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Abstract

We prove the following theorems.

Theorem A. Let G be a group of order 160 satisfying one of the following
conditions. (1) G has an image isomorphic to Dag X Za (for example, if
G ~ D2y x K). (2) G has a normal 5-Sylow subgroup and an elementary
abelian 2-Sylow subgroup. (3) G has an abelian image of exponent 2, 4,
5 or 10 and order greater than 20. Then G cannot contain a (160, 54, 18)
difference set.

Theorem B. Suppose G is a nonabelian group with 2-Sylow subgroup S
and 5-Sylow subgroup T and contains a (160, 54, 18) difference set. Then
we have one of three possibilities. (1) T is normal, |¢(S)| = 8, and one of
the following is true: (a) G =S x T and S is nonabelian; (b) G has a D1g
image; or (c) G has a Frobenius image of order 20. (2) G has a Frobenius
image of order 80. (3) G is of index 6 in AT'L(1, 16).

To prove the first case of Theorem A, we find the possible distribu-
tion of a putative difference set with the stipulated parameters among the
cosets of a normal subgroup using irreducible representations of the quo-
tient; we show that no such distribution is possible. The other two cases
are due to others. In the second (due to Pott) irreducible representations
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of the elementary abelian quotient of order 32 give a contradiction. In
the third (due to an anonymous referee), the contradiction derives from
a theorem of Lander together with Dillon’s “dihedral trick.” Theorem B
summarizes the open nonabelian cases based on this work.

1 Introduction.

Attention was drawn to the difference set parameters (160, 54, 18) by Pott [11]
and Smith [14] in 1993 because of the (then) recent discovery of a new symmetric
design with those parameters [16]. Consequently, in the summer of 1994 the
authors considered the possibility of a (160,54, 18) difference set in the group
Doy X Z23. Using representations of Doy, we were able to show that no such
difference set can exist. Actually, the 1994 work shows something stronger: If
G has an image isomorphic to Doy X Za, then no (160, 54, 18) difference set exists
in G. Since every group of order 8 contains a normal subgroup of order 4, this
rules out a (160, 54, 18) difference set in Doy x K for every choice of K of order
8.

Subsequently, Pollatsek was shown two much shorter proofs. An anonymous
referee pointed out that a theorem of Lander excludes a (160, 54, 18) difference
set in any group having an abelian image G/N of order greater than 20 and
exponent 2, 4, 5 or 10; by Dillon’s “dihedral trick” [2], this gives nonexistence for
any group with a Dag X Z5 image. In a personal communication [12], Pott gave a
third proof of nonexistence for the original 1994 theorem, using representations
of Z3 to rule out a (160,54, 18) difference set in any group with a Z3 image.
In this note, we sketch all three proofs as a way of illustrating the diversity of
methods that can be brought to bear on such questions. We summarize their
consequences by stating the following result.

Theorem A. Let G be a group of order 160 satisfying one of the following
conditions.

1. G has an image isomorphic to Doy X Zy (for example, if G ~ Doy x K ).

2. G has a normal 5-Sylow subgroup and an elementary abelian 2-Sylow
subgroup.

3. G has an abelian image of exponent 2, 4, 5 or 10 and order greater than

20.
Then G cannot contain a (160,54, 18) difference set.

Using the program GAP [13], we determine that there are 51 groups of order
32 and 238 groups of order 160, of which 7 are abelian. Nonexistence in the
abelian cases was shown by work of Kopilovich [7] and Ma and Schmidt [10].
The open nonabelian cases are summarized by Theorem B. We write ¢(S) for
the Frattini subgroup of S.



Theorem B. Suppose G is a nonabelian group with 2-Sylow subgroup S and
5-Sylow subgroup T and contains a (160, 54, 18) difference set. Then we have
one of three possibilities.

1. T is normal, |¢(S)| = 8, and one of the following is true.

(a) G =S xT and S is nonabelian;
(b) G has a Dy image; or
(c) G has a Frobenius image of order 20.

