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ABSTRACT. We study a construction of the Mathieu group Mi2 using a game
reminiscent of Loyd’s “15-puzzle”. The elements of M2 are realized as permu-
tations on 12 of the 13 points of the finite projective plane of order 3. There
is a natural extension to a “pseudogroup” Mi3 acting on all 13 points, which
exhibits a limited form of sextuple transitivity. Another corollary of the con-
struction is a metric, akin to that induced by a Cayley graph, on both Mia
and Mi3. We develop these results, and extend them to the double covers
and automorphism groups of M12 and M3, using the ternary Golay code and
12 x 12 Hadamard matrices. In addition, we use experimental data on the
quasi-Cayley metric to gain some insight into the structure of these groups
and pseudogroups.

1. INTRODUCTION

Sam Loyd’s classic 15-puzzle consists of 15 numbered tiles placed in a 4 x 4 square
grid, with one square, the hole, left empty. To solve the puzzle, one slides the tiles
around the grid until they are in a specified order. Each sequence of slides induces
a permutation in the symmetric group G15. The permutations arising from closed
sequences of slides—that is, sequences that return the hole to its initial location—
form a subgroup of the symmetric group &5, with the group operation given by
concatenation of sequences. This subgroup is known to be the alternating group
15 (see [Archer:1999]).

We study an analogous game, first mentioned in [Conway:1987], in which the
4 x 4 grid of Loyd’s puzzle is replaced by P, the projective plane of order 3. In the
“basic game”, we place numbered counters on 12 of the 13 points of P3, leaving a
hole at the thirteenth point. The elementary move, analogous to sliding an adjacent
tile to the empty square in Loyd’s puzzle, is a double transposition taking place in a
line containing the hole. The basic P3-game group Gpas consists of the permutations
of the 12 counters coming from closed move sequences. We shall prove that Gy, is
isomorphic to the Mathieu group Mjis.

We give the name Mj3 to the set of permutations induced by arbitrary (not
necessarily closed) move sequences. This is a subset of G135, but is not a group,
because concatenation of arbitrary move sequences is not always allowed. Specifi-
cally, a move sequence moving the hole from p to ¢ may be followed by one taking
the hole from r to s if and only if ¢ = r.
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The P3-game can be extended in two ways. First, we can make the counters
two-sided and modify the definition of a move to flip certain counters. We study
this “signed game” in Section 3. The group Ggg, resulting from this change is the
nontrivial double cover 2M;5 of the Mathieu group (see [Conway:1985, pp. 31-32]),
realized as the automorphism group of the ternary Golay code 2. The set 2M3
of all reachable signed permutations is thus a double cover of Mis3.

A second way to extend the basic game is to place a second set of counters on
the lines of P3. We study this “dualized game” in Section 4. This approach yields
another proof (using Hadamard matrices) that the group Ghpas is isomorphic to
Mi2; in addition, we obtain a concrete interpretation of an outer automorphism of
M12.

M5 is unique among groups in having a faithful and sharply quintuply transitive
action on a 12-element set. Our construction of M3 suggests the following question:
does Mi3 have a sextuply transitive “action” on the 13-element set P3? In general,
the answer is no, but Mi3 does exhibit some limited forms of sextuple transitivity,
which we describe in Section 5.

In Section 6, we study the quasi-Cayley metric on M;2 and its extensions, in
which the distance d(o, T) between two permutations is the minimum number of
moves of the basic or signed game needed to realize o ~'7. We programmed a com-
puter to generate lists of all positions of each of the versions of the P3-game. The
data in these lists provides a starting point for investigation of various aspects of
the structure of the groups and pseudogroups. For instance, the 9-element tetra-
code (see, e.g., [Conway:1999, p. 81]) appears as the subgroup of My consisting of
the starting position of the basic game, together with the 8 positions at maximal
distance from it.

The construction of M3 was first given by the first author in [Conway:1987];
see also [Conway:1997]. The latter article includes some examples of analogous
“games” played on geometric structures other than Ps. It would be interesting to
look for further examples along these lines.

Much of the material of this paper comes from the third author’s undergraduate
thesis [Martin:1996], written under the direction of the second author.

2. THE BASIC AND SIGNED P3-GAMES

2.1. Finite projective planes. We begin by reviewing the definitions and facts
we will need concerning Ps.

Let P = {p,q,...} be a finite set of points and £ = {{,m, ...} be a finite set
of lines. Each line may be regarded as a set of points; we write £(p) for the set of
lines containing a point p.

Definition 2.1. Let n > 2. The pair (P, L) is a projective plane of order n if the
following conditions hold:
(1) |P|=|L|=n?+n+1.
(2) |L(p)| =4 =n+1for every pe P and £ € L.
(3) Two distinct points p, ¢ determine a unique line pg, that is, L(p) N L(q) =
{pa}.
(4) Two distinct lines ¢, m determine a unique point, that is, [ Nm|=1. (We
often write £ Nm for the unique intersection point.)
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The most familiar example of a finite projective plane is the classical projective
plane P%(F,,), where n is a prime power. This projective plane is defined as follows.
Let F,, be the a field of n elements, and let P and £ be respectively the sets of
1- and 2-dimensional vector subspaces of (IF,,)?, with incidence given by inclusion.
Then P?(F,,) = (P, L) is a projective plane of order n.

An oval (resp. hyperoval) in a projective plane of order n is a set of n+1 (resp. n+
2) points, no three of which are collinear. For example, a smooth conic in a classical
projective plane is an oval. Also, there is no such thing as a “hyperhyperoval”, for
the following reason. Let S be a set of n + 3 or more points in a projective plane
of order n, and p € S. There are n + 1 lines containing p, so by the pigeonhole
principle there exist two distinct points in S\ {p} which are collinear with p.

For the rest of the paper, we shall be exclusively concerned with the classical
projective plane P?(F3), and will use the abbreviated notation P for this plane.
Note that Ps has 13 points, each lying on 4 lines, and 13 lines, each containing 4
points. By elementary counting, P3 has 13-12-9 -4 = 5616 ordered ovals.

Proposition 2.2. (1) Up to isomorphism, Ps is the unique finite projective
plane of order 3.
(2) The automorphism group Aut(Ps) acts sharply transitively on ordered ovals;
in particular, | Aut(Ps)| =13-12-9 -4 = 5616.
(3) P3 contains no hyperovals.

These facts are well known (see, e.g., [Cameron:1991]). We prove them here by
constructing an explicit labelling for the points and lines of P3, which we will use
in the proofs of Proposition 3.1 and Theorem 5.3.

