
STATISTICS ON ℓ-INTERVAL PARKING FUNCTIONS

KYLE CELANO, JENNIFER ELDER, KIMBERLY P. HADAWAY, PAMELA E. HARRIS, JEREMY L. MARTIN,

AMANDA PRIESTLEY, AND GABE UDELL

Abstract. The displacement of a car with respect to a parking function is the number of spots it must

drive past its preferred spot in order to park. An ℓ-interval parking function is one in which each car
has displacement at most ℓ. Among our results, we enumerate ℓ-interval parking functions with respect

to statistics such as inversion, displacement, and major index. We show that 1-interval parking functions

with fixed displacement exhibit a cyclic sieving phenomenon. We give closed formulas for the number of
1-interval parking functions with a fixed number of inversions. We prove that a well-known bijection of

Foata preserves the set of ℓ-interval parking functions exactly when ℓ ≤ 2 or ℓ ≥ n− 2, which implies that

the inversion and major index statistics are equidistributed in these cases.

Contents

1. Introduction 1
2. Background 3
2.1. Parking functions and ℓ-interval parking functions 3
2.2. Block structure of unit interval parking functions 4
2.3. Permutation statistics 5
3. Enumeration by counting through permutations 5
3.1. A cyclic sieving phenomenon 7
3.2. From ℓ = 1 to ℓ = 2 9
4. Enumeration via ciphers 11
4.1. The Avalos–Bly and cipher bijections 12
4.2. Ciphers and Lehmer codes 13
4.3. Unit Fubini rankings 14
5. Foata invariance and inv-maj equidistribution 15
5.1. The Foata transform on words 16
5.2. Permuting parking functions 16
5.3. Proof of Theorem 5.1 18
5.4. Enumeration by major index 22
6. Further Problems 23
Acknowledgments 23
References 24

1. Introduction

This paper is about enumerating ℓ-interval parking functions with respect to statistics such as inversion,
displacement, and major index. Parking functions first appeared in the work of Konheim and Weiss [19] and
have become standard objects in combinatorics. Suppose that n cars attempt to park in n spots 1, 2, . . . , n
on a one-way street. Each car drives to its preferred spot ai and parks there if possible; if that spot is taken,

Date: July 9, 2025.

2020 Mathematics Subject Classification. Primary 05A05; Secondary 05A15, 05A19.
Key words and phrases. Parking function, ℓ-interval parking function, unit interval parking function, unit Fubini rank-

ing, Lehmer code, ordered set partition, permutation, Foata bijection, cyclic sieving, q-analogue, inversion, major index,

displacement.

1

the car continues along the street and parks in the first available spot. If all cars are able to park successfully,
the tuple α = (a1, a2, . . . , an) ∈ [n]n is called a parking function. In this case, if the ith car parks in spot
si, then the number si − ai is its displacement.

An ℓ-interval parking function, or IPF for short, is a parking function in which each car has displace-
ment less than or equal to some fixed number ℓ; we write IPFn(ℓ) for the set of all ℓ-interval parking functions
of length n. These objects were first studied by Aguilar-Fraga et al. [2]. (The idea of restricting each car
to an interval was considered by Colaric et al. [8], although in that paper the intervals were not required to
have the same length.) The case ℓ = 1 is of particular interest. These unit interval parking functions, or
UPFs, are enumerated by the Fubini numbers [5, 17], which also count the faces of the permutahedron [7].
UPFs are also related to Boolean intervals in weak Bruhat order on the symmetric group [10]. Enumerative
results on ℓ-interval parking functions with ℓ ≥ 1 also give connections to Dyck paths with restricted heights
and to preferential arrangements [2].

Bradt et al. [5, Theorem 2.9] proved that unit interval parking functions exhibit a tightly controlled
block structure, which we describe in Section 2.2. To summarize, if α = (a1, . . . , an) is a UPF with weakly
increasing rearrangement α↑ = (a′1, . . . , a

′
n), then a

′
i ∈ {i, i−1} for every i, and if α↑ is partitioned into blocks

by inserting a separator before every entry with α′
i = i, then the elements of each block appear left-to-right

in α. This structure is key to many of the enumerative results in this paper. No analogous structure is
known for ℓ-interval parking functions with ℓ ≥ 2.

In Section 3, we study the generating function Φn,ℓ(q, t) for IPFn(ℓ) by total displacement and inversion
number. We use the technique of “counting through permutations”: to count a set X, define an appropriate
function C : X → Sn, count each fiber, and add up the counts. The formula produced by this method
cannot always be simplified further, but it is typically much more computationally efficient than brute-force
enumeration. We give a general formula for Φn,ℓ(q, t) in Theorem 3.1, involving the q-analogues of certain
numbers Lℓ(σ; i) associated with a permutation σ (see eqn. (2)). The case ℓ = n−1 was previously obtained
in [9]. For UPFs, the polynomial Φn,1(q, t) has a much simpler expression (Theorem 3.3). In addition,
if we write Φn,1(q, t) =

∑
k q

kfn,k(t), then each polynomial fn,k(t) exhibits a cyclic sieving phenomenon
(Theorem 3.6). There is an analogue of Theorem 3.3 for ℓ = 2 (Theorem 3.11), obtained by reducing
the enumeration of 2-interval parking functions to that of unit interval parking functions. Potentially, this
technique could be extended to give (more complicated) formulas for Φn,ℓ(q, t) for n ≥ 3.

In Section 4, we present explicit closed formulas for the number of upf invn,k of UPFs of length n with exactly
k inversions. The main tool is a bijection of Avalos and Bly [4], which we modify to obtain a bijective labeling
of these UPFs by objects we call ciphers (Theorem 4.1), which can be counted by elementary “stars and

bars” methods. We work out the formulas for k ≤ 3, which suggest that upf invn,k = O(2n−2knk) in general
(Conjecture 4.5). As another application of ciphers, we recover the main result of [10], a bijection between
unit Fubini rankings (UPFs with all blocks of sizes 1 or 2) and Boolean intervals in weak order (Theorem 4.8).

In Section 5, we prove that the inversion and major index statistics are equidistributed on ℓ-interval
parking functions when ℓ ≤ 2 or ℓ ≥ n − 2. Recall that the major index of (w1, w2, . . . , wn) ∈ Zn is
maj(w) =

∑
i∈Des(w) i, where Des(w) = {i ∈ [n−1] : wi > wi+1}. Foata [11] famously constructed a content-

preserving bijection F on the set of words over a fixed alphabet with the property that inv(F (w)) = maj(w),
thus proving that the two statistics are equidistributed on any set of words invariant under permutation (as
proved earlier by MacMahon algebraically [20]). Parking functions are invariant under permutation, but in
general, the set of ℓ-interval parking functions is not. Nevertheless, we prove (Theorem 5.1) that it preserves
the set IPFn(ℓ) precisely when ℓ ∈ {0, 1, 2, n− 2, n− 1}. The most difficult cases are ℓ = 1 and (especially)
ℓ = 2. Along the way, we prove several results (Lemma 5.4, Proposition 5.5, Lemma 5.6) to describe how
small changes in a parking function (such as transposing two consecutive entries) affect where the cars park;
these facts may be of independent interest and utility. In Section 5.4, we apply Theorem 5.1 to the results
of Section 3 to enumerate IPFn(ℓ) by major index.

We conclude in Section 6 with some open problems for future study.

2

2. Background

In this section, we provide background and definitions related to parking functions and ℓ-interval parking
functions. A standard source for the basics of parking functions is [26]. For interval and ℓ-interval parking
functions, see, e.g., [2, 5, 8].

Remark 2.1. Throughout we interchangeably regard tuples (a1, a2, . . . , an) and words a1a2 · · · an as iden-
tical objects, depending on context.

Throughout, the symbol N denotes the set of positive integers. For m,n ∈ N, we set [n] = {1, 2, . . . , n}
and [m,n] = {m,m + 1, . . . , n}. For a tuple α = (a1, a2, . . . , an) ∈ Nn, we write α↑ for the tuple obtained
by sorting the elements of α in weakly increasing order. The symbol Sn denotes the symmetric group of
permutations of [n]. Throughout, we write permutations in one-line notation.

2.1. Parking functions and ℓ-interval parking functions. Parking functions are well-studied objects
that were defined in the introduction; one survey of their properties is [26].

We write PFn for the set of parking functions of length n. It is known that |PFn | = (n + 1)n−1 [19].
Moreover, a tuple α = (a1, a2, . . . , an) ∈ [n]n is a parking function if and only if its weakly increasing
rearrangement α↑ = (a′1, a

′
2, . . . , a

′
n) satisfies a′i ≤ i for all i, or equivalently if there is some permutation

σ ∈ Sn such that ai ≤ σi for all i ∈ [n] [26, p. 4]. We refer to this property as the rearrangement criterion.
It follows that if α ∈ PFn and β = (b1, b2, . . . , bn) satisfy 1 ≤ bi ≤ ai for all i ∈ [n], then β ∈ PFn.

We write PF↑
n for the set of weakly increasing parking functions of length n. It is known that |PF↑

n | =
Catn = 1

n+1

(
2n
n

)
, the nth Catalan number [23, Exercise 6.19(s)].

Definition 2.2. Let α = (a1, a2, . . . , an) ∈ PFn. The car permutation of α is carα = (carα(1), . . . , carα(n)) ∈
Sn, where carα(i) denotes the car that parks in the ith spot. The spot permutation of α is spotα =
(spotα(1), . . . , spotα(n)) ∈ Sn, where spotα(i) denotes the number of spot that the ith car parks in. Note
carα and spotα are permutations written as tuples and carα = spot−1

α .

Example 2.3. If α = (1, 4, 4, 3, 2, 2) ∈ PFn, then carα = (1, 5, 4, 2, 3, 6) and spotα = (1, 4, 5, 3, 2, 6).

Remark 2.4. Much of the parking function literature uses the term “outcome” for what we have called the
car permutation of a parking function α. We have adopted the terms “car permutation” and “spot permu-
tation” because we work with both of them in different parts of this paper, and wish to avoid any possible
ambiguity in the use of the word “outcome”. In the Sage ParkingFunctions library, the car permutation is
computed as alpha.cars permutation() and the spot permutation is alpha.parking permutation().

Definition 2.5. Let α = (a1, a2, . . . , an) ∈ PFn. The displacement of the ith car is dispα(i) = spotα(i)−ai.
That is, dispα(i) is the number of additional spaces car i has to drive past its preferred spot in order to
park. The (total) displacement1 of α is disp(α) =

∑n
i=1 dispα(i). The maximum displacement of α is

maxdisp(α) = max(dispα(1),dispα(2), . . . ,dispα(n)).

Example 2.6 (Continuing Example 2.3). If α = (1, 4, 4, 3, 2, 2) ∈ PFn, then the displacements of cars
1, 2, . . . , 6 are 0, 0, 1, 0, 0, 4, respectively.

Definition 2.7. For a positive integer ℓ ≤ n, we say that α is an ℓ-interval parking function if
maxdisp(α) ≤ ℓ. The set of ℓ-interval parking functions of length n is denoted IPFn(ℓ). In the case
ℓ = 1, we call α a unit interval parking function and write UPFn = IPFn(1).

Example 2.8. We can give exact formulas for | IPFn(ℓ)| in some extreme cases.

ℓ = n− 1: Every α ∈ PFn satisfies maxdisp(α) ≤ n− 1, so

| IPFn(n− 1)| = |PFn | = (n+ 1)n−1.

ℓ = n− 2: Let α = (a1, a2, . . . , an) ∈ PFn. Then maxdisp(α) = n − 1 if and only if the car that parks in
spot n preferred spot 1. This can happen only if (i) that car was the last to park and (ii) the first

1Total displacement is also called area, since it is exactly the area under the labeled Dyck path representing α; see, e.g.,
[26, pp. 54–55].

3

n− 1 cars parked in the first n− 1 spots. Equivalently, an = 1 and (a1, a2, . . . , an−1) ∈ PFn−1.
Therefore,

| IPFn(n− 2)| = |PFn | − |{α ∈ PFn : maxdisp(α) = n− 1}|
= (n+ 1)n−1 − nn−2.