2. G has a Frobenius image of order 80.
3. G is of index 6 in AT'L(1,16).

Recently, Smith and Ong [15] have ruled out case (2) of Theorem B, and
Liebler [9] has ruled out case (1c).

2 Preliminaries

Notation. Throughout, we use Z,, to denote the cyclic group of order m, Da,,
to denote the dihedral group of order 2m, and Z to denote the ring of integers, @
the rational numbers, and C' the complex numbers. We always write the group
operation multiplicatively to distinguish it from the addition in the integral
group ring ZG. The ring of n X n matrices with entries in a field F' is denoted
M(n,F). We use the same symbol S to represent a subset of G and also to
represent the sum S = 3" _¢'s in ZG, and we write S(™ =3 _ o s™.

2.1 Results on Difference Sets

In this section we collect the facts about difference sets that we will use. All
are well-known and many are easily proved. Useful references are [6] and [8]. A
(v, k, \) difference set is a subset D of cardinality k in a finite group G of order
v such that every non-identity element of G can be expressed exactly A times
as the “difference” df ~* where d and f are distinct elements of D. The order of
the difference set is n =k — A.

Proposition 1.1 Let G be a group and D a (v, k,\) difference set in G. Then
(v=DA=k(k-1).

Proposition 1.2 [8, Prop. 4.3] A subset D of a group G is a (v,k,\) difference
set if and only if the equation DDV = n -1+ \G holds in the integral group
ring ZG, where 1 is the identity element of G.

Let ¢ be a representation of G of degree m, and also write ¢ for the natural
extension of ¢ to a ring homomorphism from ZG to M(m,C),. Applying this
ring homomorphism to the equation in Proposition 1.2, we obtain the following
result (see [1]).

Proposition 1.3 Assume D is a (v,k, \) difference set in a group G.



1. If ¢ is a non-trivial linear representation of G and z = ¢(D), then z € Z[(]
for some primitive root of unity {, and 2z = n.

2. Let ¢ be an irreducible (without loss of generality, unitary) representation

of G of degree > 2, and let M = ¢(D). Then MM = nl, and the entries
of M are in Z[C] for some primitive root of unity .

Proposition 1.4 Suppose D 1is a difference set in a group G with normal sub-
group N, let ¢ be a representation of G/N, and also denote by ¢ the represen-
tation of G defined by ¢(g) = ¢(gN). Let {g;N} be the distinct cosets of G/N,
and let vi = |D N g;N|. Then ¢(D) =", vid(gq)-

The {v;} are called the intersection numbers modulo N, and they satisfy the
following useful relation (even if N is not normal).
Proposition 1.5 Let D be a (v, k,\) difference set in a group G, and let N be
a subgroup of G. If [N| = s and v; = |D N g;N|, where the g;N vary over the
distinct cosets of G/N, then > v? =n + As.

3
Much of our analysis involves assuming that a (v, k, A) difference set D exists
and determining the intersection numbers v; for various choices of the normal
subgroup N. Since the v; are non-negative integers whose sum is k, there are
only finitely many possible choices for the v;.

2.2  Results from number theory

Proposition 2.1 Let ¢ be a primitive pt* root of unity, with p prime. Suppose
> ai('=0, fora; € Q. Thenag=ay1 =+ = ap_1.

Theorem 2.2 [4, Thm. 2, p. 180] In the ring of integers in an algebraic
number field, every ideal can be written uniquely as a product of prime ideals.
In particular this is true of Z|[(], ¢ a primitive root of unity.

Theorem 2.3 [4, Thm. 2, p. 196] Let ¢ be a primitive m*" root of unity, and
let R = Z[(]. Let p be a prime, and assume p Jm. Let f be the order of p
modulo m; that is, f is the least positive integer so that pf =1 mod m . Let
pR be the ideal generated by p in R . Then in R, pR = Pi P> ... P,, where the
P; are distinct prime ideals, with g = ¢(m)/f (where ¢ denotes the Euler phi
function).

