THE INCIDENCE HOPF ALGEBRA OF GRAPHS

BRANDON HUMPERT AND JEREMY L. MARTIN

ABSTRACT. The graph algebra is a commutative, cocommutative, graded,
connected incidence Hopf algebra, whose basis elements correspond to
finite graphs and whose Hopf product and coproduct admit simple com-
binatorial descriptions. We give a new formula for the antipode in the
graph algebra in terms of acyclic orientations; our formula contains many
fewer terms than Takeuchi’s and Schmitt’s more general formulas for the
antipode in an incidence Hopf algebra. Applications include several for-
mulas (some old and some new) for evaluations of the Tutte polynomial.

1. INTRODUCTION

The graph algebra G is a commutative, cocommutative, graded, connected
Hopf algebra, whose basis elements correspond to finite graphs, and whose
Hopf product and coproduct admit simple combinatorial descriptions. The
graph algebra was first considered by Schmitt in the context of incidence
Hopf algebras [Sch94, §12] and furnishes an important example in the work
of Aguiar, Bergeron and Sottile [ABS06, Example 4.5].

In this paper, we derive a nonrecursive formula (Theorem for the
Hopf antipode in G. Our formula is specific to the graph algebra in that it
involves acyclic orientations. Therefore, it is not merely a specialization of
the antipode formulas of Takeuchi [Tak71] or Schmitt [Sch94] (in the more
general settings of, respectively, connected bialgebras and incidence Hopf
algebras). Aguiar and Ardila [AA] have independently discovered a more
general antipode formula than ours, in the context of Hopf monoids; their
work will appear in a forthcoming paper.

Our formula turns out to be well suited for studying polynomial graph
invariants, including the Tutte polynomial T (x,y) (see [BO92|) and various
specializations of it. Specifically, to every graph G and character ¢ on the
graph algebra, we associate the function P; (k) whose value at an integer
kis ¢ k(G), where the superscript denotes convolution power. For example,
if ¢ is the characteristic function of edgeless graphs, then Fr (k) is the
chromatic polynomial of G. In fact, it turns out that Pr (k) is a polynomial
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function of k for all characters ¢, so we may regard P as a map G — Ck]
sending G to Pr (k). This map is in fact a morphism of Hopf algebras; it
is not graded (so it is not quite a morphism of combinatorial Hopf algebras
in the sense of Aguiar, Bergeron and Sottile [ABS06]) but does preserve
the canonical filtration by degree. Together with the antipode formula, this
observation leads to combinatorial interpretations of the convolution inverses
of several natural characters, as we discuss in Section

The Tutte polynomial T (z,y) can itself be viewed as a character on
the graph algebra. We prove that its k-th convolution power itself is a
Tutte evaluation at rational functions in z,y, k (Theorem . This result
implies several well-known formulas such as Stanley’s formula for acyclic
orientations in terms of the chromatic polynomial [Sta73], as well as some
interpretations of less familiar specializations of the Tutte polynomial, and
an unusual-looking reciprocity relation between complete graphs of different
sizes (Proposition and Corollary .

The authors thank Marcelo Aguiar, Federico Ardila, Diego Cifuentes,
Aaron Lauve, and Vic Reiner for numerous helpful conversations, and two
anonymous referees for valuable assistance in improving the exposition.

2. HOPF ALGEBRAS

2.1. Basic definitions. We briefly review the basic facts about Hopf alge-
bras, omitting most of the proofs. Good sources for the full details include
Sweedler [Swe69] and (for combinatorial Hopf algebras) Aguiar, Bergeron
and Sottile [ABS06]. For the more general setting of Hopf monoids, see
Aguiar and Mahajan [AMI10]. We do not know of specific references for
Lemma [2.1] and Proposition but they are well known as part of the
general folklore of (combinatorial) Hopf algebras.