ℓ = 1: The parking functions α with maxdisp(α) = 1 are precisely the unit interval parking functions.
Therefore,

| IPFn(1)| = |UPFn | = Fubn,

where Fubn is the number of ordered set compositions of [n] (see Remark 2.12 below).
ℓ = 0: The parking functions α with maxdisp(α) = 0 are precisely the permutations. Therefore,

| IPFn(0)| = n!.

It is immediate from the definition that any rearrangement of a parking function is a parking function. The
same is not true for ℓ-parking functions because maximum displacement may change under rearrangement.
For instance, maxdisp(112) = 1 but maxdisp(121) = 2. On the other hand, a weaker result holds for all ℓ,
as we prove later (Proposition 5.5).

2.2. Block structure of unit interval parking functions. In [5], it was proved that unit interval parking
functions are characterized by a tightly controlled block structure, as we now explain.

Definition 2.9. A tuple β = (b1, b2, . . . , bn) ∈ [n]n is called a block word if bi ∈ {i, i− 1} for each i (so in
particular, b1 = 1). When we write a block word, we place a separator before each bi such that bi = i > 1.
The maximal subwords between separators are called blocks. Note that a block word is determined by the
ordered list of lengths of its blocks.

For example, the block words of length 3 are 112, 11 | 3, 1 | 22, 1 | 2 | 3.
We now reformulate the characterization of unit interval parking functions based on their block structure.

Theorem 2.10 ([5, Theorem 2.9]). Let α = (a1, a2, . . . , an) ∈ UPFn and α↑ = (a′1, a
′
2, . . . , a

′
n). Then,

(1) α↑ is a block word. If α↑ = π1 | π2 | · · · | πm, we refer to the collection of πj’s as the block structure
of α.

(2) The entries in each block appear in increasing order in α. That is, α is a shuffle of its blocks.
(3) Given a block word β, every shuffle of its blocks is a unit interval parking function. Therefore,

|{α ∈ UPFn : α
↑ = β}| =

(
n

|π1|, |π2|, . . . , |πm|

)
.

Next we state a bijection between the set of unit interval parking functions of length n with m blocks and
the set of surjective functions from [n] to [m].

Corollary 2.11. Let α = (a1, a2, . . . , an) ∈ UPFn have block structure π1 | π2 | · · · | πm. For each i ∈ [n],
let s(i) be the index of the block to which ai belongs. Thus, s is a surjective function [n] → [m] (equivalently,
an ordered partition of [n] into m nonempty blocks). Then the map sending α 7→ s is a bijection

{α ∈ UPFn : α has m blocks} → {surjective functions [n] → [m]}.

Remark 2.12. A surjective function [n] → [m] can be regarded as an (ordered) set composition of [n] with
m nonempty blocks. In particular, the number of unit interval parking functions of length n equals the
Fubini number Fubn of ordered set compositions of [n], as observed by Hadaway [17]. The Fubini numbers
are sequence #A000670 in [18]. We obtain a new proof this fact following Theorem 3.3.

Example 2.13. Let α = (8, 1, 5, 5, 1, 2, 4, 7) ∈ UPF8. Then the block structure (as in (2) of Theorem 2.10)
is α↑ = 112 | 4 | 55 | 7 | 8, and the corresponding element of [5]8, as in Corollary 2.11, is s = 51331124.

Block structure appears to be unique to the case ℓ = 1; no result analogous to Theorem 2.10 is known for
ℓ-interval parking functions when ℓ > 1. We state this as an open problem in Section 6.

4

http://oeis.org/A000670

2.3. Permutation statistics. Let w = w1 · · ·wn ∈ Nn be a sequence of positive integers. An inversion of
w is a pair of indices (i, j) such that 1 ≤ i < j ≤ n and wi > wj . We let Inv(w) be the set of inversions of w
and set inv(w) = | Inv(w)|. A descent is a position i ∈ [n− 1] such that wi > wi+1. We let Des(w) be the
set of descents of w and set des(w) = |Des(w)|. The major index of w is

maj(w) =
∑

i∈Des(w)

i.

By a bijection of Foata [20, 12] that we describe in detail in Section 5, inversions and major index are
equidistributed as statistics on the set of permutations, meaning that there are as many permutations
w ∈ Sn with inv(w) = j as there are with maj(w) = j, for each nonnegative integer j. More generally,
inversions and major index are equidistributed on any set of words W ⊆ Nn satisfying the property that if
w ∈W and u is a rearrangement of w, then u ∈W [13]. Hence, inversions and major index are equidistributed
on the set of parking functions. In Section 5, we completely characterize the pairs (n, ℓ) such that inversions
and major index are equidistributed on IPFn(ℓ).

It is immediate from the definition that inv(σ) = inv(σ−1) for every permutation σ. The following result
asserts that inversions of parking functions can be computed as inversions of permutations.

Lemma 2.14. Let α ∈ UPFn. Then Inv(α) = Inv(spotα).

Proof. Let α = (a1, a2, . . . , an) ∈ UPFn and let (i, j) be an inversion of τ = spotα. That is, car i arrives
earlier than car j and parks to its right. It follows that ai > aj , so (i, j) ∈ Inv(α).

Now let (i, j) be an inversion of α. Since ai > aj and i < j, it follows by (3) of Theorem 2.10 that ai and
aj belong to different blocks. Since cars in earlier blocks have earlier preferences than cars in later blocks
and park earlier than cars in later blocks, this means that τi > τj . Thus every inversion of α is an inversion
of τ . □

An ascent of a word w ∈ Nn is a position i ∈ [n − 1] such that wi < wi+1. We let Asc(w) be the set of
ascents of w and set asc(w) = |Asc(w)|. It is known [24, Exercise 1.133a] that

(1)
∑
σ∈Sn

2asc(σ) = Fubn = |UPFn |

(see Corollary 2.11 and Remark 2.12). We obtain a more refined enumerative result in Theorem 3.3.

3. Enumeration by counting through permutations

In this section, we study the generating function

Φn,ℓ = Φn,ℓ(q, t) =
∑

α∈IPFn(ℓ)

qdisp(α)tinv(carα).

We give formulas for Φn,ℓ for various values of ℓ by partitioning IPFn(ℓ) into the fibers of the function
Cn,ℓ : IPFn(ℓ) → Sn defined by Cn,ℓ(α) = carα.

For a permutation σ = σ1σ2 · · ·σn ∈ Sn and position i ∈ [n], define

(2) Lℓ(i;σ) = min(ℓ+ 1, i− t+ 1),

where σt, σt+1, . . . , σi is the longest contiguous subsequence of σ such that σk ≤ σi for all k ∈ [t, i]. That is,
Lℓ(i;σ) is the number of possible preferred spots for car σi that results in car σi parking in spot i, subject
to the choices of the previous cars and the constraint that the result must be an ℓ-interval parking function.
It follows that for all ℓ ∈ N and σ ∈ Sn, we have

(3) | C−1
n,ℓ(σ)| =

n∏
i=1

Lℓ(i;σ).

The ℓ = n− 1 case of (3) is [19, Eqns. 2.1, 2.2]; see also [9, Proposition 3.1] and [23, Exercise 5.49d]. Our
Ln−1(i;σ) corresponds to τi,n(σ) in [19] and to ℓ(i;σ) in [9].

In the case that σ = id is the identity permutation, the number Lℓ(i, id) is either i (if i ≤ ℓ) or ℓ + 1 (if
ℓ + 1 ≤ i ≤ n), so | C−1

n,ℓ(id)| = (ℓ + 1)n−ℓ · ℓ!. These numbers occur as sequence #A299504 in [18], where
they count certain permutations; here, they count certain parking functions.

5

http://oeis.org/A299504

It follows from (3) that

(4) | IPFn(ℓ)| =
∑
σ∈Sn

n∏
i=1

Lℓ(i;σ).

This is more efficient for explicit computation than iterating over all parking functions and picking out those
with maximum displacement at most ℓ. In general, we do not have a closed formula for | IPFn(ℓ)| except in
extreme cases; see Example 2.8.

In [9, Props. 5.2, 5.3], the authors provide q-analogues of equations (3) and (4) for parking functions using
total displacement. They extend this to a qt-analogue in [9, Cor. 5.3] using permutation statistics. We can
obtain a similar analogue for ℓ-interval parking functions.

Theorem 3.1. Let 0 ≤ ℓ ≤ n− 1. For all σ ∈ Sn, we have

(5)
∑

α∈C−1
n,ℓ(σ)

qdisp(α) =

n∏
i=1

[Lℓ(i;σ)]q,

and therefore,

(6) Φn,ℓ(q, t) =
∑

α∈IPFn(ℓ)

qdisp(α)tinv(carα) =
∑
σ∈Sn

tinv(σ)
ℓ∏
i=1

[Lℓ(σ; i)]q.

Proof. Let σ ∈ Sn and α = (a1, a2, . . . , aℓ) ∈ C−1
n,ℓ(σ). For each i, if car σi wants to park in spot i,

then ai must be selected from [i− Lℓ(i;σ) + 1, i]. Hence, for each j ∈ {0, . . . , Lℓ(i;σ)− 1}, the selection of
ai = i−j ∈ [i−Lℓ(i;σ)+1, i] contributes j to the total displacement. Since [Lℓ(i;σ)]q = 1+q+· · ·+qLℓ(i;σ)−1,
we obtain (5). For (6), observe that

Φn,ℓ(q, t) =
∑
σ∈Sn

 ∑
α∈C−1

n,ℓ(σ)

qdisp(α)

 tinv(σ)

and then apply (5). □

The ℓ = n − 1 case is [9, Cor. 5.3]. As noted there, one can replace inversion number in (6) with any
statistic on permutations. For the case ℓ = n − 2, we can rewrite the formulas in Theorem 3.1 in terms
of displacement enumerators for (classical) parking functions. This also follows from the description of
PFn \ IPFn(n− 2) in Example 2.8.

Corollary 3.2. For all n ≥ 2,

Φn,n−2(q, t) =
∑

α∈PFn

qdisp(α)tinv(α) − (qt)n−1
∑

β∈PFn−1

qdisp(β)tinv(β)−ones(β),

where ones(β) = |{i ∈ [n− 1] : bi = 1}|.

In the case ℓ = 1 (unit interval parking functions), the formula of Theorem 3.1 can be written in a very
explicit form as a generating function for permutations.

Theorem 3.3. For all n ≥ 1,

Φn,1(q, t) =
∑
σ∈Sn

(1 + q)asc(σ)tinv(σ).

Proof. Taking ℓ = 1 in (2), we see that

L1(i;σ) =

{
2 if i− 1 is an ascent of σ,

1 otherwise.

The result now follows from Lemma 2.14 and Theorem 3.1, together with the identity inv(σ) = inv(σ−1). □
6

Setting q = t = 1 in Theorem 3.3 recovers (1). More generally, setting t = 1 produces

(7)
∑

α∈IPFn(1)

qdisp(α) =

n∑
k=1

k!S(n, k)qn−k =
∑
σ∈Sn

(1 + q)asc(σ),

where S(n, k) denotes the Stirling number of the second kind; the second equality is [16, p. 269, eqn. (6.39)].
Note that k!S(n, k) is the number of unit interval parking functions with displacement n−k. Extracting the
q = 1 coefficient from the first and third expressions in (7), we recover the enumerative result [3, Thm. 4]
that |{α ∈ UPFn : disp(α) = 1}| is the nth Lah number (#A001286 of [18]).