Proof. Let IP3 be a projective plane of order 3. Let O = (¢1, ¢2, g3, ¢4) be an ordered
oval in P3. We will show that each point and each line of P3 is determined uniquely
as a function of ¢1, g2, g3, g4. This will show that if P% is any other projective plane
of order 3, and (¢}, ¢4, ¢5, ¢}) is an ordered oval in P}, then there is a unique isomor-
phism from P3 to P§ sending (q1, g2, g3, q4) to (4}, ¢4, ¢4, qy). In particular, it will
follow that all projective planes of order 3 are isomorphic, with an automorphism
group of order 13-12-9-4. We already know one, namely the classical projective
plane over F3; and we know that its automorphism group contains PGL3(F3), a
group of order (26 -24-18)/2 = 13129 4. Hence P3 is the unique projective
plane of order 3, and PGL3(F3) is its full automorphism group. Along the way, we
will show that P3 has no hyperovals.
The points of P3 include:

e the four points q1, qo, g3, q4;

e the three points r1 = ¢1q2 N q3q4, "2 = G143 N G2q4, s = q1G4 N G2q3; and

e the six points s;; (1 < ¢ < j < 4) lying on just one of the secant lines 7;g;
to O.

(Recall that a secant to an oval is a line determined by two of its points; thus each
secant 7;q; to O contains two ¢;’s, one r;, and one other point, which we call s;;.)
This accounts for all 4 + 3 + 6 = 13 points, and in particular shows that there are
no hyperovals.

We have accounted for six lines, namely the secants to O. There are also the four
tangents to O, the lines which pass through exactly one of its points. The tangent
to O at ¢ intersects each of the lines g2¢3, G241, ¢3¢ in a point not on any other
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secant, which is that line’s fourth point. We have thus identified the 4 points on
each tangent. Three additional lines remain to be identified.

We claim that r1, 73,73 are not collinear, and thus that the lines through pairs
in 71, 72,73 complete the roster of lines of P3. Consider for instance si3, the fourth
point on g1qz. It lies also on the tangents at g3 and ¢q4. The points on these three
lines are: sio itself; qi1,q2,71; ¢3,S14,S24; G4, S13,S23. Hence the remaining line
through si5 goes through ry, r3, and s34. This identifies the line 7373 and shows
that it does not contain ri. Likewise, we find that the line 7175 contains s14 and
So3, while 773 contains s13 and So4.

We have now identified all 13 points and all 13 lines of P3 and their incidence
relation, as desired. To summarize, the lines are:

{Q1, q2, T'1, 812}7 {Q1, 523, 524, 834}, {7“1, T2, S14, 823}7
{91, g3, T2, 813}7 {QQ, 513, S14, 834}, {7“1, T3, 513, 524}7
{91, 44, T3, 814}7 {Q3, 512, S14, 824}, {7“2, T3, S12, 534}7
(2.1)
{QQ, g3, T3, 823}7 {Q4, 512, S13, 823},
{q27 q4, T2, 524}7
{Q3, g4, T1, 834}~

O

The definition of P3 is self-dual in the sense that interchanging the terms “point”
and “line” preserves the definition. One can label the points by {0,1,...,12} and
the lines by {0,1,...,12} such that the lines containing the point  have the same
labels as the points of the line T. For future reference, we give one such labelling:

0=1{0,1,2,3}, T1={0,4,5,6}, 2={0,9,10,11}, 3={0,7,8,12},
1={1,4,8,9}, 5={1,6,7,11}, 6={1,510,12}, 7={3,5,8,11},
8=1{3,4,7,10}, 9={2,4,11,12}, T0={2,6,8,10}, 1I={2,5,7,9},

12 = {3,6,9,12}.
(2.2)

2.2. The basic Ps-game and M;3. We now describe a “game” similar to Loyd’s
15-puzzle, but played on the projective plane P3 rather than a square grid. Through-
out, we use the self-dual labelling (2.2).

To start the game, we place counters numbered 1,...,12 on the respective points
of P3, leaving a hole at the point 0. A move of the game is defined as follows.
Suppose that the hole is a point p and that £ = {p, q,, s} is a line of P3. Then the
move [p, q] consists of moving the counter on ¢ to p and interchanging the counters
on r and s. This notation is justified because the pair {r, s} is uniquely determined
by the points p and ¢, by the definition of a projective plane of order 3. Moreover,
the move [p, ¢] transfers the hole from p to ¢, so the next move must be of the form
[q,t] for some t. In general, a sequence of moves can be given by specifying the
path traversed by the hole:

[P0, P15 -+ Pn] = [Pn—1,Pn] © ... © [P1,D0]- (2.3)

By convention, the move [p,p] is trivial, so there are 12 nontrivial legal moves
playable from each position of the game.

The move [p, ¢] may be regarded as inducing the permutation (p ¢)(r s) € &3,
and a move sequence such as that of (2.3) induces the permutation

(Pr—1 Pn)(@n ™) -+ (Po P1)(@1 1),
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where g;,r; are the other two points on the line p;—1p; for each i (assuming that
the sequence contains no trivial moves). Here multiplication proceeds right to left,
as is usual for permutations.

Example 2.3. Consider the path [0,6,12,1,8,0]. Since the points 0 and 6 are
collinear with 4 and 5, the first move [0, 6] induces the permutation (0 6)(4 5). The
permutation induced by the entire path is

(08)(712) - (1 8)(4 9) - (1 12)(5 10) - (6 12)(3 9) - (0 6)(4 5)
=(171268)(341059).

Two paths are called equivalent if they induce the same permutation. We readily
check that if p, g, r are collinear then the paths [p, ¢, 7] and [p,r] are equivalent. It
follows that every path is equivalent to a path of equal or shorter length in which
no three consecutive points are collinear; we say that such a path is nondegenerate.

We say that a path [po,...,pn] is closed if pg = p,. The set of permutations
induced by closed move sequences with pg = p,, = 0 is a subgroup of the symmetric
group 6']3\{0} = G12. We call this subgroup the basic P3-game group Gpas, and
denote its identity element by 1.

The permutations realized by move sequences taking the hole from p to ¢ consti-
tute a double coset of Gpas in &p, namely [0, ] Gpas [p, 0]. In the case that p = g,
this double coset is a group which we call the g-conjugate of Gpas.

