € F. Equivalently, F is shifted if it is an order ideal with respect to the
componentwise partial order. A simplicial complex 3 is shifted if X; is shifted for all i. Accordingly,
we may specify a shifted complex by the list of its facets that are maximal with respect to <, writing
¥ = (Fy,...,F,). For example, the bipyramid of Example [T is the shifted complex (235). We will
not lose any generality by assuming that the vertex set for every shifted complex we encounter is an
integer interval [p,q] = {p,p+ 1,...,¢}; in particular, we will use the symbol p throughout for the
vertex with the smallest index.

The deletion and link of ¥ with respect to p are defined to be the subcomplexes

A =del, X ={F\{p}: F e X},
A=link,X={F:p¢F, FU{p}eX}.
It is easy to see that the deletion and link of a shifted complex on [p,q] are themselves shifted
complexes] on [p+1,4].
A complex 3 on vertex set V' is called a near-cone with apez p if it has the following property: if
F € del, ¥ and v € F, then F\{v} € link, ¥ (equivalently, F\{v} U{p} € X). It is easy to see that a

shifted complex on [p, g] is a near-cone with apex p. Bjorner and Kalai [Bl, Theorem 4.3] showed that
the Betti numbers of a shifted complex ¥ (indeed, of a near-cone) with initial vertex p are given by

Gi(S)={FeXiipg F, FU{p} ¢ 5}|. (16)

6.2. The combinatorial fine weighting. Let {z; ;} be a set of indeterminates, indexed by integers
i,7. Let k be the field of rational functions in the z; ; with coefficients in C (or in any other field
of characteristic zero). Since these indeterminates will often appear squared, we set X;; = z?

15"

The combinatorial fine weighting assigns to a multiset of vertices S = {i; < iy < -+ < iy, } the
monomials

TS = L1, 245 " Tmyi,, and Xg = X1 Xogy o Xpni,- (17)

Our goal is to describe the generating function
f(2) = Y [Haa(S,Z)P Xy
TeT (%)
of a shifted complex ¥, where, for each simplicial spanning tree Y, the monomial

Xr= [ xr
facets FeY

4This is also true for the deletion and link with respect to any vertex, not just p, but then the resulting vertex set
is no longer a set of consecutive integers. Since we will not have any need to take the deletion and link with respect
to any vertex other than p, we won’t worry about that, and instead enjoy the resulting simplicity of specifying the
new minimal vertex of the deletion and link.
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records both the number of facets of T containing each vertex of ¥, as well as the order in which
the vertices appear in facets.

Define the “raising operator” T by Tx;; = x;41,; for i < d and Tzg41,; = 0. We extend T linearly
and multiplicatively to an operator on all of k. The raising operator can also be applied to a k-linear

operator f by the rule
(1HW) =117 V))) (18)
for any vector V over k. The a'" iterate of T is denoted 1%.
The following identities will be useful. Let S = S U {p}, where U denotes the union as multisets,
so that the multiplicity of p in S is one more than its multiplicity in S. Then, for all integers a, j,

11, 1" sy = 1%(21p - T2s05) = 125, (19a)
and o
rg a
Tatlgg = Tat1p = ["T1p. (19b)

The same identities hold if z is replaced with X.
Nowl deﬁne the combinatorially finely weighted simplicial boundary map of ¥ as the homomor-
phism 0 = Js; : C;(X) — C;—1(X) which acts on generators [F] (for F € ;) by
OF) = (. F) 1" "z [F\j]. (20)
jeF
Here we have set e(v, F) = (—1)7*! if v is the j** smallest vertex of F, and e(v, F) = 0 if v € F.
Similarly define the finely weighted simplicial coboundary map 0% = 0y, : Ci(¥) — Ciy1(¥) by

O[F) = Y e(, FUj) 1" apy; [FUj). (21)
JEV\F

These maps do not make the chain groups of ¥ into an algebraic chain complex, because dd and
d*0* do not vanish in general. (We will fix this problem in Section [E3) On the other hand, they
have combinatorial significance, because we will be able to apply part (2) of Theorem [ to the
finely weighted up-down Laplacian Lvd = éd(’;;. This Laplacian may be regarded as a matrix whose
rows and columns are indexed by 4_1. It is not hard to check that for each F,G € ¥4_1, the
corresponding entry of Lvd s

c(jH)e(i, H) Xy #H=FUj=GUi€EY,

7 ud _ XFrui if FF= G,
(L*re = . 2oy XF0 (22)
0 otherwise.

Let U be the simplicial spanning tree of ¥4_1) consisting of all ridges containing vertex p. (This
subcomplex is an SST because it has a complete (d — 2)-skeleton and is a cone over p, hence
contractible.) Let ﬁ‘,}d be the reduced Laplacian obtained from Lvd by deleting the corresponding
rows and columns, so that the remaining rows and columns are indexed by the facets of A = link, ¥.
Then part (2) of Theorem [ asserts that 74(X) = det L¥d.

Let N = N(X) be the matrix obtained from ﬁ‘g,d by dividing each row F' by Tzr and dividing
each column G by Tzg. The (F,G) entry of N is thus
Xu

S(j,H) E(ZaH) m

fH=FUj=GUieX,

Nra = ¥ Xroj it F =G, (23)
j: Fojes 1XF

0 otherwise.
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Moreover,

7a(B)=detLi = [ J] 1Xr|detN. (24)
FeAg_q

We will shortly see (Lemma [E3]) that N is almost identical to the (full) Laplacian of the deletion
A =del, X.

6.3. The algebraic fine weighting. The combinatorial fine weighting just defined is awkward to
work with directly, because the simplicial boundary and coboundary maps @) and @I do not
fit together into an algebraic chain complex. Therefore, we introduce a new weighting by Laurent
monomials, the algebraic fine weighting, that does give the structure of a chain complex, behaves well
with respect to cones and near-cones, and is easy to translate into the combinatorial fine weighting.

Definition 6.1. Let A? be a simplicial complex on vertices V' C N. The algebraic finely weighted
simplicial boundary map of A is the homomorphism da ; : C;(A) — Ci—1(A) given by

P . 197" (xr)
BailF] =Y c(j.F) T

[F\J] (25)
and similarly the algebraic finely weighted simplicial coboundary map 94 ;11 : Ci(A) — Cip1(A) is
given by

Tdfifl (IFUj)

() [F U j]. (26)

OnialFl= D e Fuj)

JEVA\F

We will sometimes drop one or both subscripts when no confusion can arise. By the formula ([[J),
we can apply the raising operator Tto @ and 8" by applying it to each matrix entry. That is, for
[F] € C;(A) and a € N, we have

) Td7i+a($F) '
10n4F1 = (4, F)W[F\J]a (27)
jEF J
d—i+a—1 TEU; '
1R [F = E(J'aFUj)T?Ta((I;)[FUJ]- (28)
JEV\F