Remark 3.4. Setting q = −1 in Theorem 3.3 yields

(8)
∑

α∈UPFn

(−1)disp(α)tinv(α) = t(
n
2)

since the permutation w0(i) = n − i + 1 is the only one with no ascents. (Further specializing t = 1
recovers (1).) This formula can also be proven combinatorially by constructing a sign-reversing, inversion-
preserving involution on unit interval parking functions. Given α ∈ UPFn \{w0}, let π1 | π2 | · · · | πm be
its block structure (see Theorem 2.10), and let k be the smallest index such that either (i) |πk| ≥ 2, or (ii)
|πk| = 1 and πk appears earlier in α than every member of πk+1. (The condition α ̸= w0 implies that at
least one of conditions (i), (ii) must be satisfied.) Then, define ϕ(α) by modifying α as follows:

(1) If πk = (j, j, j + 1, j + 2, . . .), then replace the second occurrence of j by j + 1.
(2) If πk = (j), then replace the first occurrence of j + 1 in α by j.

The map ϕ is a fixed-point-free involution on UPFn \{w0} satisfying disp(ϕ(α)) = disp(α)±1 and inv(ϕ(α)) =
inv(α) (we omit the proof). If one associates unit interval parking functions with faces of the permutohedron,
as done in [7], the function ϕ appears to give an acyclic matching in the sense of discrete Morse theory [14, 15].

Remark 3.5. We discuss a broader implication of Lemma 2.14. Let α ∈ UPFn and set σ = carα. Then
Inv(α) = Inv(σ−1) (Lemma 2.14), so Des(α) = Des(σ−1), and in particular

des(α) = des(σ−1) and maj(α) = maj(σ−1).

Then the argument of Theorem 3.3 implies that

(9)
∑

α∈UPFn

qdisp(α)tinv(α)xdes(α)ymaj(α) =
∑
σ∈Sn

(1 + q)asc(σ)tinv(σ)xdes(σ
−1)ymaj(σ−1).

An analogous formula holds for any other statistic that depends only on the inversion set.

3.1. A cyclic sieving phenomenon. Let X be a finite set, let X(q) be a polynomial in q such that X(1) =
|X|, let C = ⟨g⟩ be a cyclic group of order n acting on X, and let ω be a primitive nth root of unity. The
triple (X,X(q), C) is said to exhibit the cyclic sieving phenomenon [21] if X(ωj) = |{x ∈ X : cj(x) = x}|
for every c ∈ C.

We use the following facts (setting a = 1 in [21, Equation (4.5)]). Let ω be a primitive nth root of unity
as before, let d be a divisor of n, and let c = (c1, c2, . . . , ck) ⊨ n. Then

(10)

[
n

c1, c2, . . . , cℓ

]
t=ωn/d

=

(n
d

c1
d ,

c2
d , . . . ,

ck
d

)
,

where we adopt the convention that any multinomial expression involving one or more non-integers is zero.
As shown in [7, Lemma 3.12, Proposition 3.13, Corollary 3.14], there is an Sn-action on UPFn, in which

α and β belong to the same orbit if and only if α↑ = β↑; that is, α and β have the same block structure. In
particular, UPF↑

n is a system of representatives for the Sn-orbits of UPF, and total displacement is constant
on each orbit.

The cyclic subgroup Cn of Sn generated by the n-cycle g = (1 2 · · · n) ∈ Sn acts on UPFn by restricting

the Sn-action on UPFn to Cn. For k ∈ N, let UPFdisp
n,k be the set of unit interval parking functions with

total displacement k and set

fdispn,k (t) =
∑

α∈UPFdisp
n,k

tinv(α),

so that Φn,1(q, t) =
∑
k q

kfdispn,k (t).
7

http://oeis.org/A001286

Theorem 3.6. The triple (UPFdisp
n,k , f

disp
n,k (t), Cn) satisfies the cyclic sieving phenomenon for each n and k.

That is, if ω is a primitive nth root of unity, then, for all n, k, j,

fdispn,k (ωj) =
∑

α∈UPFdisp
n,k

(ωj)inv(α) = |{α ∈ UPFdisp
n,k : gjα = α}|.

Proof. Let ω be a primitive nth root of unity. It suffices to consider the case that n = dj for some positive
integers d, j, so that ωj is a primitive dth root of unity. For each β ∈ UPF↑

n, let O(β) be its Sn-orbit, and

write its block structure as πβ1 | πβ2 | · · · | πβmβ
.

Recall that the elements of each block of α ∈ UPFn occur in weakly increasing order in α, left to right.
Therefore, the number of inversions of α is unchanged by replacing each element in its jth block with the
number j. Accordingly, ∑

α∈O(β)

tinv(α) =
∑

u∈Sn·wβ

tinv(u)

=

[
n

|πβ1 |, |π
β
2 |, . . . , |πβmβ |

]
t

,(11)

where wβ = 1 · · · 12 · · · 2 · · ·mβ · · ·mβ is a word with |πβ1 | 1’s, |π
β
2 | 2’s, etc, written in weakly increasing order.

The equality in (11) is [24, Prop. 1.7.1], originally due to MacMahon [20, pp. 314-315]. Now∑
α∈UPFn

qdisp(α)(ωj)inv(α) =
∑

β∈UPF↑
n

qdisp(β)
∑

α∈O(β)

(ωj)inv(α)

=
∑

β∈UPF↑
n

qdisp(β)
[

n

|πβ1 |, |π
β
2 |, . . . , |π

β
mβ |

]
t=ωj

=
∑

β∈UPF↑
n

qdisp(β)
(

n/d

|πβ1 |/d, |π
β
2 |/d, . . . , |π

β
mβ |/d

)
,(12)

where the equality in (12) follows from (10).
We can interpret the multinomial coefficient in (12) combinatorially. By [7, Prop. 3.13], an element

α = (a1, a2, . . . , an) ∈ UPFn is fixed by gj if and only if, for every i ∈ [j], all entries ai, ai+j , . . . , ai+(d−1)j

whose indices form a congruence class modulo j belong to a common block. Hence, if α has block structure
π1 | π2 | · · · | πm, then there are (

n/d

|π1|/d, |π2|/d, . . . , |πm|/d

)
elements in the Sn-orbit of α that are fixed by gj . (The elements of each block have to appear in increasing
order, so the only choice to make is how to apportion the congruence classes among the blocks.) Thus, (12)
becomes

(13)
∑

α∈UPFn

qdisp(α)(ωj)inv(α) =
∑

β∈UPF↑
n

qdisp(β)|{α ∈ O(β) : gjα = α}|

and grouping together unit interval parking functions with the same total displacement, we have∑
α∈UPFdisp

n,k

(ωj)inv(α) = |{α ∈ UPFdisp
n,k : gjα = α}|,

as desired. □

Corollary 3.7. Let n be a positive integer.
(1) If ω is a primitive nth root of unity, then∑

α∈UPFn

qdisp(α)ωinv(α) = qn−1.

8

(2) If n is even, then ∑
α∈UPFn

qdisp(α)(−1)inv(α) = qn/2
∑

α∈UPFn/2

qdisp(α).

Proof. (1) This is the case j = 1 of Theorem 3.6. A UPF is fixed by g if and only if it has a single block of
size n. There is exactly one such UPF, namely α = (1, 1, 2, . . . , n− 1), which has total displacement n− 1.

(2) Let UPF2
n be the set of unit interval parking functions whose block sizes are all divisible by 2 and let

UPF2↑
n = UPF2

n ∩UPF↑
n. Since an increasing UPF is determined by its list of block sizes, in order, there is

a bijection ϕ : UPF2↑
n → UPF↑

n/2 given by dividing all block sizes by 2. (For instance, ϕ(1123 | 55 | 7789) =
11 | 3 | 44, because these are the unique increasing UPFs with block sizes 4, 2, 4 and 2, 1, 2 respectively.)
Note also that disp(β) = disp(ϕ(β)) + n/2. Now substituting j = n/2 in (12) yields∑

α∈UPFn

qdisp(α)(−1)inv(α) =
∑

β∈UPF2↑
n

qdisp(β)
(

n/2

|πβ1 |/2, π
β
2 |/2, . . . , |π

β
mβ |/2

)

= qn/2
∑

α∈UPF↑
n/2

qdisp(α)
(

n/2

|πα1 |, |πα2 |, . . . , |παmα
|

)
(setting α = ϕ(β))

= qn/2
∑

α∈UPFn/2

qdisp(α),

where the last step follows from (12), replacing n and j with n/2 and d with 1. □

3.2. From ℓ = 1 to ℓ = 2. Theorem 3.3 can be viewed as reducing the enumeration of 1-interval parking
functions to the enumeration of 0-interval parking functions, which are just permutations. We now describe
a similar reduction from 2-interval parking functions to 1-interval parking functions, although it is more
complicated.

Let β = (b1, b2, . . . , bn) ∈ UPFn have block structure π1 | π2 | · · · | πm. Let R(β) be the set of numbers
i ∈ [n] such that bi is the second entry in its block πj , where j > 1, and bi occurs after the last entry of block
πj−1 Let S(β) be the set of numbers i ∈ [n] such that bi is the third or later entry in its block πj . Then

(14) |S(β)| =
m∑
i=1

max(|πi| − 2, 0).

Example 3.8. If β = 7511278935 ∈ UPF10, then its block structure is π1 | π2 | π3 = 1123 | 55 | 7789.
The second entry in block π2 is b10 = 5 and appears after the last entry of π1, which is b9 = 3. Hence,
10 ∈ R(β). The second entry in block π3 is b6 = 7 and does not appear after the last entry of π2, which is
b8 = 7. Hence, 6 /∈ R(β). Thus, we have R(β) = {10}. Lastly, in block π1 = 1123 the third or later entries
are b5 = 2 and b9 = 3, while in block π3 = 7789 the third or later entries are b7 = 8 and b8 = 9. Hence,
S(7511278935) = {5, 7, 8, 9}. As expected, by (14), |S(β)| = 2 + 0 + 2 = 4.

Observe that

R(β) ∩ S(β) = ∅, and(15)

R(β) ∪ S(β) = {i ∈ [2, n] : spots bi − 1 and bi are both occupied when car i parks}.(16)

In particular, if i ∈ R(β), then spot bi − 1 is occupied by the last car of block πj−1, and spot bi by the first
car of block πj .

Example 3.9. Continuing Example 3.8, let β = 7511278935 and we can confirm R(β) ∩ S(β) = ∅. One
can readily confirm that the only indices i ∈ [2, n] such that spots bi − 1 and bi are occupied when car
i parks are precisely the indices i ∈ {5, 7, 8, 9, 10} = R(β) ∪ S(β). For example, when car 7 parks, spots
b7 − 1 = 8− 1 = 7 and b7 = 8 are occupied by cars 1 and 6, respectively.

Define a map η : IPFn(2) → UPFn by

η(α)i =

{
ai + 1 dispα(i) = 2,

ai dispα(i) ≤ 1.

9

Informally, η(α) is the result of asking each car with displacement 2, “Please lower your expectations by
one spot.” It is unsurprising, though not entirely obvious, that the result is a unit interval parking function
with the same spot permutation, as we now prove.

Lemma 3.10. Let α ∈ IPFn(2) and β = η(α). Then β ∈ UPFn, and spotβ = spotα.

Proof. We show by induction that spotβ(i) = spotα(i) and dispβ(i) ≤ 1 for all i ∈ [n]. For i = 1, we have
dispα(1) = 0, so b1 = a1 = spotβ(1) = spotβ(1). For the inductive step, suppose that spotα(j) = spotβ(j)
for all j < i.

• If dispα(i) ≤ 1, then bi = ai and spotβ(i) = spotα(i); in particular, dispβ(i) ≤ 1.
• If dispα(i) = 2, then spotα(i) = ai + 2. In particular, spots ai and ai + 1 are full when car i parks.
Changing the preference of the ith car from ai to bi = ai + 1 does not affect where car i parks, but
then dispβ(i) = ai + 2− bi = 1. □

We now prove our main enumeration result on 2-interval parking functions.

Theorem 3.11. For all n ≥ 1,∑
α∈IPFn(2)

qdisp(α)tinv(α) =
∑

β∈UPFn

qdisp(β)tinv(β)(1 + q)|S(β)|(1 + qt)|R(β)|.

In particular,

| IPFn(2)| =
∑

β∈UPFn

2|S(β)|+|R(β)|.