We denote by M;is the set of all (not necessarily closed) move sequences with
po = 0. This name will be justified when we prove that Gy,s is isomorphic to the
Mathieu group Mis. Note that M3 is not a group: the moves available in a given
position depend on the location of the hole, so concatenation of move sequences is
not always allowed. Rather, M3 is a disjoint union of cosets of Gp,s in Gp = G13.

2.3. The signed Ps-game. We now describe the signed P3-game, an extension of
the P3-game in which each counter has two distinguishable sides. Suppose that
the hole is at p € P and that £ = {p,q,7,s} € L. The move [p,q] of the signed
game moves the counter on ¢ to p and interchanges the counters on r and s, but
it also flips over the counters on r and s. Now a move sequence may be regarded
as inducing a signed permutation on P (that is, an element of the wreath product
Z/QZ l 67)).

Example 2.4. The path [0,6,12, 1,8, 0] induces the permutation

(08)(Z12)- (1 8)(49) - (1 12)(510) - (6 12)(3 9) - (0 6)(4 5)
= (171268)(341059).

Here the underlines denote flips; thus the counters flipped by the move sequence are
1,7, 9, and 10. Ignoring all the flips is tantamount to removing all the underlines
from the calculation, which recovers the unsigned permutation of Example 2.3.

Much of the terminology of the previous section (such as “closed”, “degenerate”,
etc.) carries over to the signed game. The group of signed permutations of P\ {0}
induced by closed move sequences is called the signed P3-game group, denoted Gggn;
and the set of signed permutations induced by the move sequences with pg = 0 is
called 2M;s5.



6 JOHN H. CONWAY, NOAM D. ELKIES, AND JEREMY L. MARTIN

3. THE SIGNED GAME, THE GOLAY CODE, AND THE MATHIEU GROUP

In this section, we prove the main results that the basic P3-game group Gy,s is
isomorphic to the Mathieu group M2, and that the signed game group Gsg, is the
nontrivial double cover 2Mi5.

Let F3 = {0,1, —1} be the field of order 3, and let X be a 13-dimensional vector
space over F3 with basis {z, | p € P}. We will write elements of X in the form
v =) UpTy, where v, € F3. Define a scalar product on X by

vow = vawp. (3.1)
peP

The support of the vector v is

Supp(v) ={p€P | vy, # 0}
and its weight is
wt(v) = | Supp(v)|.

We will refer to vector subspaces of X as codes, and to their elements as codewords.
The minimal weight of a code X' is

Whmin(X') = min{wt(c) | c€ X', ¢ #0}.
Let C C X be the linear span of the 13 vectors
hg = Z Tp
pel

where ¢ ranges over £, and define
C'={cecC ‘ X:C,,z()}7
P

a codimension-1 subcode of C. (Note that C’ # C because hy ¢ C'.) We will show
that for each p € P, there is a copy C, of the ternary Golay code [Conway:1999,
p. 85] occurring naturally as a subcode of C. First, we set forth some useful prop-
erties of C and C’.

Proposition 3.1. Let c € C. Then:

2
1) Y = (Zcp>.
peEP peEP

(2) wt(c) =0 or1 (mod 3).

(3) ce ' iff wt(c) =0 (mod 3).

(4) For each t € L,
=Y e

peP pel

(5) C' = C*, the orthogonal complement of C with respect to the scalar prod-
uct (3.1).

(6) dim C =7 and dim C’ = 6.

(7) Wtmin(C) = 4 and wtmin(C') = 6. Moreover, the weight-4 codewords in C
are precisely {+he | £ € L}.
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Proof. (1) Tt suffices to show that

Z cpdp = (Z c,,) <Z dp> (3.2)

peEP peEP peEP
for all ¢,d € C. Since this identity is bilinear in ¢ and d, we need only
consider the case ¢ = hy, d = h;;,, when both sides evaluate to 1 (whether
or not ¢ =m).

(2) Since the square of each nonzero element of Fs is 1, we have

wt(c) = Z cf, (mod 3).
peEP
By part (1), the right-hand side is a square in F3, hence either 0 or 1.

(3) This follows from the definition of C’, together with the previous two parts.

(4) Tt suffices to verify the desired identity for the generators h,. Indeed, let
¢ = hy,; then both sides of the identity are equal to 1 whether ¢ and m are
the same or different.

(5) If ¢ € C’, then the right-hand side of (3.2) is zero for every d € C; it follows
that C C (C')*. To prove the reverse inclusion, let w € (C')*. If Supp(w)
intersects some line ¢ in more than two points, then we can reduce wt(w)
by adding hy or —h, to w. Repeating this process, we eventually obtain a
codeword w’ € Cg- which is congruent to w modulo C (since hy € C C (C")*)
and such that Supp(w’) intersects no line in more than two points. By
Proposition 2.2, P53 contains no hyperovals, so wt(w’) < 4.

Suppose that wt(w’) # 0. Then there is a line ¢ disjoint from Supp(w’)
and another line m intersecting Supp(w’) in exactly one point. The vector
h¢ — hp, belongs to Cp but is not orthogonal to w, which is impossible since
C c (C")*. Hence wt(w') =0, w' =0, and w € C.

(6) By part (5), dimC’ + dim(C’)* = 13 = 2dimC — 1. Hence dimC’ = 6 and
dim C =T7.

(7) Clearly wt(hy) = 4 for every line ¢. Let ¢ € C be a codeword of minimal
nonzero weight. If Supp(c) meets no line of P3 in more than two points,
then ¢ = 0 by the argument of (5). In particular wt(c) # 1. By part (2),
wt(c) ¢ {2,5}. If wt(c) € {3,4}, then |Supp(c) N ¢| > 3 for some line
£. But then the weight of ¢ can be reduced by adding or subtracting hy.
Since ¢ is of minimal weight, this is a contradiction unless ¢ = +h,. Hence
wtmin(C) = 4. By part (3), we have wtnin(C') > 6. In fact, wtyin(C') = 6
because wt(hy — hy,) = 6 for £ # m.

O

Note that |C| = 37 = 2187, which is small enough that all the assertions of
Proposition 3.1 could also be checked by an easily feasible but unenlightening com-
putation.

For each p € P, define a subcode

{cecC | Cp:_ch}v
qeP
and let G, be the restriction of C, to the coordinates P\ {p} (that is, the image of
Cp modulo the subspace spanned by ).

