CLASSIFICATION OF DING’S SCHUBERT VARIETIES: FINER ROOK
EQUIVALENCE

MIKE DEVELIN, JEREMY L. MARTIN, AND VICTOR REINER

ABsTRACT. K. Ding studied a class of Schubert varieties X, in type A partial flag manifolds, indexed
by integer partitions A and in bijection with dominant permutations. He observed that the Schubert cell
structure of X is indexed by maximal rook placements on the Ferrers board By, and that the integral
cohomology groups H*(X; Z), H*(X,; Z) are additively isomorphic exactly when the Ferrers boards
By, By, satisfy the combinatorial condition of rook-equivalence.

We classify the varieties X, up to isomorphism, distinguishing them by their graded cohomology rings
with integer coefficients. The crux of our approach is studying the nilpotence orders of linear forms in the
cohomology ring.

1. INTRODUCTION

The goal of this paper is to classify up to isomorphism a certain class of Schubert varieties within partial
flag manifolds of type A. Although this is partly motivated as a first step toward the isomorphism classi-
fication of all Schubert varieties, we choose here to explain instead our original motivation, stemming from
rook theory in combinatorics.

A board B is a subset of the squares on an N x N chessboard, and a k-rook placement on B is a subset
of k squares in B, no two in a single row or column. Kaplansky and Riordan [9] considered the problem
of when two boards B, B’ are rook-equivalent, that is, when for each k > 0, the number Ry (B) of k-rook
placements is the same as Ry(B’).

Foata and Schiitzenberger [4] solved the problem for the well-behaved subclass of Ferrers boards By; these
are the usual Ferrers diagrams associated to partitions!

A=(0<A <...<A) (1)

having all squares left-justified in their row, with A\; squares in the bottom row, A2 in the next, etc. They
showed that each rook-equivalence class of Ferrers boards has a unique representative which is a strict
partition, i.e., satisfying A\; < A\;4+1. Goldman, Joichi and White [8] re-proved this result by showing that B
and B,, are rook-equivalent if and only if the multisets of integers {\; — 4}, and {u; —i}}_; coincide.
Garsia and Remmel [6] defined g-rook polynomials Ry(B),q) that g-count the k-rook placements on B

by a certain “inversion” statistic generalizing inversions of permutations. They also showed that the problem
of g-rook equivalence is the same as that of rook equivalence. When \; > i for each ¢, this can be deduced
from a product formula for R, (B, q) that counts placements of n rooks: up to a factor of ¢ it is

n

[T =i+ 1, (2)

=1

where [m], := q;n:11 =14qg+¢+---4+¢m L

Date: September 8, 2004.

2000 Mathematics Subject Classification. Primary 14M15; Secondary 05E05.

Key words and phrases. Schubert variety, rook placement, Ferrers board, flag manifold, cohomology ring, nilpotence.

This work was completed while the first author was visiting the Univeristy of Minnesota. First author supported by the
American Institute of Mathematics. Second author partially supported by an NSF Postdoctoral Fellowship. Third author
partially supported by NSF grant DMS-0245379.

INB: we are writing our partitions with the parts in weakly increasing order, contrary to usual combinatorial conventions,
but more convenient in this setting.



2 DEVELIN, MARTIN, AND REINER

FIGURE 1. A decomposable partition X\. The unshaded regions are A(") and \(?).

K. Ding [2, 3] interpreted this product as the Poincaré series for a certain algebraic variety X, which he
called a partition variety. Fix a standard complete flag of subspaces

0OcClc...cN-tccV

and define
Xy :={flags0CViCVoC---CV, CcCV :dimcV; =iand V; C CN}. (3)

The set X may be endowed with the structure of a smooth complex projective variety, and (although not
stated explicitly in [2]) is in fact a smooth Schubert variety inside the partial flag manifold Xy, where
N™ denotes the rectangular board with n rows and N columns. As we shall explain below, the Schubert
varieties arising in this way are (in the notation of [5, §10.2]) those of the form X,,, where w is a 312-avoiding
permutation. Equivalently, the fundamental cohomology class [X,,] is represented by a Schubert polynomial
indexed by a dominant or 132-avoiding permutation. (See [5] for a reference on Schubert varieties, and [10]
for a detailed treatment of Schubert polynomials.) Ding observed that the Schubert cell structure inherited
by X has cells indexed by n-rook placements on B, and with the dimension of the cell governed by Garsia
and Remmel’s inversion statistic. Since these cells are all even-dimensional, their (co)homology is free
abelian, occurring only in even dimension, and the Poincaré series of X is given by the ¢g-rook polynomial
formula (2). From this Ding concluded [3] that two partition varieties X, X, have additively isomorphic
(co)homology groups if and only if By and B,, are rook-equivalent.

It is natural to ask when two such Ding partition varieties X, X, have isomorphic (graded) cohomology
rings, or even when they are isomorphic as varieties. The main result of this paper is that the answers to
both questions are the same. We make use of recent results of Gasharov and the third author [7], giving
simple explicit cohomology ring presentations? for a more general class of Schubert varieties in partial flag
manifolds (those defined by a conjunction of inclusion conditions of the forms C/ C V; and V; C C7).

To state our main result, we first note one trivial source of isomorphisms among the partition varieties
X,. We assume throughout that A\; > ¢ for every i, for otherwise X, = 0. However, if A = k for some k,
then the condition V;, ¢ C* with dim¢ Vi = k forces Vi, = CF, so that X, is isomorphic to X, x X)),
where

AD = (A, o Ae),

A2 = (N1 =k, oy A — ).

Here if k = n, so that A\, = n, there is no partition A2 and we simply note that X = X,q).

Say that A is decomposable if this occurs (i.e., if Ay = k for some k), and indecomposable otherwise. For
example, the partition A = (5,5,5,6,6,6,8,9) shown in Figure 1 is decomposable since Ag = 6. In this case,
one has A() = (5,5,5,6,6) and A?) = (2,3), as shown in the figure.

21t is amusing that these cohomology ring presentations for Schubert varieties are often derived for the purposes of enu-
merative geometry (Schubert calculus), but are used here for a different classical topological purpose, namely distinguishing
non-homeomorphic spaces.
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Iterating this, one can decompose A into a multiset of indecomposable partitions {)\(i)}le, which we will
call its indecomposable components, such that

ngX)\u)X-"XX)\(T). (4)

Our main result is that the Schubert varieties X are determined up to isomorphism by these multisets
of indecomposable components. It should be compared with the result of Goldman, Joichi and White [g],
which can now be rephrased: the varieties X are determined up to additive (co-)homology isomorphism by
the multisets of numbers {\; —i}.

Theorem 1.1. The following are equivalent for two partitions, A= (A1,...,Am) and = (L1, -, fms):

(i) The multisets of indecomposable components, {\D}7_, and {u® ZT,:l, are identical.
(ii) There is an isomorphism X =2 X,, of varieties.
(ili) There is a graded isomorphism of integer cohomology rings H*(Xx; Z) = H*(X,; Z).

The implications (i) = (ii) == (iii) are clear; the hard part is to show that (iii) implies (i). It
turns out that the key to this implication lies in understanding the nilpotence orders of cohomology elements
f € H*(Xx; Z); that is, the least k for which f*¥ = 0.

In Section 2, we review some of Ding’s results, and re-prove somewhat more directly the presentation
for H*(Xy; Z) from [7]. The three sections that follow are the technical heart of the paper, categorizing
elements in H?(X*; Z) of minimal nilpotence order. We begin in Section 3 by setting up some Grébner
basis machinery that we shall use throughout (for a general reference on Grobner basis theory, see [1]).
Section 4 deals with nilpotents in the cohomology of the complete flag variety (that is, when X is a square
Ferrers board) and Section 5 treats the case of arbitrary X . Using these tools, we prove in Section 6 that
an indecomposable partition A may be recovered from the structure of H*(X; Z) as a graded Z-algebra.
Finally, in Section 7, we show that in the general case, H*(Xy; Z) has an essentially unique decomposition
as a tensor product of graded Z-algebras, whose factors correspond to the indecomposable components of
the partition A.