Proposition 2.4 [5, Ex. 28.9, p.472] Let ¢ be a primitive m*" root of unity,
and let R = Z[(]. If u € R and wi = 1, then u = £(* for some integer £.
Proposition 2.5 Let ¢ be a primitive 5*" root of unity, and let R = Z[(]. Let
2 € R with 2Z = 36. Then z = £6(¢ for some integer £.

Proof: By 2.3, 2R and 3R are prime ideals; moreover, they are fixed by complex
conjugation. Let z € R, and assume 2z = 36. Then we have zRZR = 2ZR =
36R = (2R)?(3R)2. ;From this it follows that zR = ZR = (2R)(3R) = 6R.
But this means that z = 6u for some v € R with wu = 1, so 2.4 tells us that
2z = £6¢* for some integer /, as claimed. O



3 The proof using representations of Dy

Theorem 3.1 If G/N' =~ Doy x Zy for some normal subgroup N', then G cannot
contain a (160,54, 18) difference set.

Proof: Note first that G/N’ ~ Dy x Z5 implies that G has an image isomorphic
to Doy, say G/N ~ Dsg and also an image G/N; of order 2. Assume that G does
in fact contain a non-trivial (160,54, 18) difference set D. Then it is easily seen
that without loss of generality we may assume |[DNN7| = 24 and |[DNgNy| = 30
are the two intersection numbers for D modulo Nj.

Set up notation so that Doy = (z,y : 210 = y?> =1, 2¥ = 271). Let v;; =
|DNaiy’| be the corresponding 20 intersection numbers for D mod N, and let ¢
be a primitive 5" root of unity. The irreducible 2-dimensional representations
of G/N have the form

¢(:c)_{f)‘ oﬁl} (b(y)—[? H

where ao = (=)™ for some positive integer m. Then

M = ¢(D) = [ % v“jlfi %vvoloza* ] N { % g }

By 1.3, M x M = 361. From this we get AA+ BB = 36., and either AA = 36
and BB =0, or vice versa. In the first instance, all the v;; are equal and all but
one of the v;y are equal, with the tenth one differing by +6, and vice versa in
the second instance.

Specifically, we examine the cases where a = (2 and a = —(. In the first
case we label the first row of M by [@, R], and in the second by [S,T]. We then
have the equations

Q = (voo + vs0) + (v10 + v60)¢? + (v20 + v70)¢* + (vs0 + vs0)¢ + (Va0 + veo
R = (vo1 +vs1) + (vi1 4+ v61)¢® + (va1 + v71)¢* + (vs1 + vs1)¢ + (va1 + vor
S = (voo — vs0) + (v60 — v10)¢? + (V20 — v70)¢* + (V80 — v30)C + (vao — v90)C?
T = (vo1 —vs1) + (V61 — v11)¢% + (va1 — v71)C* + (vs1 — v31)¢ + (va1 — v91)¢3

)¢?
)¢

We may assume Y v;0 = 24 and > v;; = 30.

Now, from a careful examination of cases, up to equivalence (by translation
of D or automorphism of G), we can show that there are just two possibilities
for the ordered list of intersection numbers, namely
(V00, V105 - - -, V1005 V01, V115 -+ - V101) =
(1) (0,6,3,3,3,0,0,3,3,3;3,3,3,3,3,3,3,3,3,3) or
(2) (0,3,3,3,3,0,3,3,3,3;6, 3, 3,3, 3,0, 3, 3, 3, 3).

Some possibilities are ruled out by 1.5; others are ruled out by considering
overgroups of N and unions of cosets mod N. (For details of the argument, see



the web page www.mtholyoke.edu/ hpollats. Note that the argument never
uses any information about the structure of N.)

Finally, G/N' ~ Dy x Z3, gives intersection numbers w;;p with 0 < i <
10,0 < j,k < 1for D. The irreducible representations of this quotient are tensor
products of representations of Doy with those of Z5, and, using an argument
similar to the one for the v;;, it can be shown that no assignment of the w;;
consistent with the v;; is possible, and therefore the difference set cannot exist.
This establishes the first case of Theorem A. O

4 The proof using the “dihedral trick”

Theorem 4.1 Suppose G has a normal subgroup N’ of order 4 with G/N' ~
Doy x Zz. Then G contains no (160,54, 18) difference set.

