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Abstract

We prove the following theorems.

Theorem A. Let G be a group of order 160 satisfying one of the following
conditions. (1) G has an image isomorphic to D20 × Z2 (for example, if
G ' D20 ×K). (2) G has a normal 5–Sylow subgroup and an elementary
abelian 2–Sylow subgroup. (3) G has an abelian image of exponent 2, 4,
5 or 10 and order greater than 20. Then G cannot contain a (160, 54, 18)
difference set.

Theorem B. Suppose G is a nonabelian group with 2–Sylow subgroup S

and 5–Sylow subgroup T and contains a (160, 54, 18) difference set. Then
we have one of three possibilities. (1) T is normal, |φ(S)| = 8, and one of
the following is true: (a) G = S ×T and S is nonabelian; (b) G has a D10

image; or (c) G has a Frobenius image of order 20. (2) G has a Frobenius
image of order 80. (3) G is of index 6 in AΓL(1, 16).

To prove the first case of Theorem A, we find the possible distribu-
tion of a putative difference set with the stipulated parameters among the
cosets of a normal subgroup using irreducible representations of the quo-
tient; we show that no such distribution is possible. The other two cases
are due to others. In the second (due to Pott) irreducible representations
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of the elementary abelian quotient of order 32 give a contradiction. In
the third (due to an anonymous referee), the contradiction derives from
a theorem of Lander together with Dillon’s “dihedral trick.” Theorem B
summarizes the open nonabelian cases based on this work.

1 Introduction.

Attention was drawn to the difference set parameters (160, 54, 18) by Pott [11]
and Smith [14] in 1993 because of the (then) recent discovery of a new symmetric
design with those parameters [16]. Consequently, in the summer of 1994 the
authors considered the possibility of a (160, 54, 18) difference set in the group
D20 × Z3

2 . Using representations of D20, we were able to show that no such
difference set can exist. Actually, the 1994 work shows something stronger: If
G has an image isomorphic to D20×Z2, then no (160, 54, 18) difference set exists
in G. Since every group of order 8 contains a normal subgroup of order 4, this
rules out a (160, 54, 18) difference set in D20 ×K for every choice of K of order
8.

Subsequently, Pollatsek was shown two much shorter proofs. An anonymous
referee pointed out that a theorem of Lander excludes a (160, 54, 18) difference
set in any group having an abelian image G/N of order greater than 20 and
exponent 2, 4, 5 or 10; by Dillon’s “dihedral trick” [2], this gives nonexistence for
any group with a D20×Z2 image. In a personal communication [12], Pott gave a
third proof of nonexistence for the original 1994 theorem, using representations
of Z5

2 to rule out a (160, 54, 18) difference set in any group with a Z5
2 image.

In this note, we sketch all three proofs as a way of illustrating the diversity of
methods that can be brought to bear on such questions. We summarize their
consequences by stating the following result.

Theorem A. Let G be a group of order 160 satisfying one of the following
conditions.

1. G has an image isomorphic to D20 × Z2 (for example, if G ' D20 × K).

2. G has a normal 5–Sylow subgroup and an elementary abelian 2–Sylow
subgroup.

3. G has an abelian image of exponent 2, 4, 5 or 10 and order greater than
20.

Then G cannot contain a (160, 54, 18) difference set.

Using the program gap [13], we determine that there are 51 groups of order
32 and 238 groups of order 160, of which 7 are abelian. Nonexistence in the
abelian cases was shown by work of Kopilovich [7] and Ma and Schmidt [10].
The open nonabelian cases are summarized by Theorem B. We write φ(S) for
the Frattini subgroup of S.
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Theorem B. Suppose G is a nonabelian group with 2–Sylow subgroup S and
5–Sylow subgroup T and contains a (160, 54, 18) difference set. Then we have
one of three possibilities.

1. T is normal, |φ(S)| = 8, and one of the following is true.

(a) G = S × T and S is nonabelian;

(b) G has a D10 image; or

(c) G has a Frobenius image of order 20.

2. G has a Frobenius image of order 80.

3. G is of index 6 in AΓL(1, 16).

Recently, Smith and Ong [15] have ruled out case (2) of Theorem B, and
Liebler [9] has ruled out case (1c).

