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Abstract. K. Ding studied a class of Schubert varieties Xλ in type A partial flag manifolds, indexed
by integer partitions λ and in bijection with dominant permutations. He observed that the Schubert cell
structure of Xλ is indexed by maximal rook placements on the Ferrers board Bλ, and that the integral
cohomology groups H∗(Xλ; Z), H∗(Xµ; Z) are additively isomorphic exactly when the Ferrers boards
Bλ, Bµ satisfy the combinatorial condition of rook-equivalence.

We classify the varieties Xλ up to isomorphism, distinguishing them by their graded cohomology rings
with integer coefficients. The crux of our approach is studying the nilpotence orders of linear forms in the
cohomology ring.

1. Introduction

The goal of this paper is to classify up to isomorphism a certain class of Schubert varieties within partial
flag manifolds of type A. Although this is partly motivated as a first step toward the isomorphism classi-
fication of all Schubert varieties, we choose here to explain instead our original motivation, stemming from
rook theory in combinatorics.

A board B is a subset of the squares on an N × N chessboard, and a k-rook placement on B is a subset
of k squares in B, no two in a single row or column. Kaplansky and Riordan [9] considered the problem
of when two boards B, B′ are rook-equivalent, that is, when for each k ≥ 0, the number Rk(B) of k-rook
placements is the same as Rk(B′).

Foata and Schützenberger [4] solved the problem for the well-behaved subclass of Ferrers boards Bλ; these
are the usual Ferrers diagrams associated to partitions1

λ = (0 ≤ λ1 ≤ . . . ≤ λn) (1)

having all squares left-justified in their row, with λ1 squares in the bottom row, λ2 in the next, etc. They
showed that each rook-equivalence class of Ferrers boards has a unique representative which is a strict
partition, i.e., satisfying λi < λi+1. Goldman, Joichi and White [8] re-proved this result by showing that Bλ

and Bµ are rook-equivalent if and only if the multisets of integers {λi − i}n
i=1 and {µi − i}n

i=1 coincide.
Garsia and Remmel [6] defined q-rook polynomials Rk(Bλ, q) that q-count the k-rook placements on Bλ

by a certain “inversion” statistic generalizing inversions of permutations. They also showed that the problem
of q-rook equivalence is the same as that of rook equivalence. When λi ≥ i for each i, this can be deduced
from a product formula for Rn(Bλ, q) that counts placements of n rooks: up to a factor of q it is

n∏

i=1

[λi − i + 1]q (2)

where [m]q := qm−1
q−1 = 1 + q + q2 + · · · + qm−1.
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Figure 1. A decomposable partition λ. The unshaded regions are λ(1) and λ(2).

K. Ding [2, 3] interpreted this product as the Poincaré series for a certain algebraic variety Xλ which he
called a partition variety. Fix a standard complete flag of subspaces

0 ⊂ C
1 ⊂ · · ·CN−1 ⊂ C

N

and define

Xλ := {flags 0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ C
N : dimC Vi = i and Vi ⊂ C

λi}. (3)

The set Xλ may be endowed with the structure of a smooth complex projective variety, and (although not
stated explicitly in [2]) is in fact a smooth Schubert variety inside the partial flag manifold XNn , where
Nn denotes the rectangular board with n rows and N columns. As we shall explain below, the Schubert
varieties arising in this way are (in the notation of [5, §10.2]) those of the form Xw, where w is a 312-avoiding
permutation. Equivalently, the fundamental cohomology class [Xw] is represented by a Schubert polynomial
indexed by a dominant or 132-avoiding permutation. (See [5] for a reference on Schubert varieties, and [10]
for a detailed treatment of Schubert polynomials.) Ding observed that the Schubert cell structure inherited
by Xλ has cells indexed by n-rook placements on Bλ, and with the dimension of the cell governed by Garsia
and Remmel’s inversion statistic. Since these cells are all even-dimensional, their (co)homology is free
abelian, occurring only in even dimension, and the Poincaré series of Xλ is given by the q-rook polynomial
formula (2). From this Ding concluded [3] that two partition varieties Xλ, Xµ have additively isomorphic
(co)homology groups if and only if Bλ and Bµ are rook-equivalent.

It is natural to ask when two such Ding partition varieties Xλ, Xµ have isomorphic (graded) cohomology
rings, or even when they are isomorphic as varieties. The main result of this paper is that the answers to
both questions are the same. We make use of recent results of Gasharov and the third author [7], giving
simple explicit cohomology ring presentations2 for a more general class of Schubert varieties in partial flag
manifolds (those defined by a conjunction of inclusion conditions of the forms Cj ⊂ Vi and Vi ⊂ Cj).

To state our main result, we first note one trivial source of isomorphisms among the partition varieties
Xλ. We assume throughout that λi ≥ i for every i, for otherwise Xλ = ∅. However, if λk = k for some k,
then the condition Vk ⊂ Ck with dimC Vk = k forces Vk = Ck, so that Xλ is isomorphic to Xλ(1) × Xλ(2) ,
where

λ(1) = (λ1, . . . , λk−1),

λ(2) = (λk+1 − k, . . . , λn − k).

Here if k = n, so that λn = n, there is no partition λ(2) and we simply note that Xλ
∼= Xλ(1) .

Say that λ is decomposable if this occurs (i.e., if λk = k for some k), and indecomposable otherwise. For
example, the partition λ = (5, 5, 5, 6, 6, 6, 8, 9) shown in Figure 1 is decomposable since λ6 = 6. In this case,
one has λ(1) = (5, 5, 5, 6, 6) and λ(2) = (2, 3), as shown in the figure.

2It is amusing that these cohomology ring presentations for Schubert varieties are often derived for the purposes of enu-
merative geometry (Schubert calculus), but are used here for a different classical topological purpose, namely distinguishing
non-homeomorphic spaces.
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Iterating this, one can decompose λ into a multiset of indecomposable partitions {λ(i)}r
i=1, which we will

call its indecomposable components, such that

Xλ
∼= Xλ(1) × · · · × Xλ(r) . (4)

Our main result is that the Schubert varieties Xλ are determined up to isomorphism by these multisets
of indecomposable components. It should be compared with the result of Goldman, Joichi and White [8],
which can now be rephrased: the varieties Xλ are determined up to additive (co-)homology isomorphism by
the multisets of numbers {λi − i}.

Theorem 1.1. The following are equivalent for two partitions, λ = (λ1, . . . , λm) and µ = (µ1, . . . , µm′):

(i) The multisets of indecomposable components, {λ(i)}r
i=1 and {µ(i)}r′

i=1, are identical.
(ii) There is an isomorphism Xλ

∼= Xµ of varieties.
(iii) There is a graded isomorphism of integer cohomology rings H∗(Xλ; Z) ∼= H∗(Xµ; Z).

The implications (i) =⇒ (ii) =⇒ (iii) are clear; the hard part is to show that (iii) implies (i). It
turns out that the key to this implication lies in understanding the nilpotence orders of cohomology elements
f ∈ H2(Xλ; Z); that is, the least k for which fk = 0.

In Section 2, we review some of Ding’s results, and re-prove somewhat more directly the presentation
for H∗(Xλ; Z) from [7]. The three sections that follow are the technical heart of the paper, categorizing
elements in H2(Xλ; Z) of minimal nilpotence order. We begin in Section 3 by setting up some Gröbner
basis machinery that we shall use throughout (for a general reference on Gröbner basis theory, see [1]).
Section 4 deals with nilpotents in the cohomology of the complete flag variety (that is, when λ is a square
Ferrers board) and Section 5 treats the case of arbitrary Xλ. Using these tools, we prove in Section 6 that
an indecomposable partition λ may be recovered from the structure of H∗(Xλ; Z) as a graded Z-algebra.
Finally, in Section 7, we show that in the general case, H∗(Xλ; Z) has an essentially unique decomposition
as a tensor product of graded Z-algebras, whose factors correspond to the indecomposable components of
the partition λ.

It is curious that this unique tensor decomposition fails if instead of the integer cohomology ring H∗(Xλ; Z)
one takes cohomology with coefficients in a ring where 2 is invertible; see Remark 7.6 below.

2. Review of Xλ and the presentation of H∗(Xλ; Z)

For the sake of completeness, and also to collect facts for future use, we begin by re-proving some of Ding’s
results from [2], and re-derive somewhat more directly the presentation given in [7] for the cohomology ring
of Xλ. Throughout this paper, all cohomology groups and rings are taken with integer coefficients unless
otherwise specified. We begin by identifying the Schubert varieties that arise as Ding’s varieties Xλ. (See [5,
§10.6] for more information on Schubert varieties, and [10] for a detailed treatment of Schubert polynomials.)