Proposition 3.2. G, is isomorphic to the ternary Golay code €12 for every p € P.
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Proof. C, C C because hy ¢ C,, for all £. The kernel of the restriction map ¢ : Cp, —
Gp can contain only vectors of weight < 1, but wtmin(Cp) = 4, so ker ¢ = 0. Thus
¢ is a bijection and dim G, = dimC, = 6.

For all c € Cp,

wt(p(c)) = Z c (mod 3)
q#p
2
= —cf,—i—ch = -+ (Zcq> = 0 (mod 3);
qeP q€P
and for all ¢,d € Cp,
o(c) - o(d) = Zchq = —Cpdp + Z Cqlq

a#p qeP

o (B () -

by (3.2). Hence G, C QZJ;, whence G, is self-dual since it has dimension 6 = 12/2.
Moreover, Wtmin(Gp) > Wtmin(C) = 4 (which implies that wtmin(G,) > 6 because
Gp C gpl). Therefore G, = 612 [Conway:1999, p. 436]. O

Suppose ¢ = {p,q,r,s}. Let the move [p,q] of the signed Ps-game act linearly
on X by [p,q] - w = w', where

wy, = wg, w). = —w, wy =w, fortégld,

(3.3)

o~ ST~

Wy, = —Wp — Wy, Wy = —Wy.

/
q
Proposition 3.3. For all p,q € P, [p,q]-C, = Cq.

Proof. Let £ = {p,q,r,s} as above. Since the linear transformation (3.3) is invert-
ible, it suffices to prove the inclusion [p,¢q]-C, C C4. Let ¢ € C, and d = [p,q] - c.
By part (4) of Proposition 3.1,

Cp = — E ct = — E Ct
tepP tel
= —Cp—Cq—Cp —Cg

which implies that ¢, = ¢4 + ¢, + ¢, since we are working over F3. Hence

c—d = Z(Ct —dt)ﬂft

tel
= (CZD_Cq)(mp+mq)+(cr+Cs)(xr+xs)
(cp —c)hy-
Soc—d e C and d € C. Moreover,
Nodp = > dy = dy+dy+d,+d,
teP tel

= —¢,—C ¢,
= ¢, te¢, = —dg.

Therefore d € C,. O
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A move sequence [po, . .., pp] acts on X by the composition of the linear transfor-
mations (3.3) associated with the moves [p;, pi+1]. It follows from Proposition 3.3
that the linear transformation associated with [po,...,p,] restricts to an isomor-
phism of Cp with Cp,,. In particular, if pg = p, = 0, then ¢ induces an automorphism
of the code Cy. Accordingly, Gsgn is naturally isomorphic to a subgroup of Aut(Go).

Proposition 3.4. Gy, is isomorphic to a subgroup of Mis.

Proof. The center Z of Aut(Gyp) has order two (it contains the identity map and its
negative), and Aut(Go)/Z = Mis (see [Conway:1999, p. 85]). On the other hand,
the permutation —1 corresponding to the closed path

0,10,7,0,4,1,2,4,3,5,6,3,0] (3.4)

flips each of the 12 counters without changing its location. Clearly —1 is central and
has order 2. Hence Gygn /{1, —1} is isomorphic to a subgroup of Aut(Go)/Z = M.
On the other hand, Gggn/{1, —1} = Ghas, because taking the quotient by —1 is
equivalent to ignoring flips. O

We see now that a permutation o in My (resp. M13) has two lifts 01,09 in 2M;2
(resp. 2Mi3), both of which are equivalent to ¢ as unsigned permutations and such
that o7 ' o op = —1.

To establish the reverse inclusion, we used a computer program (in C) to gen-
erate a list of all permutations arising from closed move sequences.’ Rather than
reproduce the entire list here, we use the presentation of M2 as a subgroup of the
symmetric group &1 with generators given in cycle notation by

a=(1642113891075),
v = (112)(2 9)(3 4)(5 6)(7 8)(10 11), (3.5)
§=(45)(211)3 7)(89).

(see [Conway:1999, p. 273]; we have changed the labelling of the points to conform
with (2.2)). Indeed, the move sequences

[0,11,7,9,8,3,0], [0,12,1,9,0,3,8,4,0], [0,1,7,0,3,6,0,1,7,0]
induce the permutations «, v and J respectively. Combining this with Proposi-

tion 3.4 and the known identification of 2M15 with Aut(Gy) [Conway:1985], we
have proved:

Theorem 3.5.

(1) The basic Ps-game group Gras is isomorphic to the Mathieu group Mia,
acting sharply quintuply transitively on P\ {0}.

(2) The signed game group Gsgn 1s isomorphic with 2Mio, with Z the 2-element
normal subgroup and Gsgn/Z = M.

4. THE DUALIZED GAME

We can extend the P3-game in another way by placing a second set of counters
on the lines of P3. This version of the game provides a second proof that the
game group is Mia, realized as the group of automorphisms of a 12 x 12 Hadamard
matriz (that is, an orthogonal matrix all of whose entries are £1). In addition,

The source code appears in [Martin:1996], and is  now  online at
http://www.math.harvard.edu/~elkies/M13 .
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interchanging the roles of points and lines gives a concrete interpretation of the
outer automorphisms of Mis.

We began the basic P3-game by placing 12 numbered counters on the points
P\ {0}. In the dualized game, we place in addition 12 numbered “line-counters”
on the lines £\ {0}. The move sequences of the dualized game are defined similarly
to those of the basic game, with the proviso that the point-hole must always lie on
the line-hole. Specifically, suppose that the point-hole and line-hole are located at
p and £ respectively, with £(p) = {£,m,n,k} and £ = {p,q,r, s}. The point-move
[p, ¢] is defined as in the basic game; dually, the line-move [¢, m] consists of moving
the line-counter on m to the hole at £ and interchanging the line-counters on n
and k. Thus a move sequence has the general form

([po, v ,pn], [é(); o 7671]) = [gn—laén] o [pn—l;pn] ©:--0 [KO;él] o [pO;pl] (41)

subject to the conditions p;, pi+1 € ¢; and £;, £;11 € L(p;+1) for all i. Each move
sequence induces a pair of permutations o = (op, o), where op acts on the point-
counters and o, acts on the line-counters.

It is easy to verify that for every move sequence ([po, ..., pnl, [0, .-, £€s]) of the
dualized game, the point-path [po, ..., ps] is nondegenerate if and only if the line-
path [lo,...,¢,] is. As before, every move sequence is equivalent to one in which
both paths are nondegenerate.