Proof. Let β = (b1, b2, . . . , bn) ∈ UPFn have block structure π1 | π2 | · · · | πm. Let R = R(β) and S = S(β).
For R ⊆ R and S ⊆ S, define α = (a1, a2, . . . , an) = gβ(R,S) by

ai =

{
bi − 1 if i ∈ R ∪ S,
bi if i ̸∈ R ∪ S.

Then α is a parking function by the rearrangement criterion. In light of the description of R∪ S in (16), it
follows that for all i ∈ [n],

i ∈ R ∪ S if and only if dispα(i) = 2;(17a)

i ̸∈ R ∪ S if and only if dispα(i) ≤ 1;(17b)

spotα(i) = spotβ(i).(17c)

Therefore, α ∈ η−1(β) ⊆ IPFn(2). That is, we have a function

gβ : 2
R × 2S → η−1(β).

We claim that gβ is a bijection. It is injective by definition (note that R ∩ S = ∅). To show that gβ is
surjective, it suffices to show that if α ∈ η−1(β) and dispα(i) = 2, then i ∈ R ∪ S. Indeed, bi = ai + 1 by
definition of η. Since dispα(i) = 2, when car i parks, spots ai = bi − 1 and ai + 1 = bi are both occupied,
and since spotα = spotβ by Lemma 3.10, we have i ∈ R ∪ S by (16).

Note that the inverse map fβ = g−1
β is given by fβ(α) = (R,S), where

R = R∩ {i ∈ [n] : dispα(i) = 2}, and S = S ∩ {i ∈ [n] : dispα(i) = 2}.
Now, let β ∈ UPFn, and let α = gβ(R,S) for some R ⊆ R(β) and S ⊆ S(β). Then

dispα(i) =

{
dispβ(i) if i /∈ R ∪ S,
dispβ(i) + 1 if i ∈ R ∪ S,

so

(18) disp(α) = disp(β) + |R|+ |S|.
We now describe inv(α) in terms of inv(β). Suppose for contradiction that (i, j) is an inversion of β but

not of α. Then, by definition of gβ , i ∈ R∪S, j ̸∈ R∪S, and bi = bj+1. Hence, ai = bi−1 = bj = aj . Since
β is a unit interval parking function, it does not have inversions within blocks (Theorem 2.10, part (2));

10

hence, bi and bj must be in different blocks. Thus, bi is either the first or second element of some block
πk+1 and bj is the last element of block πk. If bi is the first element of πk+1, then i /∈ R ∪ S. If bi is the
second element of πk+1 then again i /∈ R∪S because bi occurs before the last entry of πk, namely bj . Hence,
i /∈ R ∪ S, which is a contradiction. We conclude that Inv(β) ⊆ Inv(α).

Now suppose that (i, j) is an inversion of α but not of β. Then i ̸∈ R ∪ S, j ∈ R ∪ S and bi = bj by
definition of gβ . Hence, j ∈ R because it is the second occurrence of the same number (since i < j) and thus
is the second entry of its block. Conversely, whenever bi = bj with i < j, the pair (i, j) is an inversion of α
but not of β. Therefore,

(19) inv(α) = inv(β) + |R|.
and combining (18) and (19) we obtain

(20) qdisp(α)tinv(α) = qdisp(β)+|R|+|S|tinv(β)+|R|.

Consequently, ∑
α∈η−1(β)

qdisp(α)tinv(α) =
∑
R⊆R

∑
S⊆S

qdisp(β)+|R|+|S|tinv(β)+|R|

= qdisp(β)tinv(β)

∑
R⊆R

(qt)|R|

∑
S⊆S

q|S|


= qdisp(β)tinv(β)(1 + q)|S(β)|(1 + qt)|R(β)|,

and summing over all β ∈ UPFn yields the theorem. □

Example 3.12. Let β = 6411624 ∈ UPF7, which has block structure β↑ = 112|44|66. Positions 4,5,7
contain the second elements of the blocks. Note that R(β) = {7}, because:

• 4 /∈ R(β) because it is the second element of the first block.
• 5 /∈ R(β): the 6 in position 5 is the second element of π3, but it occurs to the left of the largest
element of π2, namely the 4 in position 7.

• 7 ∈ R(β): the 4 in position 7 is the second element of π2, and it occurs to the right of the largest
element of π1, namely the 2 in position 5.

Meanwhile, S(β) = {6}. We have

spotβ = 6412735, disp(β) = 0+0+0+1+1+1+1 = 4, inv(β) = |{12, 13, 14, 16, 17, 23, 24, 26, 56, 57}| = 10.

The possibilities for R and S and the corresponding 2-interval parking functions α = gβ(R,S) are as follows.

R S α spotα disp(α)
∅ ∅ 6411624 6412735 0 + 0 + 0 + 1 + 1 + 1 + 1 = 4
7 ∅ 6411623 6412735 0 + 0 + 0 + 1 + 1 + 1 + 2 = 5
∅ 6 6411614 6412735 0 + 0 + 0 + 1 + 1 + 2 + 1 = 5
7 6 6411613 6412735 0 + 0 + 0 + 1 + 1 + 2 + 2 = 6

In the cases that R is nonempty, the new inversion is underlined.

4. Enumeration via ciphers

For positive integer n and nonnegative integer k, define

UPFinv
n,k = {α ∈ UPFn : inv(α) = k}, upf invn,k = |UPFinv

n,k |.

Setting q = 1 in Theorem 3.3 and extracting the coefficient of tk yields

(21) upf invn,k =
∑
σ∈Sn

inv(σ)=k

2asc(σ)

although it is not clear how to convert this expression to a closed formula. In this section, we describe how
work of Avalos and Bly [4], together with block structure theory (Theorem 2.10), can be used to determine

the numbers upf invn,k through the use of ciphers, an analogue of Lehmer codes for unit interval parking
11

functions. We then use ciphers to provide a new proof of [10, Theorem 1.2], which counts Boolean intervals
of Sn under the right weak order by certain unit interval parking functions.

4.1. The Avalos–Bly and cipher bijections. Let m and n be nonnegative integers. In what follows,
T = (T1, T2, . . . , Tm) always denotes an ordered list of multisets of nonnegative integers. Let type(T) =
(|T1|, |T2|, . . . , |Tm|). Avalos and Bly [4, Defns. 1.8, 1.10] defined

T m
n = {T = (T1, T2, . . . , Tm) : |T1|+ |T2|+ · · ·+ |Tm| = n and 0 ≤ x ≤

∑i−1
j=1 |Tj | for all x ∈ Ti},

T m
n (k) = {T = (T1, T2, . . . , Tm) ∈ T m

n :
∑
i

∑
x∈Ti

x = k}.

They proved [4, Proposition 1.9] that there is a bijection

φ : [m]n → T m
n

defined as follows. Given w = (w1, w2, . . . , wn) ∈ [m]n and j ∈ [n], define

(22) inv(w, j) = |{ℓ ∈ [j + 1, n] : wj > wℓ}|
(the number of inversions with wj as the left element).

They then define multisets Ti = {inv(w, j) : wj = i} and set φ(w) = (T1, T2, . . . , Tm). In particular, since
inv(w) =

∑m
j=1 inv(w, j), it follows that φ restricts to a bijection

{w ∈ [m]n : inv(w) = k} → T m
n (k),

which is [4, Proposition 1.11]. If we define the content of w ∈ [m]n as cont(w) = (|w−1(1)|, . . . , |w−1(m)|)
(thinking of w as a map w : [n] → [m]), then the construction implies that type(T) = cont(w). Therefore,
for each weak composition c of n, the map φ restricts to bijections

(23)
{w ∈ [m]n : cont(w) = c} → {T ∈ T m

n : type(T) = c},
{w ∈ [m]n : cont(w) = c, inv(w) = k} → {T ∈ T m

n (k) : type(T) = c}.
Combining the Avalos–Bly bijections (23) with that of Corollary 2.11, we obtain bijections

{α ∈ UPFn : (|π1|, . . . , |πm|) = c} → {T ∈ T m
n : type(T) = c},

{α ∈ UPFinv
n,k : (|π1|, . . . , |πm|) = c} → {T ∈ T m

n (k) : type(T) = c},
for each (strict) composition c. We can now state the main result of this section, which follows from gluing
these last bijections together over all compositions c.

Theorem 4.1 (Cipher Bijection). Let n and m be positive integers and let k be a nonnegative integer. Then

(24) ψ : UPFinv
n,k →

n⋃
m=1

Gmn (k),

where
Gmn (k) = {(T1, T2, . . . , Tm) ∈ T m

n (k) : |Ti| > 0 for all i}.

We call ψ(α) the cipher of α. We represent ciphers by writing each Ti as a string of boldface numbers in
weakly decreasing order, separated by bars. For instance, 00

∣∣110∣∣31∣∣100
∣∣110∣∣31∣∣100
∣∣110∣∣31∣∣1 is an element of G4

8(7).

Example 4.2 (One inversion). Let n ≥ 2. We calculate upf invn,1. By (24), we have a bijection

UPFinv
n,1 →

n⋃
m=1

Gmn (1).

The right-hand side consists of sequences (T1, T2, . . . , Tm) where each Ti is a nonempty multiset of 0’s and
1’s, containing a total of n− 1 0’s and one 1, with the 1 not appearing in T1 (so in particular m ≥ 2). The
ciphers for such a sequence are precisely those words that start with 000, followed by some permutation of the
following substrings: one copy of

∣∣1∣∣1∣∣1, and n−2 more strings each of which can be either 000 or
∣∣0∣∣0∣∣0. (The number

of
∣∣0∣∣0∣∣0’s used is thus m− 1.) The “regular expression” for all such ciphers is

000 ·
(
{
∣∣1∣∣1∣∣1}1, {000, ∣∣0∣∣0∣∣0}n−2

)
12

(we use this notation in the next example as well) and it is now elementary that

(25) upf invn,1 = 2n−2(n− 1).

Example 4.3 (Two inversions). Let n ≥ 3. We calculate upf invn,2. Here are the possibilities:

(1) The cipher has one 222 and n− 1 000’s. The regular expression is
(
000000,0|00|00|0

)
·
(
{
∣∣2∣∣2∣∣2}1, {∣∣0∣∣0∣∣0, 000}n−3

)
. There

are 2n−2 such words.
(2) The cipher has two 111’s and n− 2 000’s. There are two subcases:

(a) The 111’s are in different blocks.
Regular expression: 000 ·

(
{
∣∣1∣∣1∣∣1}2, {∣∣0∣∣0∣∣0, 000}n−3

)
Count: 2n−3

(
n−1
2

)
(b) The 111’s are in the same block.

Regular expression: 000 ·
(
{
∣∣11∣∣11∣∣11}1, {∣∣0∣∣0∣∣0, 000}n−3

)
Count: 2n−3(n− 2)

Adding these counts, we obtain

(26) upf invn,2 = 2n−3

(
3(n− 2) +

(
n− 1

2

))
= 2n−4(n− 2)(n+ 5).

Example 4.4 (Three inversions). Let n ≥ 3. We calculate upf invn,3. The regular expressions and their counts
are as follows:

000 ·
(
{
∣∣0∣∣0∣∣0,000})2 · ({∣∣3∣∣3∣∣3}1, {∣∣0∣∣0∣∣0, 000}n−4

)
22 · 2n−4 · (n− 3)

{000000,0
∣∣00
∣∣00
∣∣0}1 · ({∣∣21∣∣21∣∣21}1, {∣∣0∣∣0∣∣0, 000}n−4

)
2 · 2n−4 · (n− 3)

0
∣∣10
∣∣10
∣∣1 · ({∣∣2∣∣2∣∣2}1, {∣∣0∣∣0∣∣0, 000}n−3

)
2n−3 · (n− 2)

{000000,0
∣∣00
∣∣00
∣∣0}1 · ({∣∣2∣∣2∣∣2}1, {∣∣1∣∣1∣∣1}1, {∣∣0∣∣0∣∣0, 000}n−4

)
2 · 2n−4 · (n− 3)(n− 2)

000 ·
(
{
∣∣1∣∣1∣∣1}3, {∣∣0∣∣0∣∣0, 000}n−4

)
2n−4 ·

(
n−1
3

)
000 ·

(
{
∣∣11∣∣11∣∣11}1, {∣∣1∣∣1∣∣1}1, {∣∣0∣∣0∣∣0, 000}n−4

)
2n−4 · (n− 3)(n− 2)

000 ·
(
{
∣∣111∣∣111∣∣111}1, {∣∣0∣∣0∣∣0, 000}n−4

)
2n−4 · (n− 3)

Adding up the counts, we obtain

(27) upf invn,3 = 2n−4

(
1

6
n3 + 2n2 − 25

6
n− 8

)
.

