RIGIDITY THEORY FOR MATROIDS

MIKE DEVELIN, JEREMY L. MARTIN AND VICTOR REINER

ABsSTRACT. Combinatorial rigidity theory seeks to describe the rigidity or flexibility of bar-joint frameworks
in R? in terms of the structure of the underlying graph G. The goal of this article is to broaden the
foundations of combinatorial rigidity theory by replacing G with an arbitrary representable matroid M.
The ideas of rigidity independence and parallel independence, as well as Laman’s and Recski’s combinatorial
characterizations of 2-dimensional rigidity for graphs, can naturally be extended to this wider setting. As
we explain, many of these fundamental concepts really depend only on the matroid associated with G (or
its Tutte polynomial), and have little to do with the special nature of graphic matroids or the field R.

Our main result is a “nesting theorem” relating the various kinds of independence. Immediate corollaries
include generalizations of Laman’s Theorem, as well as the equality of 2-rigidity and 2-parallel independence.
A key tool in our study is the space of photos of M, a natural algebraic variety whose irreducibility is closely
related to the notions of rigidity independence and parallel independence.

The number of points on this variety, when working over a finite field, turns out to be an interesting
Tutte polynomial evaluation.

CONTENTS

1. Introduction: a brief tour through rigidity theory
2. Main definitions: from graphs to matroids
3. Laman independence

3.1. When is the Laman complex matroidal?

3.2. Equivalent characterizations

3.3. Digression on polymatroids

4. Slope independence and the space of photos

5. Counting photos

6. Rigidity and parallel independence

6.1. Interpreting R4 (M) and H¢(M)

6.2. The Nesting Theorem

7. Examples: Uniform matroids

8. More on R%(M): invariance and stabilization

9. Open problems

Acknowledgments

References

1. INTRODUCTION: A BRIEF TOUR THROUGH RIGIDITY THEORY

© 00 J Ot Ot N

13
15
15
17
19
20
23
23
23

Combinatorial rigidity theory is concerned with frameworks built out of bars and joints in R, representing
the vertices V' and edges E of an (undirected, finite) graph G. (For comprehensive treatments of the subject,
see, e.g., [4, 19, 20].) The motivating problem is to determine how the combinatorics of G governs the rigidity
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or flexibility of its frameworks. Typically, one makes a generic choice of coordinates
(1) p={p,:veV}cCR?

for the vertices of G, and considers infinitesimal motions Ap of the vertices. The following two questions are
pivotal:
(I.) What is the dimension of the space of infinitesimal motions Ap that preserve all the (squared) edge
lengths Q(pu — pv), for {u,v} € E, where Q(z) = Zle x2?
(II.) What is the dimension of the space of infinitesimal motions Ap that preserve all the edge directions
Pu — Po regarded as slopes, that is, up to scaling?
The answers to these questions are known to be determined by certain linear dependence matroids repre-
sented over transcendental extensions of R, as we now explain.
First, the d-dimensional rigidity matroid R%(G) is the matroid represented by the vectors

(2) {(ew =€) ® (pu —pv) : {u,v} € E}

lying in RIV! @ R(p)?, where R(p) is the extension of R by a collection of d|V| transcendentals p, thought of
as the coordinates of a generic embedding as in (1). The |E| x d|V| rigidity matriz R4(G) has as its rows
the | E| vectors in (2). Then the nullspace of R%(G) is the space of infinitesimal motions of the vertices that
preserve edge distances (because R%(G) is % times the Jacobian in the variables p of the vector of squared
edge lengths Q(py — pv); cf. Remark 6.2 below). Since row rank equals column rank, knowing the matroid
R%(G) represented by the rows of R(G) answers question (I).

Second, the d-dimensional parallel matroid P%(G) is the matroid represented by the vectors

(3) {(eu—ev)®77g%: {u,v} € E, j=1,2,...,d—1}
where for each edge {u,v} € FE, the vectors 771(!1,1),, e ,nq(ffv_ D are generically chosen normals to p, — p, in

R¢. Again, we should consider the vectors in (3) as lying in RIVI @ R(p,7)?, where R(p,n) is an extension
of R by d|V] transcendentals p and (d — 1)|E| transcendentals . In analogy to the preceding paragraph,
the |E| x d|V| parallel matriz P%(G) has as its rows the |E| vectors in (3), and its nullspace is the space
of infinitesimal motions of the vertices that preserve all edge directions. Consequently, the matroid P¢(G)
represented by the rows of P%(G) provides the answer to question (II).

Some features of the theory are as follows:

e For d = 1, the rigidity matroid coincides with the usual graphic matroid for G (while the parallel
matroid is a trivial object).

e For d = 2, the rigidity and parallel matroids coincide [19, Corollary 4.1.3]. Furthermore, this matroid
R?(G) = P?(G) has many equivalent combinatorial reformulations, of which the best known is
Laman’s condition [6]: A C E is 2-rigidity-independent if and only if for every subset A’ C A

2|V (A)| —3>1|A'|, or equivalently
2([V(A)-1) > |4

where V(A’) denotes the set of vertices incident to at least one edge in A’. We will refer to this
coincidence between R?(G),P?(G) and the matroid defined by Laman’s condition as the planar
trinity.

e For d > 2, the parallel matroid has a simple combinatorial characterization that generalizes Laman’s
condition, while an analogous description for the rigidity matroid is not known.

2. MAIN DEFINITIONS: FROM GRAPHS TO MATROIDS

The purpose of this article is to broaden the scope of rigidity theory by replacing the graph G with a more
general object: a matroid M represented over an arbitrary field F. As we shall see, the notions of rigidity
and parallel independence, as well as Laman’s combinatorial characterization, admit natural generalizations
to the setting of matroids.

In the process, we will see that many of the main results of do not depend on the special properties of
graphs (or graphic matroids), nor on the field R, but indeed remain valid for any matroid M represented
as above. In the process, we are led naturally to an algebraic variety called the space of k-plane-marked
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d-photos of M. Just as a bar-joint framework may be regarded as an embedding of a graph in R¢, a photo
of M is a “model” of M in F9.

Whether or not the photo space is irreducible plays a key role in characterizing the matroid analogues
of rigidity independence and parallel independence. In turn, the question of irreducibility can be answered
combinatorially, using some elementary algebraic geometry and the classic matroid partitioning result of
Edmonds [3]. We note in addition that when the field F is finite, the number of photos of M is counted by
an evaluation of the Tutte polynomial using g-binomial coefficients.

In order to summarize our results, we define the main protagonists here. Recall that a simplicial complex
on vertex set F is a collection Z of subsets of E satisfying the following hereditary condition: if I € Z and
I' C I, then I’ € 7. The independent sets of a matroid always form a simplicial complex. From here on
we will make free use of standard terminology and notions from matroid theory; background and definitions
may be found in standard texts such as [1, 12, 17].

Definition 2.1 (m-Laman independence, m-Laman complex). Let E be a set of cardinality n, and let
M be a (not necessarily representable) matroid on ground set F, with rank function r. For m a real number
in the open interval (1, c0)g, say that A C E is m-Laman independent if

(5) m-r(A") > |A'|  for all nonempty subsets A’ C A.

The m-Laman complex L™ (M) is defined as the abstract simplicial complex of all m-Laman independent
subsets of E.

We will prove combinatorially that

o If m is a positive integer, then £™(M) is the collection of independent sets of a matroid (Theo-
rem 3.1), but this is not true in general for other values of m.

e If m is a positive integer, then £™(M) has several other combinatorial characterizations (Theo-
rem 3.6), including a generalization of Recski’s Theorem.

e If m =2 and M is representable, then the matroid £2(M) coincides with the 2-dimensional rigidity
and parallel matroids, defined below (Corollary 6.6).

Throughout the rest of the introduction, let M be a represented matroid; that is, a matroid equipped
with a representation over some field F by vectors E = {v1,...,v,} C F". It is worth emphasizing that we
are not regarding M as an abstract matroid; that is, the vectors {vy,...,v,} are part of the data of M.
For notational convenience, we identify the ground set E with the numbers [n] := {1,2,...,n}. Denote by
Gr(k, Fd) the Grassmannian of k-planes in F?, regarded as a projective variety over F via the usual Pliicker
embedding into p(i)-1,

When m > 1 is a rational number, the Laman complex £ (M) is closely related to an algebraic variety
that we now define.

Definition 2.2 (photo space, (k,d)-slope independence, (k,d)-slope complex). Let M be a matroid
equipped with representation {v1,...,v,} as above. The corresponding space of k-plane-marked d-photos
(or just (k,d)-photos) is the algebraic set

(6) Xk,d(M) = {((p, Wl, caey Wn) S HOm]F(FT,Fd) X GT(k,]Fd)n : (p(’Ui) S Wl for i = 1, .. .,n}.

The photo space of a matroid is analogous to the picture space of a graph, as defined in [7, 8]. One may
think of the map ¢ € Homp(F",F%) as projecting the vectors {v;} into a space F¢ of dimension possibly
less than r, like a camera taking a photo of the {v;} on photographic paper that looks like F?. The k-plane
W; in F? is thought of as a “marking” of the image vector ¢(v;) in the photo, so that W; is constrained to
contain ¢(v;). Of course, whenever ¢(v;) = 0 (perhaps the camera ¢ caught v; at a bad angle), this k-plane
W, is unconstrained. The idea of (k, d)-slope independence is to measure how independently these marking
k-planes can vary while obeying these constraints, when none of the v; are annihilated by ¢. The linear
dependences among the v; force linear dependences among their image vectors ¢(v;), and hence algebraic
constraints among the subspaces W;.