2 Preliminaries

Notation. Throughout, we use Zm to denote the cyclic group of order m, D2m

to denote the dihedral group of order 2m, and Z to denote the ring of integers, Q
the rational numbers, and C the complex numbers. We always write the group
operation multiplicatively to distinguish it from the addition in the integral
group ring ZG. The ring of n × n matrices with entries in a field F is denoted
M(n, F ). We use the same symbol S to represent a subset of G and also to
represent the sum S =

∑

s∈S s in ZG, and we write S(m) =
∑

s∈S sm.

2.1 Results on Difference Sets

In this section we collect the facts about difference sets that we will use. All
are well-known and many are easily proved. Useful references are [6] and [8]. A
(v, k, λ) difference set is a subset D of cardinality k in a finite group G of order
v such that every non-identity element of G can be expressed exactly λ times
as the “difference” df−1 where d and f are distinct elements of D. The order of
the difference set is n = k − λ.
Proposition 1.1 Let G be a group and D a (v, k, λ) difference set in G. Then
(v − 1)λ = k(k − 1).
Proposition 1.2 [8, Prop. 4.3] A subset D of a group G is a (v, k, λ) difference
set if and only if the equation DD(−1) = n · 1 + λG holds in the integral group
ring ZG, where 1 is the identity element of G.

Let φ be a representation of G of degree m, and also write φ for the natural
extension of φ to a ring homomorphism from ZG to M(m, C),. Applying this
ring homomorphism to the equation in Proposition 1.2, we obtain the following
result (see [1]).
Proposition 1.3 Assume D is a (v, k, λ) difference set in a group G.
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1. If φ is a non-trivial linear representation of G and z = φ(D), then z ∈ Z[ζ]
for some primitive root of unity ζ, and zz = n.

2. Let φ be an irreducible (without loss of generality, unitary) representation

of G of degree ≥ 2, and let M = φ(D). Then MM
T

= nI, and the entries
of M are in Z[ζ] for some primitive root of unity ζ.

Proposition 1.4 Suppose D is a difference set in a group G with normal sub-
group N , let φ be a representation of G/N , and also denote by φ the represen-
tation of G defined by φ(g) = φ(gN). Let {giN} be the distinct cosets of G/N ,
and let vi = |D ∩ giN |. Then φ(D) =

∑

i viφ(gi).
The {vi} are called the intersection numbers modulo N , and they satisfy the

following useful relation (even if N is not normal).
Proposition 1.5 Let D be a (v, k, λ) difference set in a group G, and let N be
a subgroup of G. If |N | = s and vi = |D ∩ giN |, where the giN vary over the
distinct cosets of G/N , then

∑

i

v2
i = n + λs.

Much of our analysis involves assuming that a (v, k, λ) difference set D exists
and determining the intersection numbers vi for various choices of the normal
subgroup N . Since the vi are non-negative integers whose sum is k, there are
only finitely many possible choices for the vi.

2.2 Results from number theory

Proposition 2.1 Let ζ be a primitive pth root of unity, with p prime. Suppose
∑

aiζ
i = 0, for ai ∈ Q. Then a0 = a1 = · · · = ap−1.

Theorem 2.2 [4, Thm. 2, p. 180] In the ring of integers in an algebraic
number field, every ideal can be written uniquely as a product of prime ideals.
In particular this is true of Z[ζ], ζ a primitive root of unity.
Theorem 2.3 [4, Thm. 2, p. 196] Let ζ be a primitive mth root of unity, and
let R = Z[ζ]. Let p be a prime, and assume p 6 |m. Let f be the order of p
modulo m; that is, f is the least positive integer so that pf ≡ 1 mod m . Let
pR be the ideal generated by p in R . Then in R, pR = P1P2 . . . Pg , where the
Pi are distinct prime ideals, with g = φ(m)/f (where φ denotes the Euler phi
function).
Proposition 2.4 [5, Ex. 28.9, p.472] Let ζ be a primitive mth root of unity,
and let R = Z[ζ]. If u ∈ R and uu = 1, then u = ±ζ` for some integer `.
Proposition 2.5 Let ζ be a primitive 5th root of unity, and let R = Z[ζ]. Let
z ∈ R with zz = 36. Then z = ±6ζ` for some integer `.
Proof: By 2.3, 2R and 3R are prime ideals; moreover, they are fixed by complex
conjugation. Let z ∈ R, and assume zz = 36. Then we have zRzR = zzR =
36R = (2R)2(3R)2. ¿From this it follows that zR = zR = (2R)(3R) = 6R.
But this means that z = 6u for some u ∈ R with uu = 1, so 2.4 tells us that
z = ±6ζ` for some integer `, as claimed. 2
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3 The proof using representations of D20