It is curious that this unique tensor decomposition fails if instead of the integer cohomology ring H*(Xy; Z)
one takes cohomology with coefficients in a ring where 2 is invertible; see Remark 7.6 below.

2. REVIEW OF X, AND THE PRESENTATION OF H*(X); Z)

For the sake of completeness, and also to collect facts for future use, we begin by re-proving some of Ding’s
results from [2], and re-derive somewhat more directly the presentation given in [7] for the cohomology ring
of X. Throughout this paper, all cohomology groups and rings are taken with integer coeflicients unless
otherwise specified. We begin by identifying the Schubert varieties that arise as Ding’s varieties X . (See [5,
§10.6] for more information on Schubert varieties, and [10] for a detailed treatment of Schubert polynomials.)

Let G be the symmetric group of permutations of {1,..., N}, and let S (n+1,n+2,..,N} be the subgroup
of permutations fixing {1,...,n} pointwise. Consider the partial flag variety

Xyn = {flags0OcVic---CV,cC": dimV; =i}.

Let w = wy...w, € Gy be a permutation which is a maximum-length representative for its coset in
GN/G{n+1,n+27...7N}- The corresponding Schubert variety X,, C Xyn is defined to be

X, = {flags0cVic---CV,cCV: dimV;=1i, dimV;NC/ > #{k <i:wj, < j}}.

Let X be a partition of the form (1), and let N = \,,. It is easy to check that Ding’s variety X coincides
with the Schubert variety X,, C Xyn, where w is the unique permutation given by the recursive rule

w; = max({l, ey Al}\{wl, ey wifl}).

Note that if n = IV, then w corresponds to the maximal rook placement on the Ferrers board B given by
the following algorithm: let ¢ increase from 1 to n, and for each ¢, place a rook in row ¢ and column w;,
where w; is the rightmost square in row ¢ whose column does not already contain a rook. For instance, if
A=1(2,4,4,5,5), then w = 24351 € &5. (If n < N, then we must first augment A with N —n additional rows
of length A,.) It is not hard to verify that the permutations w obtained in this way are exactly those which
are 312-avoiding; that is, there do not exist ¢, j, k for which ¢ < j < k and w(i) > w(k) > w(j). Equivalently,
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FIGURE 2. A partition X\ and the subpartition v (shaded) such that H*(X)) /(1) = H*(X,).

the cohomology class [X,,] € H*(Xnn) is represented by a Schubert polynomial which is a single monomial,
namely the Schubert polynomial indexed by the dominant (or 132-avoiding) permutation wow, where wy is
the unique permutation of maximal length. (We thank Ezra Miller for discussions clarifying these points.)

Because X is a Schubert variety, it comes equipped with a Schubert cell decomposition, having cells in
only even real dimensions. As observed by Ding, this has important consequences:

Theorem 2.1 (Ding [2]). The integral cohomology ring H*(Xx; Z) is free abelian (that is, it has no torsion),
is nonzero only in even homological degrees, and has Poincaré series

n

Poin(Xy,q) := Y _ ¢ ranky H*(Xx; Z) = [N — i+ 1],

i>0 i=1

Proof. The cohomology is free abelian and concentrated in even degrees because the Schubert cell decom-
position for the Schubert variety X, has cells only in even dimensions.
For the assertion about the Poincaré series, we will induct on n. The map

X N ]P((C)‘l)gpél_l
{Vitie, = Vi

is an (algebraic) fiber bundle, with fiber isomorphic to X,,, where
vV = (1/1,...,1/”_1) = (>\2_17---;/\n_ 1)

is the partition obtained by removing the first row and column from A (see Figure 2). The Leray-Serre
spectral sequence is particularly simple in this situation, because both base and fiber are simply-connected
(again due to the Schubert cell decomposition) and have homology concentrated in even dimension. This
causes the spectral sequence to degenerate at the El-page, yielding

Poin(Xy, ¢) = Poin(X,, q) - Poin(]P’él_l, q).

The assertion about Poin(X, ¢) now follows by induction on n, using the fact that [m], = Poin(PZ' ', q). O

We now set about deriving the presentation for H*(Xy). To this end, we recall Borel’s picture for the
cohomology of the complete flag manifold GLy(C)/B = Xy~ and the partial flag manifold X yn; see [5,
Chapter 10, §3, §6]. We will use the following notation for symmetric functions in various sets of variables.
For integers 1 < i < j < N and m > 0, define the m** elementary and complete homogeneous symmetric
functions, respectively, by

em(1,7) == em(Ti, Tig1,...,2j),

hm(i,j) : hm(x¢,$i+1,...,$j>,
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where
em(N) = en(1,N) = ep(21,...,2N8) = Z Tiy - Tipy s
1<y < <ipy <N
hn(N) := hp(1,N) = hp(21,...,25) = > Ty e,

1<in <<t SN

According to Borel’s picture, H*( Xy~ ) & Zlx1,...,zxN]/J, where J = (e1(N),...,en(N)) is the ideal
generated by all symmetric functions of positive degree, and where x; represents the negative of ¢1(£;), the
first Chern class of the line bundle £; on GLy(C)/B whose fiber over the flag {V;}¥ is V;/Vi_1.

Furthermore, the surjection Xy~ — Xpy» which forgets the subspaces of dimension greater than n in
a complete flag induces a map H*(Xn») — H*(Xy~) which turns out to be injective, and the image of
H*(Xpn) is identified with the invariant subring H*(X y~)®{»+1n+2...8}  This invariant subring may be
presented as S/J’, where

S = Z[Ilv"'va]G{nJrl’nJr? 1111 N o= Z[Ila"wxnv el(n+13N)7"'56N7n(n+17N)]

and J' = (e1(N),...,en(N)) is the ideal of S with the same generators as J.
The relations in the ideals J and J’ induce further relations among various symmetric functions, which
we record here for future use.

Proposition 2.2 (cf. [5, p. 163, eqn. (4)]). For every m € {1,2,...,N} and j > 0, one has
hi(m) = (=1)e;j(m +1,N) (mod J).

Proof.
m N N n
[[a+zt) J[ @ +mit) = H l+ait) =Y e;(N)! =1 (mod J).
i=1 i=m+1 i=1 j=0
Hence
0o m N N—m
Syt =[[a+zt) = [ 0+ Z ej(m+1,N)t’ (mod J).
§=0 i=1 i=m+1 =0
Now comparing coeflicients of powers of ¢/ yields the desired equahty. O

We now give the general presentation for the integral cohomology of X (as pointed out in [7, Remark
3.3)).

Theorem 2.3. Let A\ be a partition with 1 < Ay <--- <X\, =N and \; > i for all i. Let
R :=Z[x1,...,x,]/In

where Iy := (hy,—i+1(1) : 1 < i < m).
Then there is a (grade-doubling) ring isomorphism

R* — H*(Xy; Z)

sending x; to —c1(L;). Here L; is the same line bundle as above, but restricted to Xy from the partial flag
manifold XN" .

Proof. The obvious inclusion Xy — Xx» induces a map H*(Xy») — H*(X)). This ring map is surjective,
because X inherits from Xy~ a decomposition into Schubert cells, and the dual cocycles to these (even-
dimensional) cells additively generate the cohomology in each case.

