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Abstract. Combinatorial rigidity theory seeks to describe the rigidity or flexibility of bar-joint frameworks
in R

d in terms of the structure of the underlying graph G. The goal of this article is to broaden the
foundations of combinatorial rigidity theory by replacing G with an arbitrary representable matroid M .
The ideas of rigidity independence and parallel independence, as well as Laman’s and Recski’s combinatorial
characterizations of 2-dimensional rigidity for graphs, can naturally be extended to this wider setting. As
we explain, many of these fundamental concepts really depend only on the matroid associated with G (or
its Tutte polynomial), and have little to do with the special nature of graphic matroids or the field R.

Our main result is a “nesting theorem” relating the various kinds of independence. Immediate corollaries
include generalizations of Laman’s Theorem, as well as the equality of 2-rigidity and 2-parallel independence.
A key tool in our study is the space of photos of M , a natural algebraic variety whose irreducibility is closely
related to the notions of rigidity independence and parallel independence.

The number of points on this variety, when working over a finite field, turns out to be an interesting
Tutte polynomial evaluation.
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1. Introduction: a brief tour through rigidity theory

Combinatorial rigidity theory is concerned with frameworks built out of bars and joints in Rd, representing
the vertices V and edges E of an (undirected, finite) graph G. (For comprehensive treatments of the subject,
see, e.g., [4, 19, 20].) The motivating problem is to determine how the combinatorics of G governs the rigidity
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or flexibility of its frameworks. Typically, one makes a generic choice of coordinates

(1) p = {pv : v ∈ V } ⊂ Rd

for the vertices of G, and considers infinitesimal motions ∆p of the vertices. The following two questions are
pivotal:

(I.) What is the dimension of the space of infinitesimal motions ∆p that preserve all the (squared) edge

lengths Q(pu − pv), for {u, v} ∈ E, where Q(x) =
∑d

i=1 x
2
i ?

(II.) What is the dimension of the space of infinitesimal motions ∆p that preserve all the edge directions
pu − pv regarded as slopes, that is, up to scaling?

The answers to these questions are known to be determined by certain linear dependence matroids repre-
sented over transcendental extensions of R, as we now explain.

First, the d-dimensional rigidity matroid Rd(G) is the matroid represented by the vectors

(2) {(eu − ev) ⊗ (pu − pv) : {u, v} ∈ E}

lying in R|V | ⊗R(p)d, where R(p) is the extension of R by a collection of d|V | transcendentals p, thought of
as the coordinates of a generic embedding as in (1). The |E| × d|V | rigidity matrix Rd(G) has as its rows
the |E| vectors in (2). Then the nullspace of Rd(G) is the space of infinitesimal motions of the vertices that
preserve edge distances (because Rd(G) is 1

2 times the Jacobian in the variables p of the vector of squared
edge lengths Q(pu − pv); cf. Remark 6.2 below). Since row rank equals column rank, knowing the matroid
Rd(G) represented by the rows of Rd(G) answers question (I).

Second, the d-dimensional parallel matroid Pd(G) is the matroid represented by the vectors

(3) {(eu − ev) ⊗ η(j)
u,v : {u, v} ∈ E, j = 1, 2, . . . , d− 1}

where for each edge {u, v} ∈ E, the vectors η
(1)
u,v , . . . , η

(d−1)
u,v are generically chosen normals to pu − pv in

Rd. Again, we should consider the vectors in (3) as lying in R|V | ⊗ R(p, η)d, where R(p, η) is an extension
of R by d|V | transcendentals p and (d − 1)|E| transcendentals η. In analogy to the preceding paragraph,
the |E| × d|V | parallel matrix P d(G) has as its rows the |E| vectors in (3), and its nullspace is the space
of infinitesimal motions of the vertices that preserve all edge directions. Consequently, the matroid Pd(G)
represented by the rows of P d(G) provides the answer to question (II).

Some features of the theory are as follows:

• For d = 1, the rigidity matroid coincides with the usual graphic matroid for G (while the parallel
matroid is a trivial object).

• For d = 2, the rigidity and parallel matroids coincide [19, Corollary 4.1.3]. Furthermore, this matroid
R2(G) = P2(G) has many equivalent combinatorial reformulations, of which the best known is
Laman’s condition [6]: A ⊆ E is 2-rigidity-independent if and only if for every subset A′ ⊆ A

(4)
2|V (A′)| − 3 ≥ |A′|, or equivalently

2 (|V (A′)| − 1) > |A′|

where V (A′) denotes the set of vertices incident to at least one edge in A′. We will refer to this
coincidence between R2(G),P2(G) and the matroid defined by Laman’s condition as the planar
trinity.

• For d > 2, the parallel matroid has a simple combinatorial characterization that generalizes Laman’s
condition, while an analogous description for the rigidity matroid is not known.

2. Main definitions: from graphs to matroids

The purpose of this article is to broaden the scope of rigidity theory by replacing the graph G with a more
general object: a matroid M represented over an arbitrary field F. As we shall see, the notions of rigidity
and parallel independence, as well as Laman’s combinatorial characterization, admit natural generalizations
to the setting of matroids.

In the process, we will see that many of the main results of do not depend on the special properties of
graphs (or graphic matroids), nor on the field R, but indeed remain valid for any matroid M represented
as above. In the process, we are led naturally to an algebraic variety called the space of k-plane-marked
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d-photos of M . Just as a bar-joint framework may be regarded as an embedding of a graph in Rd, a photo
of M is a “model” of M in Fd.

Whether or not the photo space is irreducible plays a key role in characterizing the matroid analogues
of rigidity independence and parallel independence. In turn, the question of irreducibility can be answered
combinatorially, using some elementary algebraic geometry and the classic matroid partitioning result of
Edmonds [3]. We note in addition that when the field F is finite, the number of photos of M is counted by
an evaluation of the Tutte polynomial using q-binomial coefficients.

In order to summarize our results, we define the main protagonists here. Recall that a simplicial complex
on vertex set E is a collection I of subsets of E satisfying the following hereditary condition: if I ∈ I and
I ′ ⊆ I , then I ′ ∈ I. The independent sets of a matroid always form a simplicial complex. From here on
we will make free use of standard terminology and notions from matroid theory; background and definitions
may be found in standard texts such as [1, 12, 17].

Definition 2.1 (m-Laman independence, m-Laman complex). Let E be a set of cardinality n, and let
M be a (not necessarily representable) matroid on ground set E, with rank function r. For m a real number
in the open interval (1,∞)R, say that A ⊆ E is m-Laman independent if

(5) m · r(A′) > |A′| for all nonempty subsets A′ ⊆ A.

The m-Laman complex Lm(M) is defined as the abstract simplicial complex of all m-Laman independent
subsets of E.

We will prove combinatorially that

• If m is a positive integer, then Lm(M) is the collection of independent sets of a matroid (Theo-
rem 3.1), but this is not true in general for other values of m.

• If m is a positive integer, then Lm(M) has several other combinatorial characterizations (Theo-
rem 3.6), including a generalization of Recski’s Theorem.

• If m = 2 and M is representable, then the matroid L2(M) coincides with the 2-dimensional rigidity
and parallel matroids, defined below (Corollary 6.6).

Throughout the rest of the introduction, let M be a represented matroid; that is, a matroid equipped
with a representation over some field F by vectors E = {v1, . . . , vn} ⊂ Fr. It is worth emphasizing that we
are not regarding M as an abstract matroid; that is, the vectors {v1, . . . , vn} are part of the data of M .
For notational convenience, we identify the ground set E with the numbers [n] := {1, 2, . . . , n}. Denote by
Gr(k,Fd) the Grassmannian of k-planes in Fd, regarded as a projective variety over F via the usual Plücker

embedding into P(d

k)−1.
When m > 1 is a rational number, the Laman complex Lm(M) is closely related to an algebraic variety

that we now define.

Definition 2.2 (photo space, (k, d)-slope independence, (k, d)-slope complex). Let M be a matroid
equipped with representation {v1, . . . , vn} as above. The corresponding space of k-plane-marked d-photos
(or just (k, d)-photos) is the algebraic set

(6) Xk,d(M) := {(ϕ,W1, . . . ,Wn) ∈ HomF(Fr,Fd) × Gr(k,Fd)n : ϕ(vi) ∈Wi for i = 1, . . . , n}.

The photo space of a matroid is analogous to the picture space of a graph, as defined in [7, 8]. One may
think of the map ϕ ∈ HomF(Fr,Fd) as projecting the vectors {vi} into a space Fd of dimension possibly
less than r, like a camera taking a photo of the {vi} on photographic paper that looks like Fd. The k-plane
Wi in Fd is thought of as a “marking” of the image vector ϕ(vi) in the photo, so that Wi is constrained to
contain φ(vi). Of course, whenever ϕ(vi) = 0 (perhaps the camera ϕ caught vi at a bad angle), this k-plane
Wi is unconstrained. The idea of (k, d)-slope independence is to measure how independently these marking
k-planes can vary while obeying these constraints, when none of the vi are annihilated by ϕ. The linear
dependences among the vi force linear dependences among their image vectors ϕ(vi), and hence algebraic
constraints among the subspaces Wi.

Define a Zariski open subset of Xk,d(M) (called the non-annihilating cellule; see Definition 4.1 below) by

X∅

k,d(M) := {(ϕ,W1, . . . ,Wn) ∈ Xk,d(M) : ϕ(vi) 6= 0 for i = 1, 2, . . . , n}
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and consider its image under the projection map

(7) Hom(Fr,Fd) × Gr(k,Fd)n π
−→ Gr(k,Fd)n.

This image measures the constraints on the Wi when none of the vi are mapped to zero; specifically, we
define M to be (k, d)-slope independent if πX∅

k,d(M) is Zariski dense in Gr(k,Fd)n. The (k, d)-slope complex
is defined as

(8) Sk,d(M) := {A ⊆ E : M |A is (k, d) -slope independent}.

A third notion of matroid rigidity generalizes the d-dimensional rigidity matroid Rd(G) of a graph G.

Definition 2.3 (rigidity matroid, rigidity complex). Let M be a matroid equipped with representation
{v1, . . . , vn} as above, and let d be a positive integer. The d-dimensional (generic) rigidity matroid is the
matroid represented by the vectors

(9) {vi ⊗ ϕ(vi)}
n
i=1 ⊂ Fr ⊗F F(ϕ)d.

where F(ϕ) is the field extension of F by dr transcendentals giving the entries of the matrix ϕ : Fr → F(ϕ)d.
The d-rigidity complex Rd(M) is the complex of independent sets of the d-dimensional rigidity matroid, and
the d-rigidity matrix Rd(M) is the n× dr matrix whose rows are given by the vectors (9).