Let SN be the symmetric group of permutations of {1, . . . , N}, and let S{n+1,n+2,...,N} be the subgroup
of permutations fixing {1, . . . , n} pointwise. Consider the partial flag variety

XNn =
{
flags 0 ⊂ V1 ⊂ · · · ⊂ Vn ⊂ C

N : dim Vi = i
}
.

Let w = w1 . . . wn ∈ SN be a permutation which is a maximum-length representative for its coset in
SN/S{n+1,n+2,...,N}. The corresponding Schubert variety Xw ⊂ XNn is defined to be

Xw =
{
flags 0 ⊂ V1 ⊂ · · · ⊂ Vn ⊂ C

N : dim Vi = i, dim Vi ∩ C
j ≥ #{k ≤ i : wk ≤ j}

}
.

Let λ be a partition of the form (1), and let N = λn. It is easy to check that Ding’s variety Xλ coincides
with the Schubert variety Xw ⊂ XNn , where w is the unique permutation given by the recursive rule

wi = max ({1, . . . , λi} \ {w1, . . . , wi−1}) .

Note that if n = N , then w corresponds to the maximal rook placement on the Ferrers board Bλ given by
the following algorithm: let i increase from 1 to n, and for each i, place a rook in row i and column wi,
where wi is the rightmost square in row i whose column does not already contain a rook. For instance, if
λ = (2, 4, 4, 5, 5), then w = 24351 ∈ S5. (If n < N , then we must first augment λ with N −n additional rows
of length λn.) It is not hard to verify that the permutations w obtained in this way are exactly those which
are 312-avoiding; that is, there do not exist i, j, k for which i < j < k and w(i) > w(k) > w(j). Equivalently,
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Figure 2. A partition λ and the subpartition ν (shaded) such that H∗(Xλ) / 〈x1〉 = H∗(Xν).

the cohomology class [Xw] ∈ H∗(XNn) is represented by a Schubert polynomial which is a single monomial,
namely the Schubert polynomial indexed by the dominant (or 132-avoiding) permutation w0w, where w0 is
the unique permutation of maximal length. (We thank Ezra Miller for discussions clarifying these points.)

Because Xλ is a Schubert variety, it comes equipped with a Schubert cell decomposition, having cells in
only even real dimensions. As observed by Ding, this has important consequences:

Theorem 2.1 (Ding [2]). The integral cohomology ring H∗(Xλ; Z) is free abelian (that is, it has no torsion),
is nonzero only in even homological degrees, and has Poincaré series

Poin(Xλ, q) :=
∑

i≥0

qi rankZ H2i(Xλ; Z) =

n∏

i=1

[λi − i + 1]q.

Proof. The cohomology is free abelian and concentrated in even degrees because the Schubert cell decom-
position for the Schubert variety Xλ has cells only in even dimensions.

For the assertion about the Poincaré series, we will induct on n. The map

Xλ → P(Cλ1) ∼= P
λ1−1
C

{Vi}n
i=1 7→ V1

is an (algebraic) fiber bundle, with fiber isomorphic to Xν , where

ν = (ν1, . . . , νn−1) = (λ2 − 1, . . . , λn − 1)

is the partition obtained by removing the first row and column from λ (see Figure 2). The Leray-Serre
spectral sequence is particularly simple in this situation, because both base and fiber are simply-connected
(again due to the Schubert cell decomposition) and have homology concentrated in even dimension. This
causes the spectral sequence to degenerate at the E1-page, yielding

Poin(Xλ, q) = Poin(Xν , q) · Poin(Pλ1−1
C

, q).

The assertion about Poin(Xλ, q) now follows by induction on n, using the fact that [m]q = Poin(Pm−1
C

, q). �

We now set about deriving the presentation for H∗(Xλ). To this end, we recall Borel’s picture for the
cohomology of the complete flag manifold GLN (C)/B = XNN and the partial flag manifold XNn ; see [5,
Chapter 10, §3, §6]. We will use the following notation for symmetric functions in various sets of variables.
For integers 1 ≤ i ≤ j ≤ N and m ≥ 0, define the mth elementary and complete homogeneous symmetric
functions, respectively, by

em(i, j) := em(xi, xi+1, . . . , xj),

hm(i, j) := hm(xi, xi+1, . . . , xj),
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where

em(N) := em(1, N) = em(x1, . . . , xN ) =
∑

1≤i1<···<im≤N

xi1 · · ·xim
,

hm(N) := hm(1, N) = hm(x1, . . . , xN ) =
∑

1≤i1≤···≤im≤N

xi1 · · ·xim
.

According to Borel’s picture, H∗(XNN ) ∼= Z[x1, . . . , xN ]/J , where J = 〈e1(N), . . . , eN(N)〉 is the ideal
generated by all symmetric functions of positive degree, and where xi represents the negative of c1(Li), the
first Chern class of the line bundle Li on GLN (C)/B whose fiber over the flag {Vi}N

i=0 is Vi/Vi−1.
Furthermore, the surjection XNN → XNn which forgets the subspaces of dimension greater than n in

a complete flag induces a map H∗(XNn) → H∗(XNN ) which turns out to be injective, and the image of
H∗(XNn) is identified with the invariant subring H∗(XNN )S{n+1,n+2,...,N} . This invariant subring may be
presented as S/J ′, where

S = Z[x1, . . . , xN ]S{n+1,n+2,...,N} = Z[x1, . . . , xn, e1(n + 1, N), . . . , eN−n(n + 1, N)]

and J ′ = 〈e1(N), . . . , eN (N)〉 is the ideal of S with the same generators as J .
The relations in the ideals J and J ′ induce further relations among various symmetric functions, which

we record here for future use.

Proposition 2.2 (cf. [5, p. 163, eqn. (4)]). For every m ∈ {1, 2, . . . , N} and j ≥ 0, one has

hj(m) ≡ (−1)jej(m + 1, N) (mod J).

Proof.
m∏

i=1

(1 + xit)

N∏

i=m+1

(1 + xit) =

N∏

i=1

(1 + xit) =

n∑

j=0

ej(N)tj ≡ 1 (mod J).

Hence
∞∑

j=0

(−1)jhj(m)tj =

m∏

i=1

(1 + xit)
−1 ≡

N∏

i=m+1

(1 + xit) =

N−m∑

j=0

ej(m + 1, N)tj (mod J).

Now comparing coefficients of powers of tj yields the desired equality. �

We now give the general presentation for the integral cohomology of Xλ (as pointed out in [7, Remark
3.3]).

Theorem 2.3. Let λ be a partition with 1 ≤ λ1 ≤ · · · ≤ λn = N and λi ≥ i for all i. Let

Rλ := Z[x1, . . . , xn]/Iλ

where Iλ := 〈hλi−i+1(i) : 1 ≤ i ≤ n〉.
Then there is a (grade-doubling) ring isomorphism

Rλ → H∗(Xλ; Z)

sending xi to −c1(Li). Here Li is the same line bundle as above, but restricted to Xλ from the partial flag
manifold XNn

.

Proof. The obvious inclusion Xλ ↪→ XNn induces a map H∗(XNn) → H∗(Xλ). This ring map is surjective,
because Xλ inherits from XNn a decomposition into Schubert cells, and the dual cocycles to these (even-
dimensional) cells additively generate the cohomology in each case.

There are further relations on the Chern classes xi in H∗(Xλ) due to the conditions Vi ⊂ Cλi . Specifically,
the bundle CN/Vi on Xλ will have the same Chern classes as the direct sum CN/Cλi ⊕ Cλi/Vi, in which
CN/Cλi is a trivial bundle. Thus when restricted to Xλ, the bundle CN/Vi will have the same Chern classes
as the bundle Cλi/Vi of rank λi − i. Hence its Chern classes cm = ±em(i + 1, N) for m > λi − i inside
H∗(Xλ) must vanish. Consequently, we have a surjection of rings

Z[x1, . . . , xn, e1(n + 1, N), e2(n + 1, N), . . . , eN−n(n + 1, N)]/Jλ → H∗(Xλ) (5)
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where
Jλ := J ′ + 〈ej(i + 1, N) : 1 ≤ i ≤ n and j > λi − i〉 .

We now manipulate the quotient ring Z[x1, . . . , xN ]S{n+1,n+2,...,N}/Jλ on the left of (5). We use Proposi-
tion 2.2 to draw two conclusions:

(i) Applying Proposition 2.2 with m = n shows that H∗(XNn) and H∗(Xλ) are generated as algebras by
x1, . . . , xn, since their generators of the form ei(n+1, N) can be expressed modulo J ′ as (symmetric)
polynomials in x1, . . . , xn.

(ii) Applying it with m = i for 1 ≤ i ≤ n shows that hλi−i+1(i) = 0 in H∗(Xλ), because for each
j ≥ λi − i, hj(i) is congruent modulo J ′ to ±ej(i + 1, N).