Theorem 3.1 If G/N ′ ' D20×Z2 for some normal subgroup N ′, then G cannot
contain a (160, 54, 18) difference set.

Proof: Note first that G/N ′ ' D20×Z2 implies that G has an image isomorphic
to D20, say G/N ' D20 and also an image G/N1 of order 2. Assume that G does
in fact contain a non-trivial (160, 54, 18) difference set D. Then it is easily seen
that without loss of generality we may assume |D∩N1| = 24 and |D∩gN1| = 30
are the two intersection numbers for D modulo N1.

Set up notation so that D20 = 〈x, y : x10 = y2 = 1, xy = x−1〉. Let vij =
|D∩xiyj | be the corresponding 20 intersection numbers for D mod N , and let ζ
be a primitive 5th root of unity. The irreducible 2-dimensional representations
of G/N have the form

φ(x) =

[

α 0
0 α−1

]

φ(y) =

[

0 1
1 0

]

where α = (−ζ)m for some positive integer m. Then

M = φ(D) =

[
∑

vi0α
i

∑

vi1α
i

∑

vi1α
−i

∑

vi0α
−i

]

=

[

A B
B A

]

By 1.3, M ×M
T

= 36I . From this we get AA +BB = 36., and either AA = 36
and BB =0, or vice versa. In the first instance, all the vi1 are equal and all but
one of the vi0 are equal, with the tenth one differing by ±6, and vice versa in
the second instance.

Specifically, we examine the cases where α = ζ2 and α = −ζ. In the first
case we label the first row of M by [Q, R], and in the second by [S, T ]. We then
have the equations

Q = (v00 + v50) + (v10 + v60)ζ
2 + (v20 + v70)ζ

4 + (v30 + v80)ζ + (v40 + v90)ζ
3

R = (v01 + v51) + (v11 + v61)ζ
2 + (v21 + v71)ζ

4 + (v31 + v81)ζ + (v41 + v91)ζ
3

S = (v00 − v50) + (v60 − v10)ζ
2 + (v20 − v70)ζ

4 + (v80 − v30)ζ + (v40 − v90)ζ
3

T = (v01 − v51) + (v61 − v11)ζ
2 + (v21 − v71)ζ

4 + (v81 − v31)ζ + (v41 − v91)ζ
3

We may assume
∑

vi0 = 24 and
∑

vi1 = 30.
Now, from a careful examination of cases, up to equivalence (by translation

of D or automorphism of G), we can show that there are just two possibilities
for the ordered list of intersection numbers, namely
(v00, v10, . . . , v10 0; v01, v11, . . . , v10 1) =
(1) (0, 6, 3, 3, 3, 0, 0, 3, 3, 3; 3, 3, 3, 3, 3, 3, 3, 3, 3, 3) or
(2) (0, 3, 3, 3, 3, 0, 3, 3, 3, 3; 6, 3, 3, 3, 3, 0, 3, 3, 3, 3).

Some possibilities are ruled out by 1.5; others are ruled out by considering
overgroups of N and unions of cosets mod N . (For details of the argument, see
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the web page www.mtholyoke.edu/~hpollats. Note that the argument never
uses any information about the structure of N .)

Finally, G/N ′ ' D20 × Z2, gives intersection numbers wijk with 0 ≤ i ≤
10, 0 ≤ j, k ≤ 1 for D. The irreducible representations of this quotient are tensor
products of representations of D20 with those of Z2, and, using an argument
similar to the one for the vij , it can be shown that no assignment of the wijk

consistent with the vij is possible, and therefore the difference set cannot exist.
This establishes the first case of Theorem A. 2

4 The proof using the “dihedral trick”

Theorem 4.1 Suppose G has a normal subgroup N ′ of order 4 with G/N ′ '
D20 × Z2. Then G contains no (160, 54, 18) difference set.