Define a Zariski open subset of Xy 4(M) (called the non-annihilating cellule; see Definition 4.1 below) by

X]gd(M) = {(@,Wl,.-.,Wn) € Xk,d(M): (,0(’01) #O for i = 172,...,7’1}
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and consider its image under the projection map
(7) Hom(F",F) x Gr(k,F)" = Gr(k,F4)".

This image measures the constraints on the W; when none of the v; are mapped to zero; specifically, we
define M to be (k, d)-slope independent if wX,fd(M) is Zariski dense in Gr(k, F4)". The (k, d)-slope complex
is defined as

(8) SHA(M) .= {AC E: M| is (k,d) -slope independent}.
A third notion of matroid rigidity generalizes the d-dimensional rigidity matroid R%(G) of a graph G.
Definition 2.3 (rigidity matroid, rigidity complex). Let M be a matroid equipped with representation

{v1,...,v,} as above, and let d be a positive integer. The d-dimensional (generic) rigidity matroid is the
matroid represented by the vectors
(9) {vi ® p(vi)} oy CF @r F(p)”.

where F(p) is the field extension of F by dr transcendentals giving the entries of the matrix ¢ : F™ — F(y)9.
The d-rigidity complex R(M) is the complex of independent sets of the d-dimensional rigidity matroid, and
the d-rigidity matriz R(M) is the n x dr matrix whose rows are given by the vectors (9).

To interpret this construction, consider the pseudo-distance quadratic form Q(x) := Zle x? on F(p)?.
Provided that the field F has characteristic # 2, one can interpret the nullspace of R4(M) as the space of
infinitesimal changes of ¢ that preserve the values Q(¢(v;)) for all i =1,2,...,n. (See Proposition 6.1(ii).)

Definition 2.4 (hyperplane-marking matroid). Let M be a matroid represented by v1,...,v, € F" as
above. Its (d-dimensional, generic) hyperplane-marking matroid is the matroid represented over F(p,n) by
the vectors

{vi®@mi}i, CF" @r F(p, )
where F(¢, n) is the extension of F by dr transcendentals ¢;; (the entries of the matrix ¢) and (d —1)n more
transcendentals 7;; (the coordinates of the vectors 7; normal to ¢(v;)). The complex H?¥(M) is defined to
be the complex of independent sets of this matroid.

To interpret the notion of rigidity independence modeled by H%(M), one should regard lack of rigidity as
the ability to deform ¢ so that the images ¢(v;) of the ground set elements vary, but membership in their
orthogonal complement hyperplanes is preserved. The most important instance of the hyperplane-marking
matroid uses the (d — 1)-parallel extension of M, the matroid (d — 1)M whose ground set consists of d — 1
parallel copies of each element of E. The (d-dimensional, generic) parallel matroid is defined as

PUM) :=HU(d—1)M),

and the d-parallel matriz P*(M) is defined as the n x dr matrix whose rows represent H?((d — 1)M). Its
nullspace consists of the infinitesimal changes Ay in the matrix ¢ which preserve the slopes of all the direction
vectors ¢(v;) (see Proposition 6.1 (i)).

These definitions generalize the ordinary definitions from the rigidity theory of graphs. Strikingly, the
geometric constraints on the photo space can be categorized combinatorially: the identity

SEA(M) = L7 (M),

(Corollary 4.4) provides a geometric interpretation of L™ (M) for rational m.
The slope complex S¥¢(M) is closely related to the rigidity and parallel matroids. The precise relationship
is given by the Nesting Theorem (Theorem 6.5):

SH(M) C RYM) C LYM) = HY M) = ST 14 (M)
for all integers d > 2. In particular, when d = 2,
(10) HA* (M) =S"?(M) = R*(M) = L>(M).

Thus matroid rigidity theory leads to a conceptual proof of the planar trinity (the second and third inequal-
ities in (10)).
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For d > 3, the d-rigidity matroid R?(M) is the hardest of these objects to understand (as it is for graphic
matroids). One fundamental question is whether R%(M) depends on the choice of representation of M.
It is invariant for d = 2 (by the Nesting Theorem) and up to projective equivalence of representations
(Proposition 8.1), but the problem remains open for the general case. We also study the behavior of the
d-rigidity matroid as d — oo, and show (Proposition 8.4) that R?(M) stabilizes when d > r(M).

3. LAMAN INDEPENDENCE

The central result of this section, Theorem 3.1, states that the generalized Laman’s condition (5) always
gives a matroid when m is an integer. The proof is completely combinatorial; that is, it is a statement about
abstract matroids, not represented matroids. In addition, we describe some useful equivalent characteriza-
tions of d-Laman independence: one uses the Tutte polynomial, another is reminiscent of Recski’s Theorem,
and another is related to Edmonds’ theorem on decomposing a matroid into independent sets.

3.1. When is the Laman complex matroidal?

Theorem 3.1. (i) Let d be a positive integer and let M be any matroid. Then the simplicial complex
LA(M) is a matroid complex.
(ii) Let m € (1,00)r be a real number which is not an integer. Then there exists a represented matroid
M for which L™(M) is not a matroid complex.

Proof. For the first assertion, it is most convenient to use the characterization of matroids by circuit axioms [1,
eq. 6.13, p. 264]. Define C to be the collection of those subsets of E which are minimal among nonmembers
of L4(M). We wish to show that C satisfies the axioms for the circuits of a matroid. Since £4(M) is a
simplicial complex, we only need check the circuit exchange axiom:

it C,C" € C with C # C’, and e € C N, then there exists C” € C such that C” C (CUC")\ {e}.

Since C, C’ are minimal among the sets not satisfying the hereditary property (5), we claim that
Cl=d-r(C),
|IC'|=d-r(C"),
where r is the rank function of M. To see this claim, note that |C| > d - r(C), and if this inequality were
strict, then
|C—e|>d-r(C)>d-r(C —e)
for any e € C, contradicting the statement that C' is a minimal set not satisfying (5). Note also that C N C’
is a proper subset of each of C,C’ and hence

IcCnC’|<d-r(CNnC").

Since d is an integer, the last condition may be rewritten as
IcnC'l+1<d-r(CNnC").
The rank submodular inequality »(C U C’") < r(C) + r(C") — r(C N C") then implies
d-r((CUuC’)\ {e}) d-r(Cuc)

d-r(C)+d-r(C")—d-r(CNC")
IC]+|C'—|CnC') -1
[(CUC)\{e}.
So (CUC’)\ {e} is not in L(M), hence contains some element of C. This establishes (i).

INIA TN

We now prove (ii). Suppose that m € (1,00)g is not an integer, and let ¢ := |m] (the greatest integer
< m). Choose positive integers a,b satisfying the inequalities (11) in Lemma 3.2 below. We will explicitly
construct a represented matroid M, p . such that £ (M, ) is not a matroid complex.

Let F be a sufficiently large (for example, infinite) field, let V' be a (2b — 1)-dimensional vector space
over F, and let V7, V5 be two b-dimensional subspaces of V' whose intersection Vi NV, = £ is a line. Let
X ={x1,...,z.} be a set of ¢ nonzero vectors on £. For i = 1,2, choose a set Y; C V; of cardinality a — ¢
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generically (this is always possible if F is sufficiently large). Note in particular that no member of Y7 U Y;
lies on /.

Let M p,. be the matroid represented over F by £ = X UY; UY5, and denote by C the set of subsets of E
that are minimal among nonmembers of L™ (M, ). We claim that C does not satisfy the circuit exchange
axiom. To see this, let C; = X UY; for i = 1,2 and observe that

m-r(C;) =mb < a=|Cy,

s0 C; & L™(Mgp.c). In fact, we claim that C; € C. Indeed, let I be any nonempty proper subset of C; and
let J =1NY;. Since r(X) =1, and by the generic choice of Y7 and Ya, we have

r(J) = min(]J],b),
r(I) = min(|J]|+1,b),
m-r(I) = min(m|J|+ m,mb).

Now Lemma 3.2 implies that mb > a = |C;| > |I|.

Since m is not an integer, we have also

m|J|+m > |[J|+¢

In all cases m - r(I) > |I|. It follows that C; € C.

Now, let z; € X, and let I = (C1 UCs) \ {x;} = E\ {z;}. Then every nonempty subset I’ C I satisfies
(5). (We omit the routine but tedious calculation, which involves eight cases, depending on how I’ meets
each of X, Y7 and Y3.) That is, I is m-Laman-independent, hence contains no element of C. Therefore C
fails the circuit exchange axiom, and we are done. |

[+ X[ = 1],

The following numerical lemma was used in the proof of Theorem 3.1.

Lemma 3.2. Let m € (1,00)r be a real number which is not an integer, and let ¢ :== |m]. Then there exist
positive integers a,b such that
a—1 2a—c—1
11
(11) b 26—-1
Proof. First, note that the third inequality implies the first one. Indeed, if m < a/b, then
b+a>14+a>1+bm>1+bc,

which implies in turn that 2ab—a —2b+1 < 2ab — bc — b. Factoring this gives (2b—1)(a —1) < b(2a —c—1),
or ale < 2‘;;le as desired.