Comparing the formulas (25), (26), and (27), we are led to the following general conjecture, which we
leave as an open problem.

Conjecture 4.5. Let n ≥ 1 and k ∈ {0, 1, . . . , n(n− 1)/2}. Then upf invn,k = O(2n−2knk).

4.2. Ciphers and Lehmer codes. We describe another way to construct ciphers by way of Lehmer codes
for permutations. Let En,k be the set of words w ∈ {0, 1, . . . , n− 1}n satisfying

(1) wi ≤ i− 1 for all i ∈ [n], and
(2)

∑n
i=1 wi = k.

Then a cipher T ∈ Gn(k) can be constructed from a word w ∈ En,k by inserting bars. If wi < wi+1, we must

insert a bar between wi and wi+1; otherwise, we may insert a bar. Hence, we can construct 2n−1−asc(w)

ciphers from w, and every cipher arises in this way. It follows that

(28) upf invn,k =
∑

w∈En,k

2n−1−asc(w).

Define

En =
⋃
k≥0

En,k = {0} × {0, 1} × · · · × {0, 1, . . . , n− 1}.

Then En is the set of Lehmer codes (backwards); see [24, p. 34]. There is a bijection γ : En → Sn from
Lehmer codes to permutations: given w ∈ En, construct γ(w) by starting with the empty word and inserting

13

1, 2, . . . , n successively, placing i to the left of wi letters. It is not hard to see that for all w ∈ En,

Asc(w) = Des(γ(w)−1)(29)

and
n∑
i=1

wi = inv(γ(w)).(30)

Applying (29) to (28) and observing that asc(σ) + des(σ) = n− 1 for all σ ∈ Sn, we obtain

upf invn,k =
∑
σ∈Sn

inv(σ)=k

2n−des(σ−1)−1 =
∑
σ∈Sn

inv(σ)=k

2asc(σ),

which recovers the q = 1 specialization of Theorem 3.3.
Define the underlying code of a cipher T ∈ Gn(k) to be the word code(T) ∈ En obtained from T by

removing all bars. Likewise, the underlying code of a UPF α is code(α) = code(ψ(α)), where ψ is the
Avalos–Bly bijection.

Corollary 4.6. For a unit interval parking function α, the Lehmer code of spotα is the underlying code of
α. In particular, if β is a unit interval parking function, then α and β have the same outcome permutation
if and only if ψ(α) and ψ(β) have the same underlying code.

Proof. Let π1 | π2 | · · · | πm be the block structure of α = (a1, a2, . . . , an). As in the Avalos–Bly construction
described above, for each i ∈ [m], let Ti denote the multiset of all numbers inv(α, j) (see (22)) such that
aj ∈ πi. Then w = code(ψ(α)) is the concatenation T1T2 · · ·Tm, where each Ti is sorted in weakly decreasing
order. Let σ = γ(w). Then (i, j) ∈ Inv(γ(w)) if and only if σi > σj and wσi

> wσj
+ wσj+1 + · · · + wσi−1;

in this case ai must belong to a later block than aj , so (i, j) ∈ Inv(α). Thus Inv(γ(w)) ⊆ Inv(α), and since

| Inv(γ(w))| =
n∑
i=1

wi =

n∑
i=1

ψ(α)i = | Inv(α)|

(by the constructions of γ, w and ψ, respectively), we conclude that Inv(γ(w)) = Inv(α).
On the other hand, Inv(spotα) = Inv(α). A permutation is uniquely determined by its inversion set, so

spotα = σ = γ(w). Hence, γ−1(spotα) must be the underlying code of ψ(α). □

Example 4.7. Let w = 00110311 ∈ E8,7. The corresponding ciphers are of the form 0 ·0|1 ·1 ·0|3 ·1 ·1, where
each dot is replaced either with | or with the null symbol. The unit interval parking function corresponding
to any of these 32 ciphers has σ = spotα = 13642785, e.g.,

00|110|311 ψ−1

7−−−→ 13631674
C7−→ 13642785,

00|1|10|3|11 ψ−1

7−−−→ 13641774
C7−→ 13642785.

Then σ−1 = 15248367 = γ(w)−1. Note that Des(σ−1) = {2, 5} = Asc(w).

4.3. Unit Fubini rankings. A unit Fubini ranking is a unit interval parking function whose blocks all
have size 1 or 2. Unit Fubini rankings were introduced in [10] to study Boolean intervals of Sn under the
right weak order. We can use ciphers to provide a new proof of the main result of that paper.

Theorem 4.8 ([10, Theorem 1.2]). Unit Fubini rankings with n− r blocks and k inversions are in bijection
with rank-r Boolean intervals [σ, τ] of Sn under the right weak order with inv(σ) = k.

This statement is ostensibly a refinement of [10, Theorem 1.2], which does not mention inversions explicitly,
but it is not difficult to use the methods of [10] together with elementary facts such as Lemma 2.14 to obtain
the more refined version.

Proof. Call a set of integers sparse if it contains no two consecutive integers. Let UFRmn,k be the set of unit
Fubini rankings of length n with m blocks and k inversions. The bijection (24) restricts to a bijection

ψ : UFRmn,k → T̂ m
n (k) := {(T1, T2, . . . , Tm) ∈ T m

n (k) : |Ti| ∈ {1, 2} for all i}.
14

As in Example 4.7, the elements of T m
n (k) can be represented as ciphers as follows: choose a word w ∈ En,k,

insert bars at all its ascents, and insert additional bars as needed so as to obtain m blocks, all of size 1 or
2. That means that we need a total of m− 1 bars; if B is the set of non-ascents where there are bars, then
|B| = m− 1− |Asc(w)|. Thus we have a bijection

T̂ m
n (k) →

(w,B) :

w ∈ En,k,
B ⊆ [n− 1] \Asc(w),
|B| = m− 1− |Asc(w)|, and
[n− 1] \ (Asc(w) ∪B) is sparse

 .

We may replace (w,B) with the equivalent data (σ,C), where σ = γ(w)−1 and C = Asc(σ) \ B. (By (29),
we have [n− 1] \Asc(w) = [n− 1] \Des(σ) = Asc(σ).) Translating the conditions on (w,B) into conditions
on (σ,C), we obtain a bijection

T̂ m
n (k) →

(σ,C) :
σ ∈ Sn, inv(σ) = k,
C ⊆ Asc(σ), |C| = n−m, and
C is sparse

 .

On the other hand, a Boolean interval in the right weak order with bottom element σ and rank r is given
precisely by choosing r pairwise commuting elementary transpositions si such that inv(σsi) > inv(σ) for
every i, which is equivalent to choosing a sparse subset of Asc(σ) of size r. □

Remark 4.9. Let Fibi denote the ith Fibonacci number: (Fib0,Fib1,Fib2,Fib3, . . .) = (1, 1, 2, 3, . . .).
Theorem 1.1 of [10] states that for each σ ∈ Sn, the number of Boolean intervals in right weak order with

bottom element σ is
∏k
i=1 Fibai(σ), where a1(σ), . . . , ak(σ) are the lengths of the maximal ascending subwords

of σ = (σ1, . . . , σn), or, equivalently, of the maximal non-ascending subwords of w = γ−1(σ−1). The proof of
Theorem 4.8 provides a generating function for Boolean intervals by rank, as follows. Define the Fibonacci
polynomials Fibn(q) by

Fibn(q) =
∑

S⊆[n−1]
S sparse

q|S|

(see sequence #A011973 in [18]), so that Fibn(1) = Fibn. Then

(31)
∑
τ∈Sn

[σ,τ] Boolean

qinv(τ)−inv(σ) =

k∏
i=1

Fibai(σ)(q).

5. Foata invariance and inv-maj equidistribution

In this section, we prove that a classical bijection of Foata [11] preserves the classes of ℓ-interval parking
functions for ℓ ∈ {1, 2, n− 2, n− 1}, from which it follows that the inversion and major index statistics are
equidistributed on each of these classes.

Theorem 5.1. Let 1 ≤ ℓ < n, and let IPFn(ℓ) denote the class of ℓ-interval parking functions of length n.
• If ℓ ∈ {1, 2, n− 2, n− 1}, then the Foata transform restricts to a bijection IPFn(ℓ) → IPFn(ℓ), and

consequently the inversion and major index statistics are equidistributed on IPFn(ℓ), i.e.,∑
p∈IPFn(ℓ)

tinv(p) =
∑

p∈IPFn(ℓ)

tmaj(p).

• If ℓ ̸∈ {1, 2, n− 2, n− 1}, then inversion and major index are not equidistributed on IPFn(ℓ), so the
Foata transform cannot be a bijection IPFn(ℓ) → IPFn(ℓ).

The proof spans several cases, which we order by increasing difficulty.
• ℓ = n− 2: Proposition 5.7
• 3 ≤ ℓ ≤ n− 3: Proposition 5.8
• ℓ = 1: Proposition 5.9
• ℓ = 2: Proposition 5.10

15

http://oeis.org/A011973

5.1. The Foata transform on words. We begin by describing Foata’s bijection [11] and its relevant
properties.

Definition 5.2 ([11]). The Foata transform is the function F defined inductively on words w = w1 · · ·wn
as follows.

• For n = 1, we set F (w) = w.
• For n > 1, F (w) is defined as follows. Let w′ = F (w1 · · ·wn−1) = w′

1 · · ·w′
n−1.

– If wn ≥ w′
n−1, then place a separator after every w′

i such that wn ≥ w′
i.

– If wn < w′
n−1, then place a separator after every w′

i such that wn < w′
i.

• Cycle each segment (i.e., each maximal subword between consecutive separators) by moving its
rightmost entry to the start.

• Finally, append wn. The result is F (w).

For an example of the algorithm in action, see [24, Example 1.4.7].
Foata [11] proved that F is a bijection, and that inv(F (w)) = maj(w) for all words w, which implies

equidistribution of inversion number and major index for permutations (which are 0-interval parking func-
tions), i.e.,

(32)
∑
w∈Sn

qinv(w) =
∑
w∈Sn

qmaj(w).

Equidistribution had been proved previously by MacMahon [20], but the Foata transform gave the first
combinatorial proof. (For more detail, see [24, pp. 41–43].)

It is immediate from the definition of F that it preserves the content of a word, i.e., the number of
occurrences of each letter. In particular, it preserves the class of parking functions (which are (n − 1)-
interval parking functions). Moreover, the definition of F also implies that for each i, the “partial Foata
transform” Fi defined by Fi(w) = F (w1 · · ·wi)wi+1 · · ·wn is also a bijection.

The motivating question of this section is: When does the Foata transform preserve the class of ℓ-interval
parking functions of length n? When the answer is positive, equidistribution of inversion number and major
index for that class follows immediately.

5.2. Permuting parking functions. Here we compare different parking functions related by permutations
(specifically, by partial Foata transforms). It is convenient to assign each car a permanent unique identifier
(its “license plate”, so to speak) and denote a parking function p = (p1, . . . , pn) by a two-line array

p =

(
C1 · · · Cn
p1 · · · pn

)
in which Ci means the car with license plate i; pi is its preference; and the order of columns indicates the
order with which cars enter the parking lot.