The proof we present relies on results of Lander and Dillon. Before stating
them, we need some definitions. Suppose a group G with a normal subgroup N
has a (v, k, λ) difference set D. Write H = G/N , and for h ∈ H , let sh be the
size of the intersection of D with the coset h. Then S =

∑

h∈H shh satisfies the
ZH equation

SS(−1) = n + λ|N |H
from which it follows that

∑

h∈H sh = k,
∑

h∈H s2
h = n + λ|N | (as in 1.5) and

for a 6= b ∈ H ,
∑

h∈H sahsbh = λ|N | (see [6, p. 260]). Such an element of ZH
is called a (w, k, s, λ) difference list in H , where |H | = w and |N | = s.

Theorem 4.2 [2, p. 16] Let A be an abelian group, and let H = 〈A, Q〉,
where QaQ = a−1 for all a ∈ A, Q2 = 1. Let K = 〈A, θ〉, where [θ, a] = 1
for all a ∈ A and θ2 ∈ A. If H contains a (w, k, s, λ) difference list, then so
does K. Specifically, if S =

∑

a∈A uaa + vaQa is a difference list in ZH, then
T =

∑

a∈A uaa + vaθa is a difference list in ZK with the same parameters.

We need two further definitions. Let H be a group of order w, H = {h1 =
1, h2, . . . , hw}, and let M be a w × w matrix whose rows and columns are
indexed by elements of H . If the first row of M is (mh1

, . . . , mhw
), and the row

corresponding to x−1 ∈ H is (mxh1
, . . . , mxhw

), then we say M is an H–matrix.
We say an integer m is semi-primitive modulo e if mj ≡ −1 (mod e) for some
j.

Theorem 4.3 [8, Theorem 4.17] Let H be an abelian group of exponent e and
order w, and assume that M is an integral H–matrix satisfying

MMT = xI + yJ and MJ = JM = zJ

for integers x,y and z, where I is the identity matrix and J is the all–one
matrix. If there exists an integer m with m2|x and m semi-primitive modulo e,
then M ≡ aJ (mod m), where wa ≡ z (mod m).
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If S =
∑

h∈H shh is a (w, k, s, λ) difference list in H = {h1, . . . , hw}, then
define an integral H–matrix M with first row (sh1

, . . . , shw
). Then the relations

satisfied by the intersection numbers sh imply

MMT = nI + λsJ and MJ = JM = kJ

Combining this with Theorem 4.3 we get

Corollary 4.4 Let H be an abelian group of order w > 1 and exponent e, and
assume S =

∑

h∈H shh is a (w, k, s, λ) difference list. If there is an integer m
semi-primitive modulo e and with m2|n, then sh ≡ a (mod m) for all h ∈ H,
where wa ≡ k (mod m). Moreover, if m|k and m is relatively prime to w, then
s ≥ (km − n)/λ.

Proof: Only the last statement needs proof. First note that (w, m) = 1 and
k ≡ 0 (mod m) imply sh ≡ a ≡ 0 (mod m). Write sh = mth, so

∑

h∈H sh =
m

∑

th = k implies
∑

th = k/m. Also,
∑

s2
h = m2

∑

t2h = n + λs gives
∑

t2h = (n+λs)/m2. But then k/m =
∑

th ≤ ∑

t2h gives the desired inequality.
2

Note that since Corollary 4.4 applies to abelian quotients H = G/N , it is
stronger than Lander’s consequence of Theorem 4.3 [8, Theorem 4.18], which
requires that G be abelian. (Also note the typographical error in [8, Theorem
4.18]: the correct conclusion is m ≤ |N |.)

Now we can prove Theorem 4.1. Assume G/N ′ ' H = D20×Z2 and G has a
(160, 54, 18) difference set D. By Theorem 4.2, we may assume that the abelian
group K = Z10 ×Z2 ×Z2 has a (40, 54, 4, 18) difference list with coefficients sh

equal to the H intersection numbers of the difference set D in G. If we choose
m = 3, then we see that m2 = 9|n = 18 and 32 ≡ −1 (mod e = 10), so by
Corollary 4.4, we have s = 4 ≥ (km − n)/λ = (162 − 36)/18 = 7, which is a
contradiction. This gives a second proof of part (1) of Theorem A. 2

This same argument gives the following theorem and extablishes part (3) of
Theorem A.