A move sequence of the dualized game is called closed if it returns both the
point-hole and the line-hole to their initial locations. The group of permutations
induced by closed moves is called the dualized Ps-game group, written Gaua. In
fact, we shall show that Gqual = Ghas, and indeed that the point-permutation of
an element of G4y determines the line-permutation uniquely and vice versa.

Example 4.1. As in Examples 2.3 and 2.4), consider the path [0,6,12,1,8,0].
For this to be the point-path of a closed move sequence in the dualized game, the
corresponding line-path can only be

06, 612, 121, 18, 80] = [0,1,12,6,4].

The moves of the dualized game may be interpreted as automorphisms of a
12 x 12 Hadamard matrix H. An automorphism of H may be defined as a pair
(0,7) of signed permutation matrices such that cH7 = H. The group Aut(H) of
all automorphisms is isomorphic to 2M12 [Conway:1985, p. 32]. In what follows,
we construct an isomorphism of Ggyua with Aut(H).

Define a modified incidence matrix E = (e;;) for P3, with rows ¢ indexed by P
and columns j indexed by L, by

-1 1€ J,

€ij = . .

! +1 i ¢ j.
Labelling the points and lines of P self-dually, as in (2.2), makes E into a symmetric
matrix. Each row of E contains four —1’s and nine +1’s, and each pair of distinct

rows agree in exactly seven columns, so the scalar product E, - E5 of two rows of
is

13 r=s,
E,-E, = Y epjey = {1 rts (4.2)
- .
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Next, for all pairs p, ¢ with p € £, define a 12 x 12 matrix HP*, with rows indexed
by P\ {p} and columns indexed by £\ {¢}, by

(P, = —e4j iel ar.ld Jj € Lp) (4.3)
J
€ij otherwise.

Proposition 4.2. Letp € P and £ € L(p). Then H = HP' is a Hadamard matriz.

Proof. H can be made symmetric by choosing a self-dual labelling in which p and
£ have the same label. Thus, to prove the proposition, it is enough to show that
for each pair of distinct points r,s € P\ {p}, the scalar product H, - H; of the
corresponding rows of H is zero.

If r ¢ ¢ and s ¢ ¢, then e,y = esp = 1, S0

H, -H, = Z €rj€sj = —€riCs + Zerjesj = —-1+FE,.-E;, = 0.
JEL\{¢} JEL
If refand s €/, then e,y = ey = —1, s0

H,. -Hy = Z (—erj)(—esj) + Z erj€sj = Z erjesj = 0
JeL(p)\{e} JEL\L(P) JEL\{&}

by the previous case. Finally, suppose that » € ¢ and s ¢ ¢. Then e,y = —1 and

ese =1, so
H.-Hy = — > erjesj + Y erjes;.
JELP\{€} JEL\L(p)
Moreover,
1 = Zerjesj = -1+ Z érjesj + Z €rj€sj.
JEL JEL\L(p) JeEL(PI\{£}

by (4.2). Combining these two observations, we obtain

Ho-Hy = 21— > enes |- (4.4)

JeLp\{¢}
Since pr = ¢, the three e,;’s in the right-hand side of (4.4) all equal +1. On the
other hand, ps # ¢, so ps is one of the other lines in £(p). Thus one of the three
es;'s is —1 and the other two are +1. Therefore the expression in (4.4) vanishes. O

We now associate a signed permutation matrix with each move sequence of the
dualized game. For p € P and ¢ = {p,q,r,s} € L(p), let B = (b;;) be a 12 x 12
matrix, with rows indexed by P\ {p} and columns indexed by £\ {¢}. The point-
move [p, ¢] acts on B, producing a matrix [p, ¢] - B with rows indexed by P \ {¢}
and columns indexed by £\ {¢}, whose (i, j) entry is

bqj 1= P
—b,; 1=35
(Ip.dl- B)i; = —bsj- i=r (4.5)

bi;  otherwise.

The line-move [¢,m] acts on the columns of B in a similar way, producing a matrix
with rows indexed by P\ {p} and columns indexed by £\ {m}. More generally, we
may associate a signed permutation matrix with each move sequence of the dual
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game by composing those corresponding to its constituent moves. Note that the
actions of point- and line-moves commute.

Proposition 4.3. Let 0 = (op,0r) be a move sequence of the dualized game, with
the point-hole initially at p € P and the line-hole initially at £ € L(p). Let HP* be
the Hadamard matriz defined in (4.3). Then o(HP*) = HoWP):o(0),

Proof. Tt is sufficient to consider the case that o is a single point-move. The proof
for line-moves is identical, and the general case will then follow by composition.
Suppose therefore that £ = {p,q,r, s} and o = [p,¢]. The definition (4.3) may be
rewritten as
(Hp,g)” _ { —eij i€{q,r,s} and je L(p)\{{}
* +e;j ieP\L and je L\ L(p),

so that
(Hp7£)qj i=p
—(HPY); i=r
Hp,ﬁ i = ( s)
(U( )) J _(Hp’e)rj i=s
(HP*); otherwise,
and

(H),, — —eij ieland je L(q)
J +eij otherwise.

We will show that (o(HP**));; = (H%*%);; for all 4, 5. First, if i ¢ £, then
(0(HP))iy = (H")yy = ey = (H™)y.
Second, suppose that ¢ = p. In this case

e e L\ L(p)
oYY, — (P, — €qj JE
(o ))pi ( Jai {+eqj otherwise

+1 otherwise

{—1 j € Lp)U L@\ {0}

B J € L(q)\ {¢}
+epj otherwise
= (H ql)m“
Finally, suppose that ¢ = r (the case i = s is analogous). Then
tes;  J€LP)\ {4
—€g;j otherwise

(O(HM)y = ~(H),; = {

+1 jeLp)UL(s)\{f}
-1 jeLlguLr)\{¢

{_erj j S ‘C(Q) \ {E}

+erj otherwise

= (H""),;.
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Corollary 4.4. Gaua = Gras (= M2).

Proof. Proposition 4.3 implies that for each closed move o of the dualized game,
the pair of (unsigned) permutations (op, o) is an automorphism of the Hadamard
matrix H = HP*. That is, we have an injective group homomorphism from G gual
to Aut(H)/{£1} = Mjs. On the other hand, the permutations (3.5) generate a
subgroup of Ggya that is isomorphic to M. O

Denote by Aut(Mi3) the group of automorphisms of Mis, and by Inn(Mis)
the normal subgroup of inner automorphisms (that is, automorphisms given by
conjugation). Then Inn(Miq) = Mis since Mis is simple and nonabelian, and the
quotient Aut(Miz)/Inn(Miz) has order two [Conway:1985, p. 31]. The dualized
game allows us to describe an outer automorphism (and thus the full automorphism
group) of Mo explicitly. Consider the map

0: Gdual - Gdual

(op,or) +— (oL,0p). (4.6)

Proposition 4.5. The map 0 is an outer automorphism of Gaual = Mis.