There are further relations on the Chern classes x; in H*(X) due to the conditions V; C CHi. Specifically,
the bundle CV/V; on X, will have the same Chern classes as the direct sum C¥/C* @ C*/V;, in which
CN /C* is a trivial bundle. Thus when restricted to X, the bundle C" /V; will have the same Chern classes
as the bundle (C)‘i/Vi of rank A; — 4. Hence its Chern classes ¢, = te,,(i + 1, N) for m > X\; — i inside
H*(X ) must vanish. Consequently, we have a surjection of rings

Zx1,...,xp,e1(n+1,N),ea(n+1,N),...,en—n(n+ 1, N)]/Jx — H*(X)) (5)
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where
Jyi=J +{ej(i+1,N) : 1<i<nandj>\ —i).
We now manipulate the quotient ring Z[zy, ..., zy]®+1n+2..8} / ]\ on the left of (5). We use Proposi-
tion 2.2 to draw two conclusions:

(i) Applying Proposition 2.2 with m = n shows that H*(Xyn) and H*(X)) are generated as algebras by
Z1,...,Tn, since their generators of the form e;(n+1, N) can be expressed modulo J’ as (symmetric)
polynomials in x1, ..., z,.

(ii) Applying it with m = i for 1 < ¢ < n shows that hx,_;4+1(i) = 0 in H*(X)), because for each
Jj > Xi — i, h;(i) is congruent modulo J’ to £e;(i + 1, N).
Consequently, there is a surjection of rings
Z[xl,...,wn]/<h,\i_i+1(i):1§i§n) — H*(X)\) (6)

On the other hand, the set
{hri—it1() s 1 <i <n}
is a Grobner basis for I with respect to the lexicographic term order on Z[z1, ..., x,] given by z1 < - -+ < .
Indeed, the initial term of hy,_;4+1(7) is x?iiiﬂ, so these generators have pairwise relatively prime, monic
initial terms. Consequently, the quotient ring on the left of (6) is a free Z-module of rank []}_, (\;—i+1), with
Z-basis given by the standard monomials (those divisible by none of the initial terms), namely {z]*--- 28" :
a; < \;j —1i}. Since Theorem 2.1 implies that H*(X) is a free Z-module of the same rank, the surjection (6)

must be an isomorphism. O

For example, if A is the partition shown in Figure 1, then the Grobner basis for I is
hs(1), ha(2), hs(3), hs(4), ha(5), hi(6), ha(T), ha(8).
The previous proof shows that I is the elimination ideal
Iy =Zxy,...,z] N .

This observation has some useful corollaries, which can also be proved by direct combinatorial/algebraic
arguments avoiding any use of geometry. The first corollary is the algebraic manifestation of the (surjective)
map R* — R* induced by the inclusion of Schubert varieties Xy — X 1

Corollary 2.4. Let A and p be partitions, both with n nonzero rows, such that X D pu.
Then I C I, and consequently, R is a quotient of R*.

Proof. By definition of Jy, one has Jy C J, in this situation. g
Corollary 2.5. If \j = \ip1 = --- = \; for some i < j then the ideal I is invariant under permutations of
the variables x;, xit1,...,%;.

Proof. Tt suffices to show that Jy has this same invariance. Note that the generators for Jy of the form
em(i’ +1,N) fori<i <jandm> Ay —4

are all redundant, as they lie in the ideal generated by {e,,(j + 1, N): m > \; — j}. The latter generators,
and all other generators of Jy, are symmetric in z;, 41, ..., ;. O

3. Two REDUCED GROBNER BASES

This section examines the Grobner bases for I, for two extreme cases of indecomposable partitions. In
both cases, one can describe the (unique) reduced Grébner basis, which will be used in an essential way later
in the paper. We assume some familiarity with “Grébner basics” on the reader’s part; a good reference for
this topic is [1].

We begin with some notation regarding Grobner reduction. Since the generators {hx,—i+1(7) : 1 <i <n}
form a Grobner basis for I, with respect to a lexicographic monomial ordering in which z; < ...x,, we
can compute in the quotient R by reducing polynomials modulo this Grébner basis. For a polynomial
f € Z]xy,. .., x,], we will denote by f this standard form of f. That is, f is the unique Z-linear combination

of standard monomials {x7*---z% : a; < \; — i} which is congruent to f modulo I. Given a standard
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FIGURE 3. An indecomposable partition A and its core subpartition u (shaded).

monomial M, we denote by [M]f the coefficient of M in f. (This is well-defined, because the standard
monomials form a basis for Z[z1,...,2z,]/I\ as a free Z-module.)

Let A = (A1 < -+ < )\,) and for some fixed m < n, let 4 = (A1,...,A\p). Then the fact that we are
using a lexicographic order to perform reductions has the following easy consequence (see also [1, §3.1]),
which will be used frequently. It can be viewed as an algebraic consequence of the fibration X, — X,
that forgets the subspaces of dimension greater than m in a flag, which happens to induce an injective map
H*(X,) — H*(X)).

Proposition 3.1. Let A and p be related as above. Suppose that f in Z[x1,...,xy] lies in some subalgebra
Zlx1, ..., 2], where m < n.
Then the images of f in R* and R* have the same standard form f.

Our first extreme case arises when A is an indecomposable partition with A\; = p, and g C A is the smallest
indecomposable partition having p; = p, namely u = (2,3,...,7—1,4,p).
Proposition 3.2. Let p = (2,3,...,i — 1,i,p). With respect to lexicographic order on Z[x1,...,xmy] with
21 < -+ < Ty, the ideal I, has reduced Grébner basis
{xlhl(l), $2h1(2), ey l'i_lhl(’i — 1), Q?f_H_l + xf_lhl(z — 1)} (7)

Proof. Tt is easy to see that the elements of (7) form a reduced Grobner basis with respect to the lexicographic
order for whatever ideal they generate. We observe that this ideal may also be presented as

(ha(1), a(2), .oy hali = 1), b~ 2l (- ).
We will show that this ideal is exactly I,,. By Theorem 2.3,
Lo = (ha(1),ha(@), s hali = 1), by i1 (),
so it remains only to show that h, ;1(7) and 2?4+ 2P 7"hy(i — 1) are congruent modulo the ideal
(ha(1), ha(2),...,ha(i —1)). Since hy_i+1(i) = Zp T 2dh, i jy1(i — 1), this congruence is immediate

from the fact that
hi(€) € (ha(1),h2(2),...,ha(£)) for m > 2,

which is easily proven by double induction on m and ¢ via the identity hy,(¢) = xphpm—1(€) + hp(¢ —1). O

Our second extreme case arises when A is an indecomposable partition with n rows. Let k = A1, and let
1 be the smallest indecomposable partition with n rows and @ = k. That is,

pr =2 == pg—1 =k,
w=1+1 fork<i<n.

(8)

Then p is a subpartition® of A, which we will call the core of A\. For example, the core of A\ = (4,4,6,6,8,10)
is the partition u = (4,4,4,5,6,7) (see Figure 3).

3TFor the purposes of this paper, the statement “u is a subpartition of A” means that p; < A; for all rows u; of u. Equivalently,
the Ferrers diagram of u is contained inside that of A, when both are left- and bottom-justified.
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Proposition 3.3. For k < n, let X be a partition which is its own core.
Then the polynomials

G1 = hi(1), G2 = hi-1(2), covy Gpo1 =ho(k—1), ()
Gr = 21h (k), Gk-i—l = £C1H_1h1(/€ + 1), ey G, = xnhl(n)
form a reduced Grobner basis for I under the reverse lexicographic term order given by x1 < x9 < ... < Tp.
Proof. The initial terms of the G;’s are (in order) ¥, x5~ 1 ... 27 |, 2?2, ..., 2. Tt is evident that no

initial term divides any term of any other GG;. Therefore, they are a reduced Grobner basis for the ideal that
they generate.
We claim that for every r € {k,k+1,...,n},

(G1,...,Gry = (he(1), hge—1(2), ..., ha(k — 1), ha(k), ..., ha(r)).