The proof we present relies on results of Lander and Dillon. Before stating
them, we need some definitions. Suppose a group G with a normal subgroup N
has a (v, k, A) difference set D. Write H = G/N, and for h € H, let s be the
size of the intersection of D with the coset h. Then S = heH sph satisfies the
Z H equation

SSCY = n £ \N|H

from which it follows that Y-, sn =k, > pcpy 57 = n+ A|N| (as in 1.5) and
for a #b € H, ), cpSanson = A|N| (see [6, p. 260]). Such an element of ZH
is called a (w, k, s, \) difference list in H, where |H| = w and |N| = s.

Theorem 4.2 [2, p. 16] Let A be an abelian group, and let H = (A,Q),
where QaQ = a~! for alla € A, Q*> = 1. Let K = (A,0), where [0,a] = 1
for all a € A and 0% € A. If H contains a (w,k,s,\) difference list, then so
does K. Specifically, if S =3, .4 a0 +vaQa is a difference list in ZH, then
T = ZaEA uga + veba is a difference list in ZK with the same parameters.

We need two further definitions. Let H be a group of order w, H = {hy =
1,h2,...,hy}, and let M be a w x w matrix whose rows and columns are
indexed by elements of H. If the first row of M is (mp,,...,mp,, ), and the row
corresponding to x! € H is (mgh,, - - ., Mzh,, ), then we say M is an H-matriz.
We say an integer m is semi-primitive modulo e if m? = —1 (mod e) for some
J

Theorem 4.3 [8, Theorem 4.17] Let H be an abelian group of exponent e and
order w, and assume that M is an integral H-matriz satisfying

MMT =zl +yJ and MJ = JM = zJ

for integers x,y and z, where I is the identity matriz and J is the all-one
matriz. If there exists an integer m with m?|z and m semi-primitive modulo e,
then M = aJ (mod m), where wa = z (mod m).



If S =73 ,cysnhisa(wk,s,\) difference list in H = {h1,...,hy}, then
define an integral H—matrix M with first row (sp,,...,Sh, ). Then the relations
satisfied by the intersection numbers s;, imply

MMT =nl+XsJ and MJ = JM = kJ

Combining this with Theorem 4.3 we get

Corollary 4.4 Let H be an abelian group of order w > 1 and exponent e, and
assume S =Y, -y snh is a (w, k, s, \) difference list. If there is an integer m
semi-primitive modulo e and with m?|n, then s, = a (mod m) for all h € H,
where wa =k (mod m). Moreover, if m|k and m is relatively prime to w, then

s> (km —n)/A.

Proof: Only the last statement needs proof. First note that (w,m) = 1 and
k =0 (mod m) imply s, = a =0 (mod m). Write s = mty, 50 Y )y sn =
mY t, = k implies > ¢, = k/m. Also, > s7 = m?Y ¢ = n + As gives
S t2 = (n+As)/m?. But then k/m =Y ¢, < >t} gives the desired inequality.
O

Note that since Corollary 4.4 applies to abelian quotients H = G/N, it is
stronger than Lander’s consequence of Theorem 4.3 [8, Theorem 4.18], which
requires that G be abelian. (Also note the typographical error in [8, Theorem
4.18]: the correct conclusion is m < |N|.)

Now we can prove Theorem 4.1. Assume G/N’' ~ H = Dgy x Z3 and G has a
(160, 54, 18) difference set D. By Theorem 4.2, we may assume that the abelian
group K = Z109 X Za X Zs has a (40, 54,4, 18) difference list with coefficients sy,
equal to the H intersection numbers of the difference set D in G. If we choose
m = 3, then we see that m? = 9|n = 18 and 32 = —1 (mod e = 10), so by
Corollary 4.4, we have s = 4 > (km —n)/\ = (162 — 36)/18 = 7, which is a
contradiction. This gives a second proof of part (1) of Theorem A. O

This same argument gives the following theorem and extablishes part (3) of
Theorem A.