To interpret this construction, consider the pseudo-distance quadratic form Q(x) :=
∑d

i=1 x
2
i on F(ϕ)d.

Provided that the field F has characteristic 6= 2, one can interpret the nullspace of Rd(M) as the space of
infinitesimal changes of ϕ that preserve the values Q(ϕ(vi)) for all i = 1, 2, . . . , n. (See Proposition 6.1(ii).)

Definition 2.4 (hyperplane-marking matroid). Let M be a matroid represented by v1, . . . , vn ∈ Fr as
above. Its (d-dimensional, generic) hyperplane-marking matroid is the matroid represented over F(ϕ, η) by
the vectors

{vi ⊗ ηi}
n
i=1 ⊂ Fr ⊗F F(ϕ, η)d

where F(ϕ, η) is the extension of F by dr transcendentals ϕij (the entries of the matrix ϕ) and (d−1)n more
transcendentals ηij (the coordinates of the vectors ηi normal to ϕ(vi)). The complex Hd(M) is defined to
be the complex of independent sets of this matroid.

To interpret the notion of rigidity independence modeled by Hd(M), one should regard lack of rigidity as
the ability to deform ϕ so that the images ϕ(vi) of the ground set elements vary, but membership in their
orthogonal complement hyperplanes is preserved. The most important instance of the hyperplane-marking
matroid uses the (d − 1)-parallel extension of M , the matroid (d − 1)M whose ground set consists of d − 1
parallel copies of each element of E. The (d-dimensional, generic) parallel matroid is defined as

Pd(M) := Hd((d− 1)M),

and the d-parallel matrix P d(M) is defined as the n × dr matrix whose rows represent Hd((d − 1)M). Its
nullspace consists of the infinitesimal changes ∆ϕ in the matrix ϕ which preserve the slopes of all the direction
vectors ϕ(vi) (see Proposition 6.1 (i)).

These definitions generalize the ordinary definitions from the rigidity theory of graphs. Strikingly, the
geometric constraints on the photo space can be categorized combinatorially: the identity

Sk,d(M) = L
d

d−k (M),

(Corollary 4.4) provides a geometric interpretation of Lm(M) for rational m.
The slope complex Sk,d(M) is closely related to the rigidity and parallel matroids. The precise relationship

is given by the Nesting Theorem (Theorem 6.5):

S1,d(M) ⊆ Rd(M) ⊆ Ld(M) = Hd(M) = Sd−1,d(M)

for all integers d ≥ 2. In particular, when d = 2,

(10) H2(M) = S1,2(M) = R2(M) = L2(M).

Thus matroid rigidity theory leads to a conceptual proof of the planar trinity (the second and third inequal-
ities in (10)).
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For d ≥ 3, the d-rigidity matroid Rd(M) is the hardest of these objects to understand (as it is for graphic
matroids). One fundamental question is whether Rd(M) depends on the choice of representation of M .
It is invariant for d = 2 (by the Nesting Theorem) and up to projective equivalence of representations
(Proposition 8.1), but the problem remains open for the general case. We also study the behavior of the
d-rigidity matroid as d→ ∞, and show (Proposition 8.4) that Rd(M) stabilizes when d ≥ r(M).

3. Laman independence

The central result of this section, Theorem 3.1, states that the generalized Laman’s condition (5) always
gives a matroid when m is an integer. The proof is completely combinatorial; that is, it is a statement about
abstract matroids, not represented matroids. In addition, we describe some useful equivalent characteriza-
tions of d-Laman independence: one uses the Tutte polynomial, another is reminiscent of Recski’s Theorem,
and another is related to Edmonds’ theorem on decomposing a matroid into independent sets.

3.1. When is the Laman complex matroidal?

Theorem 3.1. (i) Let d be a positive integer and let M be any matroid. Then the simplicial complex
Ld(M) is a matroid complex.

(ii) Let m ∈ (1,∞)R be a real number which is not an integer. Then there exists a represented matroid
M for which Lm(M) is not a matroid complex.

Proof. For the first assertion, it is most convenient to use the characterization of matroids by circuit axioms [1,
eq. 6.13, p. 264]. Define C to be the collection of those subsets of E which are minimal among nonmembers
of Ld(M). We wish to show that C satisfies the axioms for the circuits of a matroid. Since Ld(M) is a
simplicial complex, we only need check the circuit exchange axiom:

if C,C ′ ∈ C with C 6= C ′, and e ∈ C ∩ C ′, then there exists C ′′ ∈ C such that C ′′ ⊆ (C ∪ C ′) \ {e}.

Since C,C ′ are minimal among the sets not satisfying the hereditary property (5), we claim that

|C| = d · r(C),

|C ′| = d · r(C ′),

where r is the rank function of M . To see this claim, note that |C| ≥ d · r(C), and if this inequality were
strict, then

|C − e| ≥ d · r(C) ≥ d · r(C − e)

for any e ∈ C, contradicting the statement that C is a minimal set not satisfying (5). Note also that C ∩C ′

is a proper subset of each of C,C ′ and hence

|C ∩ C ′| < d · r(C ∩ C ′).

Since d is an integer, the last condition may be rewritten as

|C ∩ C ′| + 1 ≤ d · r(C ∩ C ′).

The rank submodular inequality r(C ∪ C ′) ≤ r(C) + r(C ′) − r(C ∩ C ′) then implies

d · r((C ∪ C ′) \ {e}) ≤ d · r(C ∪ C ′)

≤ d · r(C) + d · r(C ′) − d · r(C ∩ C ′)

≤ |C| + |C ′| − |C ∩ C ′| − 1

= |(C ∪ C ′) \ {e}|.

So (C ∪ C ′) \ {e} is not in Ld(M), hence contains some element of C. This establishes (i).

We now prove (ii). Suppose that m ∈ (1,∞)R is not an integer, and let c := bmc (the greatest integer
≤ m). Choose positive integers a, b satisfying the inequalities (11) in Lemma 3.2 below. We will explicitly
construct a represented matroid Ma,b,c such that Lm(Ma,b,c) is not a matroid complex.

Let F be a sufficiently large (for example, infinite) field, let V be a (2b − 1)-dimensional vector space
over F, and let V1, V2 be two b-dimensional subspaces of V whose intersection V1 ∩ V2 = ` is a line. Let
X = {x1, . . . , xc} be a set of c nonzero vectors on `. For i = 1, 2, choose a set Yi ⊆ Vi of cardinality a − c
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generically (this is always possible if F is sufficiently large). Note in particular that no member of Y1 ∪ Y2

lies on `.
Let Ma,b,c be the matroid represented over F by E = X ∪Y1 ∪Y2, and denote by C the set of subsets of E

that are minimal among nonmembers of Lm(Ma,b,c). We claim that C does not satisfy the circuit exchange
axiom. To see this, let Ci = X ∪ Yi for i = 1, 2 and observe that

m · r(Ci) = mb ≤ a = |Ci|,

so Ci 6∈ Lm(Ma,b,c). In fact, we claim that Ci ∈ C. Indeed, let I be any nonempty proper subset of Ci and
let J = I ∩ Yi. Since r(X) = 1, and by the generic choice of Y1 and Y2, we have

r(J) = min(|J |, b),

r(I) = min(|J | + 1, b),

m · r(I) = min(m|J | +m,mb).

Now Lemma 3.2 implies that mb ≥ a = |Ci| > |I |. Since m is not an integer, we have also

m|J | +m > |J | + c = |J | + |X | ≥ |I |.

In all cases m · r(I) > |I |. It follows that Ci ∈ C.
Now, let xi ∈ X , and let I = (C1 ∪ C2) \ {xi} = E \ {xi}. Then every nonempty subset I ′ ⊆ I satisfies

(5). (We omit the routine but tedious calculation, which involves eight cases, depending on how I ′ meets
each of X , Y1 and Y2.) That is, I is m-Laman-independent, hence contains no element of C. Therefore C
fails the circuit exchange axiom, and we are done. �

The following numerical lemma was used in the proof of Theorem 3.1.

Lemma 3.2. Let m ∈ (1,∞)R be a real number which is not an integer, and let c := bmc. Then there exist
positive integers a, b such that

(11)
a− 1

b
<

2a− c− 1

2b− 1
< m ≤

a

b
.

Proof. First, note that the third inequality implies the first one. Indeed, if m ≤ a/b, then

b+ a ≥ 1 + a ≥ 1 + bm > 1 + bc,

which implies in turn that 2ab−a− 2b+1< 2ab− bc− b. Factoring this gives (2b− 1)(a− 1) < b(2a− c− 1),
or a−1

b
< 2a−c−1

2b−1 as desired.

We therefore concentrate on the second and third inequalities in (11). Subtracting c from each expression
in (11) and substituting a = bc+ r yields

(12)
2r − 1

2b− 1
< m− c ≤

r

b
=

2r

2b
.

Therefore, it will suffice to find a pair b, r of positive integers satisfying (12).
Note that m− c is the fractional part of m; since m is not an integer, we have m− c ∈ (0, 1)R. Therefore,

it will suffice to show that (0, 1) is the union of intervals of the form ( 2r−1
2b−1 ,

2r
2b

] for positive integers b, r.
Indeed,

(0, 1) =
⋃

m≥0

(

m

m+ 1
,
m+ 1

m+ 2

]

=

(

0

1
,

1

2

]

∪

(

1

2
,

2

3

]

∪

(

2

3
,

3

4

]

∪ · · ·

and
(

m

m+ 1
,
m+ 1

m+ 2

]

=
⋃

s≥1

(

2sm+ 1

2s(m+ 1) + 1
,

2sm+ 2

2s(m+ 1) + 2

]

=

(

2m+ 1

2m+ 3
,

2m+ 2

2m+ 4

]

∪

(

4m+ 1

4m+ 5
,

4m+ 2

4m+ 6

]

∪

(

8m+ 1

8m+ 9
,

8m+ 2

8m+ 10

]

∪ · · ·
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establishing (12), as desired. �

3.2. Equivalent characterizations. One of the equivalent phrasings of m-Laman independence involves
the Tutte polynomial TM (x, y) ofM , a fundamental isomorphism invariant of the matroidM . For background
on the Tutte polynomial, see the excellent survey article by Brylawski and Oxley [2].

Given a subset A of the ground set E, denote by A the matroid closure or span of A. If A = A, then A is
called a flat of M .