Lemma 6.2. Let a € N. Then 1980 190 = 0 and 1%8%0 1%0" = 0. That s, the algebraic finely
weighted boundary and coboundary operators induce chain complexes

s G (A) Oniv1, Ci(A) Oai, 1 (A) =

% sin %,
e i+1(A)<iOi(A)‘i i1(A) — -
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Proof. Since the matrices that represent the maps & and 8" are mutual transposes, it suffices to
prove the first assertion. For F' € A;, we have by Z1)

[C7)

P0as("05.(P) = 10t | et Pty P
- i C7 D B :
= ZE(J’F) d—itatl 10n,i-1([F\J])

e T (zr\s)
B (i w . ' Td_i+a+1($F\j) .
= JGZF (.77F)Td z+a+1(xF\J) keZF\j (k,F\j)Td,iJraJrQ(xF\j\k)[F\]\k]
= S < el F\j) e )\

JEF KEF\j T2 (@ k)

| . . =i (g ) ,

_ j%F (6 F)eth, ) + ks F)e(G F\R) ) sy — P\

Jj#k

and it is a standard fact of simplicial homology theory that the parenthesized expression is zero. [

Define the algebraic finely weighted up-down, down-up, and total Laplacians by
A P =0a z+18A Jit1o LdAu,i = B*A,z'aA,ia Lmt de,i + LdAu,z

Each of these is a linear endomorphism of C;(A), represented by a symmetric matrix, hence diag-
onalizable. Let s{?(A), sf*(A), and s[°’(A) denote the spectra (multisets of eigenvalues) of LAY,

L}, and LR respectively. We will use the abbreviations L', L4, Lt sud g% s when no
confusion can arise.
If we regard L‘Ad 41 as a matrix with rows and columns indexed by Ag4_1, then it is not hard to

check that its (F, G) entry is

) ) Xu . )
H H ——— i{H=FUj=GU A
e(j, H) e(i, H) or i | J i €A,
W, Jre={ vy Xy it F =G, (29)
j: Fujea 1XF
0 otherwise.

This matrix is almost identical to the matrix N(X) defined in (23) when A = del, ¥, as we now
explain.

Lemma 6.3. Let X¢ be a pure shifted complex with initial vertex p, and let A = link, ¥ and
A =del, X. Then

) = ] 1xr| JI Kup+.

d
FeAg_1 Aesy?,

Proof. First, note that L = L‘Ed_l is indexed by the faces of Ay—; and N = N(X) is indexed by
the faces of Ag_1. These indexing sets coincide because 3 is shifted and pure of dimension d.
Second, we show that the off-diagonal entries (the first cases in 23) and @9)) coincide. Suppose
that F, G are distinct faces in Ay_1 = Ay_1, and that H = F Ui = G U j. Suppose that i # j and
H =FUi=GUj. We must show that H € A if and only if H € ¥. The “only if” direction is
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immediate because A C 3. On the other hand, H = F U G and no element of A;_; contains p.
Therefore, if H € 33, then H € A, as desired.

Third, we compare the entries on the main diagonals of L and N. Their only difference is that
the summand with j = p occurs in the second case of ([Z3)), but not in ([Z9). Hence

XFUp
1Xr

by ([A0). Therefore N = L + X, ,,I, where I is an identity matrix of size f4_1(A), and

Nrpr = Lpp + = Lrr+ X1, (30)

det N = x(-L, X3 ,) = H (X1,p +2),

ud
)‘GSA,d—l

where x denotes the characteristic polynomial of —L in the variable X; ,. The lemma now follows
from equation (24)). O

The goal of the next two sections is to compute L‘id’d_l.

7. CONES AND NEAR-CONES

A shifted complex is an iterated near-cone, so we want to describe the Laplacian eigenvalues of a
near-cone in terms of its base. Before we do so, we must consider the case of a cone. Proposition [
provides the desired recurrence for cones, and Proposition [ for near-cones.

7.1. Boundary and coboundary operators of cones. Let I' be the simplicial complex with the
single vertex 1, and let A% be any complex on V = [2,n]. For a face F € A, write F' = 1U F. The
corresponding cone is

Y=1xA=TxA={FF: FeAl.
We will make use of the identification
Ci(Z) =2 (C1(T) @ Ci(A) & (Co(T) @ Ci—1(A)).

By @) and E3), the (raised) boundary and coboundary maps on I" are given explicitly by

19r[1] = ay1,1[0], 19r[1] =0,
1°9r[0] = 0, 1907 (0] = way1,1[1].

Next, we give explicit formulas for the maps 05 ; and 8*271- +1. How these maps act on a face of

¥ depends on whether it is of the form F, for F' € A;, or F, for F € A;_;. Note that in any case
e(1,F) =1, and that for all v € F we have ¢(v, F) = —¢(v, F'). Therefore,

‘ - ] TdfiJrl(IF) '
dxi([0 @ [F]) = ZE(LF)de,M( 0] & [F\s]

_ . 19z p) .
=1 D=0, F) st @ [P\

= (id® 10a,:)([0] ® [F]), (31a)
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o pd—itl (g _ =ity
ds..([1] ® [F]) = <(1. F)Lﬁggggg[m o [F) + Y <0, F)TZT&F%[H ® [F\j]

JEF
Td—i+2,1 19712 (2 )

Tq_itsn 1973 (zp ;)

=Ta—it21[0] ® [F] — Zf(jv F) (1] @ [F\j]

JEF
B _ _ Td—it2,1 . 14 (2 p) .
= ZTa—ity2.1[0] ® [F] Ta_iral 7 ;E(Ja F) Td—i+2(xF—\j) [1] @ [F'\j]
- (Td”lar o id —Td=iH2 1 o Taml> (] @ [F)), (31b)
Td—i+3,1
0% (W) @ [F) = (1, ) @8 1 () Y o, pU I Er) gy oy
¥,i+1 A () S ’ 1d=it1(zp)
B _ . . Td_i_l(UCFuj) .
=Tq—ir1,1[1] ® [F]+ 1 Z E(JaFU])de,i(I ) [0] @ [F U]
JEV\F F
= (1"70F @id +id® 103 441 ) (0] @ [F)). (31¢)
* . R Td_i(xﬁuj) )
05 ([ @ [F]) = Z E(JvFUJ)Wm ® [F U j]
JEV\F Fuj

_ , L 1@ g) 1T @ey) .
= —je;\Fs(j,F U'])Td_i+1($1,l) Td—i+2(xF; 1] ® [FUj]

e o 5~ g py IR gy

Td—i+2,1 JEVF Td7i+1($F)
_ (_M e Taz,i) (1] ® [F). (314)
Td—i+2,1

7.2. Eigenvectors of cones. In order to describe the Laplacian eigenvalues and eigenvectors of
1% A in terms of those of A, we first need some basic facts about the Laplacians of an arbitrary
simplicial complex. The following proposition does not depend on fine weighting, and works with
any weighted boundary map that satisfies 6% = 0.