Consequently, there is a surjection of rings

Z[x1, . . . , xn]/ 〈hλi−i+1(i) : 1 ≤ i ≤ n〉 → H∗(Xλ). (6)

On the other hand, the set
{hλi−i+1(i) : 1 ≤ i ≤ n}

is a Gröbner basis for Iλ with respect to the lexicographic term order on Z[x1, . . . , xn] given by x1 < · · · < xn.

Indeed, the initial term of hλi−i+1(i) is xλi−i+1
i , so these generators have pairwise relatively prime, monic

initial terms. Consequently, the quotient ring on the left of (6) is a free Z-module of rank
∏n

i=1(λi−i+1), with
Z-basis given by the standard monomials (those divisible by none of the initial terms), namely {xa1

1 · · ·xan
n :

ai ≤ λi − i}. Since Theorem 2.1 implies that H∗(Xλ) is a free Z-module of the same rank, the surjection (6)
must be an isomorphism. �

For example, if λ is the partition shown in Figure 1, then the Gröbner basis for Iλ is

h5(1), h4(2), h3(3), h3(4), h2(5), h1(6), h2(7), h2(8).

The previous proof shows that Iλ is the elimination ideal

Iλ = Z[x1, . . . , xn] ∩ Jλ.

This observation has some useful corollaries, which can also be proved by direct combinatorial/algebraic
arguments avoiding any use of geometry. The first corollary is the algebraic manifestation of the (surjective)
map Rλ → Rµ induced by the inclusion of Schubert varieties Xλ → Xµ.

Corollary 2.4. Let λ and µ be partitions, both with n nonzero rows, such that λ ⊃ µ.
Then Iλ ⊂ Iµ, and consequently, Rλ is a quotient of Rµ.

Proof. By definition of Jλ, one has Jλ ⊂ Jµ in this situation. �

Corollary 2.5. If λi = λi+1 = · · · = λj for some i < j then the ideal Iλ is invariant under permutations of
the variables xi, xi+1, . . . , xj .

Proof. It suffices to show that Jλ has this same invariance. Note that the generators for Jλ of the form

em(i′ + 1, N) for i ≤ i′ < j and m > λi′ − i′

are all redundant, as they lie in the ideal generated by {em(j + 1, N) : m > λj − j}. The latter generators,
and all other generators of Jλ, are symmetric in xi, xi+1, . . . , xj . �

3. Two reduced Gröbner bases

This section examines the Gröbner bases for Iλ for two extreme cases of indecomposable partitions. In
both cases, one can describe the (unique) reduced Gröbner basis, which will be used in an essential way later
in the paper. We assume some familiarity with “Gröbner basics” on the reader’s part; a good reference for
this topic is [1].

We begin with some notation regarding Gröbner reduction. Since the generators {hλi−i+1(i) : 1 ≤ i ≤ n}
form a Gröbner basis for Iλ with respect to a lexicographic monomial ordering in which x1 < . . . xn, we
can compute in the quotient Rλ by reducing polynomials modulo this Gröbner basis. For a polynomial
f ∈ Z[x1, . . . , xn], we will denote by f this standard form of f . That is, f is the unique Z-linear combination
of standard monomials {xa1

1 · · ·xan
n : ai ≤ λi − i} which is congruent to f modulo Iλ. Given a standard
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Figure 3. An indecomposable partition λ and its core subpartition µ (shaded).

monomial M , we denote by [M ]f the coefficient of M in f . (This is well-defined, because the standard
monomials form a basis for Z[x1, . . . , xn]/Iλ as a free Z-module.)

Let λ = (λ1 ≤ · · · ≤ λn) and for some fixed m ≤ n, let µ = (λ1, . . . , λm). Then the fact that we are
using a lexicographic order to perform reductions has the following easy consequence (see also [1, §3.1]),
which will be used frequently. It can be viewed as an algebraic consequence of the fibration Xλ → Xµ

that forgets the subspaces of dimension greater than m in a flag, which happens to induce an injective map
H∗(Xµ) → H∗(Xλ).

Proposition 3.1. Let λ and µ be related as above. Suppose that f in Z[x1, . . . , xn] lies in some subalgebra
Z[x1, . . . , xm], where m ≤ n.

Then the images of f in Rλ and Rµ have the same standard form f .

Our first extreme case arises when λ is an indecomposable partition with λi = p, and µ ⊂ λ is the smallest
indecomposable partition having µi = p, namely µ = (2, 3, . . . , i − 1, i, p).

Proposition 3.2. Let µ = (2, 3, . . . , i − 1, i, p). With respect to lexicographic order on Z[x1, . . . , xm] with
x1 < · · · < xm, the ideal Iµ has reduced Gröbner basis

{x1h1(1), x2h1(2), . . . , xi−1h1(i − 1), xp−i+1
i + xp−i

i h1(i − 1)}. (7)

Proof. It is easy to see that the elements of (7) form a reduced Gröbner basis with respect to the lexicographic
order for whatever ideal they generate. We observe that this ideal may also be presented as

〈

h2(1), h2(2), . . . , h2(i − 1), xp−i+1
i + xp−i

i h1(i − 1)
〉

.

We will show that this ideal is exactly Iµ. By Theorem 2.3,

Iµ = 〈h2(1), h2(2), . . . , h2(i − 1), hp−i+1(i)〉 ,

so it remains only to show that hp−i+1(i) and xp−i+1
i + xp−i

i h1(i − 1) are congruent modulo the ideal

〈h2(1), h2(2), . . . , h2(i − 1)〉. Since hp−i+1(i) =
∑p−i+1

j=1 xj
i hp−i−j+1(i − 1), this congruence is immediate

from the fact that

hm(`) ∈ 〈h2(1), h2(2), . . . , h2(`)〉 for m ≥ 2,

which is easily proven by double induction on m and ` via the identity hm(`) = x`hm−1(`) + hm(`− 1). �

Our second extreme case arises when λ is an indecomposable partition with n rows. Let k = λ1, and let
µ be the smallest indecomposable partition with n rows and µ1 = k. That is,

µ1 = µ2 = · · · = µk−1 = k,

µi = i + 1 for k ≤ i ≤ n.
(8)

Then µ is a subpartition3 of λ, which we will call the core of λ. For example, the core of λ = (4, 4, 6, 6, 8, 10)
is the partition µ = (4, 4, 4, 5, 6, 7) (see Figure 3).

3For the purposes of this paper, the statement “µ is a subpartition of λ” means that µi ≤ λi for all rows µi of µ. Equivalently,
the Ferrers diagram of µ is contained inside that of λ, when both are left- and bottom-justified.
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Proposition 3.3. For k < n, let λ be a partition which is its own core.
Then the polynomials

G1 = hk(1), G2 = hk−1(2), . . . , Gk−1 = h2(k − 1),

Gk = xkh1(k), Gk+1 = xk+1h1(k + 1), . . . , Gn = xnh1(n)
(9)

form a reduced Gröbner basis for Iλ under the reverse lexicographic term order given by x1 < x2 < . . . < xn.

Proof. The initial terms of the Gi’s are (in order) xk
1 , xk−1

2 , . . . , x2
k−1, x2

k, . . . , x2
n. It is evident that no

initial term divides any term of any other Gi. Therefore, they are a reduced Gröbner basis for the ideal that
they generate.

We claim that for every r ∈ {k, k + 1, . . . , n},

〈G1, . . . , Gr〉 = 〈hk(1), hk−1(2), . . . , h2(k − 1), h2(k), . . . , h2(r)〉 .

The claim is trivial for r = k. For r > k, it follows from induction and the observation that h2(r)−h2(r−1) =
xrh1(r) = Gr. In particular, the equality for r = n gives 〈G1, . . . , Gr〉 = Iλ. �

The form of this reduced Gröbner basis has the following consequence, which we will exploit later.

Corollary 3.4. (“Stickiness”) Let λ be an indecomposable partition which is its own core, and k := λ1. Let
M be a monomial in x1, . . . , xn.

Then:

(1) If k ≤ i ≤ n and M is divisible by xi, then so is M .
(2) If M is not divisible by any of the variables xk, . . . , xn, then neither is M .

Proof. (1) is immediate from the previous discussion. For (2), the only Gröbner basis elements that can be
used in the reduction of M are G1, . . . , Gk−1, so the reduction process cannot introduce a monomial divisible
by any of xk , . . . , xn. �

One useful consequence of “stickiness” is the following.

Corollary 3.5. Let λ be an indecomposable partition which is its own core, and k := λ1. Let f =
∑n

i=1 aixi

be an element of the degree-one graded piece Rλ
1 of Rλ. Decompose f as f = g + h, where

g =

k−1∑

i=1

aixi, h =

n∑

i=k

aixi.