The claim is trivial for = k. For r > k, it follows from induction and the observation that ha(r)—ha(r—1) =
xyh1(r) = G,.. In particular, the equality for r = n gives (G1,...,G,) = I,. O

The form of this reduced Grobner basis has the following consequence, which we will exploit later.

Corollary 3.4. (“Stickiness”) Let \ be an indecomposable partition which is its own core, and k := \1. Let
M be a monomial in x1,...,Ty,.
Then:
(1) If k <i<n and M is divisible by x;, then so is M.
(2) If M is not divisible by any of the variables y, ..., x,, then neither is M.

Proof. (1) is immediate from the previous discussion. For (2), the only Grébner basis elements that can be
used in the reduction of M are G1,...,Gk_1, so the reduction process cannot introduce a monomial divisible
by any of xg, ..., Tn. O

One useful consequence of “stickiness” is the following.

Corollary 3.5. Let A be an indecomposable partition which is its own core, and k := \1. Let f = Z?:l a;x;
be an element of the degree-one graded piece R of R*. Decompose f as f = g+ h, where

k—1 n
g = Zaiwi, h = Zaixi.
i=1 i=k
If f™ =0 in R for some positive integer m, then g™ = 0 in R*.

Proof. Note that f™ = g™ + p, where p is some polynomial divisible by arzy + - - - + anx,. Passing to the
standard forms, we find that 0 = g™ + p. By Corollary 3.4, no monomial in g™ is divisible by a sticky
variable (that is, one of zy,...,2,), but every monomial in P is divisible by a sticky variable. Therefore

g™ =0 (=D). O
4. NILPOTENCE OF LINEAR FORMS IN THE COHOMOLOGY OF G/B

The main result of this section, Theorem 4.1, concerns the nilpotence orders of degree-1 elements in the
graded ring H*(G/B). This result may be of independent interest, and it would be nice to have a geometric
explanation for it.

Recall that H*(G/B) = R"" = Z[xy,...,x,]/J, where

J={(e;(n):1<i<n)=1Iwm="{hpit1(1): 1 <i<m). (10)

We digress to discuss graded Z-algebras and nilpotence. A standard graded Z-algebra is a ring R with a
Z-module direct sum decomposition R = 4>0 Fa in which each Ry is a free Z-module, Ry- R. C R4y and
R is generated over the subalgebra Ry = Z by R;. Let R be a ring and f € R a nilpotent element (that is,
some power of f is zero). The nilpotence order of f is defined as the smallest integer k such that f* = 0; we
will sometimes say that f is k-nilpotent. (So f has nilpotence order 1 if and only if f = 0.)

By Theorem 2.3, R* = Z[z1,...,z,]/I\ is a standard graded Z-algebra, with R} = H?(X; Z). Further-
more, every element of R} is nilpotent, since R* has finite rank as a Z-module. The nilpotence order of
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these linear forms will be our main tool in distinguishing the rings R*. In this section, we study the case
that A = n™; we treat the general case in Section 5.

Note that the images of the variables x; in R™" satisfy zl = 0. Indeed, by Corollary 2.5, it is sufficient to
prove that 2} = 0, which follows from (10) since I,,» contains the element hy,_141(1) = h, (1) = 7. In fact,
more is true:

Theorem 4.1. Let f € H*(G/B) = (R™");.
Then f has nilpotence order greater than or equal to n, with equality if and only if f is congruent, modulo
J, to a scalar multiple of one of the variables x1, ..., xy,.

We first show that n is the minimal nilpotence order achieved by any linear form.

Proposition 4.2. Let f € R} be a linear form. If f*~' =0, then f = 0.

Proof. Let f be a preimage of f under the quotient map Z[z1,...,zn] — R™ . Then f"! = 0 means
fm~1 e J. By degree considerations, this means that f"~! belongs to the ideal

Ii'={(e;(n):1<i<n-—1) C Zlx1,...,xs) (11)

Thus it suffices to show that I is a radical ideal, since then f €Tand f =0in R"". We will show something
slightly stronger: that the ideal I’ := (e;(n) : 1 <i<mn—1) C Clzy,...,x,] is radical. Indeed, any nonzero
nilpotent in Z[z1, ..., x,]/I would give rise to a nonzero nilpotent in Clxy,...,z,]/I’.

Let ¢ be a primitive n'” root of unity. We claim that I’ is the vanishing ideal I(V') for the variety V C C",
defined as the union of all lines whose slope vector is any permutation of (1,¢,...,¢" ). Note that there
are exactly (n — 1)! such lines, because two such slope vectors that differ by multiplication by a root of unity
give rise to the same line. Equating coefficients of powers of ¢ in the equation

n n

" —1=JJ-¢)=> e, ¢,....¢"HE
i=1 i=0
shows that I’ € I(V). For the reverse inclusion, note that ei(n),...,e,(n) is a regular sequence in
Clx1,...,2n], and therefore cuts out scheme-theoretically a complete intersection of Krull dimension 1,

that is, a set of curves with various multiplicities. By Bézout’s Theorem, the sum of the degrees of those
curves, counted with multiplicities, must be

deg(e1(n) - deg(ea(n) - - deg(ea(n)) = 1-2--(n—1) = (n—1)!

But this complete intersection contains at least (n — 1)! lines in V, each of degree 1. Therefore it contains
no other curves, and each line occurs with multiplicity 1; that is, I’ = I(V). O

To complete the proof of Theorem 4.1, we must show that the scalar multiples of the variables x; are the
only n-nilpotent linear forms in R™". In what follows, we regard a linear form f = Yoi, a;x; as a C-linear
functional, mapping v = (v1,...,v,) € C" to Y1 | a;v;.

Lemma 4.3. Let f = >""" | a;z;, with a; € C, and let o« € C* be a nonzero constant. Suppose that f(v)" = «
for all v € C™ whose coordinates are permutations of the distinct n'" roots of unity.
Then f € Cx; + Cey(n) for some i.

Proof. Let ¢ be a primitive n'® root of unity. Let the symmetric group &, act on C" by permuting

coordinates, and for a permutation o € &,,, abbreviate f(o(1,¢,...,(" 1)) by f(o). Replacing f with f/a,
we may assume that f(o)™ =1 for all 0 € &,,. That f has the desired form is equivalent to the statement
that at least n — 1 of the coefficients a1, ..., a, are equal. This is trivial if n = 1 or n = 2, and can be
checked by direct calculation if n = 3. Therefore, suppose n > 4. By transitivity, it suffices to show that if
two coefficients a; are different, then the other n — 2 are mutually equal.

Suppose that a; # as. Choose i # j € [n] so as to maximize |¢* — ¢?|, and let o € &,, such that o(1) =i
and o(2) = j. Then f(o) and f((12) o o) are both n*" roots of unity, and

flo) = f((12) 0 0) = (a1 — a2)(¢" = ¢7). (12)
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Taking the magnitude of both sides, the choice of ¢ and j implies that |a; — az| < 1. On the other hand, if
we choose i’ # j/ € [n] to minimize [¢* — ¢7'|, the same argument implies that |a; — az| > 1. We conclude
that |a; — az| = 1.

Note that ¢* and ¢7 are the only n'" roots of unity whose difference is ¢* — ¢7. (This may be seen most
easily by plotting the n!” roots of unity in the complex plane, and observing that no two of the line segments
joining two maximally distant roots are parallel.) Therefore, the equation (12) implies that the values f(o)
and f((12) o o) do not depend on o(3),...,0(n). Hence ag = ... = a, as desired. O

Proposition 4.4. Let f € R} be a linear form such that f™ = 0.
Then f € Zx; for some 1.