We therefore concentrate on the second and third inequalities in (11). Subtracting ¢ from each expression
in (11) and substituting a = be + r yields

2r—1

<m <

S

_2r
=5
Therefore, it will suffice to find a pair b, r of positive integers satisfying (12).
Note that m — c is the fractional part of m; since m is not an integer, we have m — ¢ € (0, 1)g. Therefore,

(12) <m-c< -+

it will suffice to show that (0,1) is the union of intervals of the form (3=, 27] for positive integers b, 7.
Indeed,
m m+1
-y (22
ma0 m+1" m+2
U T Rl FT Y R Y
S\17 2 27 3 374
and
m m+1 _U 2°m+1 2°m + 2
m+1"m+2] L A\22(m+1)+17 25(m+1) +2

B 2m+1 2m+ 2 dm+1 4dm+2 8m+1 8m+2 U
T \2m+3 2m+4 dm+5" 4m+6 8m+9" 8m+ 10
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establishing (12), as desired. O

3.2. Equivalent characterizations. One of the equivalent phrasings of m-Laman independence involves
the Tutte polynomial Tps(x,y) of M, a fundamental isomorphism invariant of the matroid M. For background
on the Tutte polynomial, see the excellent survey article by Brylawski and Oxley [2].

Given a subset A of the ground set E, denote by A the matroid closure or span of A. If A= A, then A is
called a flat of M.

Proposition 3.3. Let M be a matroid on ground set E with rank function r, and fir m € (1,00)g.
Then the following are equivalent:
(i) E is m-Laman independent, that is, L™(M) = 2F (the power set of E).
(ii) m - r(A) > |A] for every nonempty subset A C E. (Equivalently, m -r(F) > |F| for every flat F of
(iii) The Tutte polynomial specialization Th (g™, q) is monic of degree (m — 1)r(M).

Note that in (iii) we must allow (non-integral) real number exponents for a “polynomial” in ¢, but the
notions of “degree” and “monic” for such polynomials should still be clear. The connection between the
Tutte polynomial and rigidity of graphs was observed by the second author in [8, §6].

Proof. The equivalence of (i) and (ii) is clear from the definition of m-Laman independence since r(A) = r(A)
and |A| > |A| for any A C E.
For the equivalence of (i) and (iii) we use Whitney’s corank-nullity formula [2, eq. 6.13] for the Tutte
polynomial:
T (r,) = 3 (o~ 1D (g — 1))
ACE

-1

Substituting z = ¢™ ! and y = ¢ gives an expression for Th;(¢™ 1, q) as a sum of terms indexed by subsets

A C FE, each of which is a monic polynomial in ¢ of degree
(m—1)r(M) —m-r(A) + |A|.

Thus T (g™, q) will have degree at most (m — 1)r(M) if and only if m - r(A) > | A] for all subsets A C E.
Furthermore, since the term indexed by A = @ is monic of degree (m — 1)r(M), the whole polynomial
Ta (g™, q) will be monic of degree (m — 1)r(M) if and only if m - 7(A) > |A| for every nonempty subset
A, that is, if and only if E is m-Laman independent. O

Suppose that m = d is a positive integer, so that £¢(M) is a matroid complex. Here d-Laman independence
has two more equivalent formulations, one of which extends a classical result in the rigidity theory of graphs.

Recski’s Theorem [13]. Let G = (V, E) be a graph, and let E' be a spanning set of edges of size 2|V| — 3.
Then E' is a 2-rigidity basis if and only if for any e € E', we can partition the multiset E' U {e} (that is,
adding an extra copy of e to E') into two disjoint spanning trees of G.

This notion can be naturally extended to arbitrary matroids and dimensions.

Definition 3.4. Let M be a matroid on E. We say that E is d-Recski independent if for any element e € E,
the multiset F U {e} can be partitioned into d disjoint independent sets for M.

We wish to show that this purely matroidal condition is equivalent to the purely matroidal condition of
d-Laman independence. To prove this, we use a powerful classic result of Edmonds.

Edmonds’ Decomposition Theorem [3, Theorem 1]. Let M be a matroid of rank r on ground set E.
Then E has a decomposition I = I, U---U Ig into disjoint independent sets I; for each j =1,...,d if and
only if d - r(A) > |A| for every subset A C E.

Definition 3.5. Let M be a matroid on E. A d-Edmonds decomposition of M is a family of independent
sets I1,...,I; whose disjoint union is E, with the following property: given subsets I{ C Ir, ..., I C Iy
with not all I; empty, then it is not the case that I{ = I} = --- = I,
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Theorem 3.6. Let M be a matroid on ground set E, and let d be a positive integer. Then the following are
equivalent:

(i) E has a d-Edmonds decomposition;

(ii) E is d-Laman independent;

(iii) E is d-Recski independent.

Proof. (ii) = (i): Suppose that E is d-Laman independent. By Edmonds’ Theorem, the set E can be
partitioned into disjoint independent sets Ii,...,I;. We claim that every such family is a d-Edmonds
decomposition. Indeed, suppose that I{ C Iy, ..., I} C Iy all have the same span, with not all I} empty.
Since the I; are independent, the I ]' all have the same cardinality, say s. Then A := I{ U...UI} is nonempty
and has rank s and cardinality ds, which violates the d-Laman independence of E.

(i) = (ii): Let I1,..., I4 be a d-Edmonds decomposition of M. Let A C E be nonempty, and A; := ANI;.

Then
d

d d
Al = 1451 =) r(4y) < Y r(A) =d-r(A).
j=1 j=1 i=1
However, equality cannot hold: it would force r(A4;) = r(A) for each j, so that each A; has the same span
as A, violating the definition of a d-Edmonds decomposition. Hence |A| < d - r(A) as desired.

(i) = (iii): Suppose that F is d-Laman independent. Consider the matroid M’ given by cloning any e € F
as in the definition of d-Recski independence, so that the ground set of M’ is B/ = E'U {e}. We claim that
|A'| < d-r(A") for each A’ C E’. Indeed, either A’ C E, when |A’| < d-r(A), or else A’ = AU {e} with
ACE,when |[A|=|Al+1<d-r(A)+1,s0 |A| <d-r(A) <d-r(A"). By Edmonds’ Theorem, E’ can be
partitioned into d disjoint independent subsets. It follows that M is d-Recski independent.

(iii) = (ii): Suppose that E is not d-Laman independent, i.e., it has a subset A with |A| > d - r(A4). Let
a € A. The set AU {a} C F U {a} has rank r(A4) and cardinality |4| 4+ 1, so |AU {a}| > d - r(]A U {a}|).
By Edmonds’ Theorem, E U {a} cannot be partitioned into d independent sets. Hence E is not d-Recski
independent. O

3.3. Digression on polymatroids. As we have seen in Theorem 3.1 (ii), when m is not an integer, the
Laman complex £™(M) need not form the collection of independent sets of a matroid. However, L™ (M) is
related to a more general (and less well-known) object called a polymatroid, as we now explain. (The results
of this section will not be necessary for the remainder of the paper.)

We review the definition of a polymatroid, using its characterizations by monotone submodular rank
functions (see [17, Chapter 18]).

Definition 3.7. Fix the ground set E = [n]. A function p : 2& — R is the rank function of a polymatroid
on FE if it is
— monotone: p(A) < p(B) whenever A C B C E;

— submodular: p(AU B) 4+ p(ANB) < p(A) + p(B) for all A, B C E; and
— normalized: p(&) = 0.

The polymatroid associated with p is the convex polytope
P,:={zeRY,: Z xq < p(A) for all A C E},
a€cA
also called the set of independent vectors of the polymatroid.

Note that, for all A C E, the characteristic vector x4 € R™ is independent for p if and only if p(A4) = |A|.
Our goal is to show the following:

Proposition 3.8. For every loopless matroid M on ground set E = [n], and every real number m € (1,00)g,
there is a polymatroid rank function p on E with the following property: A C E is m-Laman independent if
and only if its characteristic vector is independent for p.

The proof uses two standard lemmas.
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Lemma 3.9. [1, Lemma 6.15] If f : 2F — R>o is monotone, submodular, and normalized, then so is the
function r¢ : 28 — R defined by

rp(4) = min {(4) + 14\ A},

Lemma 3.10. [19, Proposition A.3.1] For a monotone, submodular, normalized function f : 2F — R with
associate function ry as above, the following are equivalent:

(a) |A'] < f(A") for all A" C A.
(b) |A'| <rs(A") for all A C A.
(c) r7(A) =[A]
Proof of Proposition 3.8. Let € € (0, r(]lw) )r, and define f:2¥ — R>q by
f(A) = (m —e)r(A).
Note that f is monotone, submodular, and normalized, because the rank function r of any loopless matroid
has these properties. By Lemma 3.9, the function p := r; shares these properties, hence also defines a
polymatroid rank function on FE.
Since M is loopless, for all A # &, one has mr(A) > |A| if and only if (m — €)r(A) > |A|. Consequently
AeLlm™(M) <= [f(A")>]|A| for all nonempty A’ C A
<~ f(A)>|A'| forall A/ CA
= p(4) = rs(4) = 4]

Here the last equality uses Lemma 3.10. (]

4. SLOPE INDEPENDENCE AND THE SPACE OF PHOTOS

In [7] and [9], the second author studied the picture space of a graph G, the algebraic variety of point-line
arrangements in d-dimensional space with an incidence structure given by G. The rigidity-theoretic behavior
of G controls the geometry of the picture space to a great extent; for instance, the picture space is irreducible
if and only if G is d-parallel independent.