Fix a field F of characteristic 0 (typically F = C). A bialgebra H is a
vector space over F equipped with linear maps

m:HIH —H, u:F —H, A:H—->HIH, e:H—TF,

respectively the multiplication, unit, comultiplication, and counit, such that
the following properties are satisfied:

(1) mo(m®I)=mo (I ®m) (associativity);

(2) mo(u®I)=mo (I ®u) =1 (where I is the identity map on H);

(3) (A®I)oA=(I®A)oA (coassociativity);

(4) (e®@I)oA=(I®¢€)oA=1I;and

(5) A and e are multiplicative (equivalently, m and u are comultiplica-
tive).

If there exists a bialgebra automorphism S : H — H such that mo (S®1I)o
A=mo(I®S)oA =wuoe, then H is a Hopf algebra and S is its antipode.
It can be shown that S is the unique automorphism of H with this property.
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It is often convenient to write expressions such as coproducts in Sweedler
notation, where the index of summation is suppressed: for instance, A(h) =
>~ h1 ® hy rather than A(h) =", hgl) ® hg).

A Hopf algebra H is graded if H = @P,,~, M, as vector spaces, and mul-
tiplication and comultiplication respect this decomposition, i.e.,

m(Hi ® H;) CHiy; and AHn) C Y Hi®@H;.
i+j=n

If h € H;, we say that h is homogeneous of degree i. The algebra H is
connected if dim(Hy) = 1. Most Hopf algebras arising naturally in combi-
natorics are graded and connected, and every algebra we consider henceforth
will be assumed to have these properties.

Let H be a graded and connected bialgebra. There is a unique Hopf
antipode on H, defined inductively by the formulas

S(h)=h for h € Ho, (1a)
(mo(I®S)oA)(h)=0 for h € H;, i > 0. (1b)

Formula can be rewritten more explicitly using Sweedler notation. If
A(h) =" h1 ® hg, then Y h1S(h2) = 0, so solving for S(h) gives

_Zhls(hZ)v (2)

the sum over all summands in which the degree of hy is strictly less than
that of h.

A character of a Hopf algebra H is a multiplicative linear map ¢ : H — F.
The convolution product of two characters is ¢ x ¢ = (¢ ® 1) o A. That is,
if Ah = Z h1 ® ha, then

(@ )(h) =D d(hn)(

with both sums in Sweedler notation. We write gi)k for the k-th convolution
power of ¢; if k < 0 then ¢* = (¢~')~*. Convolution makes the set of
characters X(#) into a group, with identity € and inverse given by

pt=¢oS. (3)
There is a natural involutive automorphism ¢ + ¢ of X(H), given by ¢(h) =
(=1)"¢(h) for h € H,. If H is a graded connected Hopf algebra and ¢ €
X(H), then the pair (H, () is called a combinatorial Hopf algebra, or CHA for
short. A morphism of CHAs ® : (H,() — (H',¢’) is a linear transformation
H — H' that is a morphism of Hopf algebras (i.e., a linear transformation
that preserves the operations of a bialgebra) such that (o ® = (.

2.2. The binomial Hopf algebra. The binomial Hopf algebra is the ring
of polynomials F[k] in one variable &, with the usual multiplicative structure;
comultiplication defined by A(f(k)) = f(k®1+1®k) and A(1) = 1® 1;
counit €(f(k)) = eo(f(k)) = f(0); and character e;(f(k)) = f(1). A theme
of this article, that polynomial invariants of elements of a Hopf algebra H
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can be viewed as the values of a morphism # — F[k]. The main result
in this vein, Proposition can be proved with elementary methods, but
we instead give a longer proof that illustrates the connection to the work
of Aguiar, Bergeron, and Sottile [ABS06]. In order to do so, we begin by
reviewing some facts about compositions and quasisymmetric functions; for
more details, see, e.g., [Sta99l §7.19].