Proof. Let f be a preimage of f under the quotient map Zlzy,...,x,] - R™"; that is, f" € J. By degree
considerations, there is a constant « € Z such that f" = aen(n) modulo I. As in the proof of Proposition 4.2,
the ideal I vanishes on all vectors v whose coordinates are a permutation of the distinct n** roots of unity.
Therefore f*(v) = aen(n)(v) = (—1)" ta for all such vectors v. By Lemma 4.3, there is some i such that
f e Cai+Cey(n). As f € Zlxy, ..., xy), this implies f € Zaz; + Zey(n). Consequently f € Zz; in R"". This
completes the proof of the proposition and of Theorem 4.1. O

5. NILPOTENCE OF LINEAR FORMS IN THE COHOMOLOGY OF X

Throughout this section, A will be an indecomposable partition. We continue our study of nilpotence
orders of linear forms in the graded Z-algebra R* = H*(X?*). The main result is the following classification
of linear forms of minimal nilpotence order, generalizing Theorem 4.1.

Theorem 5.1. Let A= (0 < Ay < --- < \,) be an indecomposable partition, and let k := A1. Then k is the
minimal nilpotence order of any linear form in R*. Moreover, if A\ has exactly m parts equal to k (that is,

k=X == An < Ans1), then the elements of RY of nilpotence order exactly k are classified as follows:
Case |. Fither \p_1 >k, orn < k —1.
Then the k-nilpotents in R} are the multiples of T1,. .., Ty,

Case Il. Ap—1 =k (that is, m =k —1).
Subcase lla. Fither A\, > k41, or k is odd.
Then the k-nilpotents are x1,...,xx—1, and x1 + -+ + Tp—1.-

Subcase llb. Both A\, = k+ 1 and k is even.
Then the k-nilpotents are x1,...,Tk_1, T1 + -+ xp_1, and x1 + -+ + Tp_1 + 2T%.

By way of motivation for the rather technical matter of this section, we explain how the classification of
nilpotents will be used in the next two sections to recover a partition from its cohomology ring. Theorem 5.1
implies immediately that \; is an isomorphism invariant of R*. Moreover, by the presentation of Theorem 2.3,
the quotient ring R* / (1) may be identified with the ring R”, where v = (Ag — 1, A3 — 1..., A, — 1) is the
partition obtained by removing the first row and column from A (see Figure 2). However, it is really necessary
to describe R” as a quotient R* / (f), where f is some linear form identified intrinsically from the structure
of R* as a standard graded Z-algebra, that is, in a way that does not depend on the presentation. The
classification of nilpotents in Theorem 5.1 is the tool that allows this. It turns out that we will require
almost all, but not quite all of the last assertion in the theorem, so we only prove the parts that will be used.
(The arguments we omit are very similar to those that we include.)

In the first part of this section, culminating in Proposition 5.4, we prove the first assertion of Theorem 5.1,
namely that & = )\; is the minimal nilpotence order of any linear form in R*. We begin with a weaker
statement: that no linear form in the first £ — 1 variables has nilpotence order less than k.

Lemma 5.2. Let )\ be indecomposable with k := \1. Let f = Z;:ll a;x; € RY; that is, f is supported only
on the first k — 1 variables. Then, in R*,

(a) f¥=1 =0 if and only if f =0, and
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(b) if f¥ =0, then f is a scalar multiple of one of the following: 1, ..., Tp_1, X1+ + Tp_1.

Proof. By Proposition 3.1 and the hypothesis that f is supported only on the first £k — 1 variables, we may
assume without loss of generality that n < k — 1. By Corollary 2.4, we may decrease the part sizes of A (if
necessary), so as to assume that A = k™. But then using Proposition 3.1 again, we can re-introduce parts
Ant1, Ant2, .-+, A all of size k, and work in the ring RF" =~ GL;(C)/B, where assertion (a) follows from
Theorem 4.1.

In fact, assertion (b) also follows from Theorem 4.1. The degree-1 graded piece of I is generated by
e1(k), so the elements of R’fk listed above are the only ones that are congruent modulo ;. to a scalar
multiple of a variable x; (here we use the fact that z1 + -+ + zp_1 = e1(k) — zg). O

An immediate consequence of Lemma 5.2 is that every linear form of nilpotence order A\; — 1 must be
supported on at least one of the variables xy, ..., x,. This is where the concept of “stickiness” introduced
in Corollary 3.4 first comes into play.

Proposition 5.3. Let \ be indecomposable with k := \1, and let f € RY. Then f*=' = 0 if and only if
f=0in R

Proof. Assume f # 0 € R}, but f*~! = 0 in R*. By Lemma 5.2(a), we may assume n > k. By Proposi-
tion 3.1, we may assume without loss of generality that A\ is its own core.

Writing f = g+h, where g = a121++ - -+ag_125—1 and h = agxr+- - -+ anxy,, it follows from Corollary 3.5
that g*~! = 0. Hence g = 0 by Lemma 5.2. That is, f = h. If f is not supported on z,, (that is, a,, = 0),
then we may replace A\ with the partition obtained by removing the nth (largest) row. Repeating this as
many times as necessary, we may assume without loss of generality that a,, # 0.

Now let M be any monomial in the variables x1,...,x5—1. Note that
[xn M] F = [znM](anwy)*! (13)
because the variables xy, ..., z,_1 are sticky (Corollary 3.4). Reducing (anxn)k_l using the Grobner basis
element G,, of (9), we find that
(anxn)k_l = —anxﬁ_2(x1 +- 4+ xpq)
= a2z (@ + o r)? (14)
= azp(z) + -+ 2n1)" 2,
where a = (—1)¥72a¢%~2 =£ 0. Combining this with (13) yields
(2o M) fF=1 = alzaM]an (@ + -4 2p_1)F2
alzpnM) zp(xy + -+ + Tp—1 )2 (15a)
= a[M](z1+ -+ zp_1)F2 (15Db)

where (15a) follows from stickiness, and (15b) from the fact that only G1, ..., Gi—1 are used in reducing (15a).
The polynomial 21 + --- 4 zx_1 is nonzero in R since ) is indecomposable. Thus Lemma 5.2 implies

that (x1 + -+ + 2x_1)¥"2 # 0 as well, and so there exists some monomial M in the variables x1,..., o5 1
for which [M](x; + -+ zx_1)¥2 # 0. Note that z,M is also a standard monomial for I). Therefore
[z, M]f*F=1 #£ 0, a contradiction. O

Proposition 5.4. When X is indecomposable, the number k = Ay is an isomorphism invariant of R* as a
graded ring: namely, it is the minimum nilpotence order achieved by any linear form.

Proof. Proposition 5.3 states that no nonzero linear form can have nilpotence order strictly less than k = 1.
On the other hand, 71 has nilpotence order at most k, because ¥ = hy(1) € I,. 0

In the second part of this section, we show that the various linear forms mentioned in Theorem 5.1 are
the only possible k-nilpotents in R*. We begin by determining the nilpotence order of each variable.

Proposition 5.5. When ) is indecomposable, the variable x; is \j-nilpotent in R*.
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Proof. Let p = \;. First, we show that 2¥ = 0 in R*. Let s be the partition given by
K = (p, BN O )\1‘+1, )\1‘+2, ceey /\n)
—
i times

Then A is a subpartition of &, so R* is a quotient of R* by Lemma 2.4. It suffices to show that ¥ =01in
R*, which follows from Corollary 2.5 since z} € I,..

It remains to show that = -t £ 0in R*. By Proposition 3.1 and Corollary 2.4, it suffices to show that
! # 0 in R*, where p is the subpartition of A given by
wo= (2,3,...,i—1,i,p).