Remark 5.3. The objective of using Ci is to be able to change the order in which the cars park but not
change their preferences. For example, when p = 112, we say car 2 prefers to park in spot 1. Then we
can tell those cars to keep their preferences but change their order in the queue to now park enter in the
order 1 → 3 → 2. This creates the parking function q = 121. By using the notation Ci we are able to then
reference that the car that was the 2nd car in p is now the 3rd car in q. In other words,

p =

(
C1 C2 C3

1 1 2

)
becomes q =

(
C1 C3 C2

1 2 1

)
.

This notation is convenient, as it allows one to say clearly how we compare the displacements of the cars as
we make small changes to a parking function.

Accordingly, we write spotp(Ci) for the spot in which car Ci parks with respect to p, and define dispp(Ci) =
spotp(Ci)− pi. For example, if p is the parking function

p =

(
C1 C2 C3 C4 C5 C6

1 1 1 1 4 3

)
16

then its Foata transform is

r = F (p) =

(
C5 C1 C2 C3 C4 C6

4 1 1 1 1 3

)
.

We can see for example that spotr(C4) = 5 and dispr(C4) = 5− 1 = 4. Recall that a parking function p is
an ℓ-interval parking function if and only if maxi{dispp(Ci)} ≤ ℓ.

Lemma 5.4 (Interval Rearrangement). Let p be a parking function of length n. Partition [n] into intervals
B1, . . . , Bk, and let q = p · w, where w ∈ SB1

× · · · ×SBk
. (See Section 3.1 for the action of permutations

on parking functions.) Then for each i ∈ [k] we have

{spotp(j) : j ∈ Bi} = {spotq(j) : j ∈ Bi}.

This fact may be known, but we have not found it in the literature, so we give a short proof.

Proof. The permutation w can be factored as a product of adjacent transpositions, each one belonging to
some SBi

, so it suffices to show that interchanging the order of two adjacent cars either preserves or swaps
their outcomes. Suppose that S is the set of parking spots available at some point in the algorithm, and
that the next two cars in line to park prefer spots u and v. Depending on who parks first, the two spots
they park in are either

a = min{s ∈ S : s ≥ u}, b = min{s ∈ S \ a : s ≥ v}
or

y = min{s ∈ S : s ≥ v}, z = min{s ∈ S \ y : s ≥ u}.
If u = v then evidently a = y and b = z. Without loss of generality, assume u < v.

Evidently u ≤ a ≤ z and v ≤ y ≤ b. If (a, y) = (z, b) then we are done. Otherwise, either a < z or y < b. In
the first case, the definitions of a and z imply that y = a, from which it follows that u, u+1, . . . , v−1 ̸∈ S, and
these two conditions together imply z = b. A similar argument shows that y < b implies (y, z) = (a, b). □

Lemma 5.4 generalizes easily from parking functions to parking completions (see [1]). One useful conse-
quence is the following.

Proposition 5.5. Suppose p, q are two parking functions obtained by switching two adjacent cars, as follows:

p =

(
· · · C1 C2 · · ·
· · · x1 x2 · · ·

)
, q =

(
· · · C2 C1 · · ·
· · · x2 x1 · · ·

)
,

with x1 > x2. Then maxdisp(p) ≥ maxdisp(q). In particular, the increasing rearrangement of every ℓ-
interval parking function is an ℓ-interval parking function.

Proof. By interval rearrangement (Lemma 5.4), the sets {spotp(Cx), spotp(Cy)} and {spotq(Cx), spotq(Cy)}
are equal, say to {a, b}, where a < b. If spotp(Cx) = spotq(Cx) and spotp(Cy) = spotq(Cy), then
maxdisp(p) = maxdisp(q). Otherwise, we have without loss of generality

a = spotp(C1) = spotq(C2) < spotp(C2) = spotq(C1) = b.

In particular, b > a ≥ x1 > x2, and

max(dispp(C1),dispp(C2)) = max(a− x1, b− x2)

>max(dispq(C1),dispq(C2)) = max(b− x1, a− x2).

Thus, replacing p with q can only decrease the maximum displacement, as claimed. Iterating this argument
shows that bubble-sorting (taking a ℓ-interval parking function and sorting the smallest element to position
1, then the second smallest to position 2, etc.) produces an ℓ-interval parking function. □

Lemma 5.6 (Reserved Spot Lemma). For 1 ≤ j < k ≤ n, let

p =

(
C1 · · · Cn
p1 · · · pn

)
and q =

(
C1 · · · Cj−1 Ck Cj · · · Ck−1 Ck+1 · · · Cn
p1 · · · pj−1 pk pj · · · pk−1 pk+1 · · · pn

)
be parking functions (where the bars are included merely for clarity), and suppose that spotp(Cj) = spotq(Cj).
Then spotp(Ci) = spotq(Ci) for all i ∈ [n].

17

Proof. Let p and q be parking functions as above with indices j < k.
If i < j or i < k, then the conclusion follows from interval rearrangement (Lemma 5.4).
If k = j + 1, then we know that spotp(Ci) = spotq(Ci) for all i ̸= k, so it must be the case that

spotp(Ck) = spotq(Ck) as well.
If k > j + 1, the result follows from the k = j + 1 case by factoring the cycle (j j + 1 · · · k − 1 k) into

the product of adjacent transpositions (k − 1 k)(k − 2 k − 1) · · · (j j + 1). □

5.3. Proof of Theorem 5.1. We begin with the easiest cases, showing that the Foata transform is a
bijection when ℓ = n− 2, but not when 3 ≤ ℓ ≤ n− 3.

Proposition 5.7. For all n ≥ 3 the Foata transform restricts to a bijection IPFn(n− 2) → IPFn(n− 2).

Proof. A parking function p of length n fails to be an (n − 2)-parking function precisely when some car
has displacement n − 1. That car must be the last to park, must prefer spot 1, and must park in spot n,
which implies that p̂ = (p1, . . . , pn−1) is a parking function of length n− 1. (In particular, | IPFn(n− 2)| =
(n + 1)n−1 − nn−2.) Since F fixes the last digit of p and permutes the entries of p̂, it follows that it fixes
PFn \ IPFn(n− 2), hence must fix IPFn(n− 2). □

Proposition 5.8. For n ≥ 6 and 3 ≤ ℓ ≤ n − 3, the statistics inv and maj are not equidistributed on
IPFn(ℓ).

Proof. Let In,ℓ = {p ∈ IPFn(ℓ) : inv(p) = 1} and Mn,ℓ = {p ∈ IPFn(ℓ) : maj(p) = 1}. We show that
|Mn,ℓ| < |In,ℓ|. To do so, define

PIn,ℓ =
{
(α, i) ∈ IPF↑

n(ℓ)× [n− 1] :
(I1) ai < ai+1, and
(I2) either ai+1 > i or dispα(Ci) ≤ ℓ− 1

}
,

PMn,ℓ =
{
(α, i) ∈ IPF↑

n(ℓ)× [n− 1] :
(M1) ai < ai+1, and
(M2) for all j ∈ [n], if ai+1 ≤ j ≤ i, then dispα(Cj) ≤ ℓ− 1

}
.

Our plan is to define bijections κ : PIn,ℓ → In,ℓ and λ : PMn,ℓ → Mn,ℓ, then to show that PIn,ℓ ⊋ PMn,ℓ.

First, given a pair (α, i) ∈ PIn,ℓ, let β = κ(α, i) be the parking function obtained by swapping ai and ai+1.

Since α = α↑, it follows that β is a parking function with one inversion, and α can be recovered from β as
its increasing rearrangement.

By interval rearrangement (Lemma 5.4), every car has the same outcome in β as does in α, except that
Ci and Ci+1 may switch places. Since α = α↑, the two parking spots in question are i and i+ 1. There are
two possibilities:

• If ai+1 = i+ 1, then spotβ(Cj) = spotα(Cj) for every j ∈ [n], and it follows that β ∈ IPFn(ℓ).
• If ai+1 ≤ i, then (spotβ(Ci), spotβ(Ci+1)) = (spotα(Ci+1), spotα(Ci)) = (i+1, i). By condition (I2),
dispβ(Ci+1) = dispα(Ci+1) − 1 and dispβ(Ci) = dispα(Ci) + 1. Hence β ∈ IPFn(ℓ) if and only if
dispα(Ci) ≤ ℓ− 1.

Thus we have a injective map κ : PIn,ℓ → In,ℓ. For surjectivity, observe that if β ∈ In,ℓ has a unique inversion

bi > bi+1, then α = β↑ ∈ IPF↑
n(ℓ) by Proposition 5.5, and the same case argument shows that (α, i) ∈ PIn,ℓ.

Second, given a pair (α, i) ∈ PMn,ℓ, let β = λ(α, i) be the parking function obtained by moving ai+1 to the

front. Similarly to the first case, β is a parking function with major index 1, and α = β↑.
By interval rearrangement (Lemma 5.4), the spots and displacements of cars Ci+2, . . . , Cn are unchanged

from α to β. By construction, we have for all j ∈ [n],

spotβ(Cj) =


ai+1 if j = i+ 1,

spotα(Cj) if j ≤ i and spotα(Cj) < ai+1,

spotα(Cj) + 1 if j ≤ i and spotα(Cj) ≥ ai+1,

and

dispβ(Cj) =


0 if j = i+ 1,

dispα(Cj) if j ≤ i and spotα(Cj) < ai+1,

dispα(Cj) + 1 if j ≤ i and spotα(Cj) ≥ ai+1,

=


0 if j = i+ 1,

dispα(Cj) if j < ai+1,

dispα(Cj) + 1 if ai+1 ≤ j ≤ i,
18

and now condition (M2) in the definition of PMn,ℓ implies that β has maximum displacement ℓ, hence belongs
to Mn,ℓ.

Thus we have an injective map λ : PMn,ℓ → Mn,ℓ. To see that it is a surjection, let β ∈ Mn,ℓ; then α = β↑

has the form

α =

(
C2 C3 · · · Ci+1 C1 Ci+2 · · · Cn
b2 b3 · · · bi+1 b1 bi+2 · · · Cn

)
,

where i is the greatest index such that b1 > bi+1. Then α ∈ IPF↑
n(ℓ) by Proposition 5.5, and again the

calculation above shows that (α, i) ∈ PMn,ℓ.
Third, it is immediate from their definitions that PIn,ℓ ⊇ PMn,ℓ. To prove that containment is strict, consider

the parking function

p = (1, . . . , 1︸ ︷︷ ︸
ℓ+1 copies

, ℓ+ 1, ℓ, ℓ+ 4, ℓ+ 5, . . . , n) ∈ In,ℓ

(recall that n ≥ 6 and 3 ≤ ℓ ≤ n− 3). Then κ−1(p) = (α, ℓ+ 2), where

α = (1, . . . , 1︸ ︷︷ ︸
ℓ+1 copies

, ℓ, ℓ+ 1, ℓ+ 4, ℓ+ 5, . . . , n).

Thus (α, ℓ+ 2) ∈ PIn,ℓ. However, setting i = ℓ+ 2 and j = ℓ+ 1, we have

ai+1 = ℓ+ 1 ≤ j ≤ i, but dispα(Cj) = (ℓ+ 1)− aℓ+1 = (ℓ+ 1)− 1 = ℓ.

So condition (M2) fails and (α, ℓ+ 2) /∈ PMn,ℓ, proving strict containment as desired. □

We next consider the case ℓ = 1.

Proposition 5.9. The Foata transform restricts to a bijection UPFn → UPFn.

Proof. Let q ∈ UPFn, and let r be the parking function obtained by cycling a single interval [a, b]:

q =

(
· · · Ca · · · Cb · · ·
· · · qa · · · qb · · ·

)
→ r =

(
· · · Cb Ca · · · Cb−1 · · ·
· · · qb qa · · · qb−1 · · ·

)
.

Here the bars are included for clarity. Note that spotr(Cb) ≤ spotq(Cb) because passing from q to r moves
Cb toward the front of the queue.