Proposition 3.3. Let M be a matroid on ground set E with rank function r, and fix m ∈ (1,∞)R.
Then the following are equivalent:

(i) E is m-Laman independent, that is, Lm(M) = 2E (the power set of E).
(ii) m · r(A) > |A| for every nonempty subset A ⊆ E. (Equivalently, m · r(F ) > |F | for every flat F of

M .)
(iii) The Tutte polynomial specialization TM (qm−1, q) is monic of degree (m− 1)r(M).

Note that in (iii) we must allow (non-integral) real number exponents for a “polynomial” in q, but the
notions of “degree” and “monic” for such polynomials should still be clear. The connection between the
Tutte polynomial and rigidity of graphs was observed by the second author in [8, §6].

Proof. The equivalence of (i) and (ii) is clear from the definition ofm-Laman independence since r(A) = r(A)
and |A| ≥ |A| for any A ⊆ E.

For the equivalence of (i) and (iii) we use Whitney’s corank-nullity formula [2, eq. 6.13] for the Tutte
polynomial:

TM (x, y) =
∑

A⊆E

(x− 1)r(M)−r(I)(y − 1)|I|−r(I)

Substituting x = qm−1 and y = q gives an expression for TM (qm−1, q) as a sum of terms indexed by subsets
A ⊆ E, each of which is a monic polynomial in q of degree

(m− 1)r(M) −m · r(A) + |A|.

Thus TM (qm−1, q) will have degree at most (m− 1)r(M) if and only if m · r(A) ≥ |A| for all subsets A ⊆ E.
Furthermore, since the term indexed by A = ∅ is monic of degree (m − 1)r(M), the whole polynomial
TM (qm−1, q) will be monic of degree (m − 1)r(M) if and only if m · r(A) > |A| for every nonempty subset
A, that is, if and only if E is m-Laman independent. �

Suppose thatm = d is a positive integer, so that Ld(M) is a matroid complex. Here d-Laman independence
has two more equivalent formulations, one of which extends a classical result in the rigidity theory of graphs.

Recski’s Theorem [13]. Let G = (V,E) be a graph, and let E ′ be a spanning set of edges of size 2|V | − 3.
Then E′ is a 2-rigidity basis if and only if for any e ∈ E ′, we can partition the multiset E ′ ∪ {e} (that is,
adding an extra copy of e to E ′) into two disjoint spanning trees of G.

This notion can be naturally extended to arbitrary matroids and dimensions.

Definition 3.4. Let M be a matroid on E. We say that E is d-Recski independent if for any element e ∈ E,
the multiset E ∪ {e} can be partitioned into d disjoint independent sets for M .

We wish to show that this purely matroidal condition is equivalent to the purely matroidal condition of
d-Laman independence. To prove this, we use a powerful classic result of Edmonds.

Edmonds’ Decomposition Theorem [3, Theorem 1]. Let M be a matroid of rank r on ground set E.
Then E has a decomposition E = I1 t · · · t Id into disjoint independent sets Ij for each j = 1, . . . , d if and
only if d · r(A) ≥ |A| for every subset A ⊆ E.

Definition 3.5. Let M be a matroid on E. A d-Edmonds decomposition of M is a family of independent
sets I1, . . . , Id whose disjoint union is E, with the following property: given subsets I ′1 ⊆ I1, . . . , I ′d ⊆ Id
with not all I ′i empty, then it is not the case that I ′1 = I ′2 = · · · = I ′d.
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Theorem 3.6. Let M be a matroid on ground set E, and let d be a positive integer. Then the following are
equivalent:

(i) E has a d-Edmonds decomposition;
(ii) E is d-Laman independent;
(iii) E is d-Recski independent.

Proof. (ii) ⇒ (i): Suppose that E is d-Laman independent. By Edmonds’ Theorem, the set E can be
partitioned into disjoint independent sets I1, . . . , Id. We claim that every such family is a d-Edmonds
decomposition. Indeed, suppose that I ′1 ⊆ I1, . . . , I ′d ⊆ Id all have the same span, with not all I ′j empty.
Since the Ij are independent, the I ′j all have the same cardinality, say s. Then A := I ′1 t . . .t I

′
d is nonempty

and has rank s and cardinality ds, which violates the d-Laman independence of E.

(i) ⇒ (ii): Let I1, . . . , Id be a d-Edmonds decomposition of M . Let A ⊆ E be nonempty, and Aj := A ∩ Ij .
Then

|A| =
d
∑

j=1

|Aj | =
d
∑

j=1

r(Aj) ≤
d
∑

i=1

r(A) = d · r(A).

However, equality cannot hold: it would force r(Aj ) = r(A) for each j, so that each Aj has the same span
as A, violating the definition of a d-Edmonds decomposition. Hence |A| < d · r(A) as desired.

(ii) ⇒ (iii): Suppose that E is d-Laman independent. Consider the matroid M ′ given by cloning any e ∈ E
as in the definition of d-Recski independence, so that the ground set of M ′ is E′ = E ∪ {e}. We claim that
|A′| ≤ d · r(A′) for each A′ ⊆ E′. Indeed, either A′ ⊆ E, when |A′| < d · r(A′), or else A′ = A ∪ {e} with
A ⊆ E, when |A′| = |A| + 1 < d · r(A) + 1, so |A′| ≤ d · r(A) ≤ d · r(A′). By Edmonds’ Theorem, E ′ can be
partitioned into d disjoint independent subsets. It follows that M is d-Recski independent.

(iii) ⇒ (ii): Suppose that E is not d-Laman independent, i.e., it has a subset A with |A| ≥ d · r(A). Let
a ∈ A. The set A ∪ {a} ⊆ E ∪ {a} has rank r(A) and cardinality |A| + 1, so |A ∪ {a}| > d · r(|A ∪ {a}|).
By Edmonds’ Theorem, E ∪ {a} cannot be partitioned into d independent sets. Hence E is not d-Recski
independent. �

3.3. Digression on polymatroids. As we have seen in Theorem 3.1 (ii), when m is not an integer, the
Laman complex Lm(M) need not form the collection of independent sets of a matroid. However, Lm(M) is
related to a more general (and less well-known) object called a polymatroid, as we now explain. (The results
of this section will not be necessary for the remainder of the paper.)

We review the definition of a polymatroid, using its characterizations by monotone submodular rank
functions (see [17, Chapter 18]).

Definition 3.7. Fix the ground set E = [n]. A function ρ : 2E → R≥0 is the rank function of a polymatroid
on E if it is

– monotone: ρ(A) ≤ ρ(B) whenever A ⊆ B ⊆ E;
– submodular: ρ(A ∪B) + ρ(A ∩ B) ≤ ρ(A) + ρ(B) for all A,B ⊆ E; and
– normalized: ρ(∅) = 0.

The polymatroid associated with ρ is the convex polytope

Pρ := {x ∈ Rn
≥0 :

∑

a∈A

xa ≤ ρ(A) for all A ⊆ E},

also called the set of independent vectors of the polymatroid.

Note that, for all A ⊆ E, the characteristic vector χA ∈ Rn is independent for ρ if and only if ρ(A) = |A|.
Our goal is to show the following:

Proposition 3.8. For every loopless matroid M on ground set E = [n], and every real number m ∈ (1,∞)R,
there is a polymatroid rank function ρ on E with the following property: A ⊆ E is m-Laman independent if
and only if its characteristic vector is independent for ρ.

The proof uses two standard lemmas.
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Lemma 3.9. [1, Lemma 6.15] If f : 2E → R≥0 is monotone, submodular, and normalized, then so is the
function rf : 2E → R≥0 defined by

rf (A) := min
A′⊆A

{f(A′) + |A \A′|}.

Lemma 3.10. [19, Proposition A.3.1] For a monotone, submodular, normalized function f : 2E → R≥0 with
associate function rf as above, the following are equivalent:

(a) |A′| ≤ f(A′) for all A′ ⊆ A.
(b) |A′| ≤ rf (A′) for all A′ ⊆ A.
(c) rf (A) = |A|.

Proof of Proposition 3.8. Let ε ∈ (0, 1
r(M) )R, and define f : 2E → R≥0 by

f(A) = (m− ε)r(A).

Note that f is monotone, submodular, and normalized, because the rank function r of any loopless matroid
has these properties. By Lemma 3.9, the function ρ := rf shares these properties, hence also defines a
polymatroid rank function on E.

Since M is loopless, for all A 6= ∅, one has mr(A) > |A| if and only if (m− ε)r(A) ≥ |A|. Consequently

A ∈ Lm(M) ⇐⇒ f(A′) ≥ |A′| for all nonempty A′ ⊆ A

⇐⇒ f(A′) ≥ |A′| for all A′ ⊆ A

⇐⇒ ρ(A) = rf (A) = |A|.

Here the last equality uses Lemma 3.10. �

4. Slope independence and the space of photos

In [7] and [9], the second author studied the picture space of a graph G, the algebraic variety of point-line
arrangements in d-dimensional space with an incidence structure given by G. The rigidity-theoretic behavior
of G controls the geometry of the picture space to a great extent; for instance, the picture space is irreducible
if and only if G is d-parallel independent.

In this section, we study the space Xk,d(M) of (k, d)-photos, which is well-defined for any matroid M
equipped with a representation. The photo space plays a role analogous to that of the picture space of a
graph,1 and the techniques we use to study it are similar to those of [7]. In particular, Xk,d(M) provides a
geometric interpretation of m-Laman independence for all rational numbers m > 1: it is equivalent to the
space of (k, d)-photos.

Throughout this section, we work with a matroid M represented over a field F by nonzero2 vectors
v1, . . . , vn ∈ Fr. In addition, let 0 < k < d be integers, and write m = d

d−k
. Recall (Definition 2.2) that the

space of (k, d)-photos of M is
{

(ϕ,W ) ∈ HomF(Fr,Fd) × Gr(k,Fd)n : ϕ(vi) ∈Wi for all 1 ≤ i ≤ n
}

.

Note that the photo space is an algebraic subset of HomF(Fr,Fd) × Gr(k,Fd)n, hence a scheme over F.
The symbol Xk,d(M) is a slight abuse of notation; as defined, the photo space depends on the representation
{vi}, and it is not at all clear to what extent it depends only on the structure of M as an abstract matroid.
(We will return to this natural question later.)

A key tool in our analysis is a disjoint decomposition of the photo space into irreducible algebraic subsets
called cellules (in analogy to [7]). For each photo (ϕ,W ), kerϕ is a linear subspace of Fr, hence intersects E
in some flat F of M . The idea is to classify photos according to what this flat is.