Note that x is indecomposable, and that R** has a reduced Grébner basis given by (7). A Grobner reduction
similar to (14), using the Grébner basis element 22"t 4+ 2P 7"h; (i — 1) yields the equation

P = (1) (- 1) (mod I,).

K2

Since further reductions modulo I, can only involve the other generators ha(1),ha(2),...,ho(i — 1), we
may conclude that fo # 0 in R*, provided that hi(i — 1)*"' # 0 in RZ3 =19 Using the fact that
hi(i —1) = e1(i — 1), this follows from the following more general assertion: for any m > 1 and ¢ > 1,

er(i—1)™ = en(i—1) # 0 in R&3 L), (16)
This is trivially true for ¢ < 2. For ¢ > 2, we prove it by induction on i:

et — 1" = (xi—1+e1(i —2))™

i (’;‘) vl es(i—2)mI

J=0

=e (i —2)" + i( > 1 e(i—2)m

j=1

=e ’L—2 Z( > ] -:Ez 161(1—2) (HlOd 1(2’3""’i_1’i)).

This last expression follows from using z;_1h1(i — 1) = 2? | + 21h1(i — 2) = 27, + 21h1(i — 2) to perform
repeated Grobner reduction on each summand. By induction, e;(i — 2)™ = e,,(i — 2), so we obtain

er(i—1)" = em(i—2) +zi1em1(i—2)) <m> (=1)7—1
=1 \J
= em(i — 2) + xi_lem_l(i - 2)
= en(i—1),
establishing (16) as desired. O
Proposition 5.6. Let f =) "  a;z; € R». Suppose that f* = 0.
Then f is a scalar multiple of one of the following:
L1y X2y ooy Th—1,
Ty 4 Th—1, (17)

1+ -+ xp—1 + 225

The last case can occur only if k is even.

Proof. By Corollary 2.4, we may replace A with its core. Let g = Zi:ll a;x; be the part of f in the non-sticky
variables. Then g¥ = 0 by Corollary 3.5. By Lemma 5.2(b), g is either zero or of the form ax; for some
i€{1,2,...,k—1},or a(xy + -+ x_1), where « is a nonzero scalar. Without loss of generality, we may
assume that a = 1.
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If f = g then we are done. Otherwise, we must show that f is a scalar multiple of x1 + - - - + 1 + 2z,
and k is even. By Proposition 3.1, we may assume without loss of generality that f involves the variable x,,
with non-zero coefficient; that is,

f=g+h+ax,,

where a := a,, # 0 and h is a linear form in the variables x, ..., x,—1. We consider in turn each of the three
possibilities: namely, g =0, g =x;,or g =1 + -+ T—_1.

Case 1: ¢ =0.
We will rule out this case by deriving a contradiction from the assumption that f* = 0 in R*. Taking the
further quotient of R* by the variables xy, ..., z,_1, one obtains a ring isomorphic to R*, where

p= (k.. kk+1)
———

k—1 times

is an indecomposable partition, with & parts, equal to its own core. If f¥ =0 in R*, then (ax; )" = ak:v’,j =0

in R#. So 2f = 0 in R* (because a # 0). But this contradicts Corollary 5.5, since pj = k + 1.

Case 2: g = x;, wherei € {1,2,...,k —1}.
Assume that k£ > 3 (the case k = 2 falls under Case 3 below). As in Case 1, we wish to reach a
contradiction. Consider the quotient ring

S = R)‘/<:vk, ceey Tpe1, T1 T+ F X1 Ty,

which is isomorphic to R**. Let f = z; — a(zy + --- + xx_1) be the image of f in S; then f¥ = 0. By
Theorem 4.1, f must be a scalar multiple of some variable. This is possible only if £k = 3 and a = 1; that is,
f is a scalar multiple of either 21 + x3 or @9 + 3. All that remains is to check that neither (z1 4+ x3)3 nor
(w2 + x3)% belongs to the ideal I3s = (h3(1), h2(2), ho(3)); this is a routine calculation. Thus f*¥ # 0 in all
cases, a contradiction. Case 2 is therefore ruled out.

Case3: g=o1+ ...+ Tp_1.

Let M be any standard monomial for I, of degree k—1 in the non-sticky variables x1, ..., zg_1; then x, M
is also standard. Using stickiness of the variables x, ..., z,_1 and the fact that G,, = z,(x1 4+ -+ x,) € Iy,
we have for every such monomial

k

[ M(g + az,)* = [an]ZG)aix;gk = oM Z( >axng i

i=0

[ng]fk

() 1gk z( l)z 1In($1+-~-—|—$n,1)171

— ( ) L =) T e (e 4+ )T
> o <Z< ) ) (M]g*-!

1=

i, k—

= (1-(1-a")[M]g"

This last expression must be zero since f¥ = 0 in R*. On the other hand, ¢g*~! # 0 in R?*, so there is at
least one such monomial M in zy,...,z,_1 for which [M]g*~! # 0. It follows that 1 — (1 — a)¥ = 0. Since
a # 0, the only possibility is that k is even and @ = 2. If n = k, then we are done; we need to rule out the
case n > k.
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FIGURE 4. The subpartition p of Proposition 5.7 (shaded).

Suppose that n > k. Replacing x, with x; in the above calculation, we find that the coefficient aj is
either 0 or 2. Bearing in mind that g + z = x1 + - -+ + xx_1 + 2 = h1(k), we pass to the quotient ring

T = R/\/<$k+1,$k+2, cey T, §+ Tk)
>~ Zlzy, .. xk,xn] ) (he(1), hg—1(2), ..., ha(k = 1), k(9 + zk), Tn(g + Tk + T0), g + k)
= Z[zlv . .,Zlfk,.fr,n] / <hk(1)a hk*1(2)a B hQ(k - 1)7 g+ Tk, :E721>

1%

R¥ (2] / (a2).

Note that since f equals either g + 2z, or g + 2z + 2z, and x, = —g in T, the image p of f in T is of the
form p = g + 2z,,. Since 22 and g* are both zero in T', we have

k

Jj=0

But ¢*~! # 0 in RK by Theorem 4.1, so x,g*~1 # 0 in T. Hence p* # 0 in T, which implies that f* # 0 in
R*, as desired. O

We now know that every k-nilpotent linear form in R* is, up to scalar multiplication, one of the linear
forms (17). However, if A is not its own core, then we must consider the possibility that one or more of
these linear forms actually has nilpotence order strictly greater than k. We examine each candidate in turn;
Proposition 5.5 immediately takes care of the possible nilpotents 1, ..., ZTg_1.

Proposition 5.7. Let A be indecomposable with n >k — 1 parts and k = \y. Let g =1 +--- +x_1 € R*.
Then g* =0 if and only if \y = -+ = \p—1 = k.

Proof. By Proposition 3.1, we may assume that n =k — 1. Suppose that Ay =--- = A;y_1 = k. Then
R*=RM"' = Zlr,. . xeea] ) (he(1), hiea(2), .. ho(k — 1))
= Z[xlv s 7$k717$k] / <hk(1)a hk*1(2)7 BRI hQ(k - 1)v hl(k)>
— RK
and g = —zy in Rkk, so g* = 0 follows from Theorem 4.1.