If fm = 0 in Rλ for some positive integer m, then gm = 0 in Rλ.

Proof. Note that fm = gm + p, where p is some polynomial divisible by akxk + · · · + anxn. Passing to the
standard forms, we find that 0 = gm + p. By Corollary 3.4, no monomial in gm is divisible by a sticky
variable (that is, one of xk, . . . , xn), but every monomial in p is divisible by a sticky variable. Therefore
gm = 0 (= p). �

4. Nilpotence of linear forms in the cohomology of G/B

The main result of this section, Theorem 4.1, concerns the nilpotence orders of degree-1 elements in the
graded ring H∗(G/B). This result may be of independent interest, and it would be nice to have a geometric
explanation for it.

Recall that H∗(G/B) = Rnn ∼= Z[x1, . . . , xn]/J , where

J = 〈ei(n) : 1 ≤ i ≤ n〉 = Inn = 〈hn−i+1(i) : 1 ≤ i ≤ n〉 . (10)

We digress to discuss graded Z-algebras and nilpotence. A standard graded Z-algebra is a ring R with a
Z-module direct sum decomposition R =

⊕

d≥0 Rd in which each Rd is a free Z-module, Rd ·Re ⊂ Rd+e and

R is generated over the subalgebra R0 = Z by R1. Let R be a ring and f ∈ R a nilpotent element (that is,
some power of f is zero). The nilpotence order of f is defined as the smallest integer k such that f k = 0; we
will sometimes say that f is k-nilpotent. (So f has nilpotence order 1 if and only if f = 0.)

By Theorem 2.3, Rλ = Z[x1, . . . , xn]/Iλ is a standard graded Z-algebra, with Rλ
1
∼= H2(Xλ; Z). Further-

more, every element of Rλ
1 is nilpotent, since Rλ has finite rank as a Z-module. The nilpotence order of



CLASSIFICATION OF DING’S SCHUBERT VARIETIES 9

these linear forms will be our main tool in distinguishing the rings Rλ. In this section, we study the case
that λ = nn; we treat the general case in Section 5.

Note that the images of the variables xi in Rnn

satisfy xn
i = 0. Indeed, by Corollary 2.5, it is sufficient to

prove that xn
1 = 0, which follows from (10) since Inn contains the element hn−1+1(1) = hn(1) = xn

1 . In fact,
more is true:

Theorem 4.1. Let f ∈ H2(G/B) ∼= (Rnn

)1.
Then f has nilpotence order greater than or equal to n, with equality if and only if f is congruent, modulo

J , to a scalar multiple of one of the variables x1, . . . , xn.

We first show that n is the minimal nilpotence order achieved by any linear form.

Proposition 4.2. Let f ∈ Rnn

1 be a linear form. If fn−1 = 0, then f = 0.

Proof. Let f̂ be a preimage of f under the quotient map Z[x1, . . . , xn] � Rnn

. Then fn−1 = 0 means

f̂n−1 ∈ J . By degree considerations, this means that f̂n−1 belongs to the ideal

I := 〈ei(n) : 1 ≤ i ≤ n − 1〉 ⊂ Z[x1, . . . , xn]. (11)

Thus it suffices to show that I is a radical ideal, since then f̂ ∈ I and f = 0 in Rnn

. We will show something
slightly stronger: that the ideal I ′ := 〈ei(n) : 1 ≤ i ≤ n − 1〉 ⊂ C[x1, . . . , xn] is radical. Indeed, any nonzero
nilpotent in Z[x1, . . . , xn]/I would give rise to a nonzero nilpotent in C[x1, . . . , xn]/I ′.

Let ζ be a primitive nth root of unity. We claim that I ′ is the vanishing ideal I(V ) for the variety V ⊂ Cn,
defined as the union of all lines whose slope vector is any permutation of (1, ζ, . . . , ζn−1). Note that there
are exactly (n− 1)! such lines, because two such slope vectors that differ by multiplication by a root of unity
give rise to the same line. Equating coefficients of powers of t in the equation

tn − 1 =
n∏

i=1

(t − ζi) =
n∑

i=0

ei(1, ζ, . . . , ζn−1)ti

shows that I ′ ⊂ I(V ). For the reverse inclusion, note that e1(n), . . . , en(n) is a regular sequence in
C[x1, . . . , xn], and therefore cuts out scheme-theoretically a complete intersection of Krull dimension 1,
that is, a set of curves with various multiplicities. By Bézout’s Theorem, the sum of the degrees of those
curves, counted with multiplicities, must be

deg(e1(n)) · deg(e2(n)) · · · deg(en(n)) = 1 · 2 · · · (n − 1) = (n − 1)!

But this complete intersection contains at least (n − 1)! lines in V , each of degree 1. Therefore it contains
no other curves, and each line occurs with multiplicity 1; that is, I ′ = I(V ). �

To complete the proof of Theorem 4.1, we must show that the scalar multiples of the variables xi are the
only n-nilpotent linear forms in Rnn

. In what follows, we regard a linear form f =
∑n

i=1 aixi as a C-linear
functional, mapping v = (v1, . . . , vn) ∈ Cn to

∑n
i=1 aivi.

Lemma 4.3. Let f =
∑n

i=1 aixi, with ai ∈ C, and let α ∈ C∗ be a nonzero constant. Suppose that f(v)n = α

for all v ∈ Cn whose coordinates are permutations of the distinct nth roots of unity.
Then f ∈ Cxi + Ce1(n) for some i.

Proof. Let ζ be a primitive nth root of unity. Let the symmetric group Sn act on Cn by permuting
coordinates, and for a permutation σ ∈ Sn, abbreviate f(σ(1, ζ, . . . , ζn−1)) by f(σ). Replacing f with f/α,
we may assume that f(σ)n = 1 for all σ ∈ Sn. That f has the desired form is equivalent to the statement
that at least n − 1 of the coefficients a1, . . . , an are equal. This is trivial if n = 1 or n = 2, and can be
checked by direct calculation if n = 3. Therefore, suppose n ≥ 4. By transitivity, it suffices to show that if
two coefficients ai are different, then the other n − 2 are mutually equal.

Suppose that a1 6= a2. Choose i 6= j ∈ [n] so as to maximize |ζ i − ζj |, and let σ ∈ Sn such that σ(1) = i
and σ(2) = j. Then f(σ) and f((12) ◦ σ) are both nth roots of unity, and

f(σ) − f((12) ◦ σ) = (a1 − a2)(ζ
i − ζj). (12)
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Taking the magnitude of both sides, the choice of i and j implies that |a1 − a2| ≤ 1. On the other hand, if

we choose i′ 6= j′ ∈ [n] to minimize |ζi′ − ζj′ |, the same argument implies that |a1 − a2| ≥ 1. We conclude
that |a1 − a2| = 1.

Note that ζi and ζj are the only nth roots of unity whose difference is ζ i − ζj . (This may be seen most
easily by plotting the nth roots of unity in the complex plane, and observing that no two of the line segments
joining two maximally distant roots are parallel.) Therefore, the equation (12) implies that the values f(σ)
and f((12) ◦ σ) do not depend on σ(3), . . . , σ(n). Hence a3 = . . . = an as desired. �

Proposition 4.4. Let f ∈ Rnn

1 be a linear form such that fn = 0.
Then f ∈ Zxi for some i.

Proof. Let f̂ be a preimage of f under the quotient map Z[x1, . . . , xn] � Rnn

; that is, f̂n ∈ J . By degree

considerations, there is a constant α ∈ Z such that f̂n ≡ αen(n) modulo I . As in the proof of Proposition 4.2,
the ideal I vanishes on all vectors v whose coordinates are a permutation of the distinct nth roots of unity.

Therefore f̂n(v) = αen(n)(v) = (−1)n−1α for all such vectors v. By Lemma 4.3, there is some i such that

f̂ ∈ Cxi + Ce1(n). As f̂ ∈ Z[x1, . . . , xn], this implies f̂ ∈ Zxi + Ze1(n). Consequently f ∈ Zxi in Rnn

. This
completes the proof of the proposition and of Theorem 4.1. �

5. Nilpotence of linear forms in the cohomology of Xλ

Throughout this section, λ will be an indecomposable partition. We continue our study of nilpotence
orders of linear forms in the graded Z-algebra Rλ = H∗(Xλ). The main result is the following classification
of linear forms of minimal nilpotence order, generalizing Theorem 4.1.

Theorem 5.1. Let λ = (0 < λ1 ≤ · · · ≤ λn) be an indecomposable partition, and let k := λ1. Then k is the
minimal nilpotence order of any linear form in Rλ. Moreover, if λ has exactly m parts equal to k (that is,
k = λ1 = · · · = λm < λm+1), then the elements of Rλ

1 of nilpotence order exactly k are classified as follows:

Case I. Either λk−1 > k, or n < k − 1.
Then the k-nilpotents in Rλ

1 are the multiples of x1, . . . , xm.