Definition 4.1. For each flat F ⊆ E, the corresponding cellule is

XF
k,d(M) = {(ϕ,W ) ∈ Xk,d(M) : kerϕ ∩ E = F} .

1The reader should be warned not to take this analogy too literally: the picture space of a graph is not an instance of the
photo space of a matroid!

2Our assumption that M contains no loops is purely for convenience; trivial (but slightly annoying) modifications are
necessary when loops are present.
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By definition, each photo belongs to exactly one cellule; that is, Xk,d(M) decomposes as a disjoint union
of the cellules. Of particular importance are the two extreme cases:

I. The cellule X∅

k,d(M) corresponding to the empty flat ∅ is called the non-annihilating cellule. It is a Zariski

open subset of Xk,d(M), defined by the conjunction of open conditions

(13) ϕ(vi) 6= 0, ∀i = 1, . . . , n.

II. The cellule XE
k,d(M) corresponding to the improper flat E is called the degenerate cellule. It is precisely

{0} × Gr(k,Fd)n, where 0 is the zero map Fr → Fd.

Proposition 4.2. Let M and Xk,d(M) be as above.

(i) The natural projection map

X∅

k,d(M) → HomF(Fr,Fd)

gives X∅

k,d(M) the structure of an algebraic fiber bundle, with fiber Gr(k−1,Fd−1) and base the Zariski

open subset of HomF(Fr,Fd) defined by (13). In particular, dimX∅

k,d(M) = dr + n(k − 1)(d− k).

(ii) For each flat F , XF
k,d(M) ∼= X∅

k,d(M/F ) × Gr(k,Fd)F . Consequently, XF
k,d(M) is an irreducible

subvariety of Xk,d(M), with dimension given by the formula

(14) dimXF
k,d(M) = d(r − r(F )) + (n− |F |)(k − 1)(d− k) + |F |k(d− k).

The preceding assertions are more or less immediate from the definition of cellules and the standard fact
that the Grassmannian Gr(k,Fd) has dimension k(d− k).

As in (7), let π denote the projection map

HomF(Fr,Fd) × Gr(k,Fd)n π
−→ Gr(k,Fd)n,

and define M to be (k, d)-slope independent if πX∅

k,d(M) is Zariski dense in Gr(k,Fd)n. We will denote the

Zariski closure of a set Z by Z.

Theorem 4.3. Let M be a matroid with rank function r, represented by vectors v1, . . . , vn ∈ Fr. Fix positive
integers 0 < k < d, and let m = d

d−k
.

Then the following are equivalent:

(i) M is (k, d)-slope independent, i.e., πX∅

k,d(M) is dense in Gr(k,Fd)n.

(ii) M is m-Laman independent, i.e., m · r(F ) > |F | for every nonempty flat F of M .
(iii) dimXF

k,d(M) < dimX∅

k,d(M) for every nonempty flat F of M .

(iv) The photo space Xk,d(M) is irreducible.

(v) The photo space Xk,d(M) coincides with the Zariski closure X∅

k,d(M) of its non-annihilating cellule.

Proof. (ii) ⇔ (iii): Compare the cellule dimension formula (14) dimension with the definition of m-Laman
independence (Definition 2.1).

(i) ⇒ (ii): For a nonempty flat F , write M |F for the restriction of M to F . Consider the commutative
diagram

(15)

X∅

k,d(M) −−−−→ X∅

k,d(M |F )

π









y

π̃









y

Gr(k,Fd)n −−−−→ Gr(k,Fd)F

in which the top horizontal morphism restricts the photo map ϕ to the linear span F(F ) of the vectors in F ,
while forgetting the k-planes {Wi}i∈E\F . Both vertical arrows are projections as in (7); we use the tilde on
the right-hand map to distinguish them in what follows. Note that when ϕ is non-annihilating, its restriction
to the span of F will also be non-annihilating. Moreover, the bottom horizontal morphism is surjective.
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Now assume that condition (i) holds. Since the image of π is Zariski dense in the target, so is the image
of π̃. Therefore

(16) d · r(F ) + |F |(k − 1)(d− k) = dimX∅

k,d(MF ) ≥ dim Gr(k,Fd)F = |F |k(d− k),

or in other words, d · r(F ) ≥ (d − k)|F |. However, scaling a non-annihilating map ϕ by an element of F×

does not change the line spanned by any ϕ(vi). Therefore every fiber of π̃ is at least one-dimensional. Put
differently, when restricted to X∅

k,d(M |F ), the morphism π̃ factors through a (d ·r(F )−1)+ |F |(k−1)(d−k)-

dimensional space of projectivized non-annihilating maps ϕ in P(HomF(F(F ),Fd).
Hence, for every nonempty flat F , we have the strict inequality d · r(F ) > (d − k)|F |, or equivalently

m · r(F ) > |F |, which is (ii).

(iv) ⇔ (v): Since X∅

k,d(M) is Zariski open in Xk,d(M), its closure X∅

k,d(M) is one of the irreducible com-

ponents of Xk,d(M). Thus the full photo space is irreducible if and only if the non-annihilating photos are
dense.

(v) ⇒ (i): Suppose that (v) holds. Then (i) follows from the observation that

π
(

X∅

k,d(M)
)

⊃ π
(

X∅

k,d(M)
)

⊃ π(XE
k,d(M)) =

(

Pd−1
F

)E
,

(the first inclusion is standard, and the second is implied by (v)).

(iii) ⇒ (iv): We begin by finding an upper bound for the codimension of every component of the photo space.
Note that Xk,d(M) =

⋂n
i=1 Zi, where

Zi =
{

(ϕ,W ) ∈ Hom(Fr,Fd) × Gr(k,Fd)n : ϕ(vi) ∈Wi

}

.

Let

Z ′
i = {(ϕ,W ) ∈ Zi : ϕ(vi) 6= 0} ,

Z ′′
i = {(ϕ,W ) ∈ Zi : ϕ(vi) = 0} .

Note that Z ′
i has codimension d − k in HomF(Fr,Fd) × Gr(k,Fd)n. Additionally, Z ′′

i is contained in the
Zariski closure of Z ′

i, because the condition ϕ(vi) ∈ Wi (expressed using the Plücker coordinates of Wi) is
satisfied also when ϕ(vi) = 0. Therefore, every Zi has codimension d − k, and every irreducible component
of their intersection Xk,d(M) has codimension at most n(d−k). On the other hand, by the cellule dimension

formula (14), n(d − k) is precisely the codimension of the non-annihilating cellule X∅

k,d(M). Hence every

irreducible component of Xk,d(M) has dimension at least as large as that of X∅

k,d(M).

Now suppose that (iii) holds, so that dimXF
k,d(M) < dimX∅

k,d(M) for every F 6= ∅. Since the cellules are

all irreducible and disjointly decompose Xk,d(M), the irreducible components of Xk,d(M) must be exactly

the closed cellules XF
k,d(M) that are contained in the closure of no other cellule. On the other hand, by the

previous paragraph, every such cellule must have its dimension at least that of dimX∅

k,d(M), and by (iii)

the only possibility is F = ∅. Therefore X∅

k,d(M) is the unique irreducible component. �

The equivalence of (i) and (ii) in Theorem 4.3 immediately gives the following equality between the slope
and Laman complexes.

Corollary 4.4. Let m ∈ Q ∩ (1,∞)R. Write m as d
d−k

, where 0 < k < d are integers.

Then Sk,d(M) = Lm(M).

Remark 4.5. The condition d ≥ 2 is implicit in Corollary 4.4. However, there is a sense in which the result
is still valid for d = 1. Take k = 1, so that the result asserts that

S1,d(M) = L
d

d−1 (M).

Now, if one establishes conventions properly, this equality remains valid as d approaches 1, so that m = d
d−1

approaches infinity. That is,

S1,1(M) = L∞(M) = 2E .
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Indeed, the full simplex 2E is logically equal to S1,1(M): there is only one possible line through any point in
F1, so the projection map π is dense. Meanwhile, it is easy to see that L∞(M) = 2E, where we have defined

L∞(M) := lim
m→∞

Lm(M).

Remark 4.6. For a given matroid M and irrational number m, it is not hard to see that there exists a
rational number m̃, chosen sufficiently close to m, such that Lm̃(M) = Lm(M). Therefore, Corollary 4.4
actually gives a geometric interpretation for every instance of Laman independence.

Remark 4.7. Another surprising consequence of Corollary 4.4 is that (k, d)-slope-independence is invariant
under simultaneously scaling k and d. That is, if λ > 0 is an integer, then the Corollary implies that

Sk,d(M) = Sλk,λd(M).

Moreover, if d is divisible by k, then m = d/(d− k) is an integer and Sk,d(M) = Lm(M) is in fact a matroid
by Theorem 3.1 (i). The geometry behind these phenomena is far from clear.

A natural question is to determine the singularities of the photo space. While we cannot do this in general,
we can at least say exactly for which matroids Xk,d(M) is smooth. The result and its proof are akin to [9,
Proposition 15], and do not depend on the parameters k and d.

Proposition 4.8. Let M be a loopless matroid equipped with a representation {v1, . . . , vn} as above. Then,
for all integers 0 < k < d, the photo space X = Xk,d(M) is smooth if and only if M is Boolean (that is,
every ground set element is an isthmus).

The assumption of looplessness is harmless, because if vi is a loop, thenXk,d(M) ∼= Gr(k,Fd)×Xk,d(M\v),
so Xk,d(M) is smooth if and only if Xk,d(M\v) is.

Proof. First, note that the photo space of a direct sum of matroids is precisely the product of their photo
spaces (this can be seen by writing the matrix for a picture of the direct sum in block-diagonal form). In
particular, if M is Boolean, then

X ∼=

n
∏

i=1

{

(ϕi,Wi) ∈ Fd × Gr(k,Fd) : ϕi(vi) ∈ Wi

}

,

and each factor in the product is a copy of the total space of the tautological k-plane bundle over Gr(k,Fd).
In particular, X is smooth.

Now suppose that M is not Boolean; in particular n > r. Recall from Proposition 4.2 that the non-
annihilating cellule has dimension dr+n(k−1)(d−k). Near each non-annihilating photo Ω, the photo space
looks locally like an affine space of this dimension; in particular, the tangent space TΩ(X) has dimension

(17) dimTΩ(X) = dr + n(k − 1)(d− k).