Let n be a nonnegative integer. A composition of n is an ordered sequence
a = (a1, ...,qp) of positive integers such that ay + - - -+ ap = n; in this case
we write a F n. The number ¢ = ¢(«) is the length of a.. The corresponding
monomial quasisymmetric function is the formal power series

Vo= 3 sl g
0<iy <<y
in countably infinitely many commuting variables {z1, 22, ... }. The F-vector

space spanned by the M, is denoted QSym. This is in fact a Hopf algebra,
with the natural addition, multiplication, and unit; counit

)1 ifl(a) =0,
€(Ma) = {0 if £(a) > 0;

and comultiplication

l
A(M(Oélv---vae)) = Z M(Otl7---,ai)M(Oéi+17---7w)‘
1=0

For F(x1,22,...) € QSym, let (o(F) be the number obtained by substitut-
ing z1 = 1 and 3 = 23 = --- = 0. The map (g is a character on QSym.
Aguiar, Bergeron, and Sottile [ABS06, Thm. 4.1] proved that (QSym, ()
is a terminal object in the category of CHAs, i.e., that every CHA (H,()
has a unique morphism

\Il : (H7C) — (stm7CQ)7
given explicitly on h € H,, by
\Ij(h) - Z Ca(h)Ma ;
aFn

here (, : H — F is the composite function

£—1 (44
HA—>H®£W—“>HQ1®---®HWC—>F

where ¢ = {(«) is the number of parts of «, and 7, is the tensor product of
the canonical projections of ‘H onto the graded pieces Hy,.

For F(z1,m2,...) € QSym, let psi(F) be the number obtained by substi-
tuting #1 = --- = 7, = 1 and x4 = --- = 0. In particular, ps{ = Co- The
map ps/,lC is a specialization of a map called the principal specialization [Sta99,
pp. 302-303]. By ({4)), we have

Loy k(E—=1) (k=) +1) [k
psy (M) = (o). B (E(Oé)>'
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Accordingly, we can regard psllC as a map
IT: QSym — F[k]

sending M, to psj,(My,). (The reason for the apparently redundant notation
is that when we write psj,, we are regarding k as an integer, while when we
write II, we are regarding k as the indeterminate in the polynomial ring

Flk].)

Lemma 2.1. The map Il : QSym — F[k| is a morphism of Hopf algebras.
Moreover, (g = €1 o IL.

We remark that II is not a morphism of combinatorial Hopf algebras
because it is not graded (i.e., II(M,) is not homogeneous), merely filtered
by degree.

Proof. The definition of ps./,lC implies that II is a homomorphism of F-algebras.
To see that it is in fact a Hopf morphism, we must show that (II®II)o A =
A o II. It suffices to check this for the basis {M,}. Let z = k ® 1 and
y =1® k; then

(M@ I)(AM,) = (IR [ Y M, 0 ® M

Qg 1yenCp)

S0 () -2(0) o

(The third equality is a standard identity of binomial coefficients [Sta97,
Ex. 1.1.17] that holds for all nonnegative integers x,y; therefore, it is an
identity of polynomials.)

For the second assertion of the lemma, we have

-----

CQ(MQ):{1 if0(a) <1 _ k(k—1)-(k—(+1) = e (I(My)).

0 ifl(a)>1 0 k=1
O

We now come to the main result of this section. Again, this fact is not
new, but is part of the folklore of (combinatorial) Hopf algebras.

Proposition 2.2 (Polynomiality). For every combinatorial Hopf algebra
(H, (), there is a CHA morphism

P s (1,0) - (F[k], )
mapping h to the unique polynomial P¢ (k) such that
P (k) =¢R(h)  VkeZ
Moreover, if h € Hy, then Pr (k) is a polynomial in k of degree at most n.
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Proof. We will show that P (k) = II(¥(h)) for all h € H. It is not hard to
see that P is a vector space homomorphism, so it is sufficient to consider
the case that h is homogeneous of degree n. The desired equality follows
from the calculation