Proposition 7.1. Let Q% be a simplicial complex, and let —1 <1i < d. Let L} = L?zl,iw Lu = Lsdzl,li;
8; = 0q,, and 8] = 8¢, ;.
(1) The chain gmup1 C;(Q) decomposes as a direct sum
Ci(Q) = C(Q) & C(Q) & CY(Q) (32)
where

o C'(Q) has a basis consisting of eigenvectors of Li¢ whose eigenvalues are all nonzero,
and on which LI acts by zero;
o C3(Q) has a basis consisting of eigenvectors of LI whose eigenvalues are all nonzero,
and on which LYY acts by zero; and
o LU and LI both act by zero on C?().
(2) ker(Ly) =ker(8;, ) and ker(L{") = ker(8;).
(3) dim C%(Q) = 5;(R), the i*" Betti number of Q.
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(4) Each of the spectra s¥?, sd“, slot of Q has cardinality f;(Q) as a multiset, and

7 0
du ©° _ud
si =s . and (33a)

[e] [e]
stot Z gud ygdu 2 gud ygud | (33b)

Proof. For assertion (1), note that LYL{" = 89*8*@ = 0 and L{"Li¢ = 8*999* = 0. Thus
we may simply take C1'4(Q) and C&"(€2) to be the spans of the eigenvectors of L9 and L{" with
nonzero eigenvalues.

For assertion (2), the operators L{4 and 8} 41 act on the same space, namely C;(£2), and they
have the same rank (this is just the linear algebra fact that rank(M M7) = rank M for any matrix
M). Therefore, their kernels have the same dimension. Clearly ker(Li?) D ker(9; 1), SO we must
have equality. The same argument shows that ker(L{") = ker(8;).

Assertion (3) follows from the calculation

Gi(Q) = dim H;(Q,Q) = (dim ker 8;) — (dim im ;1)
= (f; —rank 8;) — (rank 8;41)
=dim C; — dim C} — dim Cf* = dim C?.
For assertion (4), first note that dim C;(Q2) = f;(2), and that the matrix representing each

spectrum is symmetric, hence diagonalizable. The identity ([B3al) is a standard fact in linear algebra,
and (B3D) is a consequence of the decomposition (B2). O

Proposition 7.2. As in Section [T]], let A4 be a simplicial complex on vertex set [2,n], and let
Y =1xA. Then
S?d(z) = {Xd—i+1,1+ TA: A€ S?d(A), A# 0}
X u
U {Xdz'+1,1 + % Tu: pesid (D), p# 0} (34)
d—i+2,1
U {dei%'l,l}ﬁi(A) )
Here the symbol U denotes multiset union, and the superscript in the last line indicates multi-

plicity.

Proof. Throughout the proof, we abbreviate L%‘?i by L. All other Laplacians that arise will be
specified precisely.

First, let V € C*(A) be an eigenvector of L‘id’i with eigenvalue A # 0. Then TL“Ad)i(TV) =TA 1V,
and, by Lemma [G2

198,(1V) = 75 1084 198,441(103 114(1V) = 0. (35)
Using (B13). . . @Id) and BH), we calculate
L([0]® 1V) = 8x,:(8% ;([0]® 1V))
=0z, (197701 0]@ 1V + [0]@ 104 111 (1V))
= 2a-i+1,105,i41 (@ V) + 85511 (0@ 104 141 (1V))

= Td—i+1,1 <Td_iar[1]® v - M[l]@ TaA,i(TV)>
Td—i42,1

+ [0]® 10a,i+1(10A ;11 (1V))
= (Xg—it1.1+ ) (]2 V). (36)

Therefore, [)]@ 1V € C;(X) is an eigenvector of L, with eigenvalue X4_;+1,1+ TA. Notice that this
eigenvalue cannot be zero: since 1 ¢ A, no Laplacian eigenvalue of A can possibly equal —Xg_; 1.
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Second, let W be an eigenvector in C{"(A) with nonzero eigenvalue p. That is, LY (W) =
Op(0ni(W)) = puW, and O ;1 (W) = 0 by a computation similar to (B5). Define
A= 1W,  B=[1]®10r:(1W).
Note that these are both nonzero elements of C;(X). Then
L(A) = 85,41 (05,1 ([0]@ TW))
= i1 (17" OF 0] TW + [0]@ 104 1, (1W)

= Z4—i+1,10%,i+1 ([1]® TW) (37a)
) Ta—i
= Td—it1,1 (Td_zar[l]@) W — 4Ll [1]® TaA,i(TW)>
Td—i+2,1
= Xg_it11A— (M) B (37b)
Td—i+2,1

and

L(B) = 8s,i+1 (85,11 ([1]® 104,:(1W)))

P (—Mmé@ Taz,maa,mwn)

Td—i+2,1

Tg—i
= SEHLL g 85 (1)@ W)
Td—i+2,1

Xa—i Xa—i
(i) g (R )
Td—it2,1 d—i+2,1
where the last step follows by the equality of ([BZal) and BZH). Letting

- X1 b Tw

[ =Xa—it1,1, 9= ; P um—
Td—i+2,1 Td—i+2,1
the calculations above say that
L(A) = fA+gB,  L(B)=h(fA+gB),
which implies that
L(fA+gB) = fL(A) + gL(B) = f(fA+gB) + gh(fA+gB) = (f + gh)(f A+ gB).
That is, fA + ¢gB is an eigenvector of L with eigenvalue
Xa—i
J+gh=Xiiv11+ % Tn.
d—i+2,1
As before, this quantity cannot be zero because A does not contain the vertex 1.
Third, let Z € C?(A); we will show that [)]® 1Z is an eigenvector of L with eigenvalue X4 ;411
Indeed, by @) of Proposition [LT], we have da i(Z) = 7 ;,1(Z) =0, so that
104,i(12) =104 41(12) = 0.
Therefore
L(0]® 1Z) = 05,i+1(05 111 (0@ 12))
= 5,11 (1777 0L[0)® 12) + (0] 104 411(12))
= 24-i1110%,i11(1]® 12)

= Td—i+1,1" (Tdiar[l]@) 12 - %[1]@) TBA,i(TZ)>
d—i+2

= Xd—i-i—l,l([@]@ TZ), (38)
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as desired. By assertion (@) of Proposition [ZJ] the multiplicity of this eigenvalue is dim C?(A) =
Bi(A).

At this point, we have proven that @) is true if “27 ig replaced with “2”. On the other hand,
we have accounted for

dim C'(A) 4 dim C(A) 4+ dim C2(A) = dim C;(A) = f;(A)

nonzero eigenvalues in s!?(¥). Since the preceding calculations hold for all 4, we also know f;_1(A)

nonzero eigenvalues of LY, | (= L{%). By @B3H), we have accounted for all f;(A) + fi—1(A) =
fi(X) = dim C;(X) eigenvalues of LS. So we have indeed found all the nonzero eigenvalues of L. [

One can obtain explicit formulas for the spectra s¢*(X) and si°*(X) by applying [@3al) and ([B3H)
to the formula B4)); we omit the details.