Let Φ = (ϕ,W ) be a “very degenerate” photo; that is, ϕ = 0 and all the k-planes Wi coincide. Each Wi

can be moved freely throughout the ith Grassmannian, giving n · dim Gr(k,Fd) = nk(d − k) independent
tangent vectors to X at Φ. On the other hand, we can also vary the map ϕ throughout Hom(Fr,Wi), giving
kr more tangent directions that are linearly independent of those just mentioned. Therefore

(18) dimTΦ(X) ≥ nk(d− k) + kr.

Comparing (17) and (18), and doing a little algebra, we find that

dim TΦ(X) − dimTΩ(X) ≥ (d− k)(n− r) > 0.

That is, not all points of X have the same tangent space dimension. Therefore X cannot be smooth. �
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5. Counting photos

Although it will not be needed in the sequel, we digress to prove an enumerative result, possibly of
independent interest, about the photo space: when working over a finite field, the cardinality |Xk,d(M)| is
an evaluation of the Tutte polynomial TM (x, y).

We refer the reader to [2] for details on the Tutte polynomial. In what follows, we write M\v and M/v
respectively for the deletion and contraction of M with respect to an element v of its ground set. We also
dispense with the assumption from the previous section that M contains no loops. On the other hand, we
add the assumption that the representing vectors v1, . . . , vn ∈ Fr actually span Fr; in other words, r(M) = r.
This represents no loss of generality; it is easy to check that when r(M) < r, there is a natural isomorphism

Xk,d(M) ∼= HomF(Fr−r(M),Fd) ×Xk,d(M
′),

where M ′ is represented by the same vectors v1, . . . , vr, regarded as elements of the r(M)-dimensional
subspace of Fr that they span.

The following fact [2, Corollary 6.2.6] is a standard tool for converting deletion-contraction recurrences
to Tutte polynomial evaluations. We need the dual matroid M⊥, characterized as follows: when M is
represented by the columns v1, . . . , vn of an r× n matrix of rank r as above, the dual M⊥ is represented by
the columns v∗1 , . . . , v

∗
n of an (n− r) × n matrix of rank n− r, with the property that the row space of M⊥

is the nullspace of M , and vice versa. (In purely combinatorial terms, the bases of M⊥ are the complements
of bases of M .)

Proposition 5.1. Let Ψ(M) be an invariant of matroids taking values in a commutative ring R, with the
following properties:

(T1) For all matroids M1,M2, Ψ(M1 ⊕M2) = Ψ(M1)Ψ(M2).
(T2) When the ground set of M consists of a single isthmus, Ψ(M) = c.
(T3) When the ground set of M consists of a single loop, Ψ(M) = d.
(T4) When v is neither a loop nor an isthmus of M , Ψ(M) = aΨ(M\v) + bΨ(M/vf).

Then

Ψ(M) = ar(M⊥)br(M)TM

(

c

b
,
d

a

)

.

Recall [14, Proposition 1.3.18] that when F is a finite field with q elements, the cardinality of the Grass-
mannian Gr(k,Fd) is given by the q-binomial coefficient

[

d
k

]

q

:=
[d]!q

[k]!q[d− k]!q

where
[n]!q := [n]q[n− 1]q · · · [2]q [1]q

and

[n]q :=
1 − qn

1− q
= 1 + q + q2 + · · · + qn−1.

We can now state the main result on counting photos.

Theorem 5.2. Let F be the finite field with q elements. Let M be a matroid of rank r, represented over F

by vectors v1, . . . , vn spanning Fr, and let d ≥ 2. Then the number of (k, d)-photos of M is

|Xk,d(M)| =

[

d− 1
k − 1

]r(M⊥)

q

(

qk

[

d− 1
k

]

q

)r(M)

TM

(

[d]q
[d− k]q

,
[d]]q
[k]q

)

Proof. Abbreviate Xk,d(M) by X(M), and define Ψ(M) := |X(M)|. We must show that Ψ satisfies the
conditions of Proposition 5.1 with

a =

[

d− 1
k − 1

]

q

, b = qk

[

d− 1
k

]

q

, c = qk

[

d
k

]

q

, d =

[

d
k

]

q

.

(By an easy calculation, the arguments to the Tutte polynomial in the statement of the theorem are precisely
c/b and d/a.)



14 MIKE DEVELIN, JEREMY L. MARTIN AND VICTOR REINER

Condition (T1) is straightforward. For (T2), if the ground set of M consists of a single loop, then
X(M) ∼= Gr(k,Fd) has cardinality

[

d
k

]

q
.

If the ground set of M consists of a single isthmus v, then a (k, d)-photo of M is just a pair (ϕ,W ) where
ϕ : F1 → Fd andW is a k-plane containing ϕ(v). Since the image vector w := ϕ(v) completely determines the
map ϕ, a photo is equivalent to a pair (w,W ) ∈ Fd × Gr(k,Fd) satisfying w ∈W . Thus the space Xk,d(M)
is isomorphic to the tautological k-plane bundle over Gr(k,Fd), and its cardinality is qk

[

d
k

]

q
, establishing

condition (T3).
The verification of (T4) is the crux of the proof. If v is neither a loop nor an isthmus of M , we have the

following commutative diagram:

(19)

E ↪→ X(M)

π̃









y

π









y

E ↪→ X(M − v)

The map π sends a (k, d)-photo of M to a photo of M\v by forgetting the k-plane corresponding to the
vector v. The map π̃ is the restriction of π to the source and target

E := {(ϕ,W ) ∈ X(M) : ϕ(v) = 0} ∼= X(M/e) × Gr(k,Fd)
E := {(ϕ,W ) ∈ X(M\v) : ϕ(v) = 0} ∼= X(M/e)

and corresponds to the projection of X(M/e) × Gr(k,Fd) onto its first factor. Meanwhile, the restriction

X(M) \ E
π

−→ X(M\v) \ E

makes X(M) \ E into a bundle with fiber Gr(k − 1,Fd−1). Consequently

|X(M) \ E| =

[

d− 1
k − 1

]

q

∣

∣X(M\v) \ E
∣

∣

and

Ψ(M) = |E| +

[

k − 1
d− 1

]

q

(

Ψ(M\v) −
∣

∣E
∣

∣

)

=

[

d− 1
k − 1

]

q

Ψ(M\v) +

[

d
k

]

q

Ψ(M/v) −

[

d− 1
k − 1

]

q

Ψ(M/v)

=

[

d− 1
k − 1

]

q

Ψ(M\v) + qk

[

d− 1
k

]

q

Ψ(M/v)

where the last equality uses the q-Pascal recurrence [14, Chapter 1, §1.3, Equation (17b)]
[

d
k

]

q

= qk

[

d− 1
k

]

q

+

[

d− 1
k − 1

]

q

.

�

Since the Tutte polynomial of M does not depend on the choice of representation, neither does the number
of photos. Theorem 5.2 also implies a curious symmetry between the number of photos of a matroid M and
of its dual M⊥. Since TM⊥(x, y) = TM (y, x) [2, Prop. 6.2.4] and

[

d
k

]

q
=
[

d
d−k

]

q
, we have:

Corollary 5.3. Let M and M⊥ be dual represented matroids. Then

qd·r(M)|Xd−k,d(M
⊥)| = q(d−k)n|Xk,d(M)|.

It would be nice to have a more direct explanation for Corollary 5.3.
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Remark 5.4. A topological commutative diagram analogous to (19) was exploited by the second author in
[8] to compute the Poincaré series of picture spaces of graphs over C as an analogous Tutte polynomial
evaluation. In contrast, when F = R or C, the topology of the photo space is much simpler. Indeed, there
is a deformation retraction of Xk,d(M) onto its degenerate cellule:

F : [0, 1] ×Xk,d(M) → XE
k,d(M)

(λ, (ϕ,W )) 7→ (λϕ,W ).

Hence Xk,d(M) is homotopy equivalent to the degenerate cellule X∅

k,d(M), which is homeomorphic to

Gr(k,Fd)n (see Definition 4.1).

6. Rigidity and parallel independence

In this section, we examine more closely the special cases k = 1 and k = d−1 of (k, d)-slope independence
for a represented matroid M . It turns out that they are intimately related to the d-dimensional generic
rigidity matroid Rd(M) and the d-dimensional generic hyperplane-marking matroid Hd(M). Throughout
the section, let M be a matroid represented by vectors E = {v1, . . . , vn} spanning Fr, and let d > 0 be an
integer.

6.1. Interpreting Rd(M) and Hd(M). Recall (Definition 2.3) that the d-dimensional rigidity matroid is
represented over F(ϕ) by the vectors

{vi ⊗ ϕ(vi)}
n
i=1 ⊂ Fr ⊗F F(ϕ)d.

where F(ϕ) is the extension of F by dr transcendentals (the entries of the matrix ϕ : Fr → F(ϕ)d). The
complex Rd(M) is defined to be the complex of independent sets of this matroid. The d-rigidity matrix
Rd(M) is the n× dr matrix whose rows represent Rd(M).

Recall also (Definition 2.4) that the d-dimensional hyperplane-marking matroid is represented over F(ϕ, n)
by the vectors

{vi ⊗ ηi)}
n
i=1 ⊂ Fr ⊗F F(ϕ, η)d.

where F(ϕ) is the extension of F by dr + (d − 1)n transcendentals (the dr entries of the matrix ϕ, and the
(d − 1)n coordinates of the normal vectors ηi to ϕ(vi)). The complex Hd(M) is defined to be the complex
of independent sets of this matroid. Denote by Hd(M) the n× dr matrix whose rows represent Hd(M).

To interpret Rd(M) and Hd(M), we study their (right) nullspaces. Both matrices have row vectors in
Fr ⊗F Fd, so their nullvectors live in the same space. It will be convenient to freely use the identifications

Fr ⊗F Fd ∼= (Fr)∗ ⊗F Fd ∼= HomF(Fr,Fd).

The second of these isomorphisms is canonical; the first comes from identifying Fr and (Fr)∗ by the standard
bilinear form on Fr,

〈x, y〉 =

r
∑

i=1

xiyi,

whose associated quadratic form is

Q(x) = 〈x, x〉 =

r
∑

i=1

x2
i .

With these identifications, for every ψ ∈ Fr ⊗F Fd ∼= HomF(Fr,Fd), v ∈ Fr, and x ∈ Fd, the induced
bilinear form on Fr ⊗F Fd has the property

〈v ⊗ x, ψ〉 = 〈x, ψ(v)〉.

Proposition 6.1. Let M be a matroid represented by E as above, and let ψ ∈ Fr ⊗F Fd ∼= HomF(Fr,Fd).