Theorem 4.5 Suppose G is a group with a (160,54, 18) difference set. If G has
an abelian quotient H of exponent 2, 4, 5 or 10, then |H| < 20.

Proof The integer m = 3 satisfies the hypotheses of Corollary 4.4 for e = 2, 4,
5 or 10, so the index of H is at most 7. O (Note, however, that since 3* = 1
(mod 20), 3 is not semi-primitive modulo any multiple of 20.)

5 The proof using representations of Z;
Theorem 5.1 [12] Let G be a group of order 160 with a normal 5-Sylow subgroup

N and an elementary abelian 2-Sylow subgroup. Then G does mot contain a
(160, 54, 18) difference set.



Proof: Suppose that G does contain a (160, 54, 18) difference set D. Represen-
tations of Z3 are all integer-valued (values +1 actually). Suppose {v;} are the
32 intersection numbers for D with respect to the cosets of N, so 0 < v; <5 for
each i, Y v; =k =54 and > v =n+ s =36+ 18 -5 = 126.

Form a column vector v whose coordinates are the integers v;. Write [x] for
the 32 x 32 matrix of 0’s and 1’s which is the character table of Z5. Then, because
v/ = 6 in our case, we may write [x]v = 6z, where the entries of the vector z are

integers. By the orthogonality relations for characters, [x] x WT = 321, so we
can write v = (6/32)[x]?z = (6/32)z’, where the entries of the vector 2’ are also
integers. Thus we have 32v; = 62/ for each 4, and therefore each v; is divisible
by 3. Since 0 < v; < 5, we can only have v; = 0 or v; = 3. Because > v; = 54,
18 of the v; equal 3 and 14 equal 0. But then > v? = 18 -9 = 162 # 126, so we
have a contradiction, and G cannot contain a (160,54, 18) difference set. This
establishes part (2) of Theorem A. O

Note that if G = Dagx Z3, then the rotation subgroup of Dag is N x Z5, where
N is the unique 5-Sylow subgroup of G, and the quotient G/N is elementary
abelian, so Theorem 5.1 rules out a difference set in this case.

6 The remaining nonabelian cases

Putting together the results in the preceding sections, we have the following
theorem.

Theorem B. Suppose G is a nonabelian group with 2-Sylow subgroup S and
5-Sylow subgroup T and contains a (160, 54, 18) difference set. Then we have
one of three possibilities.

1. T is normal, |¢(S)| = 8, and one of the following is true.
(a) G=SxT and S is nonabelian;
(b) G has a Dy image; or
(c) G has a Frobenius image of order 20.

2. G has a Frobenius image of order 80.
3. G is of index 6 in AT'L(1,16).

Proof: Write ¢(S) for the Frattini subgroup of S. Note that |¢(S)| = 16 implies
that S is cyclic [3, Thm. 5.1.1].

We require the following lemma due to Liebler; a sketch of the proof of 6.1
follows that of Theorem B.

Lemma 6.1. [9] Suppose G contains a (160, 54,18) difference set. Then G
cannot have a cyclic image of order 32.



First, assume that 7' is normal, so Lemma 6.1 rules out |¢(S)| = 16. Let
n:S — Aut(T) ~ Z,, and let K = ker n. The possibilities are that |K| = 32,
16, or 8. If |K| = 32, elements of S commute with elements of T" and S is
normal also (as is ¢(S5)). Since G is nonabelian, S is nonabelian. If |¢(S)| < 4,
then G/¢(S) is abelian of exponent 10, so G has no difference set by part (3) of
Theorem A, and we have case (1a) of Theorem B. If | K| = 16, then G/K ~ Dyj.
If |¢(S)] < 4, then G has no difference set by part (1) of Theorem A, and we
have case (1b). If |K| = 8, then G/K is Frobenius of order 20, and we have
case (1c).

If S is normal and T is not, then G has a normal subgroup N of order 2 (the
intersection with S of the kernel of the permutation representation of G on its
16 5-Sylow subgroups) and G/N is Frobenius, giving case (2).