In this section, we study the space Xy q(M) of (k,d)-photos, which is well-defined for any matroid M
equipped with a representation. The photo space plays a role analogous to that of the picture space of a
graph,! and the techniques we use to study it are similar to those of [7]. In particular, X 4(M) provides a
geometric interpretation of m-Laman independence for all rational numbers m > 1: it is equivalent to the
space of (k, d)-photos.

Throughout this section, we work with a matroid M represented over a field F by nonzero? vectors
v1,...,U, € F". In addition, let 0 < k < d be integers, and write m = d%‘ik. Recall (Definition 2.2) that the
space of (k,d)-photos of M is

{(p, W) € Homp(F",F%) x Gr(k,F))" : ¢(v;) € W; forall 1 <i<n}.

Note that the photo space is an algebraic subset of Homp(F",F%) x Gr(k,F?)", hence a scheme over F.
The symbol X}, q(M) is a slight abuse of notation; as defined, the photo space depends on the representation
{v;}, and it is not at all clear to what extent it depends only on the structure of M as an abstract matroid.
(We will return to this natural question later.)

A key tool in our analysis is a disjoint decomposition of the photo space into irreducible algebraic subsets
called cellules (in analogy to [7]). For each photo (¢, W), ker ¢ is a linear subspace of F”, hence intersects £
in some flat F' of M. The idea is to classify photos according to what this flat is.

Definition 4.1. For each flat F' C E, the corresponding cellule is
XEg(M) ={(p,W) € Xa(M) : kero N E = F}.

1The reader should be warned not to take this analogy too literally: the picture space of a graph is not an instance of the
photo space of a matroid!

20ur assumption that M contains no loops is purely for convenience; trivial (but slightly annoying) modifications are
necessary when loops are present.
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By definition, each photo belongs to exactly one cellule; that is, Xy 4(M) decomposes as a disjoint union
of the cellules. Of particular importance are the two extreme cases:

I. The cellule X ,? 4(M) corresponding to the empty flat @ is called the non-annihilating cellule. It is a Zariski
open subset of Xy, 4(M), defined by the conjunction of open conditions

(13) o(v;) #0, Vi=1,...,n.

II. The cellule X ,f 4(M) corresponding to the improper flat E is called the degenerate cellule. It is precisely
{0} x Gr(k,F4)", where 0 is the zero map F" — F9.

Proposition 4.2. Let M and Xy, q(M) be as above.
(i) The natural projection map
X2 4(M) — Homg (F",F?)
gives X,fd(M) the structure of an algebraic fiber bundle, with fiber Gr(k—1,F9=1) and base the Zariski
open subset of Homp(F",F?) defined by (13). In particular, dim X,’:d(M) =dr+n(k—1)(d—-k).
(ii) For each flat F, X (M) = X,fd(M/F) x Gr(k,FH)F. Consequently, X,fd(M) is an irreducible
subvariety of Xy q(M), with dimension given by the formula
(14) dimX,fd(M) =d(r—r(F))+ n—|F))(k—1)(d—-k)+ |F|k(d—k).

The preceding assertions are more or less immediate from the definition of cellules and the standard fact
that the Grassmannian Gr(k, F?) has dimension k(d — k).
As in (7), let ™ denote the projection map

Homg (F",F%) x Gr(k,F)" = Gr(k,F%),

and define M to be (k, d)-slope independent if 7X,7;(M) is Zariski dense in Gr(k,F%)". We will denote the
Zariski closure of a set Z by Z.

Theorem 4.3. Let M be a matroid with rank function r, represented by vectors vy, . ..,v, € F". Fix positive
integers 0 < k < d, and let m = d%‘ik.
Then the following are equivalent:

(i) M is (k,d)-slope independent, i.e., WX,Sd(M) is dense in Gr(k,F)".

(ii) M is m-Laman independent, i.e., m - r(F) > |F| for every nonempty flat F of M.
(ili) dim X} ;(M) < dim X,?,d(M) for every nonempty flat F' of M.
)
)

(iv) The photo space Xy, q(M) is irreducible.

(v) The photo space Xy, q(M) coincides with the Zariski closure X,Sd(M) of its non-annihilating cellule.
Proof. (ii) < (iii): Compare the cellule dimension formula (14) dimension with the definition of m-Laman
independence (Definition 2.1).

(i) = (ii): For a nonempty flat F, write M|p for the restriction of M to F. Consider the commutative
diagram

led(M) ’ Xlid(M|F)

(15) W[ 7?[

Gr(k,FH)" ——— Gr(k,FH)F

in which the top horizontal morphism restricts the photo map ¢ to the linear span F(F') of the vectors in F,
while forgetting the k-planes {W};c g\ . Both vertical arrows are projections as in (7); we use the tilde on
the right-hand map to distinguish them in what follows. Note that when ¢ is non-annihilating, its restriction
to the span of F' will also be non-annihilating. Moreover, the bottom horizontal morphism is surjective.
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Now assume that condition (i) holds. Since the image of 7 is Zariski dense in the target, so is the image
of 7. Therefore

(16) d-r(F) + |F|(k - 1)(d - k) = dim X2, (Mr) > dim Gr(k,F)" = |F|k(d — ),

or in other words, d - r(F) > (d — k)|F|. However, scaling a non-annihilating map ¢ by an element of F*
does not change the line spanned by any ¢(v;). Therefore every fiber of 7 is at least one-dimensional. Put
differently, when restricted to X,fd(M|F), the morphism 7 factors through a (d-r(F)—1)+|F|(k—1)(d—k)-
dimensional space of projectivized non-annihilating maps ¢ in P(Homg(F(F), F?).

Hence, for every nonempty flat F', we have the strict inequality d - r(F) > (d — k)|F|, or equivalently
m - r(F) > |F|, which is (ii).
(iv) < (v): Since X,?,d(M) is Zariski open in Xy 4(M), its closure X,?,d(M) is one of the irreducible com-
ponents of Xy 4(M). Thus the full photo space is irreducible if and only if the non-annihilating photos are
dense.

(v) = (i): Suppose that (v) holds. Then (i) follows from the observation that
5 _\E
7 (X2,00) > 7 (XZ,00) ) > w(XE, () = (P,

(the first inclusion is standard, and the second is implied by (v)).

(iii) = (iv): We begin by finding an upper bound for the codimension of every component of the photo space.
Note that Xy a(M) = (i, Zi, where

Z;i = {(p,W) € Hom(F",F?) x Gr(k,F")" : ¢(v;) € W;}.
Let

Z; = {(e,W)eZi: o(v;) #0},
zi! = {(p;W) e Zi: p(vi)=0}.

Note that Z! has codimension d — k in Homg(F",F9) x Gr(k,F?)". Additionally, Z/ is contained in the

3
Zariski closure of Z/, because the condition ¢(v;) € W; (expressed using the Pliicker coordinates of W;) is

satisfied also when ¢(v;) = 0. Therefore, every Z; has codimension d — k, and every irreducible component
of their intersection Xy, 4(M) has codimension at most n(d— k). On the other hand, by the cellule dimension
formula (14), n(d — k) is precisely the codimension of the non-annihilating cellule X l?, 4(M). Hence every
irreducible component of Xy, 4(M) has dimension at least as large as that of X ,f (M),

Now suppose that (iii) holds, so that dim X,f’d(M) < dim X,’id(M) for every F' # @. Since the cellules are
all irreducible and disjointly decompose Xy, 4(M), the irreducible components of X 4(M) must be exactly
the closed cellules X ,f 4(M) that are contained in the closure of no other cellule. On the other hand, by the
previous paragraph, every such cellule must have its dimension at least that of dim X ,f 4(M), and by (iii)

the only possibility is F' = @. Therefore X ,? 4(M) is the unique irreducible component. O

The equivalence of (i) and (ii) in Theorem 4.3 immediately gives the following equality between the slope
and Laman complexes.

Corollary 4.4. Let m € QN (1,00)r. Write m as d%ik, where 0 < k < d are integers.
Then SH4(M) = L™(M).

Remark 4.5. The condition d > 2 is implicit in Corollary 4.4. However, there is a sense in which the result
is still valid for d = 1. Take k = 1, so that the result asserts that

SYA(M) = L7 (M).

Now, if one establishes conventions properly, this equality remains valid as d approaches 1, so that m = %
approaches infinity. That is,
SH(M) = £ (M) = 2F.
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Indeed, the full simplex 27 is logically equal to S*''(M): there is only one possible line through any point in
F!, so the projection map 7 is dense. Meanwhile, it is easy to see that £>°(M) = 2 where we have defined
L®(M) := lim L™(M).

m—00
Remark 4.6. For a given matroid M and #rrational number m, it is not hard to see that there exists a

rational number 7, chosen sufficiently close to m, such that £™(M) = £™(M). Therefore, Corollary 4.4
actually gives a geometric interpretation for every instance of Laman independence.

Remark 4.7. Another surprising consequence of Corollary 4.4 is that (k, d)-slope-independence is invariant
under simultaneously scaling k£ and d. That is, if A > 0 is an integer, then the Corollary implies that

Sk,d(M) _ S)\k,Ad(M).

Moreover, if d is divisible by k, then m = d/(d — k) is an integer and S*¢(M) = £™(M) is in fact a matroid
by Theorem 3.1 (i). The geometry behind these phenomena is far from clear.

A natural question is to determine the singularities of the photo space. While we cannot do this in general,
we can at least say exactly for which matroids Xy 4(M) is smooth. The result and its proof are akin to [9,
Proposition 15], and do not depend on the parameters k and d.