(i) The vector ψ lies in kerHd(M) if and only if (ϕ+ ψ)(vi) is normal to ηi for all i = 1, 2, . . . , n.
(In other words, the nullspace of Hd(M) is the space of directions in which one can modify the

map ϕ while keeping the image of vi lying on the same hyperplane normal to ηi for each i.)
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(ii) Provided that F does not have characteristic 2, the vector ψ lies in kerRd(M) if and only if

Q
(

(ϕ+ εψ)(vi)
)

≡ Q
(

ϕ(vi)
)

mod ε2

for each i = 1, 2, . . . , n.
(In other words, the nullspace of Rd(M) is the space of infinitesimal modifications one can make

to ϕ while keeping the values of the quadratic form Q on the images of the vi constant (up to first
order) for each i.)

Proof. For (i), note that

〈ηi, (ϕ+ ψ)(vi)〉 = 0 ⇐⇒ 〈ηi, ϕ(vi)〉 + 〈ηi, ψ(vi)〉 = 0

⇐⇒ 〈ηi, ψ(vi)〉 = 0

⇐⇒ 〈vi ⊗ ηi, ψ〉 = 0.

For (ii), the expression

Q((ϕ+ εψ)(vi)) = Q((ϕ(vi)) + 2ε〈ϕ(vi), ψ(vi)〉 + ε2Q(ψ(vi))

is congruent to Q(ϕ(vi)) modulo ε2 if and only if 〈ϕ(vi), ψ(vi)〉 = 0 (since F does not have characteristic 2).
But 〈ϕ(vi), ψ(vi)〉 = 〈vi ⊗ ϕ(vi), ψ〉, completing the proof. �

Remark 6.2. Part (i) of Proposition 6.1 is a rephrasing of the following familiar fact from rigidity theory:
the rigidity matrix Rd(M) may be regarded as the Jacobian matrix (after scaling by 1

2 ) of the map

HomF(Fr,Fd) −→ Fn

ϕ 7−→ (Q(ϕ(vi))
n
i=1 .

The following instance of the hyperplane-marking matroid generalizes the notion of the d-parallel matroid
of a graph (see (3)). Denote by (d−1)M the matroid whose ground set consists of d−1 copies of each vector
in E. The d-parallel matrix of M is defined as Hd((d− 1)M), and the matroid represented by its rows is the
(d-dimensional, generic) parallel matroid Pd(M) := Hd((d − 1)M). Part (ii) of Proposition 6.1 leads to an
interpretation of the geometric meaning carried by the d-parallel matrix:

Corollary 6.3. Let ψ ∈ Fr⊗F Fd ∼= HomF(Fr,Fd). Then ψ ∈ kerP d(M) if and only if (ϕ+ψ)(vi) is parallel
to ϕ(vi) for all i = 1, 2, . . . , n.

Proof. Since there are d− 1 copies of the vector vi in (d− 1)M , there will be (d− 1) accompanying normal
vectors to ϕ(vi). Because these normals are chosen with generic coordinates, the only vectors normal to all
d− 1 of them are those parallel to ϕ(vi). Now apply Proposition 6.1. �

As in classical rigidity theory, both Rd(M) and Hd(M) have certain obvious nullvectors.

Proposition 6.4. Let ψ ∈ Fr ⊗F Fd ∼= HomF(Fr,Fd).

(i) Given any skew-symmetric d × d matrix σ ∈ Fd×d, the map σ ◦ ψ, when identified with a vector in
Fr ⊗ Fd, lies in the nullspace of Rd(M).

(ii) The map ψ, when identified with a vector in Fr ⊗ Fd, lies in the nullspace of Hd(M).

Proof. Assertion (ii) is immediate from the interpretation of the nullspace of Hd(M) given in Proposition 6.1.
To prove (i), we define

S := Z[ϕ, σ, v]/ (σji = −σij) ,

the polynomial ring in the entries of the matrices ϕ, σ, v1, . . . , vn. We wish to show that

(20) Rd(M)(σ ◦ ϕ) = 0

in S. In fact, we will show by a formal calculation that 2Rd(M)(σ ◦ ϕ) = 0. Since 2 is a non-zero-divisor
in S, this will imply that (20) holds in S, hence remains valid when we pass to S ⊗Z F and specialize the
entries of v1, . . . , vn, σ to elements of F.
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The calculation3 actually takes place in S[ε]/(ε2). Since σT = −σ, one has for all x ∈ Fd

Q((Id + εσ)(x)) = Q(x) + ε〈x, σ(x)〉 + ε〈σ(x), x〉 + ε2Q(σ(x))

= Q(x) + ε
(

〈x, σ(x)〉 + 〈x, σT (x)〉
)

+ ε2Q(σ(x))

≡ Q(x) mod ε2

Taking x = ϕ(vi), the function f defined by f(ϕ) := Q(ϕ(vi)) has the property

f(ϕ+ εσ ◦ ϕ) ≡ f(ϕ) mod ε2.

On the other hand, expanding f as a Taylor polynomial yields

f(ϕ+ εσ ◦ ϕ) ≡ f(ϕ) + ε〈∇ϕ(f), σ ◦ ϕ〉 mod ε2.

where ∇ϕ(f) is the gradient of f with respect to the entries of ϕ. Therefore 〈∇ϕ(f), σ ◦ ϕ〉 = 0. On the
other hand, by Remark 6.2, the ith row of Rd(M) is exactly 1

2∇ϕ(f). So 2Rd(M)σ ◦ ϕ = 0 as desired. �

6.2. The Nesting Theorem. We have arrived at one of the main results of the paper, the Nesting The-
orem, which explains the relationship between the various independence systems associated to an arbitrary
representable matroid M . In the special case that M is graphic and the ambient dimension d is 2, the
Nesting Theorem gives what we have called the planar trinity (Corollary 6.6 below).

Theorem 6.5 (The Nesting Theorem). Let M be a matroid represented by vectors E = {v1, . . . , vn} ⊂ Fr,
and let d > 1 be an integer. Then

S1,d(M) ⊆ Rd(M) ⊆ Ld(M) = Hd(M) (= Sd−1,d(M)).

Proof. We first prove that Rd(M) ⊆ Ld(M). It suffices to show that whenever d · r(M) ≤ n, there is an
F(ϕ)-linear dependence among the vectors

{vi ⊗ ϕ(vi)}
n
i=1 ⊂ Fr ⊗F Fd

that form the n rows of Rd(M). Since E spans a subspace of Fr isomorphic to Fr(M), the rows of Rd(M)
actually lie in a subspace of dimension d · r(M). If d · r(M) < n, then the desired linear dependence is
immediate. On the other hand, if d · r(M) = n, then Proposition 6.4 implies that the rows of Rd(M) lie in
a proper subspace of Fr(M) ⊗ Fd, hence are linearly dependent.

If we replace vi ⊗ ϕ(vi) with vi ⊗ ηi, the same argument shows that Hd(M) ⊆ Ld(M).

Next we prove that S1,d(M) ⊆ Rd(M). Assume that the rows of Rd(M) are dependent; we will show
that M is (k, d)-slope dependent for k = 1.

We begin with the observation that

Sk,d(M) = L
d

d−k (M) ⊆ Ld(M).

The equality is Corollary 4.4, and the inclusion follows from the definition of Lm(M) (because d
d−k

≤ d).

In particular, if M is d-Laman dependent then M is automatically (k, d)-slope dependent; we may therefore
assume that M is d-Laman independent. Without loss of generality, d · r(M) ≥ n, so the dependence of
the rows of Rd(M) implies the vanishing of every one of its n × n minor subdeterminants. Moreover, by
Theorem 3.6, M admits a d-Edmonds decomposition (see Definition 3.5). Associating the vectors v1, . . . , vn

with their indices [n] = {1, . . . , n}, we may write this Edmonds decomposition concisely as [n] =
⊔d

j=1 Ij .

Claim. There exists an n × n minor ξ of Rd(M) that is a nonzero multihomogeneous
polynomial in the coordinates of the vectors ϕ(vi).

Given the claim, if ξ vanishes on the non-annihilating cellule X∅

k,d(M) of the photo space, then the projection

on X∅

k,d(M) → Gr(k,Fd) is not Zariski dense, because the homogeneous coordinates of the ϕ(vi) are in fact

the Plücker coordinates on Gr(k,Fd). Hence by Theorem 4.3, the claim is all we need for the present theorem.

3This calculation is identical to that usually used to show that the orthogonal group with respect to the quadratic form Q

on F
d has its Lie algebra equal to the space of skew-symmetric matrices.
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Let x(i) := ϕ(vi), and let vi = [vi1 · · · vir]
T . Group the columns of R = Rd(M) in blocks, so that the ith

row of R is
[

vi1x
(i)
1 · · · virx

(i)
1

∣

∣ vi1x
(i)
2 · · · virx

(i)
2

∣

∣ · · ·
∣

∣ vi1x
(i)
d · · · virx

(i)
d

]

.

Each n × n submatrix RA of R is indexed by some choice of an n-element subset A of the dr columns.
Letting Ai be the subset of A coming from columns in the ith block, one obtains a sequence of subsets

A1, . . . , Ad ⊂ [r] with n = |A| =
∑d

j=1 |Aj |. Then

detRA =
∑

I

ε(I)
∑

σ1 ,...,σd

ε(σ1) . . . ε(σd)

d
∏

j=1

∏

i∈Ij

vi,σj (i)x
(i)
j .

Here the first sum ranges over all partitions I = {I1, . . . , Id} of [n] with d parts, the second sum ranges over
all d-tuples of bijections σj : Ij → Aj , and ε(C), ε(σj) ∈ {±1} (there are explicit formulas for these signs,
but we won’t need them). This expression may be simplified:

detRA =
∑

I

ε(I)





d
∏

j=1

∏

i∈Ij

x
(i)
j









d
∏

j=1

∑

σj :Ij→Aj

ε(σj)vi,σj (i)





=
∑

I





d
∏

j=1

∏

i∈Ij

x
(i)
j







ε(I)

d
∏

j=1

det VIj ,Aj





where VIj ,Aj
is the submatrix of [vik]i=1,...,n,k=1,...,r with rows Ij and columns Aj . Note that det(VIj ,Aj

) ∈ F,

so the calculation implies that detRA is a multihomogeneous polynomial in the coordinates {x
(i)
j } with

coefficients in F.
By the definition of an Edmonds decomposition, the sets I1, . . . , Id are independent in M . Hence there is

some subset Aj ⊆ [r] with detVIj ,Aj
6= 0. The monomial corresponding to this choice of Ij ’s and Aj ’s has a

nonzero coefficient in the multihomogeneous polynomial ξ = detRA. Therefore ξ 6= 0, establishing the claim
and completing the proof that S1,d(M) ⊆ Rd(M).