The remaining possibility is that neither S nor T" is normal. Liebler [9] has
pointed out that such a group of order 160 occurs as a subgroup of AT'L(1, 16)
of index 6. It is generated by the subgroup of order 5 of the multiplicative
group (a) of GF(16), the automorphism of GF(16) taking o to a* (together
giving a dihedral group of order 10) and the elementary abelian additive group
of GF(16). It can be shown, as we verify using GAP [13], that there is exactly
one isomorphism type among the groups of order 160 having no normal Sylow
subgroups. (A proof of this fact follows that of Liebler’s lemma.) This gives
case (3) and completes the proof of Theorem B. O

Remarks: Recently, Smith and Ong [15] have ruled out case (2) of Theorem
B, and Liebler [9] has ruled out case (1c). Note that |¢(S)| = 8 implies S has
two generators [3, 5.1.1]. If one generator has order 16, then there are 7 possi-
bilities for .S, two abelian and 4 nonabelian (dihedral, semidihedral, generalized
quaternion, or modular). (See [3, 5.4.4]). Using GAP [13], there are 19 isomor-
phism types for S if |¢(S)| = 8, two of which are abelian. Case 1(a) includes
the possibility that G has a Z,p image, and Smith [15] has pointed out that the
automorphism group of the first (160, 54, 18) design discovered is compatible
with the existence of difference set in a group with a Z,y image.

Sketch of proof of Lemma 6.1: Liebler’s proof is based on a calculation using
Maple. The logic of the calculation is straightforward. Assume that G contains a
(160, 54, 18) difference set and has a cyclic image of order 32 (and therefore cyclic
images of order 2, 4, 8 and 16 as well). We determine the possible intersection
numbers for each of these.

Arguing as in the proof of Theorem 3.1, it is easy to check that the Z5
intersection numbers are {30,24} and the Z; intersection numbers are either
{18,12,12,12} or {15,15,15,9}.

The number theory for the calculation of the possible Zg intersection num-
bers is more complicated. If ¢ is a primitive 8th root of unity, then the ideal in
Z[(] generated by 3 is the product of two prime ideals, generated by ¢ + (¢ — 1
and ¢? — ¢ — 1 respectively; the ideal generated by 2 is the fourth power of the
ideal generated by ¢ + 1. These factorizations are found by factoring the cyclo-



tomic polynomial ®g(z) = 2% + 1 mod 3, obtaining (2% + 2z + 2)(2? + x + 2),
and mod 2, obtaining (z + 1)*. If vj, j = 0,...,7 are the intersection num-
bers for the Zg image, and if x is the character taking the generator of Zg
to ¢, then d = x(D) = Zj v;¢7 has one of three possible forms: d = 6¢*,
d=2(C2+¢—-1)%¢" ord=2(¢2— ¢ —1)¢ for some £ =0,...,7.

Each of the three cases gives an expression of the form Z?:o ¢j¢? =0 for
integers c¢;, implying that the polynomial Z?:o cjz? divides the minimum poly-
nomial 2* + 1 of ¢, which can only happen if the c; are all zero. From this
we determine that for each of the three possible forms of d, only the even Z,4
intersection numbers are compatible with the existence of a Zg image.

A Maple calculation produces 12 inequivalent sets of Zg intersection num-
bers. (They are listed in an appendix.) A similar argument for the Z;5 image
shows that the Zg intersection numbers must also be even; three sets survive:
[12,6,6,6,6,6,6,06], [10,8,6,8,8,4,6,4], and [10,4,6,4,8,8,6,8].

Now, factoring ®16(x) mod 3 and mod 2 gives us the factorizations of the
ideals generated by 2 and by 3 in Z[n] for n a primitive 16th root of unity, and
this, in turn, gives us the possible images of D under the character taking the
generator of Zig to 1. From this, another Maple calculation gives the possible
sets of Z16 intersection numbers. (Again, they are listed in the appendix.) As
before, the existence of the Z32 image forces the Z;¢ intersection numbers to be
even, but for none of the possible sets is this true. Therefore a group containing
a (160, 54, 18) difference set cannot have a Z3o image. O

Lemma 6.2. If a group of order 160 has no normal Sylow subgroups, then it
is isomorphic to a subgroup of AT'L(1,16).