7.3. Eigenvalues of near-cones. The next step is to establish a recurrence (Proposition [CH) for
the Laplacian eigenvalues of near-cones, in terms of the eigenvalues of the deletion and the link of the
apex. Our method is based on that of Lemma 5.3 of [T3]. By itself, Proposition [ is not a proper
recurrence, in the sense that it computes the eigenvalues of a pure complex in terms of complexes
that are not necessarily pure. Therefore, it cannot be applied recursively; the proper recurrence for
shifted complexes will have to wait until Theorem Since we will be comparing complexes with
similar face sets but of different dimensions, we begin by describing how their Laplacian spectra are
related.

Lemma 7.3. Let $¢ be a simplicial complex, and let j < i < d. Then si*(X) =17""s44(3;)).

Proof. The complexes ¥(;y and X have the same face sets for every dimension < i, but dim ;) =
dim ¥ — (d — 7). Therefore, the algebraic finely weighted boundary maps and Laplacians of ¥ can
be obtained from those of ;) by applying 19=% from which the lemma follows. O

Recall that the pure i-skeleton of X is the subcomplex ¥(; generated by the i-dimensional faces
of 3.

Lemma 7.4. Let £¢ be a simplicial complex. Then sie, () = s4?, (Z4).

Proof. This result is proved in [I2, Lemma 3.2], but we sketch the proof here for completeness. First,
observe that L34, depends only on (d — 1)- and d-dimensional faces. Letting Q = Y4, we have
Qg = X4 and Qg_1 C X4_1, and indeed L%‘?d_l[F] = L‘é‘?d_l[F] for any F' € Q4_1. On the other
hand, ¥4_1\Q4_1 consists precisely of those faces G not contained in any d-dimensional faces of X.
But L]iidq acts by zero on any such G, and the lemma follows immediately. O

Corollary 7.5. Let ¢ be a simplicial complex. Then si?,(X) = Td’isfﬁll(E[ﬂ).

Proof. We have s, (2) = 17781, () = 1771, ((S6)p) = 19781 () by Lemmas
and [l (Note that (E(i))[i] = Em.) ]

Proposition 7.6. Let X% be a pure near-cone with apex p, and let A = del, ¥ and A = link, ¥ be
the deletion and link, respectively, of ¥ with respect to vertex p. Then

syt () Z{ X1y + A A eyt (A), A#£0}

X
u {Xl,p + Xl’p Tu: p € 4y (), p# 0}
2,p

U{Xppfe )
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Proof. If 3 is a cone, then the result follows from direct application of Proposition (Note that
s4d (A) consists of only 0’s in this case, since A is only (d — 1)-dimensional.) Thus, we may as
well assume for the remainder of the proof that ¥ is not a cone. In this case, dimA = d and
dim A =d — 1. It is not difficult to see that

A(d—l) = A, and (39)
L@y =2 =(p*A)a. (40)

Applying Lemma [Z3 to equation @) (keeping in mind that dim(p* A) = d+ 1), and then applying
Proposition [A we find that

15421 (2) = s, (px A)
Z{Xop+ A A €si? (A), X #0}

X
U {Xg,p + XQ”’ s pesiy(A), p# 0}
3,p

U {XZP}éd—l(A)

o

so that
syt (D) = {X1p + A A esyh (A), A£0}
U {Xl,p + 22” pesily(D), n# 0}
U {Xl)p}ﬁdfl(A) '
The desired result now follows from applying Lemma to equation (BY). O

8. THE LAPLACIAN SPECTRUM OF A SHIFTED COMPLEX

In this section, we explicitly describe the eigenvalues of the algebraic finely weighted Laplacians
of a shifted complex ¥. The eigenvalues are Laurent polynomials called z-polynomials, which are
in one-to-one correspondence with the critical pairs of the complex: pairs (A, B) such that A € ¥,
B ¢ %, and B covers A in the componentwise partial order. The main result, Theorem [CH is
proved by establishing identical recurrences for the z-polynomials (Theorem BZ) and critical pairs

(Corollary BS).

8.1. z-polynomials. Let S and T be multisets of integers. Define a Laurent polynomial z(S,T') by
the formula

1
S, T)=— Xsuj 41
2(5,7) = 7= D Xsui, (41)
JET
where as usual the symbol U denotes multiset union. An example was given at the end of Exam-

ple

Proposition 8.1. Let d > i be integers, and let S,T be sets of integers greater than p. Then

Xd7i+1,p+ Tdiiz(sv T) = Tdiiz(sa T) (42)
and
Xa—i i —i (&
Xd_i+1,p+%ﬁ (S, T) = 192(8,T) (43)
d—i+2,p

where S =S U {p} and T = T U {p}.
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Proof. We will use the identity ([[3al) repeatedly in the calculations. For [@2), observe that
—q 1 —1
Xa—it1,pt T 2(8,T) = Xa—iy1,p + AT Z 14 Xsuj
[ Xs JET
1 —i —i
= 7d—z+l Xd*’i“rl,p' Td J1’1)(5 + Z Td XSUJ
f Xs jeT
1 g I
= X *Xsus
Td—z+1XS T S +; T SuUj
1 d—i
= Td—itlxg Z 177" Xsu;
JET
:Tdiiz(sv T)a
and for [{3), observe that
Xd—it1p rd—it1 Xa—it1,p d—it1
Xi—iv1p+ — 21 (ST) = Xg—iv1p + = 19 X gy,
+1,p Xd7i+2,p ( ) +1,p Xd7i+2,p' Td,ZJrQXS ; Uj
Xd—it1, d—i
= Xd7i+1,p =+ le)(:; Z T +1X5Uj
JET
1 —i —i
— 7Td—i+lX~ Xd,i+17p. Td JFIXS« + Z Xd,iJer, Td +1XSUj
s JET
1 d—i d—i
= w11 w22 11 Xy,
=X 4
JeET
1 d—i
T ity Z T X5,
S jer
:Tdiiz(gv T)
O

Theorem 8.2. Let %4 be a shifted simplicial complex. Then every nonzero eigenvalue of s¥? ()

has the form of a z-polynomial. Moreover, the spectrum syfl(E) is determined recursively as follows.
If XX has no vertices, then s, (%) has no nonzero elements.

Otherwise,

sud (%) 2 {Td—iz(s, T): 0#2(S,T) € si‘iil(A)}

u {Td—iz(S,T); 0#2(5,T) € syﬁg(A)} u {Td—iz(@,@)}éi’l(m

where p is the initial vertex of ¥;); S=SU D; T=TU p; A = del, ¥p;); and A = link, 3.