Replacing Rd(M) with Hd(M), k = 1 with k = d− 1, and ϕ(vi) with ηi throughout, the same argument
shows that Sd−1,d ⊆ Hd(M). Since Sd−1,d(M) = Ld(M) by Corollary 4.4, we are done. �

The case d = 2 is very special. Recall that Pd(M) = Hd((d − 1)M), so P2(M) = H2(M). Indeed, the
Nesting Theorem implies much more:

Corollary 6.6. Let M be a matroid represented as above. Then

S1,2(M) = R2(M) = L2(M) = H2(M) = P2(M).

Remark 6.7. Setting d = 1 collapses the Nesting Theorem to

Sk,∞(M) = R1(M) = L1(M) = M.

However, these phenomena are somewhat more trivial. To make sense of the complexes Sk,∞(M) and

L1(M), consider the identity Sk,d(M) = L
d

d−k (M) of Corollary 4.4. Fixing k and letting d → ∞ (as a
positive integer), we obtain Sk,∞(M) = R1(M) = L1(M). On the other hand, it is an easy consequence of
the definitions of Lm(N) and Rd(M) that limm→1+ Lm(M) = M = R1(M).

Remark 6.8. There is in fact a simple explicit isomorphism between the matroids R2(M) and H2(M)
(= P2(M)). Let ρ be the “π/2 rotation” F2 → F2 given by

[

0 −1
1 0

]

.

Then ρ(ϕ(vi)) = ηi, a generic normal to the generic image vector ϕ(vi), and the invertible linear operator
1Fr ⊗ ρ on Fr ⊗F Fd sends vi ⊗ ϕ(vi) to vi ⊗ ηi.
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Remark 6.9. When d ≥ 3, the inclusion Rd(M) ⊆ Ld(M) is usually strict. By Proposition 6.4, the nullspace

of Rd(M) contains the
(

d
2

)

-dimensional space of all vectors of the form σ ◦ ϕ, as σ ranges over all skew-

symmetric matrices in Fd×d. Consequently, every d-rigidity-independent subset A ⊆ E must satisfy |A| ≤

d·r(A)−
(

d
2

)

. On the other hand, there may exist d-Laman independent sets A of cardinality up to d·r(A)−1.

7. Examples: Uniform matroids

Let E be a ground set with n elements. The uniform matroid of rank r on E is defined to be the matroid
whose independent sets are

Ur,n = {F ⊆ E : |F | ≤ r}.

Broadly speaking, Ur,n can be regarded as the matroid represented by n generically chosen vectors in Fr,
where F is a sufficiently large field.

Predictably, the d-Laman independence complex on Ur,n is also a uniform matroid for every d. More
surprising is that d-Laman independence carries nontrivial geometric information about sets of n generic
vectors in r-space—specifically coplanarity for U2,3 and the cross-ratio for U2,4.

Proposition 7.1. Let Ur,n be the uniform matroid of rank r on n elements, and let d ∈ (1,∞)R. Then

(21) Ld(Ur,n) = Us,n where s = min(ddr − 1e, n).

and

(22) Sk,d(Ur,n) = Ut,n where t = min
(

d dr
d−k

− 1e, n
)

.

Proof. We know that Ld(Ur,n) is a simplicial complex, and it is easy to see that the criteria for F to be
d-Laman independent can depend only depend on the cardinality |F |. Therefore

Ld(Ur,n) = {F ⊆ E : d · r(F ′) > |F ′| for all nonempty F ′ ⊆ F}

= {F ⊆ E : d · r(F ) > |F |}

= {F ⊆ E : |F | < dr}

= Us,n,

which is (21). Applying Corollary 4.4 to (21) gives (22). �

Example 7.2 (U2,3). Let F be any field, and let e1, e2 be the standard basis vectors in F2. The matroid
M = U2,3 is represented by the vectors {e1, e1 + e2, e2} ⊂ F2; this representation is unique up to the action
of the projective general linear group. By Proposition 7.1,

Ld(U2,3) =

{

U2,3 if d ∈ (1, 3
2 ]R

U3,3 if d ∈ ( 3
2 ,∞)R

and S1,d(U2,3) =

{

U3,3 if d = 2

U2,3 if d ∈ {3, 4, . . .}.

We now consider what these equalities mean in terms of slopes. Let ϕ : F2 → Fd be a linear transformation.
If d = 2, then the images ϕ(e1), ϕ(e1 + e2), ϕ(e2) can have arbitrary slopes as ϕ varies. This is why
S1,2(U2,3) = U3,3. On the other hand, when d ≥ 3, those three vectors must be coplanar. This imposes a
nontrivial constraint on the homogeneous coordinates for the lines spanned by the three images, and explains
why S1,d(U2,3) = U2,3.

By direct calculation, the vectors

e1 ⊗ ϕ(e1), (e1 + e2) ⊗ ϕ(e1 + e2), e2 ⊗ ϕ(e2)

are linearly dependent if and only if d = 1. Therefore

Rd(U2,3) =

{

U2,3 if d = 1,

U3,3 if d ∈ {2, 3, . . .}.

In this case, the inclusions Rd(M) ⊆ Ld(M) given by Theorem 6.5 turn out to be equalities.
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Example 7.3 (U2,4). Let F be a field of cardinality > 2, let µ ∈ F \ {0, 1}, and let e1, e2 be the standard
basis vectors in F2. The four vectors

{e1, e1 + e2, e2, e1 + µe2},

represent M = U2,4 over F. Again, this representation is unique up to projective equivalence. By Proposi-
tion 7.1,

Ld(U2,4) =











U2,4 if d ∈ (1, 3
2 ]R

U3,4 if d ∈ ( 3
2 , 2]R

U4,4 if d ∈ (2,∞)R

and S1,d(U2,4) =

{

U3,4 if d = 2

U2,4 if d ∈ {3, 4, . . .}.

Why is this correct from the point of view of slopes? From Example 7.2, we know that when d ≥ 3, the lines
spanned by the images of any three of the four vectors must be coplanar, so there is an algebraic dependence
among the homogeneous coordinates for these three lines. For d = 2, this does not happen; the slopes of the
images of any triple can be made arbitrary. However, applying a linear transformation to the representing
vectors does not change their cross-ratio (in this case µ), so the fourth image vector is determined by the
first three. This is the geometric interpretation of the combinatorial identity S1,2(U2,4) = U3,4.

Direct calculation shows that every three of the four vectors

w1 := e1 ⊗ ϕ(e1), w2 := (e1 + e2) ⊗ ϕ(e1 + e2), w3 := e2 ⊗ ϕ(e2), w4 := (e1 + µe2) ⊗ ϕ(e1 + µe2)

are linearly dependent when d = 1, but independent for all d ≥ 2. When d ≥ 2, there is an additional, less
obvious linear dependence: (µ− 1)w1 − µw2 + (µ− µ2)w3 + w4 = 0. Consequently

Rd(U2,4) =

{

U2,4 if d = 1,

U3,4 if d ∈ {2, 3, . . .}.

This calculation is independent of the particular coordinates chosen for the representing vectors, even up to
projective equivalence (that is, up to the choice of the parameter µ): that is, Rd(U2,4) is a combinatorial
invariant.

On the other hand, unlike the situation for U2,3, the inclusions Rd(M) ⊆ Ld(M) given by Theorem 6.5
turn out to be strict. In particular, R∞(M) is not Boolean while L∞(M) is always Boolean. This behavior
deviates notably from the case of graphic matroids (see Proposition 8.5 below).

8. More on Rd(M): invariance and stabilization

The examples in the previous section raise some natural questions. Clearly Lm(M) is a combinatorial
invariant of M , that is, it does not depend on the choice of representation, nor the field of representation.
Hence by Corollary 4.4, the same is true for Sk,d(M), and in particular Hd(M) and Pd(M). But what about
Rd(M)? This is an issue which does not arise in classical rigidity theory, as the graphic matroid M(G) is
always represented by the vectors

(23) {ei − ej : {i, j} ∈ E(G)}

where ei is the ith standard basis vector in R|V (G)|. In fact, Proposition 8.1 below will show that Rd(M)
is a projective invariant of a matroid represented over a given field. A result of N. White shows that
graphic matroids, and more generally matroids that can be represented over F2, are projectively unique
when represented over any fixed field; see, e.g., [18, Proposition 1.2.5]. It will follow that Rd(M(G)) is a
combinatorial invariant of a graphic matroid M(G) over any fixed field.

We begin by recalling the notion of projective equivalence for representations of a matroid. Two sets
of vectors E = {v1, . . . , vn}, E

′ = {v′1, . . . , v
′
n} ⊂ Fr are called projectively equivalent if there are nonzero

scalars c1, . . . , cn ∈ F× and an invertible linear transformation g ∈ GLr(F), such that v′i = g(civi) for every
i. It is easy to see that in this case, the matroids represented by E and E ′ are combinatorially identical. As
we now show, the same is true for their d-rigidity matroids.

Proposition 8.1. Let M,M ′ be matroids represented by projectively equivalent sets E,E ′ ⊂ Fr, and let
d ≥ 2. Then Rd(M) = Rd(M ′).
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Proof. For v ∈ E and c ∈ F×, replacing v with cv has the effect of multiplying v ⊗ ϕ(v) by c2, which does
not change the matroid Rd(M).

For the second assertion, let g ∈ GLr(F), and suppose that we have an F(ϕ)-linear dependence

(24)

n
∑

i=1

civi ⊗ v(i) = 0

in Fr ⊗ F(ϕ)d. The group GLr(F) acts F(ϕ)-linearly on Fr ⊗ F(ϕ)d by g(v ⊗ w) = g(v) ⊗ w. Applying g to
(24) yields

n
∑

i=1

cig(vi) ⊗ v(i) = g(0) = 0.

Equivalently,
n
∑

i=1

cig(vi) ⊗ (ϕ ◦ g−1)g(vi) = 0.

The entries of the d×r matrix ϕ◦g−1 are algebraically independent transcendentals over F (because ϕ was),
and the transcendental extensions F(ϕ) and F(ϕ ◦ g−1) coincide because g is invertible. Hence the matroid
represented by {g(v1), . . . , g(vn)} contains the same dependence (24) as do {v1, . . . , vn}. Considering all such
dependences and replacing g with g−1, one sees that this matroid is combinatorially identical to Rd(M). �

Question 8.2. Is Rd(M) a combinatorial invariant of M , or does it depend on the choice of field F and the
particular representation {v1, . . . , vn} of M in Fr?