If spotr(Cb) = spotq(Cb), then the Reserved Spot Lemma (Lemma 5.6) implies that all outcomes are
preserved, so r ∈ UPFn. Accordingly, we assume henceforth that spotr(Cb) < spotq(Cb). Since q is a unit
interval parking function, we have

0 ≤ dispr(Cb) = spotr(Cb)− qb < spotq(Cb)− qb = dispq(Cb) ≤ 1

so the two inequalities are both actually equalities. In particular,

(33) spotr(Cb) = qb and spotq(Cb) = qb + 1.

By interval rearrangement (Lemma 5.4),

b∑
i=a

spotq(Ci) =

b∑
i=a

spotr(Ci)

so

b∑
i=a

dispq(Ci) =

b∑
i=a

dispr(Ci)

and

1 +

b−1∑
i=a

dispq(Ci) =

b−1∑
i=a

dispr(Ci)

19

and dispr(Ci) ≥ dispq(Ci) for all i ∈ [a, b−1]. From this we may conclude that there is a unique j ∈ [a, b−1]
such that

dispr(Cj) = dispq(Cj) + 1 and(34)

dispr(Ci) = dispq(Ci) for all i ∈ [a, b− 1] \ {j}.(35)

If dispr(Cj) = 1 and dispq(Cj) = 0, then r is a UPF and we are done. Accordingly, assume for the sake
of contradiction that dispr(Cj) = 2 and dispq(Cj) = 1. By the Reserved Spot Lemma (Lemma 5.6), the
parking function

s =

(
· · · Cb Cj Ca · · · Cj−1 Cj+1 · · · Cb−1 · · ·
· · · qb qj qa · · · qj−1 Cj+1 · · · qb−1 · · ·

)
satisfies spots(i) = spotr(i) for all i ∈ [a, b]. On the other hand, certainly

{spotq(Ci) : i ∈ [a, b]} = {spotr(Ci) : i ∈ [a, b]} = {spots(Ci) : i ∈ [a, b]}
and we have seen that for i ̸∈ {b, j},

spots(Ci) = spotr(Ci) = spotq(Ci).

We conclude that
{spotr(Cb), spotr(Cj)} = {spotq(Cb), spotq(Cj)},

which forces

spotq(Cj) = spotr(Cb) = qb, and

spotr(Cj) = spotq(Cb) = qb + 1.

Combining with (34), we have

dispq(Cj) = 1 = spotq(Cj)− qj = qb − qj

i.e., qj = qb − 1. So it must be the case that spot qj was occupied by some car in a previous segment, and
with respect to q, cars Cj and Cb park in spots qj + 1 and qj + 2 respectively. On the other hand, with
respect to r, car Cb parks first in spot qj +1, and car Cj must park in spot qn +2, giving it displacement 2.

Now, suppose that the cycling operation that produced r from q was a step in the Foata transform
(Definition 5.2). In particular qj < pn ≤ qb, and in fact pn = qb (by the earlier observation qj = qb− 1). But
since q is a UPF, we have

spotq(Cn) ∈ {qb, qb + 1}
but this is impossible because

spotq(Cj) = qj + 1 = qb and spotq(Cb) = qj + 2 = qb + 1

giving the desired contradiction. □

Finally, we consider the most difficult case, when ℓ = 2.

Proposition 5.10. For all n ≥ 1, if p ∈ IPFn(2), then F (p) ∈ IPFn(2).

Proof. We define aBoojum2 to be a parking function p such that (i) maxdisp(p) = 2; (ii) maxdisp(F (p)) > 2;
and (iii) p is of minimal length among all parking functions satisfying (i) and (ii). We show that Boojums
do not exist.

Suppose for contradiction that p = (p1, . . . , pn) is a Boojum. We mostly work with q = Fn−1(p) =
(q1, . . . , qn), where as before Fn−1 is a partial Foata transform. Accordingly, we assume that the order of
cars with respect to q is C1, . . . , Cn. Note that q is a parking function (because it is a rearrangement of the
parking function p). Let r = F (p).

Observe that q itself is a 2-parking function, because
• p̂ = (p1, . . . , pn−1) is a 2-parking function, and by minimality of Boojums q̂ = (q1, . . . , qn−1) = F (p̂)
is as well; and

• qn = pn, so by interval rearrangement (Lemma 5.4) and the fact that q̂ is a permutation of p̂, we
have dispq(Cn) = dispp(Cn) ≤ 2.

2A creature that does not exist: see [6]

20

Consider what happens in the last step of calculating the Foata transform of p. We place some set of
separators in q̂, cycle each segment, and then append pn. Suppose there are k ≥ 1 separators after positions
i1, . . . , ik where ik = n− 1. That is,

q =

(
C1 · · · Ci1 Ci1+1 · · · Ci2 · · · Cik−1+1 · · · Cik Cn
q1 · · · qi1 qi1+1 · · · qi2 · · · qik−1+1 · · · qik pn

)
and

r =

(
Ci1 C1 · · · Ci1−1 Ci2 Ci1+1 · · · Ci2−1 · · · Cik Cik−1+1 · · · Cik−1 Cn
qi1 q1 · · · qi1−1 qi2 qi1+1 · · · qi2−1 · · · qik qik−1+1 · · · qik−1 pn

)
.

By the definition of a Boojum, q is a 2-interval parking function and r is not. That is, for some j, we have

(36) dispq(Cj) ≤ 2 < dispr(Cj).

Note that j ̸= n, because spotq(Cn) = spotr(Cn) (so, dispr(Cn) = dispq(Cn)). Moreover, if j ≤ ik−1, then
q1 · · · qik−1

pn is the ik−1th partial Foata transform of a smaller Boojum, which contradicts the minimality
assumption on p. Therefore, ik−1 + 1 ≤ qj ≤ ik. Thus, we are concerned only with the behavior of the cars
with labels in the interval B = [u, . . . , n− 1], where for convenience we set u = ik−1 + 1.

We claim that spotq(Cn−1) > spotr(Cn−1). Indeed, since Cn−1 parks earlier with respect to r than with
respect to q, we have spotq(Cn−1) ≥ spotr(Cn−1). If equality holds, then by the Reserved Spot Lemma
(Lemma 5.6), r would in fact be a 2-interval parking function, a contradiction. Consequently,

(37) 2 ≥ dispq(Cn−1) > dispr(Cn−1) ≥ 0.

Also, pn ̸= qj . To see this, observe that because dispr(Cj) > dispr(Cn) even though Cj parks before Cn,
so their preferred spots cannot possibly be equal.

We now consider two cases of the Foata bijection.

Case 1: Assume qu, . . . , qn−2 ≤ pn < qn−1. Observe that no car that originally parked in a spot less than
qn−1 is affected by the cycling. In particular,

(38) spotq(Cj) ≥ qn−1.

The assumptions of Case 1 imply that

(39) qn−1 > pn > qj .

Now from (36) and (38) and (39) we get

(40) qj < pn < qn−1 ≤ spotq(Cj) ≤ 2 + qj .

Therefore pn = qj + 1, and thus qn−1 = spotq(Cj) = qj + 2. Since dispr(Cj) ≥ 3, we know that spots
qj+1, qj+2 were already occupied before Cj parks, and qj+3 (at least) is occupied after Cj parks. Therefore,
Cn, who wanted to park in spot pn = qj+1, cannot park in any of the spots in the set {qj+1, qj+2, qj+3}.
So dispr(Cn) ≥ 3. But dispr(Cn) = dispq(Cn), which contradicts the assumption that p is a 2-interval
parking function and eliminates Case 1.

Case 2: Assume qu, . . . , qn−2 > pn ≥ qn−1.
Suppose that spotq(Ci) ̸= qn−1 for all i < u. That is, spot qn−1 is available before the cars in B start to

park. Since qn−1 is the strictly smallest preference in B, it follows that spotr(Cn−1) = spotq(Cn−1) = qn−1,
so the Reserved Spot Lemma (Lemma 5.6) implies spotr(Ch) = spotq(h) for all h ∈ [u, n− 2], contradicting
the assumption that p is a Boojum. Hence spotr(Cn−1) > qn−1, i.e., dispr(Cn−1) > 0, so (37) implies that

spotr(Cn−1) = qn−1 + 1 and thus spotq(Cn−1) = qn−1 + 2.

This implies in turn that spotq(Ci) /∈ {qn−1+1, qn−1+2} for all i < u. Therefore, there must be some h ≥ u
such that qh = qn−1 + 1 (which is the reason Cn−1 is unable to park there with respect to q), but no other
car with preference equal to qn−1 + 1 or qn−1 + 2 (because if there were then Cn−1 would not be able to
park in qn−1 +2 with respect to q). But this says that the effect of cycling Cn−1 to the front of the segment
is limited to changing

(spotq(Cn), spotq(Ch)) = (qn−1 + 2, qn−1 + 1)
21

to

(spotr(Cn), spotr(Ch)) = (qn−1 + 1, qn−1 + 2)

and all the other cars, in particular Cj , are unaffected. This rules out Case 2, which completes the proof. □

5.4. Enumeration by major index. The Foata transform F preserves the content of a parking function
and therefore its displacement. Therefore, Theorem 5.1 has the following immediate consequence.

Corollary 5.11. Let n ≥ 1 and ℓ ∈ {0, 1, 2, n− 2, n− 1}. Then∑
α∈IPFn(ℓ)

qdisp(α)tinv(α) =
∑

α∈IPFn(ℓ)

qdisp(α)tmaj(α).

Combining this observation with Corollary 3.2 and Theorem 3.3 (together with the fact that asc(F (σ)−1) =
asc(σ−1) for each σ ∈ Sn [13, Thm. 1]) yields major-index versions of those results.

Corollary 5.12. Let n ≥ 2. Then∑
α∈IPFn(n−2)

qdisp(α)tmaj(α) =
∑

α∈PFn

qdisp(α)tmaj(α) − (qt)n−1
∑

β∈PFn−1

qdisp(β)tmaj(β)−ones(β),

where ones(β) = |{i ∈ [n− 1] : bi = 1}| and∑
α∈UPFn

qdisp(α)tmaj(α) =
∑
σ∈Sn

(1 + q)asc(σ)tmaj(σ−1).

For 2-interval parking functions (Theorem 3.11), the appearance of the statistics |R(β)| and |S(β)| makes
the application of the Foata transform less straightforward. It turns out that F preserves these two statistics,
thanks to the following observation.

Lemma 5.13. Let (a1, a2, . . . , an) ∈ Nn. Let j, k ∈ [n] such that aj ≤ ak, and let i ≥ max(j, k).
(1) If ai+1 ̸∈ {aj , . . . , ak − 1} then aj and ak appear in the same order in F (a1a2 · · · ai+1) as they do in

F (a1a2 · · · ai).
(2) If {aj , . . . , ak − 1} ∩ {ai+1, . . . , an} = ∅, then aj and ak appear in the same order in F (a1 · · · an) as

they do in F (a1a2 · · · ai).

Proof. (1) The condition ai+1 ̸∈ {aj , . . . , ak−1} implies that, at the (i+1)st stage of the algorithm, separators
are placed either after both aj and ak, or after neither. If both, then aj and ak belong to different segments.
If neither, then if they are in the same segment, then neither one is the last entry in that segment. Therefore,
in all cases, the cycling step maintains the relative position of aj and ak, so they appear in the same order
in F (a1 · · · ai+1) as in F (a1 · · · ai).

(2) This claim follows from applying (1) repeatedly. □

Lemma 5.14. If α ∈ UPFn, then |R(α)| = |R(F (α))| and |S(α)| = |S(F (α))|.

Proof. Since F preserves content, it preserves block structure, hence |S(α)| = |S(F (α))| by (14).
For α = (a1, a2, . . . , an) ∈ UPFn, let P(α) be the set of positions of the second entries of blocks. Equiva-

lently, by block structure,

P(α) = {i ∈ [n] : aj = ai for some j < i}.
Note that R(α) ⊆ P(α). Moreover, |P(α)| = |P(F (α))|, because F preserves content. For convenience,
define R′(α) = {ai : i ∈ R(α)}, so that |R′(α)| = |R(α)|.