Case II. λk−1 = k (that is, m = k − 1).
Subcase IIa. Either λk > k + 1, or k is odd.

Then the k-nilpotents are x1, . . . , xk−1, and x1 + · · · + xk−1.

Subcase IIb. Both λk = k + 1 and k is even.
Then the k-nilpotents are x1, . . . , xk−1, x1 + · · · + xk−1, and x1 + · · · + xk−1 + 2xk.

By way of motivation for the rather technical matter of this section, we explain how the classification of
nilpotents will be used in the next two sections to recover a partition from its cohomology ring. Theorem 5.1
implies immediately that λ1 is an isomorphism invariant of Rλ. Moreover, by the presentation of Theorem 2.3,
the quotient ring Rλ / 〈x1〉 may be identified with the ring Rν , where ν = (λ2 − 1, λ3 − 1 . . . , λn − 1) is the
partition obtained by removing the first row and column from λ (see Figure 2). However, it is really necessary
to describe Rν as a quotient Rλ / 〈f〉, where f is some linear form identified intrinsically from the structure
of Rλ as a standard graded Z-algebra, that is, in a way that does not depend on the presentation. The
classification of nilpotents in Theorem 5.1 is the tool that allows this. It turns out that we will require
almost all, but not quite all of the last assertion in the theorem, so we only prove the parts that will be used.
(The arguments we omit are very similar to those that we include.)

In the first part of this section, culminating in Proposition 5.4, we prove the first assertion of Theorem 5.1,
namely that k = λ1 is the minimal nilpotence order of any linear form in Rλ. We begin with a weaker
statement: that no linear form in the first k − 1 variables has nilpotence order less than k.

Lemma 5.2. Let λ be indecomposable with k := λ1. Let f =
∑k−1

i=1 aixi ∈ Rλ
1 ; that is, f is supported only

on the first k − 1 variables. Then, in Rλ,

(a) fk−1 = 0 if and only if f = 0, and
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(b) if fk = 0, then f is a scalar multiple of one of the following: x1, . . . , xk−1, x1 + · · · + xk−1.

Proof. By Proposition 3.1 and the hypothesis that f is supported only on the first k − 1 variables, we may
assume without loss of generality that n ≤ k − 1. By Corollary 2.4, we may decrease the part sizes of λ (if
necessary), so as to assume that λ = kn. But then using Proposition 3.1 again, we can re-introduce parts

λn+1, λn+2, . . . , λk all of size k, and work in the ring Rkk ∼= GLk(C)/B, where assertion (a) follows from
Theorem 4.1.

In fact, assertion (b) also follows from Theorem 4.1. The degree-1 graded piece of Ikk is generated by

e1(k), so the elements of Rkk

1 listed above are the only ones that are congruent modulo Ikk to a scalar
multiple of a variable xi (here we use the fact that x1 + · · · + xk−1 = e1(k) − xk). �

An immediate consequence of Lemma 5.2 is that every linear form of nilpotence order λ1 − 1 must be
supported on at least one of the variables xk , . . . , xn. This is where the concept of “stickiness” introduced
in Corollary 3.4 first comes into play.

Proposition 5.3. Let λ be indecomposable with k := λ1, and let f ∈ Rλ
1 . Then fk−1 = 0 if and only if

f = 0 in Rλ.

Proof. Assume f 6= 0 ∈ Rλ
1 , but fk−1 = 0 in Rλ. By Lemma 5.2(a), we may assume n ≥ k. By Proposi-

tion 3.1, we may assume without loss of generality that λ is its own core.
Writing f = g+h, where g = a1x1+· · ·+ak−1xk−1 and h = akxk +· · ·+anxn, it follows from Corollary 3.5

that gk−1 = 0. Hence g = 0 by Lemma 5.2. That is, f = h. If f is not supported on xn (that is, an = 0),
then we may replace λ with the partition obtained by removing the nth (largest) row. Repeating this as
many times as necessary, we may assume without loss of generality that an 6= 0.

Now let M be any monomial in the variables x1, . . . , xk−1. Note that

[xnM ] fk−1 = [xnM ] (anxn)k−1 (13)

because the variables xk, . . . , xn−1 are sticky (Corollary 3.4). Reducing (anxn)k−1 using the Gröbner basis
element Gn of (9), we find that

(anxn)k−1 = −anxk−2
n (x1 + · · · + xn−1)

= a2
nxk−3

n (x1 + · · · + xn−1)
2

= . . .

= αxn(x1 + · · · + xn−1)
k−2,

(14)

where α = (−1)k−2ak−2
n 6= 0. Combining this with (13) yields

[xnM ] fk−1 = α [xnM ] xn(x1 + · · · + xn−1)k−2

= α [xnM ] xn(x1 + · · · + xk−1)k−2 (15a)

= α [M ] (x1 + · · · + xk−1)k−2 (15b)

where (15a) follows from stickiness, and (15b) from the fact that only G1, . . . , Gk−1 are used in reducing (15a).
The polynomial x1 + · · · + xk−1 is nonzero in Rλ since λ is indecomposable. Thus Lemma 5.2 implies

that (x1 + · · · + xk−1)
k−2 6= 0 as well, and so there exists some monomial M in the variables x1, . . . , xk−1

for which [M ](x1 + · · · + xk−1)k−2 6= 0. Note that xnM is also a standard monomial for Iλ. Therefore

[xnM ]fk−1 6= 0, a contradiction. �

Proposition 5.4. When λ is indecomposable, the number k = λ1 is an isomorphism invariant of Rλ as a
graded ring: namely, it is the minimum nilpotence order achieved by any linear form.

Proof. Proposition 5.3 states that no nonzero linear form can have nilpotence order strictly less than k = λ1.
On the other hand, x1 has nilpotence order at most k, because xk

1 = hk(1) ∈ Iλ. �

In the second part of this section, we show that the various linear forms mentioned in Theorem 5.1 are
the only possible k-nilpotents in Rλ. We begin by determining the nilpotence order of each variable.

Proposition 5.5. When λ is indecomposable, the variable xi is λi-nilpotent in Rλ.
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Proof. Let p = λi. First, we show that xp
i = 0 in Rλ. Let κ be the partition given by

κ := (p, . . . , p
︸ ︷︷ ︸

i times

, λi+1, λi+2, . . . , λn).

Then λ is a subpartition of κ, so Rλ is a quotient of Rκ by Lemma 2.4. It suffices to show that xp
i = 0 in

Rκ, which follows from Corollary 2.5 since xp
1 ∈ Iκ.

It remains to show that xp−1
i 6= 0 in Rλ. By Proposition 3.1 and Corollary 2.4, it suffices to show that

xp−1
i 6= 0 in Rµ, where µ is the subpartition of λ given by

µ := (2, 3, . . . , i − 1, i, p).

Note that µ is indecomposable, and that Rµ has a reduced Gröbner basis given by (7). A Gröbner reduction

similar to (14), using the Gröbner basis element xp−i+1
i + xp−i

i h1(i − 1) yields the equation

xp−1
i ≡ (−1)i−1xp−i

i h1(i − 1)i−1 (mod Iµ).

Since further reductions modulo Iµ can only involve the other generators h2(1), h2(2), . . . , h2(i − 1), we

may conclude that xp−1
i 6= 0 in Rµ, provided that h1(i − 1)i−1 6= 0 in R(2,3,··· ,i−1,i). Using the fact that

h1(i − 1) = e1(i − 1), this follows from the following more general assertion: for any m ≥ 1 and i ≥ 1,

e1(i − 1)m = em(i − 1) 6= 0 in R(2,3,··· ,i−1,i). (16)

This is trivially true for i ≤ 2. For i > 2, we prove it by induction on i:

e1(i − 1)m = (xi−1 + e1(i − 2))m

=

m∑

j=0

(
m

j

)

xj
i−1e1(i − 2)m−j

= e1(i − 2)m +

m∑

j=1

(
m

j

)

xj
i−1e1(i − 2)m−j

≡ e1(i − 2)m +

m∑

j=1

(
m

j

)

(−1)j−1xi−1e1(i − 2)m−1 (mod I(2,3,··· ,i−1,i)).

This last expression follows from using xi−1h1(i − 1) = x2
i−1 + x1h1(i − 2) = x2

i−1 + x1h1(i − 2) to perform
repeated Gröbner reduction on each summand. By induction, e1(i − 2)m = em(i − 2), so we obtain

e1(i − 1)m = em(i − 2) + xi−1em−1(i − 2)
m∑

j=1

(
m

j

)

(−1)j−1

= em(i − 2) + xi−1em−1(i − 2)

= em(i − 1),

establishing (16) as desired. �

Proposition 5.6. Let f =
∑n

i=1 aixi ∈ Rλ. Suppose that fk = 0.
Then f is a scalar multiple of one of the following:

x1, x2, . . . , xk−1,

x1 + · · · + xk−1,

x1 + · · · + xk−1 + 2xk.