In the special case d = 2, the Nesting Theorem implies that Rd(M) is indeed a combinatorial invariant.
While we have no reason to expect invariance in all cases, we have not found a counterexample. We have
seen that Rd(M) is indeed combinatorial when M = U2,3 or U2,4. In what follows, we describe a matroid
with two projectively inequivalent representations whose d-rigidity matroids coincide.

Example 8.3. Consider the following two sets of nine coplanar vectors in R3:

E = {(1, 0, 0), (1, 0, 1), (1, 0, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2)},

E′ = {(1, 0, 0), (1, 0, 1), (1, 0, 3), (1, 2, 0), (1, 2, 1), (1, 2, 3), (1, 3, 0), (1, 4, 1), (1, 6, 3)}.

•

•

•

•

•

•

•

•

•

E

•

•

•

•

•

•

•

•

•

E′

Let M,M ′ be the matroids represented by E,E ′ respectively. These matroids are combinatorially iso-
morphic, but E and E′ are certainly projectively inequivalent. On the other hand, computations using
Mathematica show that R2(M) = R2(M ′) (= U5,9) and that R3(M) = R3(M ′) (the bases are the subsets
of E (resp. E′) of cardinality 6, except for the complements of the eight affine lines.)

We next discuss how Rd(M) stabilizes for large d. Let ω : F(ϕ1,1, . . . , ϕd+1,r) → F(ϕ1,1, . . . , ϕd,r) be
the map sending ϕd+1,j to 0 for every j. Then ω takes linear dependences on rows of Rd+1(M) to linear
dependences on rows of Rd(M). Therefore Rd(M) ⊆ Rd+1(M).

Since there are only finitely many simplicial complexes on a fixed finite ground set E, the tower

M = R1(M) ⊆ R2(M) ⊆ R3(M) ⊆ · · ·

must eventually stabilize to some complex R∞(M). We can say more precisely when this stabilization occurs.

Proposition 8.4. Let M be a matroid represented by E = {v1, . . . , vn} ⊂ Fr, where (without loss of
generality) M has rank r. Then for every d ≥ r,

Rd(M) = Rr(M) = R∞(M).
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Proof. Since Rd(M) ⊆ Rd+1(M), it suffices to prove that Rd(M) ⊆ Rr(M) for d ≥ r. Let ϕ be an r × r
matrix of transcendentals over F. Suppose that we have a linear dependence of the form (24). Let ψ
be another d × r matrix of transcendentals, so that F(ϕ) ↪→ F(ϕ, ψ) is a purely transcendental extension.
Viewing the matrix ψ as a F(ϕ, ψ)-linear map, one can apply it to the second factor of Fr ⊗F(ϕ)r. Applying
this to (24) gives

(25)

n
∑

i=1

civi ⊗ (ψ ◦ ϕ)(vi) = 0,

which is an F(ϕ, ψ)-linear dependence on the vectors {vi ⊗ (ψ ◦ ϕ)(vi)}i=1,...,n.
We claim that F(ϕ, ψ) is purely transcendental over F(ψ ◦ ϕ). To see this, first note that F(ψ, ϕ) =

F(ψ ◦ ϕ, ϕ−1). That is, F(ψ, ϕ) can be obtained from F(ψ ◦ ϕ) by adjoining r2 elements, namely the entries
of ϕ−1. In particular, the transcendence degree of F(ψ, ϕ) over F(ψ ◦ ϕ) is at most r2. Similarly, the
transcendence degree of F(ψ ◦ϕ) over F is at most dr. But F(ψ, ϕ) clearly has transcendence degree dr+ r2

over F, and transcendence degree is additive in towers of field extensions [5, Thm. VI.1.11], so both instances
of “at most” may be replaced with “exactly”, proving the claim.

By the existence of the F(ϕ, ψ)-linear dependence (25), we conclude that the vectors {vi⊗(ψ◦ϕ)(vi)}i=1,...,n

must also be F(ψ ◦ ϕ)-linearly dependent. Therefore Rd(M) ⊆ Rr(M) as desired. �

When a matroid M can be represented over different fields, it is natural to ask how much Rd(M) can
vary. For instance, if M = M(G) is graphic, then the standard representation (23) is valid over every field
F and unique up to projective equivalence once the field is fixed, as mentioned earlier. For sufficiently large
d, the d-rigidity matroid of M(G) is also independent of the choice of the field F, as we now explain.

Proposition 8.5. Let M = M(G) be the graphic matroid representing an n-vertex graph G over an arbitrary
field F, equipped with the standard representation (23). Then Rn(M) = 2E = R∞(M).

Proof. Let Kn be the complete graph on n vertices. Since Rn(M) is a row-selected submatrix of Rn(M(Kn)),
it suffices to assume that G = Kn.

To avoid overly cumbersome notation, we give the proof for n = 4; the argument for arbitrary n should
be clear from this case. For n = 4, the 6× 12 rigidity matrix R4(M(K4)) is as follows. (Each nonzero entry
is a binomial ϕij − ϕik, written on two lines so that the matrix is not too wide for the page.)

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

ϕ11

−ϕ12

ϕ21

−ϕ22

ϕ31

−ϕ32

ϕ12

−ϕ11

ϕ22

−ϕ21

ϕ32

−ϕ31
0 0 0 0 0 0

ϕ11

−ϕ13

ϕ21

−ϕ23

ϕ31

−ϕ33
0 0 0

ϕ13

−ϕ11

ϕ23

−ϕ21

ϕ33

−ϕ31
0 0 0

0 0 0
ϕ12

−ϕ13

ϕ22

−ϕ23

ϕ32

−ϕ33

ϕ13

−ϕ12

ϕ23

−ϕ22

ϕ33

−ϕ32
0 0 0

ϕ11

−ϕ14

ϕ21

−ϕ24

ϕ31

−ϕ34
0 0 0 0 0 0

ϕ14

−ϕ11

ϕ24

−ϕ21

ϕ34

−ϕ31

0 0 0
ϕ12

−ϕ14

ϕ22

−ϕ24

ϕ32

−ϕ34
0 0 0

ϕ14

−ϕ12

ϕ24

−ϕ22

ϕ34

−ϕ32

0 0 0 0 0 0
ϕ13

−ϕ14

ϕ23

−ϕ24

ϕ33

−ϕ34

ϕ14

−ϕ13

ϕ24

−ϕ23

ϕ34

−ϕ33

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

We must show that some 6×6 minor of R4(M(K4)) is nonsingular. Consider the submatrix M ′ consisting
of the last column in the second block, the last two columns in the third block, and all three columns in the
fourth block:

















ϕ32 − ϕ31 0 0 0 0 0
0 ϕ23 − ϕ21 ϕ33 − ϕ31 0 0 0

ϕ32 − ϕ33 ϕ23 − ϕ22 ϕ33 − ϕ32 0 0 0
0 0 0 ϕ14 − ϕ11 ϕ24 − ϕ21 ϕ34 − ϕ31

ϕ32 − ϕ34 0 0 ϕ14 − ϕ12 ϕ24 − ϕ22 ϕ34 − ϕ32

0 ϕ23 − ϕ24 ϕ33 − ϕ34 ϕ14 − ϕ13 ϕ24 − ϕ23 ϕ34 − ϕ33

















Since M ′ is block lower triangular, its determinant is the product of the determinants of the blocks along
the diagonal (indicated in boldface). Each such determinant is a nonzero polynomial in the ϕij over any
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field, because the coefficients of ϕ31 in the first block, ϕ21ϕ32 in the second block, and ϕ11ϕ22ϕ33 in the
third block are all ±1. Therefore M ′ is nonsingular over any field, as desired. �

This observation begs the question of whether Rd(M(G)) depends on the field before d reaches the stable
range. For an arbitrary representable matroid M , it is not true in general that R∞(M) is Boolean. We
have already seen one example for which this fails, namely U2,4. Another example is the well-known Fano
matroid F , represented over the two-element field F2 by the seven nonzero elements of F3

2. It is not hard to
show that Ld(F ) is Boolean for d > 7

3 . On the other hand, computation with Mathematica indicates that

R2(F ) = U5,7, but Rd(F ) = U6,7 for all integers d ≥ 3.

9. Open problems

The foregoing results raise many questions that we think are worthy of further study; some of these have
been mentioned earlier in the paper. In this final section, we restate the open problems and add a few more.

Problem 1. Determine the singular locus of the (k, d)-photo space Xk,d(M) (perhaps by calculating the
dimension of its various tangent spaces, as in Proposition 4.8).

Problem 2. Give a direct combinatorial explanation for Corollary 5.3, presumably by identifying some
natural relationship between photos of M and of M⊥.

Problem 3. Explain the “scaling phenomenon” of Remark 4.7 geometrically.

Problem 4. Determine whether or not the d-rigidity matroid Rd(M) is a combinatorial invariant of M
(Question 8.2). If not, determine which matroids have this property, and to what extent Rd(M) depends on
the field F over which M is represented. In particular, is Rd(M) independent of F in the case that M is a
graphic matroid?

Crapo gave an elegant characterization [19, Theorem 8.2.2] of Hd(M) when M is graphic. A basis of
Hd(M) is a (multi-)set of edges having a (d + 1)Td-covering, or a decomposition into d + 1 edge-disjoint
trees, exactly d incident with each vertex, with no d nonempty subtrees spanning the same subset of vertices.

Problem 5. Generalize Crapo’s characterization of Hd(M) to the case of a non-graphic matroid M .

A vertex of a graph G corresponds to a cocircuit of M(G) whose deletion leaves a connected matroid.
However, there is no analogous notion of “vertex” when M is a non-graphic matroid (although the foregoing
may be helpful if M is sufficiently connected). Similarly, it is unclear how to generalize to non-graphic
matroids (and to higher dimensions) other fundamentals of graphic rigidity theory; for instance, Henneberg’s
construction of the bases for H2(M) = R2(M) = L2(M) [19, Theorem 2.2.3].

Our last open problem is similar in spirit to the results of [7] and [9], describing the algebraic and
combinatorial structure of the equations defining the slope variety of a graph. It is motivated also by the
appearance of the cross-ratio in Example 7.3.

Problem 6. Describe explicitly the defining equations (in Plücker coordinates on Gr(k,Fd)n) for πX∅

k,d(M),

where π is the projection map of (7).
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