We claim that R′(α) = R′(F (α)). Indeed, let k ∈ P(α), and let πs be the block containing ak. Taking
aj to be either the first entry of πs or the last entry of πs−1, and taking i = max(j, k), block structure
implies that the elements aj , ak satisfy the conditions of Lemma 5.13, hence appear in the same order in
F (α) as they do in F (a1a2 · · · ai), hence the same order as in a1 · · · ai (due to our choice of i). In particular,
ak ∈ R′(α) if and only if ak ∈ R′(F (α)). Therefore,

|R(α)| = |R′(α)| = |R′(F (α))| = |R(F (α))|. □
22

Example 5.15. Let α = 34411 ∈ UPF5, with block structure 11 | 3 | 44. Then F (α) = 13441. Note that

P(α) = {3, 5}, R(α) = {3},
P(F (α)) = {4, 5}, R(F (α)) = {4},

and R′(α) = R′(F (α)) = {4}.

Applying Lemma 5.14 and Theorem 5.1 to Theorem 3.11, we obtain a major-index enumeration for
2-interval parking functions.

Corollary 5.16. For all n ≥ 1,∑
α∈IPFn(2)

qdisp(α)tmaj(α) =
∑

β∈UPFn

qdisp(β)(1 + q)|S(β)|(1 + qt)|R(β)|tmaj(β).

It would be interesting to provide direct proofs of Corollaries 5.12 and 5.16 that do not rely on the Foata
bijection.

6. Further Problems

We provide some open problems for further study.

Problem 6.1. Describe a block structure for ℓ-interval parking functions that generalizes the ℓ = 1 case
(Theorem 2.10).

As we noted in Section 2.2, the block structure of unit interval parking functions appears to be unique to
the case ℓ = 1. For ℓ > 1, the problem seems to be much harder.

Problem 6.2. What can be said about the effect of the Foata transform on the outcome of a parking function?

One obvious thing is that if α ∈ Sn, then spotF (α) = F (spotα) (because α = spotα). However, this

does not hold in general. For instance, let α = 121. Then F (α) = 211, but spotF (α) = 213 whereas

F (spotα) = F (123) = 123. For unit interval parking functions (which the previous α is not), it seems that
F acts on the spots permutations as it did for permutations:

Conjecture 6.3. For any unit interval parking function α, spotF (α) = F (spotα).

We have verified Conjecture 6.3 for all unit interval parking functions of length at most 8.

Problem 6.4. Count ℓ-interval parking functions in terms of (ℓ± 1)-interval parking functions.

Theorems 3.3 and 3.11 as well as Corollary 3.2 are solutions to the above problem for ℓ = 1, 2, n − 2,
respectively. Let IPFn(ℓ)

max be the set of parking functions α of length n such that maxdisp(α) = ℓ. It
follows from our enumerative results that for all n ≥ 1

n! = | IPFn(0)max| ≤ | IPFn(1)max| ≤ | IPFn(2)max| and | IPFn(n− 2)max| ≥ | IPFn(n− 1)max| = nn−2

Experimentally, it seems this pattern continues. See Table 1.

Conjecture 6.5. For each n ≥ 1, the sequence (| IPFn(ℓ)max|)n−1
ℓ=0 is unimodal i.e. if aℓ = | IPFn(ℓ)max|,

there exists an integer c ∈ {0, 1, . . . , n− 1} such that

n! = a0 ≤ a1 ≤ a2 ≤ · · · ≤ ac ≥ · · · ≥ an−2 ≥ an−1 = nn−2.

Acknowledgments

The genesis for this project was the Graduate Research Workshop in Combinatorics 2024, hosted by
University of Wisconsin, Milwaukee, which was supported in part by NSF Grant DMS – 1953445. We
thank the developers of SageMath [25], which was useful in this research, and the CoCalc [22] collaboration
platform. We also thank Steve Butler, Ari Cruz, Kim Harry, Matt McClinton, Keith Sullivan, and Mei Yin
for their comments and guidance at the start of this project. This work was supported by a grant from the
Simons Foundation (Travel Support for Mathematicians, P. E. Harris).

23

n
ℓ

0 1 2 3 4 5 6 7 8

1 1
2 2 1
3 6 7 3
4 24 51 34 16
5 120 421 377 253 125
6 720 3963 4594 3688 2546 1296
7 5040 42253 62145 57398 46142 32359 16807
8 40320 505515 929856 979430 865970 702292 497442 262144
9 362880 6724381 15298809 18289811 17520519 15455851 12587507 8977273 4782969

Table 1. | IPFn(ℓ)max| up to n = 9. OEIS sequence numbers forthcoming.

References

[1] Ayomikun Adeniran, Steve Butler, Galen Dorpalen-Barry, Pamela E. Harris, Cyrus Hettle, Qingzhong Liang, Jeremy L.

Martin, and Hayan Nam. Enumerating parking completions using Join and Split. Electron. J. Combin., 27(2):Paper No.
2.44, 19, 2020.

[2] Tomás Aguilar-Fraga, Jennifer Elder, Rebecca E. Garcia, Kimberly P. Hadaway, Pamela E. Harris, Kimberly J. Harry,

Imhotep B. Hogan, Jakeyl Johnson, Jan Kretschmann, Kobe Lawson-Chavanu, J. Carlos Mart́ınez Mori, Casandra D.
Monroe, Daniel Quiñonez, Dirk Tolson, III, and Dwight Anderson Williams, II. Interval and ℓ-interval rational parking

functions. Discrete Math. Theor. Comput. Sci., 26(1):Paper No. 10, 29, [2024–2025].
[3] Yasmin Aguillon, Dylan Alvarenga, Pamela E. Harris, Surya Kotapati, J. Carlos Mart́ınez Mori, Casandra D. Monroe,

Zia Saylor, Camelle Tieu, and Dwight Anderson Williams, II. On parking functions and the tower of Hanoi. Amer. Math.

Monthly, 130(7):618–624, 2023.
[4] Adrian Avalos and Mark Bly. Sequences, q-multinomial identities, integer partitions with kinds, and generalized Galois

numbers. PUMP J. Undergrad. Res., 3:72–94, 2020.

[5] S. Alex Bradt, Jennifer Elder, Pamela E. Harris, Gordon Rojas Kirby, Eva Reutercrona, YuxuanWang, and Juliet Whidden.
Unit interval parking functions and the r-Fubini numbers. Matematica, 3(1):370–384, 2024.

[6] Lewis Carroll. The hunting of the snark: An agony in eight fits. Originally published 1876; full text at

poetryfoundation.org/poems/43909/the-hunting-of-the-snark.
[7] Lucas Chaves Meyles, Pamela E. Harris, Richter Jordaan, Gordon Rojas Kirby, Sam Sehayek, and Ethan Spingarn. Unit-

interval parking functions and the permutohedron. arXiv:2305.15554, to appear in J. Comb., 2023.

[8] Emma Colaric, Ryan DeMuse, Jeremy L. Martin, and Mei Yin. Interval parking functions. Adv. in Appl. Math., 123:Paper
No. 102129, 17, 2021. arXiv:2006.09321.

[9] Laura Colmenarejo, Pamela E. Harris, Zakiya Jones, Christo Keller, Andrés Ramos Rodŕıguez, Eunice Sukarto, and

Andrés R. Vindas-Meléndez. Counting k-Naples parking functions through permutations and the k-Naples area statistic.
Enumer. Comb. Appl., 1(2):Paper No. S2R11, 16, 2021.

[10] Jennifer Elder, Pamela E. Harris, Jan Kretschmann, and J. Carlos Mart́ınez Mori. Parking functions, Fubini rankings, and
Boolean intervals in the weak order of Sn. J. Comb., 16(1):65–89, 2025.

[11] Dominique Foata. On the Netto inversion number of a sequence. Proc. Amer. Math. Soc., 19:236–240, 1968.

[12] Dominique Foata and John Riordan. Mappings of acyclic and parking functions. Aequationes Math., 10:10–22, 1974.
[13] Dominique Foata and Marcel-Paul Schützenberger. Major index and inversion number of permutations. Math. Nachr.,

83:143–159, 1978.

[14] Robin Forman. Morse theory for cell complexes. Adv. Math., 134(1):90–145, 1998.
[15] Robin Forman. A user’s guide to discrete Morse theory. Sém. Lothar. Combin., 48:Art. B48c, 35, 2002.

[16] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete mathematics. Addison-Wesley Publishing Company,

Reading, MA, second edition, 1994. A foundation for computer science.
[17] Kimberly P. Hadaway. On Combinatorial Problems of Generalized Parking Functions, 2021. Williams College Honors

Thesis.

[18] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, 2025. Published electronically at https://oeis.org.
[19] A. Konheim and B. Weiss. An occupancy discipline and applications. SIAM Journal on Applied Mathematics, 14(6):1266–

1274, 1966.
[20] P. A. MacMahon. Two Applications of General Theorems in Combinatory Analysis. Proc. London Math. Soc. (2), 15:314–

321, 1916.

[21] Victor. Reiner, Dennis W. Stanton, and Dennis E. White. The cyclic sieving phenomenon. J. Combin. Theory Ser. A,
108(1):17–50, 2004.

[22] SageMath Inc. CoCalc Collaborative Computation Online, 2022. https://cocalc.com/.

24

https://www.poetryfoundation.org/poems/43909/the-hunting-of-the-snark
https://arxiv.org/abs/2305.15554
https://arxiv.org/pdf/2006.09321.pdf
https://oeis.org

[23] Richard P. Stanley. Enumerative Combinatorics. Volume 2, volume 62 of Cambridge Studies in Advanced Mathematics.
Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin.

[24] Richard P. Stanley. Enumerative Combinatorics. Volume 1, volume 49 of Cambridge Studies in Advanced Mathematics.

Cambridge University Press, Cambridge, second edition, 2012.
[25] WilliamA. Stein et al. Sage Mathematics Software (Version 9.4). The Sage Development Team, 2022. http://www.

sagemath.org.

[26] Catherine H. Yan. Parking functions. In Handbook of Enumerative Combinatorics, Discrete Math. Appl. (Boca Raton),
pages 835–893. CRC Press, Boca Raton, FL, 2015.

(K. Celano) Department of Mathematics, Wake Forest University, NC

Email address: celanok@wfu.edu

(J. Elder) Department of Computer Science, Mathematics and Physics, Missouri Western State University, St.

Joseph, MO 64507
Email address: jelder8@missouriwestern.edu

(K. P. Hadaway) Department of Mathematics, Iowa State University, Ames, IA 50010

Email address: kph3@iastate.edu

(P. E. Harris) Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211

Email address: peharris@uwm.edu

(J. L. Martin) Department of Mathematics, University of Kansas, Lawrence, KS 66045

Email address: jlmartin@ku.edu

(A. Priestley) Department of Computer Science, The University of Texas at Austin, Austin, TX 78712

Email address: amandapriestley@utexas.edu

(G. Udell) Department of Mathematics, Cornell University, Ithaca, NY 14850

Email address: gru5@cornell.edu

25

http://www.sagemath.org
http://www.sagemath.org
celanok@wfu.edu
mailto:jelder8@missouriwestern.edu
mailto:kph3@iastate.edu
mailto:peharris@uwm.edu
mailto:jlmartin@ku.edu
mailto:amandapriestley@utexas.edu
mailto:gru5@cornell.edu

	1. Introduction
	2. Background
	2.1. Parking functions and l-interval parking functions
	2.2. Block structure of unit interval parking functions
	2.3. Permutation statistics

	3. Enumeration by counting through permutations
	3.1. A cyclic sieving phenomenon
	3.2. From l=1 to l=2

	4. Enumeration via ciphers
	4.1. The Avalos–Bly and cipher bijections
	4.2. Ciphers and Lehmer codes
	4.3. Unit Fubini rankings

	5. Foata invariance and inv-maj equidistribution
	5.1. The Foata transform on words
	5.2. Permuting parking functions
	5.3. Proof of Theorem 5.1
	5.4. Enumeration by major index

	6. Further Problems
	Acknowledgments
	References