Peu(k) = ¢"(h) = D C(hn)--- () (5a)
k
ATHEG (5b)
= ) Calh)My = TI(¥(R)).
aFn

The sum in is Sweedler notation. The only tricky equality is ; for
this, note that each summand ((hq) - -- ((hg) in arises from an ordered
list (hi,...,hg) of homogeneous elements of H whose degrees sum to n. De-
fine the essence of a summand ((hy) - - - {(hy) to be the sublist of (hq,..., hy)
consisting of elements of strictly positive degree. Each equivalence class of
summands with the same essence (h;,,...,h;,) contains precisely (];) sum-
mands (since by the counit property, the positive-degree factors may occur
in any positions) and thus contributes (l;){’(hil) -++((h4,) to the sum. Col-
lecting together all equivalence classes whose essences have the same degree
sequence « contributes (Z(ka ))Ca(h).

Finally, observe that (]Z) = %

and that every composition o F n has at most n parts, so P (k) is a
polynomial in k of degree at most n. O

is a polynomial in k of degree ¢,

One can also prove Proposition by direct calculation, for instance, by
showing that D" "1 P (k) = 0, where D is the difference operator DP(k) =
P(k) — P(k—1).

Proposition provides a way of translating characters on a Hopf alge-
bra into polynomial invariants of its elements, just as the Aguiar—-Bergeron—
Sottile theorem translates characters into quasisymmetric-function invari-
ants. Passing from quasisymmetric functions to polynomials may lose infor-
mation, but may also lead to more explicit formulas.

2.3. Graphs and the graph Hopf algebra. We now describe the Hopf al-
gebra that is the subject of this article. (The literature contains many other
instances of Hopf algebras of graphs; for example, this is not the same Hopf
structure as the algebra studied by Novelli, Thibon and Thiéry [NTT04].)
First, we set up graph-theoretic notation and terminology. The notation
G = (V, E) means that G is a finite, undirected graph with vertex set V" and
edge set E; we may then write Gy g/ for the subgraph with vertex set V'
and edge set E'. (We could also write simply (V’, E’), but we often wish to
emphasize that this graph is a subgraph of G.) Loops and multiple edges are
allowed. The sets of vertices and edges of a graph G will be denoted V(G)
and E(G) respectively; no confusion should arise from this apparent abuse
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of notation. The numbers of vertices, edges and connected components are
denoted n(G), e(G), ¢(G) respectively (or sometimes n, e, c). The induced
subgraph on a vertex set 7' C V' will be denoted G|p. The complement of
T will be denoted T'. If S and T are vertex sets, then [S,T] denotes the set
of all edges with one endpoint in S and one endpoint in 7. The complete
graph on n vertices is written K,,; note that we permit the possibility n = 0.

The rank rk(F') of a subset F' C E(G) is the size of any maximal acyclic
subset of F. Meanwhile, the set F'is called a flat if, whenever the endpoints
of an edge e are connected by a path in F, then e € F'. (These are precisely
the flats of the graphic matroid of G.) Equivalently, F' is a flat iff rk(F”) >
rk(F') for every F' D F.

For an edge e € E, the contraction G /e is obtained by identifying the two
endpoints of e (which is a trivial step if e is a loop) and then removing e.
For an edge set F' C F, the symbol G/F denotes the graph obtained by suc-
cessively contracting every edge of F' (the order does not matter). Observe
that if F is a flat, then G/F contains no loops.

An acyclic orientation of G is a choice of orientation of all the edges that
admits no directed cycles. Let

F(G) = {flats of G},
A(G) = {acyclic orientations of G},
a(G) = |A(G)].

Note that if G has one or more loops, then a(G) = 0; otherwise, the number
of acyclic orientations is unchanged upon replacing G with its underlying
simple graph.

Now we can define our central object of study. The graph algebra is the
F-vector space G = @n>0 G, where G, is the linear span of isomorphism
classes of graphs on n vertices. This is a graded connected Hopf algebra,
with multiplication m(G ® H) = G- H = G W H (where W denotes disjoint
union); unit u(1) = Kp; comultiplication

AG) = > GlreGly

TCV(G)
and counit
1 if =
dey=q b =0
0 ifn(G)>0.