Proof. The proof is by induction on the number of vertices of ¥. When ¥ has no vertices, ¥ is either

the empty complex with no faces, or the trivial complex whose only face is the empty face. In either
case s, (¥) has no nonzero elements.
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We now assume that ¥ has at least one vertex. Then

s (Zp) = {X1p + A A €81 (A), A#£0}

X
. {lep + 2 T we st (A), p# 0}
2,p

U {le + O}Bi—l(A)
={X1,+2(5,T): 2(S,T) € st (A), 2(S,T) #0}

U {Xl,p + %2(5, T): 2(S,T) € sty (A), 2(S,T) # 0}

2,p

U {X1,p + 2(0,0)}7 @)
= {a(s.T): 04 2(5.1) e sty (a))

U {z(é, T): 0 # 2(S,T) € s;.ﬁg(A)}

U {z@,@)}ﬁ“w.

The =-equivalence above is by Proposition LA The following equality is justified by the identity
z(0,0) = 0 and induction on the number of vertices, since A and A each have one fewer vertex than
3. Note that A and p are each replaced by z(S,T), with no raising operator, because dim A < ¢
and dimA = ¢ — 1. The final equality comes from Proposition The result now follows from
Corollary [CH O

8.2. Critical pairs. Throughout this section, let F be a k-family of sets of integers, and let p be
the smallest integer occurring in any element of F.

Definition 8.3. A critical pair for F is an ordered pair (A, B), where A = {a; < a2 < --- < a}
and B = {b; < by < --- < by} are sets of integers such that A € F, B ¢ F, and B covers
A in componentwise order. That is, b; = a; + 1 for exactly one i, and b; = a; for all j # i.
(Note that b; need not be in the vertex set of F.) The signature of (A, B) is the set of vertices
o(A,B) ={a1,...,a,—1,a;}. The long signature is the ordered pair of sets (A, B) = (S,T'), where
S=Aa1,...,a;—1} and T = {j: p < j < a;}. The multisets of signatures and long signatures of
critical pairs of F are denoted o(F) and 7 (F) respectively.

As described in the Introduction and Example [[7 critical pairs are especially significant for
shifted simplicial complexes. We will soon see that the critical pairs of a shifted complex are in
bijection with the eigenvalues of its algebraic finely weighted Laplacian.

Definition 8.4. The degree of vertex v in the family F is degz(v) = |[{F € F: v € F}|.

Proposition 8.5. Let F be a shifted family. Then degr(v) — degr(v + 1) counts the number of
signatures of F whose greatest element is v.

Proof. Let S ={F € F:ve Ftand T = {F € F: v+ 1 € F}. Partition S = S;US2US; and
T =T, UTy UTy as follows:

Si={FeF:v,v+1€F},
So={FeF:veF,v+1¢F, F\{v}U{v+1}eF},
Sz3={FeF:veF, v+1¢F, F\{v}U{v+1} ¢ F},

Tn={FeF:v,v+1€F},
Th={FeF:vgF,v+1eF, F\{v+1}U{v} e F},
Ts={FeF:vgF,v+1eF, F\{fv+1}U{v} & F}.
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Then S; = T4, and there is an obvious bijection between S and T5. Since F is shifted, T3 = 0, so
deg-(v) — deg (v +1) = |S] — T| = [S%].

Finally, if F € S3, then (F,G) is a critical pair, where G = F\{v}U{v + 1}. For each such
critical pair, the greatest element of the signature is v. Conversely, if (4, B) is a critical pair whose
signature’s greatest element is v, then A € Ss. 0

Corollary 8.6. Let X7 be a pure shifted simplicial complex with initial vertex p. Then degy,, (p) —
degy,(p+ 1) = Ba—1(del, X).
Proof. Just as in the proof of Proposition B3 above,

degy, (p) — degy, (p+ 1) = [Ss],
where
Ss={FeXgy:peF, p+1&F, F\{p}U{p+1} &34}

There is a bijection between S3 and the set
Sy ={Gedel,X)g_1:p+1€G, GU{p+1} &del, X}
given by G = F\{p}. Then, by equation (I8),
Fa-1(del, ) = |55-
Combining the four displayed equations yields the desired result. 0

Proposition 8.7. Let ¥ be a shifted complex with initial vertex p. Let A = del, ¥ and A = link, 3.
Then

7(2;) = o(A) U{pUF: F € a(Ai_y)} U {p}ioes: @) —deas, (041),

where U denotes multiset union.

Proof. The multiplicity of the signature {p} follows from Proposition B3

Suppose that A € A;, B ¢ A;, and B covers A in the componentwise partial order. Then A € ¥;
and p ¢ A. Since p ¢ A and A < B, we conclude that p ¢ B, and so B ¢€ ;. Hence we have a
one-to-one map of multisets

o(A;) = o(%;).

On the other hand, suppose that A € A;_1, B ¢ A;_1, and B covers A in the componentwise
partial order. Then p & A and A = AU {p} € Z;. The critical pair (A, B) of A;_; gives rise to the
critical pair (A, B) of ¥, and it is clear that o(A, B) = o(A, B) U {p}. Furthermore, B ¢ ¥; because
B ¢ A;_1. Hence we have a one-to-one map of multisets

{pUF F e U(Aifl)} — 0’(21)

Now we must show, conversely, that every signature F' # {p} of ¥, arises in one of these two
ways. Let F' be such a signature of ¥;, with critical pair (4,B). So A € ¥;; B¢ X, (so B & A));
and B covers A in the componentwise partial order.

First, if p ¢ F, then p ¢ A and so A € A;. Thus (4, B) is a critical pair for A;.

Second, if p € F, then F = F'U{p} for some F’ # (. In this case, we have p € A and p € B for
the critical pair (A, B) whose signature is F'. Indeed, p € F directly implies that p € A. If p & B,
then F' = o(A,B) = {p}. Accordingly, let A’ = A\{p} and B’ = B\{p}. Then A’ € A;_; and
B¢3%;,s0 B ¢&A;_1,and (A, B) is a critical pair for A;_;. |

Corollary 8.8. Let X¢ be a shifted simplicial complex, and let i < d. Then the multiset a(%;) is
determined by the following recurrence.
If 3 has no vertices, then 5(%;) = 0.
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Otherwise,
a(Ai-1)} (45)

where p is the initial vertex of 3;; S=SUp; T=TUp; A= del, ¥p;); and A = link, ;).

Proof. If 0(A, B) = {p}, then (A, B) = (0,{p}) = (0,0). So the third term in (Z) arises from
applying Corollary B8 to the pure i-dimensional shifted complex X;;. (Indeed, X is shifted when
¥ is, or even just when ¥; is.)

For the first two terms in ([@H), the only hard part is to note that if the first vertex of ¥; is p,
then p+ 1 is the first vertex of A; and A;_1 (unless A; = (), but in that case we don’t have to worry
about the first set). This accounts for the 7.

Even though Proposition above defines A and A somewhat differently than here, it is not a
problem because (del, X); = (del, X;); and (link, ¥); 1 = (link, ¥f;7);—1. Then, since A and A only
appear as A; and A;_1, it doesn’t matter whether we set them to be the deletion and link of 3 or
of Em. O

8.3. Theorem and its consequences. We can finally prove Theorem [[3 which characterizes
the Laplacian spectra s?ﬁll (¥) in terms of z-polynomials of critical pairs. In the notation we have

developed, the theorem can be restated as follows:
Theorem 1.5. Let 2% be a shifted simplicial complex. Then, for each 0 < i < d,

514, (2) 2 17 1{=(8,T): (S,T) € 5(54)}. (46)
Proof. Simply note that the recursions in Theorem B2 and Corollary are identical. ]

One corollary to Theorem [[His that you can “hear the shape” of a shifted complex (Corollary B0,
but only if your ears are fine enough (Remark BTTI).