Theorem 4.5 Suppose G is a group with a (160, 54, 18) difference set. If G has
an abelian quotient H of exponent 2, 4, 5 or 10, then |H | ≤ 20.

Proof The integer m = 3 satisfies the hypotheses of Corollary 4.4 for e = 2, 4,
5 or 10, so the index of H is at most 7. 2 (Note, however, that since 34 ≡ 1
(mod 20), 3 is not semi-primitive modulo any multiple of 20.)

5 The proof using representations of Z5
2

Theorem 5.1 [12] Let G be a group of order 160 with a normal 5–Sylow subgroup
N and an elementary abelian 2–Sylow subgroup. Then G does not contain a
(160, 54, 18) difference set.
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Proof: Suppose that G does contain a (160, 54, 18) difference set D. Represen-
tations of Z5

2 are all integer-valued (values ±1 actually). Suppose {vi} are the
32 intersection numbers for D with respect to the cosets of N , so 0 ≤ vi ≤ 5 for
each i,

∑

vi = k = 54 and
∑

v2
i = n + λs = 36 + 18 · 5 = 126.

Form a column vector v whose coordinates are the integers vi. Write [χ] for
the 32×32 matrix of 0’s and 1’s which is the character table of Z5

2 . Then, because√
n = 6 in our case, we may write [χ]v = 6z, where the entries of the vector z are

integers. By the orthogonality relations for characters, [χ] × [χ]
T

= 32I , so we
can write v = (6/32)[χ]T z = (6/32)z′, where the entries of the vector z′ are also
integers. Thus we have 32vi = 6z′i for each i, and therefore each vi is divisible
by 3. Since 0 ≤ vi ≤ 5, we can only have vi = 0 or vi = 3. Because

∑

vi = 54,
18 of the vi equal 3 and 14 equal 0. But then

∑

v2
i = 18 · 9 = 162 6= 126, so we

have a contradiction, and G cannot contain a (160, 54, 18) difference set. This
establishes part (2) of Theorem A. 2

Note that if G = D20×Z3
2 , then the rotation subgroup of D20 is N×Z2, where

N is the unique 5–Sylow subgroup of G, and the quotient G/N is elementary
abelian, so Theorem 5.1 rules out a difference set in this case.

6 The remaining nonabelian cases

Putting together the results in the preceding sections, we have the following
theorem.

Theorem B. Suppose G is a nonabelian group with 2–Sylow subgroup S and
5–Sylow subgroup T and contains a (160, 54, 18) difference set. Then we have
one of three possibilities.

1. T is normal, |φ(S)| = 8, and one of the following is true.

(a) G = S × T and S is nonabelian;

(b) G has a D10 image; or

(c) G has a Frobenius image of order 20.

2. G has a Frobenius image of order 80.

3. G is of index 6 in AΓL(1, 16).

Proof: Write φ(S) for the Frattini subgroup of S. Note that |φ(S)| = 16 implies
that S is cyclic [3, Thm. 5.1.1].

We require the following lemma due to Liebler; a sketch of the proof of 6.1
follows that of Theorem B.

Lemma 6.1. [9] Suppose G contains a (160, 54, 18) difference set. Then G
cannot have a cyclic image of order 32.
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First, assume that T is normal, so Lemma 6.1 rules out |φ(S)| = 16. Let
η : S → Aut(T ) ' Z4, and let K = ker η. The possibilities are that |K| = 32,
16, or 8. If |K| = 32, elements of S commute with elements of T and S is
normal also (as is φ(S)). Since G is nonabelian, S is nonabelian. If |φ(S)| ≤ 4,
then G/φ(S) is abelian of exponent 10, so G has no difference set by part (3) of
Theorem A, and we have case (1a) of Theorem B. If |K| = 16, then G/K ' D10.
If |φ(S)| ≤ 4, then G has no difference set by part (1) of Theorem A, and we
have case (1b). If |K| = 8, then G/K is Frobenius of order 20, and we have
case (1c).