Proof: First we claim that a chief series for G must have factors of size 2,5, 16.
Since the 5—Sylow subgroups are not normal, the top and bottom factors are
powers of 2. The top factor can’t exceed 2, since a normal subgroup of order
2% .5 with a < 4 has a normal 5-Sylow, forcing a normal 5-Sylow in G. The
bottom factor comes from a normal elementary abelian subgroup N of order 2°
for some b. A 5-Sylow subgroup T of G normalizes N, and if b < 4 it must
centralize N; so, since |[Ng(T')| = 10, the bottom factor must be 2 or 16. If the
bottom factor were 2, we’'d again find T centralizing too many elements of even
order. So G has a chief series 1 < N < F' < G, with N elementary abelian of
order 16 and F' of index 2.

Now we show that G/N =~ Djg, giving the desired isomorphism. Notice
that a 2-Sylow subgroup S of G cannot centralize N, for if S were (necessarily,
properly) contained in the kernel of the map from G to Aut(N), it would follow
that G and hence a 5-Sylow subgroup T of G centralizes N, contradicting
|[Ng(T)| = 10. Choose z € S\ N and y € N with y* # x. If x is an involution,
we have (T,z) = Djg, and we are done. If z is not an involution, it must
have order 4, implying (x,y) of order 8 contains the Klein group (y,y”) and is
therefore dihedral. But (z,y) NN = (y,y"), so there are involutions in S not in

10



N, and we can choose one in place of z. O
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Appendix. The other 9 possible Zg interesection numbers are, up to equiva-
lence (via cyclic shifts and autmorphisms of Zs), among the following 8-tuples.
[9,9,6,6,9,3,6,6], [9,6,9,6,9,6,3.6], [9,6,6,9,9,6,6,3], [9,4,5,8,9,8,7 4], [7,6,4,5,11,6,8,7],
[11,7,4,6,7,5,8,6], [9,8,5,4,9,4,7.8], [11,6,8,5,7,6,4,7], [7,7,8,6,11,5,4,6].

The possible Z1¢ intersection numbers are, up to equivalence, among the
following 23 16-tuples.
[9,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3], 0,3,3,3,3,3,3,6,6,3,3,3,3,3,3,6],
[0,3,6,3,3,3,3,3,6,3,6,3,3,3,3,3], 0,3,3,3,6,3,3,3,6,3,3,3,6,3,3,3],
2,3,5,3,6,3,5,3,4,3,1,3,6,3,1,3], [2,3,1,3,3,6,1,3,4,3,5,3,3,6,5,3],
[2,6,1,3,3,3,1,3,4,6,5,3,3,3,5,3], [1,3,2,3,8,3,3,3,5,3,4,3,4,3,3,3],
[7,3,1,3,3,3,1,3,5,3,5,3,3,3,5,3], [8,4,3,4,5,2,3,2,7,4,3,4,5,2,3,2],
[0,4,4,2,3,2,5,4,6,4,4,2,3,2,54], [3,2,5,2,5,4,54,52,1,2 5 4,1,4],
[3,4,5,4,5,2,5,2,5,4,1,4,5,2,1,2], [0,5,4,3,2,4,1,3,4,5,4,3,6,4,3,3],
[0,3,1,4,6,3,4,5,4,3,3,4,2,3,4,5], [6,2,4,2,3,4,3,4,2,2,2. 27 4 3.4],
[6,4,3,4,7,2,4,2,2.4,3/4,3,2,2 2], [6,4,1,4,4,2,1,2,4,4,5,4,4,25,2],
[6,2,1,2,4,4,1,4,4,2,5,2.4,4,5 4], [0,5,3,3,6,4,2,3,4,5,5,3,2,4,2,3],
[0,3,2,4,2,3,3,5,4,3,2,4,6,3,5,5].
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