Proposition 4.8. Let M be a loopless matroid equipped with a representation {v1,...,v,} as above. Then,
for all integers 0 < k < d, the photo space X = Xy q(M) is smooth if and only if M is Boolean (that is,
every ground set element is an isthmus).

The assumption of looplessness is harmless, because if v; is a loop, then Xy 4(M) = Gr(k,F4) x Xy a(M\v),
so Xj,qa(M) is smooth if and only if Xy 4(M\v) is.

Proof. First, note that the photo space of a direct sum of matroids is precisely the product of their photo
spaces (this can be seen by writing the matrix for a picture of the direct sum in block-diagonal form). In
particular, if M is Boolean, then

X =[] {(pis Wi) € F* x Gr(k, FY) : @ivi) € Wi},
=1

and each factor in the product is a copy of the total space of the tautological k-plane bundle over Gr(k, F9).
In particular, X is smooth.

Now suppose that M is not Boolean; in particular n > r. Recall from Proposition 4.2 that the non-
annihilating cellule has dimension dr +mn(k —1)(d — k). Near each non-annihilating photo §2, the photo space
looks locally like an affine space of this dimension; in particular, the tangent space T (X) has dimension

(17) dim To(X) = dr + n(k — 1)(d — k).

Let @ = (¢, W) be a “very degenerate” photo; that is, ¢ = 0 and all the k-planes W; coincide. Each W;
can be moved freely throughout the ith Grassmannian, giving n - dim Gr(k, F%) = nk(d — k) independent
tangent vectors to X at ®. On the other hand, we can also vary the map ¢ throughout Hom(F", W;), giving
kr more tangent directions that are linearly independent of those just mentioned. Therefore

(18) dim Tg(X) > nk(d — k) + kr.
Comparing (17) and (18), and doing a little algebra, we find that
dim Tp(X) — dim Tey(X) > (d — k)(n — r) > 0.

That is, not all points of X have the same tangent space dimension. Therefore X cannot be smooth. O
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5. COUNTING PHOTOS

Although it will not be needed in the sequel, we digress to prove an enumerative result, possibly of
independent interest, about the photo space: when working over a finite field, the cardinality | Xy ¢(M)]| is
an evaluation of the Tutte polynomial Ths(z,y).

We refer the reader to [2] for details on the Tutte polynomial. In what follows, we write M\v and M /v
respectively for the deletion and contraction of M with respect to an element v of its ground set. We also
dispense with the assumption from the previous section that M contains no loops. On the other hand, we
add the assumption that the representing vectors vy, ..., v, € F" actually span F"; in other words, r(M) = r.
This represents no loss of generality; it is easy to check that when r(M) < r, there is a natural isomorphism

Xp.a(M) = Homp(F" "D Fd) x X, 4(M),

where M’ is represented by the same vectors vi,...,v,., regarded as elements of the r(M)-dimensional
subspace of F” that they span.

The following fact [2, Corollary 6.2.6] is a standard tool for converting deletion-contraction recurrences
to Tutte polynomial evaluations. We need the dual matroid M+, characterized as follows: when M is
represented by the columns vy, ..., v, of an  x n matrix of rank r as above, the dual M~ is represented by
the columns v, ..., v} of an (n — r) x n matrix of rank n — r, with the property that the row space of M=+
is the nullspace of M, and vice versa. (In purely combinatorial terms, the bases of M+ are the complements
of bases of M.)

Proposition 5.1. Let U(M) be an invariant of matroids taking values in a commutative ring R, with the
following properties:
(T1)  For all matroids My, Mo, U(M; & My) = U(M;)U(Ms).
(T2)  When the ground set of M consists of a single isthmus, ¥ (M) = c.
(T3)  When the ground set of M consists of a single loop, ¥ (M) = d.
(T4) When v is neither a loop nor an isthmus of M, U(M) = a¥U(M\v) + b¥ (M /vf).
Then
(M) = a" MDDy, <f, ‘—i) :
b’ a
Recall [14, Proposition 1.3.18] that when F is a finite field with ¢ elements, the cardinality of the Grass-
mannian Gr(k, F?) is given by the g-binomial coefficient

where

[n]lg = [nlgln — 1]g - [2]4[1]q
and

=l+q+++q¢" "
I—gq
We can now state the main result on counting photos.

Theorem 5.2. Let I be the finite field with q elements. Let M be a matroid of rank r, represented over F
by vectors v1, ..., v, spanning B", and let d > 2. Then the number of (k,d)-photos of M is

[Xea(M)] = [Z:ﬂ:w (qk [dilDr(M) TM([d[i]Z]q’%)

Proof. Abbreviate Xy 4(M) by X(M), and define ¥(M) := |X(M)|. We must show that ¥ satisfies the
conditions of Proposition 5.1 with

d-1 Cafd-1 o d [d
a_{k—l] , b=gq [ k ] ; c=q {k] ) d—[k} )
q q q q

(By an easy calculation, the arguments to the Tutte polynomial in the statement of the theorem are precisely
¢/band d/a.)
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Condition (T1) is straightforward. For (T2), if the ground set of M consists of a single loop, then
X (M) = Gr(k,F?) has cardinality [ﬂq.

If the ground set of M consists of a single isthmus v, then a (k, d)-photo of M is just a pair (¢, W) where
@ :F! — F? and W is a k-plane containing ¢(v). Since the image vector w := ¢(v) completely determines the
map ¢, a photo is equivalent to a pair (w, W) € F% x Gr(k,F?) satisfying w € W. Thus the space X}, 4(M)
is isomorphic to the tautological k-plane bundle over Gr(k,F%), and its cardinality is ¢* [ﬁ]q, establishing
condition (T3).

The verification of (T4) is the crux of the proof. If v is neither a loop nor an isthmus of M, we have the
following commutative diagram:

E — X(M)

(19) 7?[ WJ

& — X(M —v)

The map 7 sends a (k, d)-photo of M to a photo of M\v by forgetting the k-plane corresponding to the
vector v. The map 7 is the restriction of 7 to the source and target

E ={(ep,W)eX(M): pv)=0} =X(M/e)x Gr(k,F?)

& ={e,W) e X(M\v): ¢(v) =0} =X(M/e)
and corresponds to the projection of X (M/e) x Gr(k,F?) onto its first factor. Meanwhile, the restriction
X(M)\E 5 X(M\v)\E
makes X (M) \ € into a bundle with fiber Gr(k — 1,F¢~1). Consequently
d—1 =
xanye = [{ 7] xonong
q

and

won) = gl + [ 1] wano - [g)

= {Z - i q W(M\v) + [ZL W(M/v) - {Z : ﬂq T(M/v)

= {d_ 1] U(M\v) + ¢" {d

k-1 ;1} V(M /)

where the last equality uses the g-Pascal recurrence [14, Chapter 1, §1.3, Equation (17b)]

dl  xld—1 d—1
= 1, B
-4q q q

O

Since the Tutte polynomial of M does not depend on the choice of representation, neither does the number
of photos. Theorem 5.2 also implies a curious symmetry between the number of photos of a matroid M and
of its dual M*. Since T (x,y) = Tar(y, x) [2, Prop. 6.2.4] and [g}q = [dfk]q, we have:

Corollary 5.3. Let M and M+ be dual represented matroids. Then
g7 M X (M) = ¢ X a(M))].

It would be nice to have a more direct explanation for Corollary 5.3.
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Remark 5.4. A topological commutative diagram analogous to (19) was exploited by the second author in
[8] to compute the Poincaré series of picture spaces of graphs over C as an analogous Tutte polynomial
evaluation. In contrast, when F = R or C, the topology of the photo space is much simpler. Indeed, there
is a deformation retraction of X 4(M) onto its degenerate cellule:

F: [0,1] x Xpa(M) — X[F,(M)
(A, (0, W) = (Ap, W).

Hence Xy q(M) is homotopy equivalent to the degenerate cellule X ,ff 4(M), which is homeomorphic to
Gr(k,FH)™ (see Definition 4.1).

6. RIGIDITY AND PARALLEL INDEPENDENCE

In this section, we examine more closely the special cases k = 1 and k = d—1 of (k, d)-slope independence
for a represented matroid M. It turns out that they are intimately related to the d-dimensional generic
rigidity matroid R%(M) and the d-dimensional generic hyperplane-marking matroid H?(M). Throughout
the section, let M be a matroid represented by vectors E = {v1,...,v,} spanning F", and let d > 0 be an
integer.

6.1. Interpreting R%(M) and H?(M). Recall (Definition 2.3) that the d-dimensional rigidity matroid is
represented over F(p) by the vectors

{vi ® p(vi)}i=y CF" @r F(p)?.

where F(p) is the extension of F by dr transcendentals (the entries of the matrix ¢ : F* — F()?). The
complex R%(M) is defined to be the complex of independent sets of this matroid. The d-rigidity matriz
R¥(M) is the n x dr matrix whose rows represent R%(M).

Recall also (Definition 2.4) that the d-dimensional hyperplane-marking matroid is represented over F(p, n)
by the vectors

{vi®mi)}y CF" ®r Flp,n)”.

where F(yp) is the extension of F by dr + (d — 1)n transcendentals (the dr entries of the matrix ¢, and the
(d — 1)n coordinates of the normal vectors 7; to ¢(v;)). The complex H?(M) is defined to be the complex
of independent sets of this matroid. Denote by H?(M) the n x dr matrix whose rows represent H%(M).