Corollary 8.9. A shifted complex =% is completely determined by its spectra {s®4,(2)}4_,.

Proof. By Theorem [[H the spectra {s*¢,(¥)}¢ , determine the z-polynomials z(S,T), and it is
easy to see that the long signature (S,T") can be recovered from z(S,T). Furthermore the (short)
signature is even more easily recovered from the long signature. When F = {v; < ... < v;} is a face
of ¥ that is <-maximal, then (F, F\{v;}U{v;+1}) is a critical pair, with (short) signature F. Thus,
among all the (short) signatures of ¥, we will find all <-maximal faces. Furthermore, every (short)
signature is a face of ¥, by definition. Thus, the union Upc,(s){G: G < F'} of all <-order ideals
will yield all the non-empty faces of X. O

In fact, if X% is a pure shifted complex, then it is determined uniquely by its top Laplacian
spectrum s4%, ().

Specializing (or “coarsening”) the algebraic fine weighting, we obtain as another corollary to
Theorem Duval and Reiner’s description of the unweighted Laplacian eigenvalues of a shifted
complex [[3, Thm. 1.1], as we now explain.

The coarse weighting is obtained from the algebraic fine weighting by omitting all first subscripts,
i.e., replacing z; ; = z; and X;; = X;. (Thus the monomial corresponding to a facet or set of
facets records the degree of each vertex, but forgets the information about the order of vertices in
facets.) Note that if T = [1,t], then every z-polynomial z(S,T) specializes to the linear form E; =
X1+ -+ X; in the coarse weighting.

For a partition A (a weakly decreasing list of positive integers), let Ey be the multiset in which
each part 7 of )\ is replaced by F;. Recall that the conjugate of X is the partition X in which each
part ¢t occurs with multiplicity Ay — A¢41.
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Corollary 8.10. Let %4 be a shifted simplicial complex on vertices [n]. Then

[e]

§gd—1(2) = E(degzd)’

where the left-hand side denotes the multiset of coarsely weighted Laplacian eigenvalues, and the
right-hand side is the conjugate of the partition (degy (1),...,degy,(n)).

Proof. Theorem [[H and the preceding discussion imply that 4% (%) is =-equivalent to the multiset
in which E} occurs with multiplicity equal to the number of critical pairs (A, B) of ¥, such that
t = maxo(A, B). By Proposition B3 that multiplicity is degy,  (t) — degy, (¢ + 1). The result now
follows from the definition of conjugate partition. 0

Passing to the unweighted setting by setting x; = 1 for all ¢ recovers the theorem of Duval and
Reiner [I3, Thm. 1.1], which states that the Laplacian eigenvalues of a shifted complex ¥ are given
by the conjugate of the partition degy, .

Remark 8.11. Duval and Reiner also showed [I3, Example 10.2] that there are two non-isomorphic
2-dimensional shifted complexes with the same degree sequence. Corollary B0 then shows that, in
contrast to Corollary BT the coarsely-weighted eigenvalues are not enough to determine a shifted
complex.

8.4. An example: the equatorial bipyramid. To illustrate Theorems and [CH we calculate
the top-dimensional up-down Laplacian spectrum of the bipyramid B = (235) (see Examples [ B
and BZ). In our recursive calculation, we will encounter the subcomplexes Bs,...,B; of B = By
shown in the following figure, and Bg, the simplicial complex whose only face is the empty face.

4
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= §
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7 1 5 5@
5 5
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Observe that

e B is a near-cone with apex 1, dely By = Bs, and linky B; = Bs;

[ Bg =2 B4;

e B3 is a near-cone with apex 2, dels Bs = By, and links B = Bs;

[ ] B4 = 3 * Bg;

e Bs is a near-cone with apex 3, dels Bs = Bg, and links Bs = Bs;

e B is a near-cone with apex 4, dely Bg = Bz, and linky Bg = Bg; and
[ B7 =5 Bg.

The critical pairs, signatures, and nonzero top-dimensional Laplacian eigenvalues of the bipyramid
B = B; and its subcomplexes Bs, ..., By are listed in the following table. This information can be
obtained either recursively (using Theorem repeatedly) or bijectively (from Theorem [[CH).
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Subcomplex Dimension Vertices Critical pairs Signatures Eigenvalues
By 0 {5} (5,6) 5 z(0,5)
Bg 0 {4,5} (5,6) 5 z(0,45)
Bs 0 {3,4,5} (5,6) 5 2(0,345)
By 1 {3,4,5} (35,45) 3 z(0,3)

(35,36) 35 2(3,345)
B3 1 {2,3,4,5} (25, 26) 25 2(2,2345)
(35,36) 35 z(3,2345)
(35,45) 3 z(10,23)
By 2 {2,3,4,5} (235,236) 235 2(23,2345)
(235,245) 23 2(2,23)
By 2 {1,2,3,4,5}  (125,126) 125 2(12,12345)
(135,136) 135 2(13,12345)
(135,145) 13 z(1,123)
(235,236) 235 2(23,12345)
(235,245) 23 2(2,123)

We also see from the above table that the coarsely-weighted eigenvalues (B ) are Z_equivalent
to Es, Es5, E5, F3, B3 (each E5 coming from a z(S,12345) in By, and each F3 coming from a z(.S, 123)
in Bj), corresponding to the transpose of the degreee sequence of the facets, 55533. (In this case,
both the degree sequence and its transpose are 55533.)

9. ENUMERATING SPANNING TREES OF SHIFTED COMPLEXES

We now translate Theorem [[H from the algebraic to the combinatorial fine weighting, in order to
obtain a factorization of the finely weighted spanning tree enumerator 7(X) of a shifted complex X.

Recall that the long signature 5(F) of a family F is the multiset of long signatures of its critical
pairs.

Theorem 1.6. Let 2% be a shifted complex with initial vertex p. Then:

A 2(8,T)
= [ Xz I (47)
FENg_, (S,T)€5(A4) P
> ier Xsuj
FEAg_1 (S,T)e5(A) o

where F = FUp, A = del, ¥, and A = link, .

Proof. Since the complex 3 is APC, its spanning trees are precisely those of its pure d-skeleton ¥ 4.
Similarly, passing from 3 to X5 does not affect Ay or Ag—1. Therefore, we may assume without
loss of generality that X is pure.