(17)

The last case can occur only if k is even.

Proof. By Corollary 2.4, we may replace λ with its core. Let g =
∑k−1

i=1 aixi be the part of f in the non-sticky
variables. Then gk = 0 by Corollary 3.5. By Lemma 5.2(b), g is either zero or of the form αxi for some
i ∈ {1, 2, . . . , k − 1}, or α(x1 + · · · + xk−1), where α is a nonzero scalar. Without loss of generality, we may
assume that α = 1.
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If f = g then we are done. Otherwise, we must show that f is a scalar multiple of x1 + · · ·+ xk−1 + 2xk,
and k is even. By Proposition 3.1, we may assume without loss of generality that f involves the variable xn

with non-zero coefficient; that is,

f = g + h + axn,

where a := an 6= 0 and h is a linear form in the variables xk, . . . , xn−1. We consider in turn each of the three
possibilities: namely, g = 0, g = xi, or g = x1 + · · · + xk−1.

Case 1: g = 0.
We will rule out this case by deriving a contradiction from the assumption that f k = 0 in Rλ. Taking the

further quotient of Rλ by the variables xk, . . . , xn−1, one obtains a ring isomorphic to Rµ, where

µ = (k, . . . , k
︸ ︷︷ ︸

k−1 times

, k + 1)

is an indecomposable partition, with k parts, equal to its own core. If f k = 0 in Rλ, then (axk)k = akxk
k = 0

in Rµ. So xk
k = 0 in Rµ (because a 6= 0). But this contradicts Corollary 5.5, since µk = k + 1.

Case 2: g = xi, where i ∈ {1, 2, . . . , k − 1}.
Assume that k ≥ 3 (the case k = 2 falls under Case 3 below). As in Case 1, we wish to reach a

contradiction. Consider the quotient ring

S := Rλ/ 〈xk, . . . , xn−1, x1 + x2 + · · · + xk−1 + xn〉 ,

which is isomorphic to Rkk

. Let f̃ = xi − a(x1 + · · · + xk−1) be the image of f in S; then f̃k = 0. By

Theorem 4.1, f̃ must be a scalar multiple of some variable. This is possible only if k = 3 and a = 1; that is,
f is a scalar multiple of either x1 + x3 or x2 + x3. All that remains is to check that neither (x1 + x3)

3 nor
(x2 + x3)

3 belongs to the ideal I33 = 〈h3(1), h2(2), h2(3)〉; this is a routine calculation. Thus fk 6= 0 in all
cases, a contradiction. Case 2 is therefore ruled out.

Case 3: g = x1 + . . . + xk−1.
Let M be any standard monomial for Iλ of degree k−1 in the non-sticky variables x1, . . . , xk−1; then xnM

is also standard. Using stickiness of the variables xk, . . . , xn−1 and the fact that Gn = xn(x1 + · · ·+xn) ∈ Iλ,
we have for every such monomial

[xnM ]fk = [xnM ](g + axn)k = [xnM ]
k∑

i=0

(
k

i

)

aixi
ngk−i = [xnM ]

k∑

i=1

(
k

i

)

aixi
ngk−i

= [xnM ]

k∑

i=1

(
k

i

)

aigk−i(−1)i−1xn(x1 + · · · + xn−1)
i−1

= [xnM ]

k∑

i=1

(
k

i

)

aigk−i(−1)i−1xn(x1 + · · · + xk−1)
i−1

= [M ]

k∑

i=1

(
k

i

)

aigk−1(−1)i−1 =

(
k∑

i=1

(
k

i

)

ai(−1)i−1

)

[M ]gk−1

=
(
1 − (1 − a)k

)
[M ]gk−1.

This last expression must be zero since fk = 0 in Rλ. On the other hand, gk−1 6= 0 in Rλ, so there is at
least one such monomial M in x1, . . . , xk−1 for which [M ]gk−1 6= 0. It follows that 1 − (1 − a)k = 0. Since
a 6= 0, the only possibility is that k is even and a = 2. If n = k, then we are done; we need to rule out the
case n > k.
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Figure 4. The subpartition µ of Proposition 5.7 (shaded).

Suppose that n > k. Replacing xn with xk in the above calculation, we find that the coefficient ak is
either 0 or 2. Bearing in mind that g + xk = x1 + · · · + xk−1 + xk = h1(k), we pass to the quotient ring

T := Rλ / 〈xk+1, xk+2, . . . , xn−1, g + xk〉
∼= Z[x1, . . . , xk, xn] / 〈hk(1), hk−1(2), . . . , h2(k − 1), xk(g + xk), xn(g + xk + xn), g + xk〉
∼= Z[x1, . . . , xk, xn] /

〈
hk(1), hk−1(2), . . . , h2(k − 1), g + xk, x2

n

〉

∼= Rkk

[xn] /
〈
x2

n

〉
.

Note that since f equals either g + 2xn or g + 2xk + 2xn, and xk = −g in T , the image p of f in T is of the
form p = ±g + 2xn. Since x2

n and gk are both zero in T , we have

pk =

k∑

j=0

(
k

j

)

(2xn)j(±g)k−j = ±2kxngk−1.

But gk−1 6= 0 in Rkk

by Theorem 4.1, so xngk−1 6= 0 in T . Hence pk 6= 0 in T , which implies that fk 6= 0 in
Rλ, as desired. �

We now know that every k-nilpotent linear form in Rλ is, up to scalar multiplication, one of the linear
forms (17). However, if λ is not its own core, then we must consider the possibility that one or more of
these linear forms actually has nilpotence order strictly greater than k. We examine each candidate in turn;
Proposition 5.5 immediately takes care of the possible nilpotents x1, . . . , xk−1.

Proposition 5.7. Let λ be indecomposable with n ≥ k − 1 parts and k = λ1. Let g = x1 + · · ·+ xk−1 ∈ Rλ.
Then gk = 0 if and only if λ1 = · · · = λk−1 = k.

Proof. By Proposition 3.1, we may assume that n = k − 1. Suppose that λ1 = · · · = λk−1 = k. Then

Rλ = Rkk−1

= Z[x1, . . . , xk−1] / 〈hk(1), hk−1(2), . . . , h2(k − 1)〉
∼= Z[x1, . . . , xk−1, xk] / 〈hk(1), hk−1(2), . . . , h2(k − 1), h1(k)〉

= Rkk

,

and g = −xk in Rkk

, so gk = 0 follows from Theorem 4.1.
Conversely, suppose that λk−1 > k. We will show that gk 6= 0. Let µ be the subpartition of λ given by

µ = (k − 1, . . . , k − 1
︸ ︷︷ ︸

k−2 times

, k + 1)

(see Figure 4). By Corollary 2.4, it will suffice to show that gk 6= 0 in Rµ. We may rewrite the presentation
of Rµ as

Rµ = Z[x1, . . . , xk−1] / 〈hk−1(1), hk−2(2), . . . , h2(k − 2), h3(k − 1)〉

= Z[x1, . . . , xk−1] /
〈
hk−1(1), hk−2(2), . . . , h2(k − 2), x3

k−1 + x2
k−1h1(k − 2)

〉
,
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using the fact that

h3(k − 1) = x3
k−1 + x2

k−1h1(k − 2) + xk−1h2(k − 2) + h3(k − 2)

= x3
k−1 + x2

k−1h1(k − 2) + xk−1h2(k − 2) + h3(k − 3) + xk−2h2(k − 2),

Therefore xj
k−1 ≡ (−1)jx2

k−1h
j−2 for all j ≥ 3. Letting h = h1(k−2) = x1 + · · ·+xk−2, so that g = h+xk−1,

we have in Rµ

gk = hk +

(
k

1

)

hk−1xk−1 +

(
k

2

)

hk−2x2
k−1 +

k∑

j=3

(
k

j

)

hk−j(−1)jx2
k−1h

j−2

= hk + khk−1xk−1 + hk−2x2
k−1

k∑

j=2

(−1)j

(
k

j

)

= hk + khk−1xk−1 + (k − 1)hk−2x2
k−1.