If S is normal and T is not, then G has a normal subgroup N of order 2 (the
intersection with S of the kernel of the permutation representation of G on its
16 5–Sylow subgroups) and G/N is Frobenius, giving case (2).

The remaining possibility is that neither S nor T is normal. Liebler [9] has
pointed out that such a group of order 160 occurs as a subgroup of AΓL(1, 16)
of index 6. It is generated by the subgroup of order 5 of the multiplicative
group 〈α〉 of GF(16), the automorphism of GF(16) taking α to α4 (together
giving a dihedral group of order 10) and the elementary abelian additive group
of GF(16). It can be shown, as we verify using gap [13], that there is exactly
one isomorphism type among the groups of order 160 having no normal Sylow
subgroups. (A proof of this fact follows that of Liebler’s lemma.) This gives
case (3) and completes the proof of Theorem B. 2

Remarks: Recently, Smith and Ong [15] have ruled out case (2) of Theorem
B, and Liebler [9] has ruled out case (1c). Note that |φ(S)| = 8 implies S has
two generators [3, 5.1.1]. If one generator has order 16, then there are 7 possi-
bilities for S, two abelian and 4 nonabelian (dihedral, semidihedral, generalized
quaternion, or modular). (See [3, 5.4.4]). Using gap [13], there are 19 isomor-
phism types for S if |φ(S)| = 8, two of which are abelian. Case 1(a) includes
the possibility that G has a Z40 image, and Smith [15] has pointed out that the
automorphism group of the first (160, 54, 18) design discovered is compatible
with the existence of difference set in a group with a Z40 image.

Sketch of proof of Lemma 6.1: Liebler’s proof is based on a calculation using
Maple. The logic of the calculation is straightforward. Assume that G contains a
(160, 54, 18) difference set and has a cyclic image of order 32 (and therefore cyclic
images of order 2, 4, 8 and 16 as well). We determine the possible intersection
numbers for each of these.

Arguing as in the proof of Theorem 3.1, it is easy to check that the Z2

intersection numbers are {30, 24} and the Z4 intersection numbers are either
{18, 12, 12, 12} or {15, 15, 15, 9}.

The number theory for the calculation of the possible Z8 intersection num-
bers is more complicated. If ζ is a primitive 8th root of unity, then the ideal in
Z[ζ] generated by 3 is the product of two prime ideals, generated by ζ2 + ζ − 1
and ζ2 − ζ − 1 respectively; the ideal generated by 2 is the fourth power of the
ideal generated by ζ + 1. These factorizations are found by factoring the cyclo-
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tomic polynomial Φ8(x) = x4 + 1 mod 3, obtaining (x2 + 2x + 2)(x2 + x + 2),
and mod 2, obtaining (x + 1)4. If vj , j = 0, . . . , 7 are the intersection num-
bers for the Z8 image, and if χ is the character taking the generator of Z8

to ζ, then d = χ(D) =
∑

j vjζ
j has one of three possible forms: d = 6ζ`,

d = 2(ζ2 + ζ − 1)2ζl, or d = 2(ζ2 − ζ − 1)ζ` for some ` = 0, . . . , 7.

Each of the three cases gives an expression of the form
∑3

j=0 cjζ
j = 0 for

integers cj , implying that the polynomial
∑3

j=0 cjx
j divides the minimum poly-

nomial x4 + 1 of ζ, which can only happen if the cj are all zero. From this
we determine that for each of the three possible forms of d, only the even Z4

intersection numbers are compatible with the existence of a Z8 image.
A Maple calculation produces 12 inequivalent sets of Z8 intersection num-

bers. (They are listed in an appendix.) A similar argument for the Z16 image
shows that the Z8 intersection numbers must also be even; three sets survive:
[12, 6, 6, 6, 6, 6, 6, 6], [10, 8, 6, 8, 8, 4, 6, 4], and [10, 4, 6, 4, 8, 8, 6, 8].

Now, factoring Φ16(x) mod 3 and mod 2 gives us the factorizations of the
ideals generated by 2 and by 3 in Z[η] for η a primitive 16th root of unity, and
this, in turn, gives us the possible images of D under the character taking the
generator of Z16 to η. From this, another Maple calculation gives the possible
sets of Z16 intersection numbers. (Again, they are listed in the appendix.) As
before, the existence of the Z32 image forces the Z16 intersection numbers to be
even, but for none of the possible sets is this true. Therefore a group containing
a (160, 54, 18) difference set cannot have a Z32 image. 2

Lemma 6.2. If a group of order 160 has no normal Sylow subgroups, then it
is isomorphic to a subgroup of AΓL(1, 16).