Proof. The map 6 respects concatenation of paths, so it is a group homomorphism
Gaual — Gqual- It is clearly surjective, hence an automorphism. It remains only to
show that 6 is not conjugation by any element of Ggya).

Consider the point-paths m; = [0,1,4,0], m2 = [0,2,10,0] and w3 = [0, 3,12, 0],
whose induced permutations are respectively

a1 = (14)(23)(56)(89), s =(13)(210)(68)(911), as=(12)(312)(69)(78).

By the labelling (2.2), for each i, the line-path corresponding to m; is its reverse,
so O(a;) = a;' = «a; (because each «; is an involution). Therefore, if 6 is con-
jugation by some permutation o, then ¢ must commute with each a;. A Maple
computation (which is not hard to check by hand) reveals that the intersection of
the G9-centralizers of the a;’s contains exactly one non-identity element, namely

o= (16)(29)(38)(45)(712)(10 11).

(In fact, this permutation commutes with every fixed point of the automorphism 6.)
Now, consider the point-path [0, 1, 5, 0], whose associated line-path is [0, 6, 1,0]. The
induced point- and line-permutations are respectively (1 5)(2 3)(4 6)(10 12) and
(16)(23)(4 5)(7 11). Then 6 interchanges these two permutations; however, they
are not conjugates under o. It follows that 6 is not conjugation by any element of
G192, so0 a fortiori not by any element of Mis; that is, 6 is an outer automorphism.

(Il

Corollary 4.6. (Gqyal,0) = Aut(Gaual) = Aut(Mi2).

5. My3 AND SEXTUPLE TRANSITIVITY

5.1. Multiply transitive groups. We recall some basic terminology. Let G be a
(finite) group acting on a (finite) set X; that is, there is a group homomorphism
from G to G x, the group of permutations of X. The action is called faithful if this
homomorphism is one-to-one and transitive if the action has a single orbit. More
generally, the action is k-transitive if |X| > k and for any two k-tuples of distinct
elements of X, say p = (p1,...,px) and q = (q1, ..., qx), there exists g € G such
that g - p; = ¢; for all 4. If the element g is unique, then the action is sharply
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k-transitive. Note that a group G with a faithful, sharply k-transitive action on an
r-set must have cardinality r!/(r — k)!.

Groups with highly transitive actions are quite unusual: by the classification of
finite simple groups, the only groups with a sharply quintuply transitive action are
Mo, G5, Gg and 7, and there are no sextuply transitive groups other than &7 and
Ag. In particular—and this does not require the Classification Theorem—it is not
possible to continue Mathieu’s construction of M1, and M to a transitive subgroup
of &13 other than 2,3 and G135 itself. Yet we have obtained the pseudogroup M3
by a method similar to this construction. Mis, realized as the game group Ghpas,
acts faithfully and sharply 5-transitively on the 12-element set P\ {0}. Meanwhile,
M3 “acts” on the 13-element set P, and |M3| = 13| M2, just what the order of
a sharply sextuply transitive group ought to be.

We are thus led to consider the question: Is the “action” of Mj3 on P sextuply
transitive? That is, given two sextuples p = (p1,...,ps) and q = (q1,...,gs) of
points of P3, does there exist some o € M3 such that o(p;) = ¢; for alli? (Here and
from now on, “sextuple” means “ordered sextuple of distinct elements”. In addition,
we wish to include the possibility that 0 € p, so “counter” really means “counter
or hole”.) Since M3 is not a group, there are actually two distinct questions:

(1) Fix a sextuple p of counters. Is it true that for all sextuples q of points
of P3, there exists some o € Mi3 such that o(p) = q7 If so, we call p a
universal donor.

(2) Fix a sextuple q of points of P3. Is it true that for all sextuples p of
counters, there exists some o € M3 such that o(p) = q? If so, we call p a
universal recipient.

We will examine the questions separately. In each case, our computational data
was invaluable as a source of educated guesses about sextuple transitivity. We start
by making an elementary observation which will be quite useful in both cases.

Lemma 5.1. Let p be a sextuple of counters. Then p is a universal donor if
and only if, for all o,7 € M3z with o # 7, we have o(p) # 7(p). Similarly, if
q is a sextuple of points, it is a universal recipient if and only if o # T implies

o' (q) #07(q).

Proof. This follows from the pigeonhole principle, together with the observation
that |M13| equals 13!/7!, the number of sextuples of points in P3. O

5.2. Sextuple transitivity on counters. We consider the question of when a
sextuple p of counters is a universal donor. Note that the property is invariant
under permuting the order of the p;. Thus, for ease of notation, we frequently treat
p as a set: for instance, we write p N ¢ rather than {p;, | 1 <i <6} NL.

Theorem 5.2. A sextuple of counters p = (p1,...,ps) is a universal donor if and
only if p; = 0 for some 1.

Proof. Suppose first that p; = 0 for some i. Let q = (q1,-...,¢s) be an arbitrary
sextuple of points. Note that the move [0, ¢;] takes the hole from p; to g;. The
gi-conjugate of Gpas acts quintuply transitively on P \ {g¢;}, hence contains a per-
mutation o such that

(0 o [0,4]) (pj) = g
for all j # ¢. That is, 0 0 [0, ¢;] is the desired element of M3 taking p to q.
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Now suppose that 0 ¢ p. The set P — p — {0} has cardinality six. Since P has
no hyperhyperovals (as discussed in Section 2.1), there is some line ¢ that meets
P —p — {0} in at least three points; that is, the set A = (p U {0}) N ¢ has at
most one element. We consider three cases; in each case, we will exhibit two moves
o, T € Mys that act equally on the counters of p; by Lemma 5.1, such a pair will
suffice to show that p is not a universal donor.