No further Gröbner reduction is possible, so gk is zero if and only if hk, khk−1, and (k− 1)hk−2 are all zero.
But k > 1, and hk−2 6= 0 by Proposition 5.3. We conclude that gk 6= 0 in Rµ as desired. �

For the remaining assertions of Theorem 5.1, we are left only to consider the potentially k-nilpotent linear
form g = x1 + . . . + xk−1 + 2xk. Rather than determining exactly when g is k-nilpotent as in the theorem
(which can be done by an argument similar to Proposition 5.7), we content ourselves with checking directly
the case k = 2, since this is all we need for the present study. Here g = x1 + 2x2, and by Proposition 3.1)
we may work in the ring

R(2,λ2) = Z[x1, x2]/
〈
x2

1, hλ2−1(2)
〉
.

Then it is easily seen that g2 = x2
1 + 4x1x2 + 4x2 is zero in this ring if and only if λ2 = 3.

6. The indecomposable case

We now use the results of the previous section to prove that an indecomposable partition is determined
uniquely by the cohomology ring of the corresponding Schubert variety.

Theorem 6.1. Every indecomposable partition λ may be recovered from the structure of the ring Rλ as a
graded Z-algebra. In particular, if λ and µ are different indecomposable partitions, then Rλ and Rµ are not
isomorphic.

Proof. We induct on n, the number of parts of λ. Since λ is indecomposable, n is the rank of Rλ
1 as a free

Z-module. By Theorem 5.1, the smallest part k := λ1 is the minimal nilpotence order of any member of
Rλ

1 . Moreover, as mentioned at the beginning of Section 5, Rλ/ 〈x1〉 ∼= Rν , where ν is obtained from λ by
deleting the first row and column (see Figure 2). By induction, it suffices to show that we can describe Rν

up to isomorphism in a way that is independent of the presentation.
We proceed by examining the same two cases as in Theorem 5.1; however, we subdivide Case II slightly

differently into subcases.

Case I. λk−1 > k or n < k − 1.
Let m be the greatest index such that λm = k. Then Theorem 5.1 tells us that the k-nilpotent linear

forms in (Rλ)1 are (up to Z-multiples) x1, . . . , xm. Consequently, up to sign, these are exactly the primitive
k-nilpotents, that is, those k-nilpotents f which can only be expressed as a scalar multiple αg for another
k-nilpotent g and α ∈ Z if α = ±1.

By Corollary 2.5, one has Rλ/ 〈xi〉 ∼= Rλ/ 〈x1〉 (∼= Rν) for every i ∈ {1, 2, . . . , m}, and hence Rν may be
identified intrinsically as the quotient of Rλ by an arbitrary primitive k-nilpotent linear form.

Case II. λk−1 = k.
Then the primitive k-nilpotents are (up to sign) x1, . . . , xk−1, x1 + · · · + xk1 , and if k is even, possibly

also x1 + · · · + xk−1 + 2xk.

Subcase IIA. k > 2.
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If k is odd, then the “extraneous” primitive k-nilpotent x1 + · · ·+ xk−1 + 2xk is absent. If k is even, then
x1 + · · · + xk−1 + 2xk is distinguished intrinsically as the unique primitive k-nilpotent which is Z-linearly
independent of all the others.

Thus, in all cases when k > 2, we can intrinsically identify the primitive k-nilpotents x1, . . ., xk−1,
x1 + · · ·+xk−1, up to sign. By Corollary 2.5, the first k−1 forms on this list all have Rλ/ 〈xi〉 ∼= Rλ/ 〈x1〉 ∼=
Rν . Hence Rν can be identified intrinsically by “majority rule”: it is the Z-algebra that occurs (up to
isomorphism) as the quotient of Rλ by at least k − 1 of the k different primitive k-nilpotent linear forms
(other than the one, namely x1 + · · · + xk−1 + 2xk, that is linearly independent from the rest, as above).
Note that the fact that k − 1 out of k is a well-defined “majority” uses the assumption that k > 2.

Subcase IIB. k = 2.
If λ2 > 3, then x1 is the unique primitive k-nilpotent up to sign, so it is distinguished intrinsically, as is

Rν ∼= R/ 〈x1〉.
If λ2 = 3, then there are two primitive k-nilpotents up to sign, namely x1 and x1 + 2x2. We claim that

the graded Z-algebra map ω : Rλ → Rλ defined by

ω(x1) = x1 + 2x2, ω(x2) = −x2, ω(xi) = xi for 3 ≤ i ≤ n

is an automorphism of Rλ interchanging x1 with x1 + 2x2. Indeed, it is a routine calculation to check
that ω lifts to an automorphism of Z[x1, . . . , xn], and that ω(Iλ) = Iλ. In particular, Rν ∼= Rλ/ 〈x1〉 ∼=
Rλ/ 〈x1 + 2x2〉 may again be described up to isomorphism as the quotient of Rλ by an arbitrary primitive
k-nilpotent linear form. �

7. The decomposable case

We now consider the case that λ is decomposable, with indecomposable components λ(1), λ(2), . . . , λ(r).

In this case, Xλ
∼= Xλ(1) × · · · ×Xλ(r) . Since each Xλ(i)

has no torsion in its (co-)homology by Theorem 2.1,
the Künneth formula [11, §61] implies a tensor decomposition for the associated cohomology rings:

H∗(Xλ; Z) ∼=

r⊗

i=1

H∗(Xλ(i) ; Z). (18)

Together with the uniqueness result for indecomposable partitions (Theorem 6.1), it would seem that we are
done. However, there is one remaining technical point: to verify that the partitions λ(i) can be read off intrin-
sically from the structure of H∗(Xλ) as a graded Z-algebra, we must check that the tensor decomposition (18)
is unique.

To do this, we make further use of the facts about nilpotence established in Section 5. But first we must
make precise the notion of tensor decomposition, and point out how it interacts with order of nilpotence.

For R a standard graded Z-algebra, a tensor decomposition is an isomorphism of graded Z-algebras
R ∼= T (1) ⊗ · · · ⊗ T (r) in which each T (i) is a standard graded Z-algebra. Note that any such decomposition

is completely determined by the associated direct sum decomposition of free Z-modules R1
∼=
⊕r

i=1 T
(i)
1 ,

since T (i) is then the subalgebra of R generated by the direct summand T
(i)
1 of R1. Say that a tensor

decomposition of R is nontrivial if T (i) 6= Z for all i. Say R is tensor-indecomposable if it is not Z itself, and
has no nontrivial tensor decomposition.

Lemma 7.1. Suppose that R = T (1) ⊗ · · · ⊗ T (r). Let x ∈ R1; that is,

x = x1 ⊗ 1 ⊗ · · · ⊗ 1 + 1 ⊗ x2 ⊗ 1 · · · ⊗ 1 + . . . + 1 ⊗ · · · ⊗ 1 ⊗ xr

where xi ∈ T
(i)
1 . Let ki be the nilpotence order of xi. (Recall that ki = 1 if and only if xi = 0.)

Then the nilpotence order of x is

c = k1 + k2 + · · · + kr − r + 1.

Proof. By the pigeonhole principle, each term of the multinomial expansion of xc is divisible by xki

i for some
i; therefore, xc = 0 in R. For the same reason, all but one term of the multinomial expansion of xc−1
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vanishes; the exception is
(

c

k1 − 1, . . . , kn − 1

)

xk1−1
1 ⊗ xk2−1

2 ⊗ · · · ⊗ xkn−1
n ,

which is nonzero, since it is nonzero in each tensor factor. �

This calculation has immediate useful consequences.

Corollary 7.2. Let R be a standard graded Z-algebra with a nontrivial tensor decomposition R =
⊗r

i=1 T (i).

Then any linear form f ∈ R1 that achieves the minimal nilpotence among all elements in R1 must lie in T (i)

for some i.

Combining Lemma 7.1 with Proposition 5.5 yields the following.

Corollary 7.3. Let λ be a partition with indecomposable components {λ(j)}r
j=1. If λi corresponds to λ

(j)
k in

this decomposition, then xi is λ
(j)
k -nilpotent in Rλ.

For example, if λ is the decomposable partition shown in Figure 1, then λ1, . . . , λ5 correspond to the
rows of λ(1), and λ7, λ8 to the rows of λ(2). Thus the variables x1, . . . , x5 have nilpotence orders 5, 5, 5, 6, 6,

respectively, in Rλ (and in Rλ(1)

), and x7, x8 have nilpotence orders 2 and 3, respectively. (Note that
these seven variables are a Z-basis for Rλ

1 ; x6 ≡ −(x1 + · · · + x5) does not correspond to a variable in the

presentation for Rλ(1)

.)

Proposition 7.4. Let λ be an indecomposable partition. Then the ring Rλ is tensor-indecomposable.