To interpret RY(M) and H?(M), we study their (right) nullspaces. Both matrices have row vectors in
F” ®r F?, so their nullvectors live in the same space. It will be convenient to freely use the identifications

F" @p F? 2 (F)* @ F? 2 Homg (F", FY).

The second of these isomorphisms is canonical; the first comes from identifying F” and (F")* by the standard
bilinear form on F”,

(,y) = sz‘yi,
i=1
whose associated quadratic form is
Q) = (z,2) = Y a}.
i=1
With these identifications, for every ¢ € F" @p F¢ = Hom]F(IE‘T,IE‘d), v € F", and z € F?, the induced
bilinear form on F" @ F? has the property
(v@z, ) = (2,9 (v)).

Proposition 6.1. Let M be a matroid represented by E as above, and let ¢ € F™ @p F? = Homp(F", F9).

(i) The vector 1 lies in ker HA(M) if and only if (p + ) (v;) is normal to m; for all i =1,2,...,n.
(In other words, the nullspace of H%(M) is the space of directions in which one can modify the
map ¢ while keeping the image of v; lying on the same hyperplane normal to n; for each i.)
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(ii) Provided that F does not have characteristic 2, the vector v lies in ker RY(M) if and only if
Q(p +ep)(vi)) = Q(p(vi)) mod €

for eachi=1,2,...,n.

(In other words, the nullspace of R¥(M) is the space of infinitesimal modifications one can make
to ¢ while keeping the values of the quadratic form @ on the images of the v; constant (up to first
order) for each i.)

Proof. For (i), note that

i, (p + ) (i) =0 = (i, (vi)) + (i, P(vi)) =0
= (0i,¢(vi)) =0
—

<Ui & 77z7¢> =0.

For (ii), the expression

Q(p + e)(v) = Q(e(v:)) + 2e(p(vi), ¥(vi)) + Qv (vy))

is congruent to Q(¢(v;)) modulo €2 if and only if (p(v;),1(vs)) = 0 (since F does not have characteristic 2).
But (p(v;), ¥(v;)) = (v; ® ¢(v;), ), completing the proof. O

Remark 6.2. Part (i) of Proposition 6.1 is a rephrasing of the following familiar fact from rigidity theory:
the rigidity matrix R%(M) may be regarded as the Jacobian matrix (after scaling by 1) of the map

Homg (F,F?) —s F»
@ —  (Qp(vi))izy -

The following instance of the hyperplane-marking matroid generalizes the notion of the d-parallel matroid
of a graph (see (3)). Denote by (d—1)M the matroid whose ground set consists of d —1 copies of each vector
in E. The d-parallel matriz of M is defined as H%((d — 1)M), and the matroid represented by its rows is the
(d-dimensional, generic) parallel matroid P4(M) := H((d — 1)M). Part (ii) of Proposition 6.1 leads to an
interpretation of the geometric meaning carried by the d-parallel matrix:

Corollary 6.3. Let ¢ € F" ®@pF? 22 Homyp(F",F?). Then ¢ € ker P4(M) if and only if (¢ +)(v;) is parallel
to o(v;) for alli=1,2,...,n.

Proof. Since there are d — 1 copies of the vector v; in (d — 1)M, there will be (d — 1) accompanying normal
vectors to p(v;). Because these normals are chosen with generic coordinates, the only vectors normal to all
d — 1 of them are those parallel to ¢(v;). Now apply Proposition 6.1. (]

As in classical rigidity theory, both RY(M) and HY(M) have certain obvious nullvectors.
Proposition 6.4. Let 1) € F" ®p F? = Homp (F", F9).

(i) Given any skew-symmetric d x d matriz o € F4*? the map o o ¢, when identified with a vector in
Fr @ F4, lies in the nullspace of RY(M).
(i) The map 1, when identified with a vector in BT @ F¢, lies in the nullspace of H(M).

Proof. Assertion (ii) is immediate from the interpretation of the nullspace of H¢(M) given in Proposition 6.1.
To prove (i), we define
S = ZLlp,0,v]/ (0ji = —0ij) ,
the polynomial ring in the entries of the matrices ¢, o, v1,...,v,. We wish to show that
(20) R(M)(0 0 p) =0

in S. In fact, we will show by a formal calculation that 2R4(M)(o o ¢) = 0. Since 2 is a non-zero-divisor
in S, this will imply that (20) holds in S, hence remains valid when we pass to S ®z F and specialize the
entries of vy, ...,v,,0 to elements of F.
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The calculation® actually takes place in S[e]/(€?). Since 07 = —o, one has for all z € F?

Q((La + €0)(2)) = Q(z) + €z, 0(x)) + o (2), z) + €Q(o())
= Q(z) + ¢ ((,0(2)) + (2,07 (2))) + Q(o(x))
= Q(r) mod €
Taking x = ¢(v;), the function f defined by f(p) := Q(p(v;)) has the property
fl+esop)=f(p) mod e,
On the other hand, expanding f as a Taylor polynomial yields

flot+erop)=fp)+e(Vu(f),o0p) mod e

where V,(f) is the gradient of f with respect to the entries of ¢. Therefore (V,(f),0 0 ¢) = 0. On the
other hand, by Remark 6.2, the i"" row of R%(M) is exactly £V, (f). So 2R*(M)o o ¢ =0 as desired. [

+
+

6.2. The Nesting Theorem. We have arrived at one of the main results of the paper, the Nesting The-
orem, which explains the relationship between the various independence systems associated to an arbitrary
representable matroid M. In the special case that M is graphic and the ambient dimension d is 2, the
Nesting Theorem gives what we have called the planar trinity (Corollary 6.6 below).

Theorem 6.5 (The Nesting Theorem). Let M be a matroid represented by vectors E = {vy,...,v,} C F",
and let d > 1 be an integer. Then

Sh(M) C RYM) C LYM) =HUM) (= ST 14M)).

Proof. We first prove that R%(M) C £4(M). Tt suffices to show that whenever d - (M) < n, there is an
F(p)-linear dependence among the vectors

{vi ® (vi)}iy C F” @ F*

that form the n rows of R4(M). Since F spans a subspace of F” isomorphic to F**) the rows of R*(M)
actually lie in a subspace of dimension d - r(M). If d-r(M) < n, then the desired linear dependence is
immediate. On the other hand, if d - r(M) = n, then Proposition 6.4 implies that the rows of R4(M) lie in
a proper subspace of F'(M) @ F?, hence are linearly dependent.

If we replace v; ® p(v;) with v; ® 7;, the same argument shows that HI (M) C L4(M).

Next we prove that SM¥(M) C RY(M). Assume that the rows of R?(M) are dependent; we will show
that M is (k,d)-slope dependent for k = 1.

We begin with the observation that

SEA(M) = LT (M) C LYM).

The equality is Corollary 4.4, and the inclusion follows from the definition of £™(M) (because 4 < d).
In particular, if M is d-Laman dependent then M is automatically (k, d)-slope dependent; we may therefore
assume that M is d-Laman independent. Without loss of generality, d - r(M) > n, so the dependence of
the rows of RY(M) implies the vanishing of every one of its n x n minor subdeterminants. Moreover, by

Theorem 3.6, M admits a d-Edmonds decomposition (see Definition 3.5). Associating the vectors vy, ..., v,
with their indices [n] = {1,...,n}, we may write this Edmonds decomposition concisely as [n] = |_|;-l:1 I;.

Claim. There exists an n x n minor ¢ of R4(M) that is a nonzero multihomogeneous
polynomial in the coordinates of the vectors ¢(v;).
Given the claim, if £ vanishes on the non-annihilating cellule X ,f 4(M) of the photo space, then the projection
on X ,f (M) — Gr(k,F?) is not Zariski dense, because the homogeneous coordinates of the ¢(v;) are in fact
the Pliicker coordinates on Gr(k, F?). Hence by Theorem 4.3, the claim is all we need for the present theorem.

3This calculation is identical to that usually used to show that the orthogonal group with respect to the quadratic form @
on F9 has its Lie algebra equal to the space of skew-symmetric matrices.
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Let () := (v;), and let v; = [vs1 - - vi,:]T. Group the columns of R = R*(M) in blocks, so that the i
row of R is
[’Uﬂﬂl‘gl) virxgl) } ’U“Z‘g) . le‘g) | } vilxl(;) . UWZ‘S)].

Each n x n submatrix R4 of R is indexed by some choice of an n-element subset A of the dr columns.
Letting A; be the subset of A coming from columns in the i*" block, one obtains a sequence of subsets
Aq,...,Aq C[r] withn = |A] = Z?:l |A;|. Then

d
detRa = Y () > e(on)...c(oa) [] I] vios 2"

I 01,...,04 j:liEIj

Here the first sum ranges over all partitions I = {Iy,..., I3} of [n] with d parts, the second sum ranges over
all d-tuples of bijections ¢; : I; — A;, and £(C),¢ (crj) € {£1} (there are explicit formulas for these signs,
but we won’t need them). Thlb expression may be simplified:

d
S (ITII =" H D (A

I j=14€l, J=1 o5l —A,

d d
Z H H xg'i) e(I) H det V7, a4,
j=1

I \j=liel;

det Ry

where V7, 4, is the submatrix of [vix]i=1,... n k=1,...,r With rows I; and columns A;. Note that det(V, a,) € F,

so the calculation implies that det R4 is a multihomogeneous polynomial in the coordinates {xg»l)} with
coefficients in F.