By Lemma and Theorem [ we have

@)= [[ 1xr II xp+281) ) X7,
Féelink, (S, T)€5(Aq)

where m is the number of zero eigenvalues of L“Ad)d_l. Since L“A‘fd_l acts on Agy_1, but has (Ay)
nonzero eigenvalues (including multiplicity), m = |Ag—1| — |6(Aq)| = |[Ad—1| — |6(Agq-1)], since
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Ag—1 = Ag—1 by equation (BY). Thus,

@ =x500 T axe) | x 7@ [T Xu+zs1)
FeAg1 (S,T)ea(Aq)
Xy, +2(5,T
= H (X1p TXF) H —LPX ( )-
FEAq_ (S, T)E5(Aq) Lp
d—1 ) d

Equation ) now follows from equations ([[Ja) and [Z). Equation [{EF)) then follows from the
definition of z-polynomial {Il) and from ([[Jal) again, because

2(S,T) 1 Djer Xsuj D jer Xsuj

X1,  Xip 1Xs Xg

O

Example 9.1. We return to our running example, the equatorial bipyramid B. Here d = 2 and
p = 1, and in the notation of Section B4l we have A = By and A = Bs. Moreover, 6(Ay) =
{(2,23), (23,2345)}. Hence equation [{J) yields

X192 + Xoo + X23) (X123 + X923 + Xo33 + Xozq + X235>
X12 X123 '

7(B) = X123 X124 X134 X125 X135 (

Note that this is a genuine polynomial (not just a Laurent polynomial) in the indeterminates X ;.

Corollary 9.2. Let Y4 be a shifted complex with initial vertex 1. Let A = del; &, A = 1 % A,
A =1link; ¥, and A =1« A. Then, in the coarse weighting,

;_d(z) _ Xdcgf\d H(Ei/Xl)(ngAd+1)2’

K2

where B; = X1+ -+ X; and, for a partition X\, we set XA = ]_[Z XZ)‘

Proof. Upon coarsening the weighting, the first product in ([E8) becomes X degAa and the second
product becomes

et Xj
H % = H E‘TH—l/Xl'
(S,T)€5(Aq) ! (8,T)ea(Aa)

We now claim that

Il Era/xi= ] Exn/Xu

(8,T7)€5(Aq) (S,T)€5(Adt1)
Indeed, by Proposition B,

o(Agi1) ={1UF: Fea(Ag)}uU{1}™
for some m, since A = link; (A) and dim(del;(A)) = dim A < d + 1. It now follows that
[I Bexi= I Eep/xoE/x)m,
(8,T)e5(Agy1) (8,T)e5(Aa)
implying the claim. Finally, by Proposition B and the definition of conjugate partition, we obtain

H E|T|/X1 _ H(Et/Xl)dchd+l(t)*ngAdJrl(tnLl) _ H(Ei/Xl)(degACHl)é'
(8,1)€5(Aut1) ¢ i
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Example 9.3. Once again, let B be the equatorial bipyramid. Here Ay = {123,124,125,134,135}.
TIts degree sequence is 53322. Thus the monomial factor in Corollary 2 is

X123 X124 X125 X134 X135 = X7 XFXIXT X2

Meanwhile, Agy; = {1234,1235}. Its degree sequence is 22211, with conjugate 53. The product
factor in Corollary @2 is therefore

(E5/X1)(Es/X1) = (X1 + Xo 4+ X3+ Xg 4+ X5) (X1 + Xo + X3)/ X7
Putting these terms together yields

7a(8) = XPXEXSXIX2(X1 + Xo + X3+ Xy + X5) (X1 + Xo + X3)
which matches Example

10. COROLLARIES
We conclude by showing how several known tree enumerators—for skeletons of simplices, threshold

graphs, and Ferrers graphs—can be recovered from our results.

10.1. Skeletons of simplices. Let ¥ be the d-skeleton of the simplex on vertices [n], so that the

set of facets of ¥ is ( d[_’ﬂl), the set of all subsets of [n] of cardinality d + 1. Note that ¥ is generated

as a shifted complex by the single facet [n — d, n]. The critical pairs of ¥ are

{(Au{n}, Au{n+1}): A€ <[n;1]>}

and the corresponding long signatures are

oz = {a i ae (M)}

Setting A = link; ¥ and A = del; ¥, we have

Ag—1 = ([2,dn])7
2= ()
F(Ag) = {(B, 2,n]): B € <[2’”d_ ”) } .

Applying equation (X)), we obtain

. > i1 XBuUj
aE = I Xe II —x,
cC[2.m] BC[2,n—1]
|C|=d |B|=d
The denominators in the second product cancel the factors X in the first product with n o4 C’,
leaving only those for which n € C. Therefore,

a2 = ] Xe I > xsy =| J] Xc I =B
CCin]

CcCl2,n] BC[2,n—1] j=1 c BC[2,n—1]
neC |B|=d 1,n€C |B|=d
IC|=d |C|=d+1
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Passing to the coarse weighting by setting X; ; = X; for every i, j, we obtain
%d(z) _ ((Xan)(Z:f) (X2 . Xn—l)(3:3)> ((X2 .. Xn—l)(gif) (Xl 4+t Xn)(WLJQ))
= (X1 X)) (x4 4 x,) (),

which is Theorem 3’ of Kalai’s paper [20]. Furthermore, setting X; = 1 for all ¢ recovers Kalai’s

generalization of Cayley’s formula: 74(2) = n("a%).

10.2. Threshold graphs. A threshold graph is a one-dimensional shifted complex . For simplicity,
we assume that the vertex set of ¥ is [1,n]. We may also assume that ¥ is connected, so that
every vertex is adjacent to vertex 1. Martin and Reiner [27, Theorem 4] found a factorization of the
combinatorially finely weighted spanning tree enumerator of 3, which may be stated in our notatiorf]

as:
n—1 (ng E);

) =Xpmy [[ D) Xy (49)
v=2 j=1

A somewhat more general result was obtained independently by Remmel and Williamson [31], The-
orem 2.4]. We will show how this formula can be recovered from Theorem [[H

The first product in equation ) is just Xy 23 X(1,3y -+ X{1,n}. For the second product, we
must identify the critical pairs of A = del; ¥.. Note that A is a threshold graph with vertices [2, n].

As is often the case with threshold graphs (and their degree sequences, which we will soon en-
counter), we need to sort vertices by their relation to the size of the Durfee square of X, the largest
square that fits in the Ferrers diagram of its degree sequence. The side length m of the Durfee square
is the largest number such that {m, m + 1} is an edge of ¥. If m = 1, then ¥ is a star graph, the
Ferrers diagram of its degree sequence is a hook, and equations HE&) and ) both easily reduce to

Ta(X) = H X{1,0}-
v=2

Therefore, we henceforth assume that m > 2. Note that every edge has at least one endpoint < m
(because {m+1,m+2} ¢ ¥, and that edge is the unique <-minimal edge with both endpoints > m).
For each vertex v of 3, let
w(v) = max{u: {u,v} € T}.
Note that if v < m, then {v,m +1} < {m,m+ 1} € &, so w(v) > m. On the other hand, if v > m,
then w(v) < v.