Conversely, suppose that A\,_; > k. We will show that g¥ # 0. Let p be the subpartition of A given by
pu=k-1,...;k—1,k+1)
~—_——
k—2 times

(see Figure 4). By Corollary 2.4, it will suffice to show that g¥ # 0 in R*. We may rewrite the presentation
of R* as

Rt = Z[,Tl, . ,(Ek_l] / <hk_1(1), hk_2(2), ey hg(k — 2)7 h3(/€ — 1))
= Zzy,...,zp-1) [ (a1 (1), hp—2(2), ..., ho(k —2), 2}_1 +25_1hi(k —2)),
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using the fact that
hs(k—1) = a3 | +a2 hi(k—2)+zp_1ho(k —2) + hg(k — 2)
3+ ar hi(k—2) 4 zp_1ho(k —2) + ha(k — 3) 4+ zp_2ha(k — 2),

Therefore xi_l = (—1)72%_ k=2 for all j > 3. Letting h = hy(k—2) = z1++--+x)_2, so that g = h+xj_1,
we have in R

k
B\ . K\ W\ .
gk = hk + <1>hk 1:17]@71 + (2) hk 2:17%_1 + jgzg (])hk J(—l)JIi_lh‘] 2

k
B _ (K
= W4 kRF e+ RF *2h_y Z(_l)] (])
=2

= BF kR ey + (k- DRF 22

No further Grébner reduction is possible, so g* is zero if and only if h*, kh¥~1 and (k — 1)h*~2 are all zero.
But k£ > 1, and h*=2 # 0 by Proposition 5.3. We conclude that g* # 0 in R* as desired. g

For the remaining assertions of Theorem 5.1, we are left only to consider the potentially k-nilpotent linear
form g = x1 + ... 4+ xx—1 + 2z;. Rather than determining exactly when g is k-nilpotent as in the theorem
(which can be done by an argument similar to Proposition 5.7), we content ourselves with checking directly
the case k = 2, since this is all we need for the present study. Here g = 21 + 222, and by Proposition 3.1)
we may work in the ring

RZ22) = 7[xy, w0]/ (23, hyy—1(2)) .

Then it is easily seen that g2 = 22 + 4z125 + 422 is zero in this ring if and only if Ay = 3.

6. THE INDECOMPOSABLE CASE

We now use the results of the previous section to prove that an indecomposable partition is determined
uniquely by the cohomology ring of the corresponding Schubert variety.

Theorem 6.1. Every indecomposable partition X may be recovered from the structure of the ring R* as a
graded Z-algebra. In particular, if X and p are different indecomposable partitions, then R and R* are not
isomorphic.

Proof. We induct on n, the number of parts of X\. Since A is indecomposable, n is the rank of R} as a free
Z-module. By Theorem 5.1, the smallest part k := A; is the minimal nilpotence order of any member of
R3. Moreover, as mentioned at the beginning of Section 5, R*/ (r1) & RY, where v is obtained from \ by
deleting the first row and column (see Figure 2). By induction, it suffices to show that we can describe R”
up to isomorphism in a way that is independent of the presentation.

We proceed by examining the same two cases as in Theorem 5.1; however, we subdivide Case II slightly
differently into subcases.

Casel. \p_1 >korn<k—1.

Let m be the greatest index such that A,, = k. Then Theorem 5.1 tells us that the k-nilpotent linear
forms in (R*); are (up to Z-multiples) z1,...,x,,. Consequently, up to sign, these are exactly the primitive
k-nilpotents, that is, those k-nilpotents f which can only be expressed as a scalar multiple ag for another
k-nilpotent g and o € Z if a = £1.

By Corollary 2.5, one has R*/ (z;) = R/ (x1) (& R") for every i € {1,2,...,m}, and hence R” may be
identified intrinsically as the quotient of R* by an arbitrary primitive k-nilpotent linear form.

Case ll. \p_1 = k.
Then the primitive k-nilpotents are (up to sign) z1, ..., Zx—1, 1 + --- + xk,, and if k is even, possibly
also x1 + -+ + xp_1 + 2xk.

Subcase lIA. k > 2.
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If k is odd, then the “extraneous” primitive k-nilpotent x1 + - -+ + xx—1 + 2x is absent. If k is even, then
r1 + - + xip—1 + 2z is distinguished intrinsically as the unique primitive k-nilpotent which is Z-linearly
independent of all the others.

Thus, in all cases when k£ > 2, we can intrinsically identify the primitive k-nilpotents 1, ..., Tx_1,
T1+ -+ xk_1, up to sign. By Corollary 2.5, the first k — 1 forms on this list all have R*/ (z;) = R/ () =
RY. Hence RY can be identified intrinsically by “majority rule”: it is the Z-algebra that occurs (up to
isomorphism) as the quotient of R* by at least k — 1 of the k different primitive k-nilpotent linear forms
(other than the one, namely 1 + -+ 4+ xx_1 + 2z, that is linearly independent from the rest, as above).
Note that the fact that k — 1 out of k is a well-defined “majority” uses the assumption that k > 2.

Subcase IIB. k& = 2.

If A2 > 3, then x; is the unique primitive k-nilpotent up to sign, so it is distinguished intrinsically, as is
RY =2 R/ (x1).

If Ao = 3, then there are two primitive k-nilpotents up to sign, namely z; and x1 + 2z2. We claim that
the graded Z-algebra map w : R — R defined by

w(zy) = 21 + 229, w(ze) = —xa, w(x;))=ax; for3<i<n

is an automorphism of R* interchanging z; with z; + 2z5. Indeed, it is a routine calculation to check
that w lifts to an automorphism of Z[zy,...,z,], and that w(I)) = I. In particular, R¥ = R*/ () =
R/ (x1 + 2x2) may again be described up to isomorphism as the quotient of R* by an arbitrary primitive
k-nilpotent linear form. O

7. THE DECOMPOSABLE CASE

We now consider the case that A is decomposable, with indecomposable components AD @A),
In this case, X\ = Xy ) X -+ X X . Since each x has no torsion in its (co-)homology by Theorem 2.1,
the Kiinneth formula [11, §61] implies a tensor decomposition for the associated cohomology rings:

H*(Xx; Z) = Q) H (Xyo; Z). (18)
=1

Together with the uniqueness result for indecomposable partitions (Theorem 6.1), it would seem that we are
done. However, there is one remaining technical point: to verify that the partitions A(*) can be read off intrin-
sically from the structure of H*(X) as a graded Z-algebra, we must check that the tensor decomposition (18)
is unique.

To do this, we make further use of the facts about nilpotence established in Section 5. But first we must
make precise the notion of tensor decomposition, and point out how it interacts with order of nilpotence.

For R a standard graded Z-algebra, a tensor decomposition is an isomorphism of graded Z-algebras
R2TW ®...@ T in which each T is a standard graded Z-algebra. Note that any such decomposition
is completely determined by the associated direct sum decomposition of free Z-modules Ry = @;_, le),

since T is then the subalgebra of R generated by the direct summand Tl(i) of Ry. Say that a tensor
decomposition of R is nontrivial if T # 7 for all i. Say R is tensor-indecomposable if it is not Z itself, and
has no nontrivial tensor decomposition.

Lemma 7.1. Suppose that R=TW @ --- @ T"). Let x € Ry; that is,
r =211 01 + 10220101 + ... +1®---®1Qx,

where z; € Tl(i). Let k; be the nilpotence order of x;. (Recall that k; =1 if and only if x; =0.)
Then the nilpotence order of x is

c = ki+k+ -+k —r+1L

Proof. By the pigeonhole principle, each term of the multinomial expansion of z¢ is divisible by xf for some
i; therefore, ¢ = 0 in R. For the same reason, all but one term of the multinomial expansion of ¢!
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vanishes; the exception is

c ki—1 k 1 Ky —1
1— 2
(k1—1,...,kn—1) ! o
which is nonzero, since it is nonzero in each tensor factor. O

This calculation has immediate useful consequences.

Corollary 7.2. Let R be a standard graded Z-algebra with a nontrivial tensor decomposition R = @);_, T,
Then any linear form f € Ry that achieves the minimal nilpotence among all elements in Ry must lie in T
for some i.

Combining Lemma 7.1 with Proposition 5.5 yields the following.

Corollary 7.3. Let A be a partition with indecomposable components {/\(j) i=1- If \i corresponds to )\g)
this decomposition, then x; is /\Ecj)—nilpotent in R*.