Case 1: A = {0}. Then £Np = 0, so [0, q] fixes each counter in p for any point
q € £ other than 0. Thus we may take 0 =1 and 7 = [0, ¢

Case 2: A = {p;} for some i. Let ¢ be any point on £ other than p;. Playing the
move [0, p;] results in a position in which £ contains no counters of p; therefore, we
may take o = [0,p;] and 7 = [0, p;, ¢

Case 8: A = (. Let q,r be distinct points on £. Similarly to Case 2, we may take
o =1[0,¢q] and 7 = [0, q,7]. a

5.3. Sextuple transitivity on points. We now consider the question of when a
sextuple q of points is a universal recipient. As before, we shall make no notational
distinction between the ordered sextuple q and its underlying set.

Theorem 5.3. A sextuple of points q = (q1,...,q6) s a universal recipient if and
only if it contains some line of P3.

Proof. Suppose that q contains a line ¢. Let p be a sextuple of counters; our goal is
to find o € M3 taking p to q. If 0 € p, then p is a universal donor by Theorem 5.2
so we are done. Suppose now that 0 ¢ p. Without loss of generality we may
suppose that £ = {q1, g2, ¢3, g4}, and that the line m = gsgs meets ¢ at g;. Let x be
the fourth point on this line.

By quintuple transitivity, the g;-conjugate of Gpas contains a move 7 such that
T(pi) = ¢; for 2 < i < 6. Consider the move v = 70 [0, ¢1]; note that v(p1) ¢ q. If
v(p1) # z, then

o = [g,v(p1)] o 7 o [0,q1]
is the desired move of M;3 taking p to q.

On the other hand, suppose v(p;) = x. The move sequence [q1, q2, %, G3, 44, Z]

induces the permutation

p = (r2 s2)(rs s3)(ra sa)(q1 ),
where Tq; = {x, ¢;, 7, 8;} for i = 2,3,4. Hence the move
o = powv € Mps

takes p; to ¢; for all 7 as desired.

For the “only if” direction of the theorem, suppose that q does not contain any
line. We will show that there are two distinct elements of M3 which carry the
same ordered sextuple of counters to the points ¢;. It will follow by Lemma 5.1
that q is not a universal recipient.

If £nq = O for some line ¢, then our task is easy. Let p1,p2 € £. Then [0, po]
and [p1,p2] 0 [0, p1] are elements of M3 carrying the same set of counters to q. By
Lemma 5.1, q is not a universal recipient.

The more difficult case is when q meets every line, but does not contain any line.
Since P3 has no hyperhyperovals, we may assume that ¢i, ¢, g5 lie on a common
line ¢ (the reason for this apparently strange choice will be clear momentarily). Let
y be the fourth point on £. Then y ¢ q, and for q to meet every line, each of the
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points g3, ga, g¢ must lie on a different line in L(y) \ {¢}. Thus each of the lines
7396, G196, q3qa meets ¢ in a point other than y. Without loss of generality we may
assume that

q1 € q33s, g2 € G40e, g5 € q304.
In particular, the points ¢, g2, g3, g4 form an oval. Thus we may adopt the labelling
(2.1), with

5 = 192 N q3q4 = 11, q6 = Q143 N q2qs = 12, Y = S12.

If s15 = 0, then the paths [s12, 72, $23] and [s12,73, 71, s14] induce the permuta-
tions

o= (812 523 7“2)(7"3 834)(7"1 814),
T = (512 514 71 73) (T2 S34 523)(513 524)

respectively. Both of these elements of M3 fix g1, g2, g3, g4, and move the counters
originally located at si4, 823 to 11 = g5 and ry = gg respectively. Therefore, by
Lemma 5.1, q is not a universal recipient. On the other hand, if s15 # 0, then we
need only preface the moves o, 7 given above by moving the hole to s12. That is,
the moves [0, s12, 12, s23] and [0, 12,73, 71, $S14] move the same ordered sextuple of
counters to the points q. O

6. METRIC PROPERTIES

6.1. The basic game. Let G be a group generated by a finite set X. The Cayley
graph of G with respect to X is the graph whose vertices are the elements of G,
with g, ¢’ connected by an edge if ¢ = zg’ for some x € X. We define the Cayley
graph I" of M;3 analogously: the vertices are the 13!/7! positions of the basic game,
and two positions are connected by an edge if one may be obtained from the other
by a single move [p, q].

We may use the Cayley graph to define a metric on M3, as follows: d(o,7) is
the length of the shortest path in I' with endpoints ¢ and 7, that is, the minimal
number of moves needed to go from ¢ to 7. Note that no two elements of M,
are adjacent in I'. Indeed, d(o,7) > 3 for 0 # 7 € M9, because a two-move path
returning the hole to the starting position must be of the form [p,q] o [¢,p] = 1.
Also, a path from o to 7 with length exactly d(o,7) must be nondegenerate. The
depth of ¢ is defined as d(o) = d(o,1). We also define

[Miz]y = #{o € Mz | d(o) =k},
[Mis]k = #{o € Mz | d(o) =k}.

We can find these numbers from the computer-generated table of move sequences.

(6.1)

Proposition 6.1. The depth distributions for Mis and M3 are given by the fol-
lowing table:

k Jo 1 2 3 4 5 6 7 8 9
[Mo]r [T 0 0 54 540 5184 25173 55044 9036 8
[Mis]e |1 12 108 918 7344 57852 344925 733500 90852 8

We can explain some of the “shallower” numbers without resorting to computa-
tion. The unique element at depth 0 is obviously the identity. There are no moves
in Mj, at depths 1 or 2 because there are no nondegenerate closed paths having
those lengths.
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Let [0, p, q, 0] be a nondegenerate closed path of length 3. For nondegeneracy, we
must have p # 0 and ¢ ¢ Op, so there are 12-9 = 108 such paths. The permutation
induced by each path has cycle-shape 2% (that is, it is a quadruple transposition).
This permutation has order 2, so the path [0, ¢, p, 0] is equivalent. This is the reason
that [M12]3 = 108/2 = 54.

Let [0,p, ¢,7,0] be a nondegenerate closed path of length 4. For nondegeneracy,
we must have p # 0, ¢ ¢ Op, and r ¢ pg U q0, so there are 12-9 - 6 = 648 such
paths. If {0, p,r} are collinear, then the cycle-shape of the induced permutation is
24; otherwise it is 3%. In the first case, the path [0,7, g, p, 0] is equivalent. There are
216 paths with {0, p, r} collinear, so 108 of them are redundant. Since 648 — 108 =
540 = [M12]4, there are no other equivalences among paths of this length.