Proof. Let n denote the number of parts in λ, and k = λ1 its smallest part. We proceed by induction on n.
If n = 1, then clearly Rλ = Z[x1]/

〈
xk

1

〉
is indecomposable. Otherwise, suppose that Rλ = T (1) ⊗ T (2) is

a nontrivial tensor decomposition; we will obtain a contradiction.
By Proposition 5.4, x1 is a nilpotent of minimal order, and hence by Corollary 7.2, without loss of

generality, x1 ∈ T (1). Then Rλ/ 〈x1〉 = T (1)/ 〈x1〉 ⊗ T (2). On the other hand, Rλ/ 〈x1〉 ∼= Rν , where ν is the
partition obtained from λ by removing the first row and column. Since λ is indecomposable, so is ν. By the
inductive hypothesis, the decomposition T (1)/ 〈x1〉 ⊗ T (2) must be trivial; that is, T (1)/ 〈x1〉 ∼= Z, and T (1)

must be generated by x1 as a Z-algebra, i.e., T (1) = Z[x1]/
〈
xk

1

〉
. Therefore, exactly one member of the set

L = {x2 + αx1 : α ∈ Z}

belongs to T
(2)
1 . Let ` be the nilpotence order of that one form; then all other elements of L have nilpotence

order k+`−1 > ` by Lemma 7.1. Let m = λ2; note that m ≥ 3 since λ is indecomposable. By Proposition 3.1
we can work in the algebra R(λ1,λ2) = R(k,m), namely the quotient of Z[x1, x2] by the ideal

〈
G1 = xk

1 , G2 = xm−1
2 + xm−2

2 x1 + . . . + xm−k
2 xk−1

1

〉
.

Let α ∈ Z be arbitrary. We will show that no linear form x2 + αx1 has nilpotence order strictly less than
m. Indeed,

(x2 + αx1)
m−1 =

m−1∑

j=0

(
m − 1

j

)

xj
2α

m−j−1xm−j−1
1

=





m−2∑

j=0

(
m − 1

j

)

xj
2α

m−j−1xm−j−1
1



+ G2 −
m−2∑

j=0

xj
2x

m−j−1
1

= G2 +

m−2∑

j=0

((
m − 1

j

)

αm−j−1 − 1

)

xj
2x

m−j−1
1

≡
m−2∑

j=m−k

((
m − 1

j

)

αm−j−1 − 1

)

xj
2x

m−j−1
1 mod 〈G1, G2〉 .

This last expression is exactly the standard form of (x2 + αx1)
m−1. For j = m − 2, the summand is

((m−1)α−1)xm−2
2 x1; since m > 3 and α is an integer, the coefficient is nonzero. Therefore (x2+αx1)

m−1 6= 0.



18 DEVELIN, MARTIN, AND REINER

On the other hand, xm
2 = 0 in Rλ by Proposition 5.5. Therefore x2 must be the unique element of L with

minimal nilpotence order m = `, and every other element of L must have nilpotence order k + m − 1. But
there are no standard monomials in x1, x2 of degree greater than (k−1)+(m−2) = k+m−3, which implies
that every element of L has nilpotence order k + m− 2 or less. This contradiction completes the proof. �

We now establish the key fact of the decomposable case, that these decompositions are actually unique.

Lemma 7.5. The ring Rλ has a unique tensor decomposition into tensor-indecomposables. Specifically, if
λ has indecomposable components λ(1), λ(2), . . . , λ(r), then

Rλ = Rλ(1)

⊗ · · · ⊗ Rλ(r)

is the unique tensor decomposition of Rλ, up to permuting the factors.

Proof. The existence is immediate, since each Rλ(i)

is tensor-indecomposable by Lemma 7.4. For uniqueness,
we proceed by induction on the number of rows of λ. If λ has only one row, the statement is trivial.

Suppose that Rλ = ⊗s
i=1T

(i) is a tensor decomposition with each T (i) tensor-indecomposable, so that

s⊗

i=1

T (i) = Rλ =
r⊗

j=1

Rλ(j)

, (19a)

s⊕

i=1

T
(i)
1 = Rλ

1 =

r⊕

j=1

Rλ(j)

1 . (19b)

Let k be the minimal nilpotence order of any element of Rλ
1 . Then k = min{λ

(j)
1 : 1 ≤ j ≤ r} by Corollary 7.3.

Without loss of generality, we may re-index so that k = λ
(1)
1 ; then x1 is a linear form of nilpotence order

k. By Corollary 7.2, x1 must belong to one of the T (i), say T (1). Let ν, ν(1) be the partitions obtained by
removing the left column and bottom row of λ, λ(1), respectively. Then

T (1)/〈x1〉 ⊗
s⊗

i=2

T (i) = Rλ/〈x1〉 = Rν(1)

⊗
r⊗

j=2

Rλ(j)

, (20a)

T
(1)
1 /Zx1 ⊕

s⊕

i=2

T
(i)
1 = Rλ

1/Zx1 = Rν(1)

1 ⊕
r⊕

j=2

Rλ(j)

1 . (20b)

By induction, the rightmost expression in (20a) is the unique tensor decomposition of Rν into tensor-

indecomposables (possibly with a superfluous factor Rν(1)

= Z if λ(1) has only one part). Thus the rightmost
expression in (20b) is unique—clearly not as a direct sum decomposition of Rλ

1/Zx1 as a Z-module, but as
a direct sum decomposition which induces a tensor decomposition of Rλ/ 〈x1〉.

Now assume that λ(1) has m rows, so that x1, x2, . . . , xm generate Rλ(1)

as a Z-subalgebra of Rλ. For each
` ∈ {2, . . . , m}, consider the image x̄` of x` in Rν

1 = Rλ
1/Zx1. Since each x̄` belongs to the direct summand

Rν(1)

1 on the left side of the unique decomposition (20b), it must belong either to T
(1)
1 /Zx1, or to T

(i)
1 for

some i ≥ 2. On the other hand, Corollary 7.3 tells us that x` is λ
(1)
` -nilpotent in Rλ, but x̄` is ν

(1)
`−1-nilpotent

in Rν . That is, the nilpotence order of x` drops by 1 in the quotient by x1 (because ν
(1)
`−1 = λ

(1)
` − 1). If

x̄` ∈ T
(i)
1 for some i ≥ 2, then this last observation contradicts Lemma 7.1. Therefore x̄` ∈ T

(1)
1 /Zx1, from

which we conclude that T
(1)
1 /Zx1 ⊇ Rν(1)

1 .
Consequently, the uniqueness property of the decomposition (20b) implies that

T
(1)
1 /Zx1 = Rν(1)

1 ⊕
⊕

u∈U

Rλ(ju)

1

for some subset U ⊂ {2, 3, . . . , r}. Since x1 lies in both T (1) and Rλ(1)

, we conclude that

T
(1)
1 = Rλ(1)

1 ⊕
⊕

u∈U

Rλ(ju)

1
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and, since T (1) is a standard graded Z-algebra,

T (1) = Rλ(1)

⊗
⊗

u∈U

Rλ(ju)

.

But T (1) was assumed to be indecomposable, so this forces U = ∅. Hence T
(1)
1 = Rλ(1)

1 and T
(1)
1 /Zx1 =

Rν(1)

1 . By the uniqueness property of (20b), we must have r = s, and after re-indexing, T
(i)
1 = Rλ(i)

1 for
i = 2, 3, . . . , r. Thus the two tensor decompositions in (19a) are identical. �

The nontrivial implication (iii) =⇒ (i) in the main result, Theorem 1.1, is now immediate from Lemma 7.5
and Theorem 6.1.

Remark 7.6. As we shall now demonstrate, it was essential to study the cohomology of Xλ with integer
coefficients. If A is a coefficient ring in which 2 is invertible, then Proposition 7.4, Lemma 7.5 and Theorem 1.1
would all fail to hold if “graded Z-algebra” was replaced with “graded A-algebras”. That is, Ding’s Schubert
varieties are not classified up to isomorphism by their cohomology with A-coefficients. For example, consider
the indecomposable partition λ = (2, 3). By completing the square, one has

R(2,3) ⊗Z A ∼= A[x1, x2] /

〈

x2
1, x2

2 + x1x2 +
1

4
x2

1

〉

= A[x1, x2] /

〈

x2
1,

(

x2 +
1

2
x1

)2
〉

∼= A[x1] /
〈
x2

1

〉
⊗ A[y] /

〈
y2
〉
.

Thus indecomposable partitions do not lead to tensor-indecomposable graded A-algebras. This also leads
to “extra” isomorphisms among the cohomology rings H∗(Xλ; A) ∼= Rλ ⊗Z A. For example, the partition
µ = (2, 2, 4) has indecomposable components µ(1) = µ(2) = (2). Since R(2) ∼= Z[x]/

〈
x2
〉
, one has

Rµ ⊗Z A ∼= A[x] /
〈
x2
〉
⊗A A[x] /

〈
x2
〉

∼= Rλ ⊗Z A

even though λ = (2, 3) and µ = (2, 2, 4) do not have the same indecomposable partition components.
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