For example, if A is the decomposable partition shown in Figure 1, then A;,..., A5 correspond to the
rows of At and A7, \g to the rows of A®). Thus the variables z1, ..., zs have nilpotence orders 5,5, 5, 6, 6,

respectively, in R* (and in R)‘(l)), and x7,xs have nilpotence orders 2 and 3, respectively. (Note that
these seven variables are a Z-basis for R}; r6 = —(z1 + -+ + x5) does not correspond to a variable in the

presentation for R*"" 2
Proposition 7.4. Let \ be an indecomposable partition. Then the ring R* is tensor-indecomposable.

Proof. Let n denote the number of parts in A\, and & = Ay its smallest part. We proceed by induction on n.

If n = 1, then clearly R* = Z[z;]/ <x’f> is indecomposable. Otherwise, suppose that R* = T @ T2 is
a nontrivial tensor decomposition; we will obtain a contradiction.

By Proposition 5.4, x; is a nilpotent of minimal order, and hence by Corollary 7.2, without loss of
generality, z; € T, Then R/ (x1) = T™W/ (21) @ T®. On the other hand, R/ (x,) = RY, where v is the
partition obtained from A by removing the first row and column. Since A is indecomposable, so is v. By the
inductive hypothesis, the decomposition T / (z;) ® T(® must be trivial; that is, 7"/ (z;) = Z, and TM
must be generated by 1 as a Z-algebra, i.e., T = Z[x]/ <xlf> Therefore, exactly one member of the set

L={zs+ar:acZ}

belongs to T, 1(2). Let ¢ be the nilpotence order of that one form; then all other elements of L have nilpotence
order k+{¢—1 > ¢ by Lemma 7.1. Let m = Ag; note that m > 3 since A is indecomposable. By Proposition 3.1
we can work in the algebra R(A1*2) = R(A:) namely the quotient of Z[xz1,x2] by the ideal

k -1 —2 k=1
(Gy =af, Go =3 " 4y "1 +... .ty ).

Let o € Z be arbitrary. We will show that no linear form x2 4+ axy has nllpotence order strictly less than
m. Indeed,

m—1
(I2+aI1)m_l—Z< ,>jm]171njl

7=0
m—2
— ( ] )Jm;lxvlnjl +G2_Zx2'xm]1
7=0
= G2+rn22<<m_1> m=j= 1—1)332@;” =1
=0 J
m—2 m—1 )
Z << i >am = 1—1)x2x71n -1 mod (G1,Ga).

j=m—k

This last expression is exactly the standard form of (zo + ax1)™ !, For j = m — 2, the summand is

((m—1)a—1)z3" %z;; since m > 3 and «a is an integer, the coefficient is nonzero. Therefore (zo+ax)™ ! # 0.
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On the other hand, 25" = 0 in R* by Proposition 5.5. Therefore 2o must be the unique element of L with
minimal nilpotence order m = ¢, and every other element of L must have nilpotence order k +m — 1. But
there are no standard monomials in x1, x5 of degree greater than (k—1)+ (m—2) = k+m — 3, which implies
that every element of L has nilpotence order k 4+ m — 2 or less. This contradiction completes the proof. [

We now establish the key fact of the decomposable case, that these decompositions are actually unique.

Lemma 7.5. The ring R has a unique tensor decomposition into tensor-indecomposables. Specifically, if
X has indecomposable components XV, X2 X" then

€] (r
R=rR" o .. or"
is the unique tensor decomposition of R, up to permuting the factors.

Proof. The existence is immediate, since each R s tensor-indecomposable by Lemma 7.4. For uniqueness,
we proceed by induction on the number of rows of A. If A has only one row, the statement is trivial.
Suppose that R = ®f:1T(Z) is a tensor decomposition with each T(9 tensor-indecomposable, so that

RQr = B = QR (19a)
i=1 j=1

P = rR = PrR". (19b)
1=1

j=1

Let k be the minimal nilpotence order of any element of R}. Then k = min{)\gj) : 1 < j <r} by Corollary 7.3.
Without loss of generality, we may re-index so that k = )\gl); then x; is a linear form of nilpotence order
k. By Corollary 7.2, x; must belong to one of the T, say T, Let v, ") be the partitions obtained by
removing the left column and bottom row of A\, A(!)| respectively. Then

TW/(2) o QT = RM(z) = R o@R", (20a)
i=2 j=2

V/2e e PTY = RYZar = R o@PRY. (20b)
i=2 =2

By induction, the rightmost expression in (20a) is the unique tensor decomposition of R into tensor-

indecomposables (possibly with a superfluous factor R =7 if A has only one part). Thus the rightmost
expression in (20b) is unique—clearly not as a direct sum decomposition of R}/Zz; as a Z-module, but as
a direct sum decomposition which induces a tensor decomposition of R*/ (z1).

Now assume that A(!) has m rows, so that z1, s, ..., x,, generate R asa Z-subalgebra of R*. For each
¢ € {2,...,m}, consider the image Z, of zy in RY = R}/Zx;. Since each 7, belongs to the direct summand
Rll’(l) on the left side of the unique decomposition (20b), it must belong either to Tl(l)/Zacl, or to le‘) for
some ¢ > 2. On the other hand, Corollary 7.3 tells us that x; is /\y)—nilpotent in R, but 7, is V(l_)l—nilpotent
in R”. That is, the nilpotence order of =, drops by 1 in the quotient by z; (because uﬁl = )\1(31) —1). If

Ty € Tl(i) for some ¢ > 2, then this last observation contradicts Lemma 7.1. Therefore z, € Tl(l)/Z:cl, from

which we conclude that Tl(l)/Zgg1 > R’fu),
Consequently, the uniqueness property of the decomposition (20b) implies that

V26, = R & @ R
uelU
for some subset U C {2,3,...,r}. Since z; lies in both T} and RA(I), we conclude that

Tl(l) _ Ri\(l) @ @Ri\(ju)
uelU
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and, since T() is a standard graded Z-algebra,

71 — RA“>®(ED}90u{
uelU

But T was assumed to be indecomposable, so this forces U = (). Hence Tl(l) = R{‘(l) and Tl(l)/Z:vl =
Rll’(l). By the uniqueness property of (20b), we must have r = s, and after re-indexing, Tl(z) = R{‘m for
1 =2,3,...,r. Thus the two tensor decompositions in (19a) are identical. O

The nontrivial implication (iii) = (i) in the main result, Theorem 1.1, is now immediate from Lemma 7.5
and Theorem 6.1.

Remark 7.6. As we shall now demonstrate, it was essential to study the cohomology of X, with integer
coefficients. If A is a coefficient ring in which 2 is invertible, then Proposition 7.4, Lemma 7.5 and Theorem 1.1
would all fail to hold if “graded Z-algebra” was replaced with “graded A-algebras”. That is, Ding’s Schubert
varieties are not classified up to isomorphism by their cohomology with A-coefficients. For example, consider
the indecomposable partition A = (2,3). By completing the square, one has

1
RZ3) g, A =~ Alxy,x2] / <xf, :E% + 179 + Zx%>

1 2
= Alzy,xz2]/ x%, ($2+§$C1)

= Alz] /(23) ® Alyl /(y*).
Thus indecomposable partitions do not lead to tensor-indecomposable graded A-algebras. This also leads
to “extra” isomorphisms among the cohomology rings H*(Xy; A) = R ®z A. For example, the partition
1t = (2,2,4) has indecomposable components p(!) = ;2 = (2). Since R = Z[z]/ (x?), one has

Rz A =2 Alr]/(2?) @4 Alz] / (2?) =2 R @z A

even though A = (2,3) and pu = (2,2,4) do not have the same indecomposable partition components.
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