Proof: First we claim that a chief series for G must have factors of size 2, 5, 16.
Since the 5–Sylow subgroups are not normal, the top and bottom factors are
powers of 2. The top factor can’t exceed 2, since a normal subgroup of order
2a · 5 with a < 4 has a normal 5–Sylow, forcing a normal 5–Sylow in G. The
bottom factor comes from a normal elementary abelian subgroup N of order 2b

for some b. A 5–Sylow subgroup T of G normalizes N , and if b < 4 it must
centralize N ; so, since |NG(T )| = 10, the bottom factor must be 2 or 16. If the
bottom factor were 2, we’d again find T centralizing too many elements of even
order. So G has a chief series 1 � N � F � G, with N elementary abelian of
order 16 and F of index 2.

Now we show that G/N ' D10, giving the desired isomorphism. Notice
that a 2–Sylow subgroup S of G cannot centralize N , for if S were (necessarily,
properly) contained in the kernel of the map from G to Aut(N), it would follow
that G and hence a 5–Sylow subgroup T of G centralizes N , contradicting
|NG(T )| = 10. Choose x ∈ S \ N and y ∈ N with yx 6= x. If x is an involution,
we have 〈T, x〉 = D10, and we are done. If x is not an involution, it must
have order 4, implying 〈x, y〉 of order 8 contains the Klein group 〈y, yx〉 and is
therefore dihedral. But 〈x, y〉 ∩N = 〈y, yx〉, so there are involutions in S not in
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N , and we can choose one in place of x. 2
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Appendix. The other 9 possible Z8 interesection numbers are, up to equiva-
lence (via cyclic shifts and autmorphisms of Z8), among the following 8-tuples.
[9,9,6,6,9,3,6,6], [9,6,9,6,9,6,3,6], [9,6,6,9,9,6,6,3], [9,4,5,8,9,8,7,4], [7,6,4,5,11,6,8,7],
[11,7,4,6,7,5,8,6], [9,8,5,4,9,4,7,8], [11,6,8,5,7,6,4,7], [7,7,8,6,11,5,4,6].

The possible Z16 intersection numbers are, up to equivalence, among the
following 23 16-tuples.

[9,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3], [0,3,3,3,3,3,3,6,6,3,3,3,3,3,3,6],
[0,3,6,3,3,3,3,3,6,3,6,3,3,3,3,3], [0,3,3,3,6,3,3,3,6,3,3,3,6,3,3,3],
[2,3,5,3,6,3,5,3,4,3,1,3,6,3,1,3], [2,3,1,3,3,6,1,3,4,3,5,3,3,6,5,3],
[2,6,1,3,3,3,1,3,4,6,5,3,3,3,5,3], [1,3,2,3,8,3,3,3,5,3,4,3,4,3,3,3],
[7,3,1,3,3,3,1,3,5,3,5,3,3,3,5,3], [8,4,3,4,5,2,3,2,7,4,3,4,5,2,3,2],
[0,4,4,2,3,2,5,4,6,4,4,2,3,2,5,4], [3,2,5,2,5,4,5,4,5,2,1,2,5,4,1,4],
[3,4,5,4,5,2,5,2,5,4,1,4,5,2,1,2], [0,5,4,3,2,4,1,3,4,5,4,3,6,4,3,3],
[0,3,1,4,6,3,4,5,4,3,3,4,2,3,4,5], [6,2,4,2,3,4,3,4,2,2,2,2,7,4,3,4],
[6,4,3,4,7,2,4,2,2,4,3,4,3,2,2,2], [6,4,1,4,4,2,1,2,4,4,5,4,4,2,5,2],
[6,2,1,2,4,4,1,4,4,2,5,2,4,4,5,4], [0,5,3,3,6,4,2,3,4,5,5,3,2,4,2,3],
[0,3,2,4,2,3,3,5,4,3,2,4,6,3,5,5].
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