The computer data may also be used to tabulate the nondegenerate closed paths
of length k inducing the identity permutation. There are no such paths of length
k < 6, and the paths of length &k = 6,7,8 are unique up to automorphisms of Ps.
For k = 6, all such paths have the form

[0,p,4¢,0,p,q,0]

where 0, p, ¢ are noncollinear. For k = 7, all paths have the form

[0,p,7,q,p,7,49,0]

where 0, p, g are collinear and r does not lie on their common line. For k = 8, all
paths have the form

[0,p,q,7,p,q,7,p,0]

where {0,p,q,r} is an oval. In particular, the number of length-8 paths inducing
the identity is the number of ordered ovals beginning with 0, which is 12-9-4 = 432.
Note that by Proposition 2.2, this is the cardinality of the stabilizer of a point in
Aut(]P’g) = PGLQ(Fg)

A striking feature of the depth distribution is that there are only eight permu-
tations at maximal depth. These permutations are

(132)(465)(7812), (132)(456)(9 11 10), (6.2)
(123)(7812)(9 11 10), (456)(7812)(9 10 11), '
and their inverses. They may be produced respectively by the paths
[0,12,1,0,9,6,11,10,5,0], [0,1,10,0,6,12,7,4,8,0],
[0,12,1,0,9,5,6,11,4,0], [0,12,10,0,3,4,2,1,5,0],

and their reverses. Together with the identity, these eight permutations form an
elementary abelian group 7. Notice that the orbits of the action of T on P \ {0}
are the sets £\ {0} for £ € £(0). For any two distinct elements o,7 € T, there
is exactly one line ¢ € £(0) such that o(p) = 7(p) for all p € £. Thus T is the
tetracode [Conway:1999, p. 81]. The elements of T are at maximal distance not
only from the identity but from each other (because T is a group).

Since d(o) < 9 for all o € M;3, there is a much better algorithm than brute-force
search for “solving” the basic game—that is, finding a short path producing a given
permutation o € Mi3. It suffices to consider the case o0 € M3, since we can always
start by moving the hole to 0.

(1) Check if ¢ € N, using the table (6.2). If so, we are done. If not, then
d(o) < 8.
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(2) Create a list L1 of all elements of Mi3 of depth < 4, together with paths
realizing them. (An upper bound for the size of this list is 12-93 = 8748, the

number of paths [0, p1,...,ps] with no three consecutive points collinear.)
(3) Create alist Ly = {oc~'o7r | 7 € L1} of all elements of M3 at distance < 4
from o.

(4) Since d(o) < 8, we must have Ly N Ly # 0, i.e., there are permutations 7
and 7/ such that 7 = ¢~ '7’. Thus ¢ = 777!, and we can construct a path
realizing o by concatenating those for 7/ and 77 !.

6.2. The signed game. We now study the Cayley graph I'" of the signed game,
whose vertices are the 2(13!/7!) positions of the signed game and whose edges are
given by signed moves. As before, we can define distance, depth, and numbers
[2M12]k and [2M13]k.
Let 0 € My3, and let 01,02 be the two lifts of ¢ in 2M;3. Then it is easy to see
that
d(c) = min(d(o1),d(02)). (6.3)

Proposition 6.2. The depth distributions for 2M1s and 2Mi3 are given by the
following table:

E Jo 1 2 3 4 5 6
My, |1 0 0 54 540 5184 25821
[2Ms], |1 12 108 918 7344 57852 356949

k 7 8 9 10 11 12
[2Mio]r | 85230 72351 898 0 0 1
[2My3) | 1192770 843291 11674 108 12 1

The unique element at maximal depth is —1, the permutation that flips every
counter in place (see Proposition 3.4). The subgroup {1, —1} of 20 is central, so
every o € 2M;3 has a unique “antipode” —o = —1 - o, which moves the counters
to the same locations as o but reverses all orientations, and is uniquely maximally
distant from ¢. Thus I'" may be visualized as a “globe” in which pairs of poles
represent antipodal permutations.

The depth distributions for 2M7, and 2M;3 are the same as those for M, and
M3 for all depths < 5. Indeed, let k be the smallest number such that [2M73]; >
[Mi3]k- By (6.3) and the pigeonhole principle, there must be two elements 01,09 €
2Mi3 at depth < k which are lifts of the same o € M;3. Then aflag is a path of
length < 2k which induces the permutation —1 in some conjugate of 2012, which
implies that d(—1) < 2k. We must therefore have k > 6.

We also note that the depth distributions of 2M75 and 2M;3 are “symmetric
near the poles”: there are the same numbers of permutations at depths 0, 1,2 as at
depths 12, 11, 10 respectively. However, the symmetry breaks down further from the
poles: fewer elements of 2M7 3 lie at depths 3,4, 5 than at depths 9, 8, 7 respectively.
We may partially explain this phenomenon by noting that

d(o) +d(—o) > 12, (6.4)
for all ¢ € 2M;3, for otherwise —1 = —¢ o ¢! could be obtained by a path of
length strictly less than 12. Moreover, equality holds in (6.4) if and only if some

minimal path from ¢ to —c has 1 as an intermediate position, which is not always
the case. Thus the mean depth of a permutation is greater than 6.
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Once again, these facts are based on the computational observation that —1 is
the unique element at depth 12. This observation is also of use in explaining the
symmetry of the depth distribution near the poles.

Proposition 6.3. Let o € 2Mi3, with d(o) € {1,2}. Then d(—0o) =12 — d(0).

Proof. Suppose that d(o) = 1; then o is realized by a move sequence [0, p|, with
p # 0. Recall from (3.4) that —1 is realized by a length-12 move sequence
[0,...,5,6,3,0]. Since Aut(P3) acts doubly transitively on P, we may choose
a € Aut(IP3) such that a(0) = 0 and «(3) = p. Applying o to the move sequence
realizing —1, we obtain

[0, ..., a(b), a(6), p, 0] (6.5)
which induces the signed permutation ovo —1 o o~ = —1. Therefore, the path

[0, ..., a(5), a(6), a(3) =p, 0, p|
induces the permutation —o. Deleting the last two moves, we obtain an equivalent
path of length 11. So d(c) < 11. The opposite inequality follows from (6.4).
Similarly, if d(o) = 2, then o is realized by a move sequence [0, p, ¢, with 0,p, ¢
noncollinear. By Proposition 2.2 (2), Aut(P3) acts transitively on noncollinear
triples of points, so we may choose « € Aut(P3) such that «(0) =0, a(3) = p, and
a(6) = g. By the same argument as before, —o is realized by the move sequence

[0, ..., a(5), a(6) = 4],
which has length 10. U
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