Lemma 10.1. The critical pairs of A = del; X are as follows.
For each vy € [2,m], there is a “type I” critical pair ({vi,ve}, {v1,v2 + 1}) where vy = w(vy).
For each vy € [m + 2,w(2)], there is a “type II” critical pair ({v1,va}, {v1 + 1,v2}), where v =
’LU(UQ).
Furthermore, every critical pair is of one of these forms.

Proof. Tt is immediate from the definition of w(v) that each such pair is critical. Suppose now that
(A, B) is a critical pair of A, with A = {v1 < va}. Then either B = {v1,v2+ 1} or B = {v; + 1, v2}.
If B ={v1,v2+ 1}, then we have already observed that A has at least one endpoint in [2,m]. In
particular, v; < m, and the pair (A, B) is of type L
If B={vi+ 1,02}, then A € A and B ¢ A, so by definition v; = w(ve). Moreover, m + 2 < vy
(because v1 +1 < wo — 1, s0 {vg — L,v9} = B ¢ A) and vy < w(2) (because {2,v2} < A, so
{2,v2} € A). Hence the pair (A, B) is of type II. O

5Note the distinction between the variable X;,j, which corresponds to vertex j as the ith smallest vertex in a face,
and the quadratic monomial X¢; ;y, which corresponds to the edge {%,7}, and which equals X1 ;X5 ; if ¢ < j but

equals X ;X ; if j <.
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If (A, B) is a critical pair of type I, then o(A, B) = {v1,v2} and 6(A, B) = ({v1},[2,v2]). If (A, B)

is a critical pair of type II, then o(A, B) = {v1} and 6(A, B) = (0, [2,v1]). Therefore, formula HES)
yields

X n m Zw:(zl)X{'U } w(2) Z’w:(’l{Z) X{ }
) =1 Xon [ =5—= 1l =5 —

v=2 v1=2 X{l’ 1} vo=m-+2 X{l}
n m s n w(vs)
T %0m ] Xzt Xy I 2= X
v=2 ) v1=2 X{l’vl} vo=m-+2 X{l}
- S X0, > X
=X{1,n}< Xy =5 Xy ———]. (50
'u:!_:[2 ' X{l’vl} Vo I:n[JrQ . X{l}

The second equality follows because w(v) = 1 whenever v > w(2), and the third equality comes
from redistributing most of the first product among the other two. Now, when vs > m + 1, we have

ZW(W) X{]} Xl X - w(vz) w(vz) w(vz)
X{1,v5—-1} X X1, le X1, = ; X1, X201 = ; X{jwa—1}

since j < w(vz) < m < vy — 1. Thus we may rewrite ([&0) as

m  w(vi) n w(v2)
) =[] D X I D X | Xamy (51)
v1=2 j=1 ve=m—+2 j=1

If v1 < m, then w(vi) > vy, so w(v1) has degree at least v1, as does every vertex less than w(vy).
On the other hand, {vy,w(v1) + 1} € X, so vertex w(vy) + 1 has degree less than vy, as does every
vertex greater than w(vy) 4 1. Therefore, (deg X)), = w(v1).

Similarly, if ve > m + 1, then ({w(vsa), ’02)}, {w(v2) + 1,v2}) is a critical pair, so w(vz) has degree
at least vo — 1, as does every vertex less than w(vz). On the other hand, vertex w(v2)+ 1 has degree
less than vy — 1, as does every vertex greater than w(vz) 4 1. Therefore, (deg¥);, | = w(v2).

Using these observations to rewrite (&Il in terms of the partition (degX)’ recovers the Martin-
Reiner formula (E3).

10.3. From threshold graphs to Ferrers graphs. Let A = (A; > --- > )\y) be a partition. The
corresponding Ferrers graph is the bipartite graph with vertices x1,...,2x,,91,...,yr and edges
{zy;: 1 < \;}. That is, the vertices correspond to rows and columns of the Ferrers diagram of A,
and the edges to squares appearing in the diagram. Ehrenborg and van Willigenburg [14] considered
Ferrers graphs and (among other results) described how a certain weighted spanning tree enumerator
splits into linear factors. Another proof of their formula can be obtained from the foregoing formulas
for threshold graphs, as we now explain. The key idea is due to Richard Ehrenborg.

Let G be a connected threshold graph on vertices [n], and let m be the side length of the Durfee
square of G. Then the vertices 1,2,...,m are pairwise adjacent, while m + 1,...,n are pairwise
nonadjacent. Moreover, if m +1 <i < j < n, then every neighbor of j is a neighbor of i. Construct
a graph F' by deleting all edges ij such that ¢,7 < m. Then F is a Ferrers graph; furthermore, all
Ferrers graphs can be constructed in this way. Thus, if we begin with the weighted enumerator for
G and set to zero all indeterminates corresponding to edges between vertices 1,2, ..., m, we recover
the weighted enumerator for the corresponding Ferrers graph F. Specifically, Theorem [CH yields

n—1 (d7(Q)

%(G) = Xl,an,Z H Z Xmin(i,r),IXmax(i,r),Q (52)
] r=1



SIMPLICIAL MATRIX-TREE THEOREMS 35

(this is also [27), Theorem 4]). Breaking up the product in (£2) around the parameter m gives

m m a7 (@)
T(G) :Xl,an,2 H ZXmin(i,r),leax(i,r),2+ Z Xmin(i,r),lxmax(i,r),2 X
=2 \r=1 r=m+1
n—1 d;’F(G)
H Z Xmin(i,r),leax(i,r)Q
1=m+1 r=1

This expression is well defined because d;fF(G) > m whenever i < m. If i <m and r < m, then
max(i,7) < m, and these are exactly the terms we wish to set to zero. Therefore,

m dL(G) n—1 d; (G)
T(F) = X11Xn,2 H Z Xi1 X2 H Z Kmin(s,r),1 Xmax(i,r),2 | - (53)
i=2 r=m+1 i=m+1 r=1
For i > m + 1, we have d7 (G) < m < i. Thus r < i for r < d¥(G), and (EJ)) yields
m d}(G) n—1 di (G)
T(F) = X11 X2 HXMH Z Xr2 H Xiz2 H ZXH
i=2 r=m+1 i=m+1 i=m+1 r=1
m d¥ (G —1 dI(@G
= (X121 X201 X 1) Xms1.2Xmr22-- Xn2) [ [] Z X0 H Z X1 |. (54)
i=2 r=m+1 i=m+1 r=1

By construction, the vertex degrees in G and F' are related by the formula

dego(i) —m if 1 <i<m,

degr() =) qege (i) ifm+1<i<n.
To simplify the notation, set X, 1 = =, and y,—m, = X2 = Yr—pm. (From this perspective, the
two partite sets of F' correspond to the indeterminates {x1,... 2} and {y1,...yn—m}. Therefore,
m d] (F2) n—md] (F1)
T(F)=(21. - Zm)Y1 -+ - Yn—m) H Z Y H Z T,
i=2 r=1 i=2 r=1

which is Theorem 2.1 of [I4].
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