By the definition of an Edmonds decomposition, the sets Iy, ..., I are independent in M. Hence there is
some subset A; C [r] with det Vj, a; # 0. The monomial corresponding to this choice of I;’s and A;’s has a
nonzero coefficient in the multihomogeneous polynomial £ = det R 4. Therefore & # 0, establishing the claim
and completing the proof that SL4(M) C R4 (M).

Replacing RY(M) with HY(M), k = 1 with k = d — 1, and ¢(v;) with »; throughout, the same argument
shows that S=14 C H4(M). Since S¥14(M) = L4(M) by Corollary 4.4, we are done. O

gouay

The case d = 2 is very special. Recall that P4(M) = H((d — 1)M), so P?>(M) = H?(M). Indeed, the
Nesting Theorem implies much more:

Corollary 6.6. Let M be a matroid represented as above. Then
SV (M) =R*(M) = L>(M) = H*(M) = P*(M).
Remark 6.7. Setting d = 1 collapses the Nesting Theorem to
Sk (M) =RY (M) = LY (M) = M.
However, these phenomena are somewhat more trivial. To make sense of the complexes S*>°(M) and
L1(M), consider the identity S®I(M) = L7°% (M) of Corollary 4.4. Fixing k and letting d — oo (as a

positive integer), we obtain S¥°°(M) = RY(M) = L*(M). On the other hand, it is an easy consequence of
the definitions of £™(N) and R¥(M) that lim,, 1+ L™(M) = M = RY(M).

Remark 6.8. There is in fact a simple explicit isomorphism between the matroids R?(M) and H?(M)
(=P%3(M)). Let p be the “r/2 rotation” F? — F? given by

0 -1

1 0]
Then p(p(v;)) = 1, a generic normal to the generic image vector p(v;), and the invertible linear operator
Ipr ® p on F" ®@F F¢ sends v; ® p(v;) to v; @ ;.
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Remark 6.9. When d > 3, the inclusion R¢(M) C £4(M) is usually strict. By Proposition 6.4, the nullspace
of RY(M) contains the (Z)-dimensional space of all vectors of the form o o ¢, as o ranges over all skew-
symmetric matrices in F4*¢, Consequently, every d-rigidity-independent subset A C E must satisfy |A| <
d-r(A)— (). On the other hand, there may exist d-Laman independent sets A of cardinality up to d-r(A4)— 1.

7. EXAMPLES: UNIFORM MATROIDS

Let F be a ground set with n elements. The uniform matroid of rank r on F is defined to be the matroid
whose independent sets are

Uwn={FCE: |F|<r}.

Broadly speaking, U, , can be regarded as the matroid represented by n generically chosen vectors in F7,
where F is a sufficiently large field.

Predictably, the d-Laman independence complex on U, , is also a uniform matroid for every d. More
surprising is that d-Laman independence carries nontrivial geometric information about sets of n generic
vectors in r-space—specifically coplanarity for Us 3 and the cross-ratio for Us 4.

Proposition 7.1. Let U, ,, be the uniform matroid of rank r on n elements, and let d € (1,00)r. Then

(21) LYUp) = U, where s = min([dr — 1], n).
and
(22) SH(U,. ) = Ui, where t = min (fdd_rk - 11711) .

Proof. We know that £4(U,.,) is a simplicial complex, and it is easy to see that the criteria for F to be
d-Laman independent can depend only depend on the cardinality |F'|. Therefore
LYU.,) = {FCE: d-r(F')>|F'| forall nonempty F' C F}
= {FCEFE: d-r(F)>|F|}
(FCE: |F|<dr}
= Us,n;
which is (21). Applying Corollary 4.4 to (21) gives (22). O

Example 7.2 (U 3). Let F be any field, and let eq, e2 be the standard basis vectors in F2. The matroid
M = U, 3 is represented by the vectors {e1,e1 + ez, e2} C F2; this representation is unique up to the action
of the projective general linear group. By Proposition 7.1,

Ups ifde (1, 3r

1 Uss ifd=2
Ug)g ide(%,OO]R

LY Us,3) =
() { Uy ifde{3,4,...}.

and Sl7d(U2)3) = {

We now consider what these equalities mean in terms of slopes. Let ¢ : F2 — F¢ be a linear transformation.
If d = 2, then the images y(e1),p(e1 + e2),p(e2) can have arbitrary slopes as ¢ varies. This is why
S12(Us3) = Us 3. On the other hand, when d > 3, those three vectors must be coplanar. This imposes a
nontrivial constraint on the homogeneous coordinates for the lines spanned by the three images, and explains
why 8"4(Uz3) = Ua 3.

By direct calculation, the vectors

e1®@p(er), (e1+e2)@pler+ez), e2®p(e2)
are linearly dependent if and only if d = 1. Therefore

Ups ifd=1,

RYUsz3) =
(U2) {%3 ifde{2,3,...}.

In this case, the inclusions R4(M) C £4(M) given by Theorem 6.5 turn out to be equalities.
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Example 7.3 (Uz4). Let F be a field of cardinality > 2, let ;€ F\ {0,1}, and let ey, ex be the standard
basis vectors in F2. The four vectors
{e1, e1+e2, ea, €1+ peat,
represent M = Uy 4 over F. Again, this representation is unique up to projective equivalence. By Proposi-
tion 7.1,
U2,4 ifde (17 %]R
Ed(U2)4) =qUs4 ifde (%,Z]R and Sl7d(U2)4) = {
U4,4 ifde (2, OO)]R

Usy ifd=2
Uy ifde{3,4,..}.

Why is this correct from the point of view of slopes? From Example 7.2, we know that when d > 3, the lines
spanned by the images of any three of the four vectors must be coplanar, so there is an algebraic dependence
among the homogeneous coordinates for these three lines. For d = 2, this does not happen; the slopes of the
images of any triple can be made arbitrary. However, applying a linear transformation to the representing
vectors does not change their cross-ratio (in this case p), so the fourth image vector is determined by the
first three. This is the geometric interpretation of the combinatorial identity S 172(U2,4) =Us .

Direct calculation shows that every three of the four vectors

wy i=e; @p(er), we:=(e1+ex) @pler +e2), wz:i=e2@per), wy:= (e + pez) ® p(er + pes)

are linearly dependent when d = 1, but independent for all d > 2. When d > 2, there is an additional, less
obvious linear dependence: (1 — 1)wy — pws + (1 — p?)ws + wy = 0. Consequently

Upy ifd=1,

R (Us,4) =
(V2a) {U3,4 if de{2,3,. .}

This calculation is independent of the particular coordinates chosen for the representing vectors, even up to
projective equivalence (that is, up to the choice of the parameter u): that is, R%(Us4) is a combinatorial
invariant.

On the other hand, unlike the situation for Us 3, the inclusions R¢(M) C L4(M) given by Theorem 6.5
turn out to be strict. In particular, R°°(M) is not Boolean while £°° (M) is always Boolean. This behavior
deviates notably from the case of graphic matroids (see Proposition 8.5 below).

8. MORE ON RY(M): INVARIANCE AND STABILIZATION

The examples in the previous section raise some natural questions. Clearly £™(M) is a combinatorial
inwvariant of M, that is, it does not depend on the choice of representation, nor the field of representation.
Hence by Corollary 4.4, the same is true for S¥¢(M), and in particular H¢(M) and P4(M). But what about
R4(M)? This is an issue which does not arise in classical rigidity theory, as the graphic matroid M (G) is
always represented by the vectors

(23) {es—e; : {ivj} € B(G)}

where e; is the it" standard basis vector in RIV(®)I. In fact, Proposition 8.1 below will show that R%(M)
is a projective invariant of a matroid represented over a given field. A result of N. White shows that
graphic matroids, and more generally matroids that can be represented over o, are projectively unique
when represented over any fixed field; see, e.g., [18, Proposition 1.2.5]. It will follow that R4(M(G)) is a
combinatorial invariant of a graphic matroid M (G) over any fixed field.

We begin by recalling the notion of projective equivalence for representations of a matroid. Two sets
of vectors E = {v1,...,vn}, E' = {v],...,v],} C F" are called projectively equivalent if there are nonzero
scalars c1, ..., ¢, € F* and an invertible linear transformation g € GL,.(F), such that v} = g(c;v;) for every
1. It is easy to see that in this case, the matroids represented by E and E’ are combinatorially identical. As
we now show, the same is true for their d-rigidity matroids.

Proposition 8.1. Let M, M’ be matroids represented by projectively equivalent sets E,E’ C F", and let
d > 2. Then R4(M) = RI(M').
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Proof. For v € E and ¢ € F*, replacing v with cv has the effect of multiplying v ® ¢(v) by ¢2, which does
not change the matroid R¢(M).
For the second assertion, let g € GL,(F), and suppose that we have an F(y)-linear dependence

(24) Z civ; @ v =0
i=1

in F* @ F(p)?. The group GL,(F) acts F(¢)-linearly on F” @ F(¢)¢ by g(v ® w) = g(v) ® w. Applying g to
(24) yields

Y cig(v) @0 = g(0) = 0.

i=1
Equivalently,

> cig(vi) @ (o g )g(vi) = 0.
=1

The entries of the d x r matrix ¢ og~! are algebraically independent transcendentals over IF (because ¢ was),
and the transcendental extensions F(p) and F(¢ o g~!) coincide because g is invertible. Hence the matroid
represented by {g(v1),...,g(v,)} contains the same dependence (24) as do {v1, ..., v, }. Considering all such
dependences and replacing g with g~!, one sees that this matroid is combinatorially identical to R*(M). O

Question 8.2. Is R¥(M) a combinatorial invariant of M, or does it depend on the choice of field F and the
particular representation {vy,...,v,} of M in F"?

In the special case d = 2, the Nesting Theorem implies that RY(M) is indeed a combinatorial invariant.
While we have no reason to expect invariance in all cases, we have not found a counterexample. We have
seen that Rd(M ) is indeed combinatorial when M = Us 3 or Uz 4. In what follows, we describe a matroid
with two projectively inequivalent representations whose d-rigidity matroids coincide.
Example 8.3. Consider the following two sets of nine coplanar vectors in R3:

E = {(1’ 07 O)’ (17 O’ 1)7 (17 O’ 2)7 (1’ 17 O)’ (17 1’ 1)? (17 17 2)7 (17 27 0)7 (17 2? 1)7 (17 27 2)}7

E/ = {(1’ 07 O)’ (17 O’ 1)7 (17 0’ 3)7 (1’ 27 0)’ (17 2’ 1)? (17 27 3)7 (17 37 0)7 (17 4? 1)7 (17 6? 3)}

[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ] [ ] e o
E I

Let M, M’ be the matroids represented by E, E’ respectively. These matroids are combinatorially iso-
morphic, but E and E’ are certainly projectively inequivalent. On the other hand, computations using
Mathematica show that R?(M) = R?*(M’) (= Usg) and that R*(M) = R3*(M’) (the bases are the subsets
of E (resp. E’) of cardinality 6, except for the complements of the eight affine lines.)

We next discuss how RY(M) stabilizes for large d. Let w : Flp11,---s¢0dt1r) — Flo11,---,94d,r) be
the map sending @441 to 0 for every j. Then w takes linear dependences on rows of RI+1(M) to linear
dependences on rows of RY(M). Therefore R4(M) C RITH(M).

Since there are only finitely many simplicial complexes on a fixed finite ground set E, the tower

M =RNM)C R*(M)C R} (M) C -
must eventually stabilize to some complex R°>°(M). We can say more precisely when this stabilization occurs.

Proposition 8.4. Let M be a matroid represented by E = {vi,...,v,} C F", where (without loss of
generality) M has rank r. Then for every d > r,

RYM) = R"(M) = R°(M).
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Proof. Since RY (M) C R (M), it suffices to prove that R4(M) C R"(M) for d > r. Let ¢ be an r x r
matrix of transcendentals over F. Suppose that we have a linear dependence of the form (24). Let 1
be another d x r matrix of transcendentals, so that F(¢) <— F(g, ) is a purely transcendental extension.

Viewing the matrix v as a F(p, ¥)-linear map, one can apply it to the second factor of F" @ F(¢)". Applying
this to (24) gives

(25) > e @ (1o @)(v;) =0,
i=1
which is an F(p,v)-linear dependence on the vectors {v; ® (¥ 0 ¢)(v;)}i=1,... n-

We claim that F(p,) is purely transcendental over F(i o ¢). To see this, first note that F(¢,p) =
F(1) o ¢, 1). That is, F(¢), ) can be obtained from F(1 o ¢) by adjoining 72 elements, namely the entries
of p~!. In particular, the transcendence degree of F(v, ) over F(¢) o ) is at most r2. Similarly, the
transcendence degree of F(1) o ¢) over F is at most dr. But F(¢, ¢) clearly has transcendence degree dr + 72
over IF, and transcendence degree is additive in towers of field extensions [5, Thm. VI.1.11], so both instances
of “at most” may be replaced with “exactly”, proving the claim.

By the existence of the F(¢, ¢)-linear dependence (25), we conclude that the vectors {v; @ (o) (vi) }i=1,....n
must also be F(¢) o ¢)-linearly dependent. Therefore R4(M) C R"(M) as desired. O

When a matroid M can be represented over different fields, it is natural to ask how much R%(M) can
vary. For instance, if M = M(G) is graphic, then the standard representation (23) is valid over every field
F and unique up to projective equivalence once the field is fixed, as mentioned earlier. For sufficiently large
d, the d-rigidity matroid of M (G) is also independent of the choice of the field F, as we now explain.

Proposition 8.5. Let M = M(G) be the graphic matroid representing an n-vertex graph G over an arbitrary
field F, equipped with the standard representation (23). Then R™(M) = 2F = R>(M).

Proof. Let K, be the complete graph on n vertices. Since R™(M) is a row-selected submatrix of R™(M (K,,)),
it suffices to assume that G = K,,.

To avoid overly cumbersome notation, we give the proof for n = 4; the argument for arbitrary n should
be clear from this case. For n = 4, the 6 x 12 rigidity matrix R*(M(Ky4)) is as follows. (Each nonzero entry
is a binomial ¢;; — .k, written on two lines so that the matrix is not too wide for the page.)

P11
—P12

P11
—¥13

0

P11
—¥P14

0

¥21

—¥P22

P21

—¥23

0

P21

—¥24

0

P31
—¥32

¥31
—¥33

0

¥31
—¥34

0

P12
—¥11

0

P12
—¥13

P12
—¥14

0

P22
—P21

0

$22
—P23

P22
—¥24

0

¥»32
—¥31

0

¥32
—¥33

¥»32
—¥34

0

0

13

—P11

13

—P12

0

¥$13

—¥P14

0

¥23

—¥21

¥23

—¥P22

0

$23
—¥24

0

¥33
—¥31

¥33
—¥32

0

¥33

—¥34

P14
—¥11

P14
—P12

P14
—¥13

¥$24
—P21

P24
—P22

P24
—¥23

P34
—¥31

P34
—¥32

P34

—%33 4

We must show that some 6 x 6 minor of R*(M (K)) is nonsingular. Consider the submatrix M’ consisting
of the last column in the second block, the last two columns in the third block, and all three columns in the

fourth block:

P32 — P31 0 0 0 0 0
0 P23 — P21 P33 — P31 0 0 0
P32 — P33 | P23 — P22 P33 — P32 0 0 0
0 0 0 P14 — P11 P24 — P21 P34 — P31
P32 — P34 0 0 P14 — P12 P24 — P22 P34 — P32
0 Y23 — P24 P33 — P34 | P14 — P13 P24 — P23 P34 — P33

Since M’ is block lower triangular, its determinant is the product of the determinants of the blocks along
the diagonal (indicated in boldface). Each such determinant is a nonzero polynomial in the ¢;; over any
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field, because the coefficients of 31 in the first block, ¢21p32 in the second block, and 11p22¢33 in the
third block are all 1. Therefore M’ is nonsingular over any field, as desired. O

This observation begs the question of whether R¢(M(G)) depends on the field before d reaches the stable
range. For an arbitrary representable matroid M, it is not true in general that R°°(M) is Boolean. We
have already seen one example for which this fails, namely Us 4. Another example is the well-known Fano
matroid F, represented over the two-element field Fy by the seven nonzero elements of F3. It is not hard to
show that £(F) is Boolean for d > % On the other hand, computation with Mathematica indicates that
R2(F) = Us 7, but R4(F) = Us 7 for all integers d > 3.

9. OPEN PROBLEMS

The foregoing results raise many questions that we think are worthy of further study; some of these have
been mentioned earlier in the paper. In this final section, we restate the open problems and add a few more.

Problem 1. Determine the singular locus of the (k,d)-photo space Xy q(M) (perhaps by calculating the
dimension of its various tangent spaces, as in Proposition 4.8).

Problem 2. Give a direct combinatorial explanation for Corollary 5.3, presumably by identifying some
natural relationship between photos of M and of M*.

Problem 3. Explain the “scaling phenomenon” of Remark 4.7 geometrically.

Problem 4. Determine whether or not the d-rigidity matroid R¢(M) is a combinatorial invariant of M
(Question 8.2). If not, determine which matroids have this property, and to what extent R%(M) depends on
the field F over which M is represented. In particular, is R%(M) independent of F in the case that M is a
graphic matroid?

Crapo gave an elegant characterization [19, Theorem 8.2.2] of H%(M) when M is graphic. A basis of
HA(M) is a (multi-)set of edges having a (d + 1)Td-covering, or a decomposition into d + 1 edge-disjoint
trees, exactly d incident with each vertex, with no d nonempty subtrees spanning the same subset of vertices.

Problem 5. Generalize Crapo’s characterization of H?(M) to the case of a non-graphic matroid M.

A vertex of a graph G corresponds to a cocircuit of M(G) whose deletion leaves a connected matroid.
However, there is no analogous notion of “vertex” when M is a non-graphic matroid (although the foregoing
may be helpful if M is sufficiently connected). Similarly, it is unclear how to generalize to non-graphic
matroids (and to higher dimensions) other fundamentals of graphic rigidity theory; for instance, Henneberg’s
construction of the bases for H?(M) = R?*(M) = £*(M) [19, Theorem 2.2.3].

Our last open problem is similar in spirit to the results of [7] and [9], describing the algebraic and
combinatorial structure of the equations defining the slope variety of a graph. It is motivated also by the
appearance of the cross-ratio in Example 7.3.

Problem 6. Describe explicitly the defining equations (in Pliicker coordinates on Gr(k, F4)") for m X ,f (M),
where 7 is the projection map of (7).
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