The graph algebra is commutative and cocommutative; in particular, its
character group X(G) is abelian. As proved by Schmitt [Sch94, eq. (12.1)],
the antipode in G is given combinatorially by

S(G) = (-1t Cx

where the sum runs over all ordered partitions 7 of V(G) into nonempty
sets (or “blocks”), and G is the disjoint union of the induced subgraphs
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on the blocks. This is a consequence of Takeuchi’s more general formula
for connected Hopf algebras [Tak71, Lemma 14]; see also [AM10, §2.3.3 and
§8.4], JAS05, §5], [Mon93].

The graph algebra admits two canonical involutions on characters:

(@) =(-)"D¢(G),  I(G) = (1)),
where rk(G) denotes the graph rank of G (that is, the number of edges in
a spanning tree). As always, ¢ — ¢ is an automorphism of X(G); on the
other hand, ¢ — ¢ is not. The graph algebra was studied by Schmitt [Sch94]

and appears as the chromatic algebra in the work of Aguiar, Bergeron and
Sottile [ABS06], where it is equipped with the character

(G) = {1 if G has no edges, (6)

0 if G has at least one edge.

We will study several characters on G other than (.

3. A COMBINATORIAL ANTIPODE FORMULA

In this section, we prove a new combinatorial formula for the Hopf an-
tipode in G. Unlike Takeuchi’s and Schmitt’s formulas, our formula applies
only to G and and does not generalize to other incidence algebras. On the
other hand, our formula involves many fewer summands, which makes it
useful for enumerative formulas involving characters. As noted in the intro-
duction, Aguiar and Ardila have independently discovered a more general
antipode formula in the context of Hopf monoids.

Theorem 3.1. Let G = (V, E) be a graph with n = |V|. Then

5(G)= Y ()" Pa(G/F)Gyr.
FeF (@)

Proof. We proceed by induction on n. If G has no vertices, i.e., G = Kjy,
then S(Ko) = Ko by (Lla). Indeed, F(Ky) = {0}, so the desired formula
reduces to S(Ky) = K.

On the other hand, if G has at least one vertex, then by we have

S(G)= - > Glr- S(Glp)
0£TCV
= - > Glr > ()Gl F)Gr
0ATCV  FeF(Cly)
= - > Gr > > (=T Oe (1)
0ATCV  FEF(Cly) OCAGlp/F)

Now we establish a bijection which will allow us to interchange the order
of summation.

First, suppose we are given a nonempty vertex set 77 C V., a flat F
of G|, and an acyclic orientation O of G|3/F. Let F' = E(G|r) U F; this
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is a flat of G. Moreover, we can construct an acyclic orientation O’ of G/F’
by orienting all edges in [T,T] as in O, and orienting all edges in [T, T]
towards T. Let Sor be the set of sources of @' (that is, vertices with no
in-edges); then the image T of T' under the contraction of F’ is a nonempty
subset of Ser.

Second, suppose we are given a flat F’ of GG, an acyclic orientation O’
of G/F', and a set T such that ) # 7" C Sor. Let T be the inverse image
of T" under contraction of F'. Then F = F'\ E(G|r) is a flat of G|, and
we can construct an acyclic orientation O of G|7/F by orienting all edges
as in O'.

It is straightforward to check that these constructions are inverses. There-
fore, we have a bijection

0 £T CV(G) F e F(G)
(T.F,0)| FeF@ly) bSo{{@E,o.1m)| ocacr)
OEA(G|T/F) 0T C So

with the following properties:

e || is the number of components of G|r;
o |T|—|T'"| = 1k(G|r) = rk(F") —rk(F), so |T|+rk(F) = |T'|+rk(F");
o G|r- G7 r = Gy,p in the graph algebra G.

Therefore, (7)) gives
S(G) = - Z Z (— )Tk ED Gy g

FIEF(G) O'€A(G/F') OAT'CSey

= — Z (—1)" Gy Z Z (—1)""

F'eF(G) O’ A(G/F")  O#AT'CSer
= > ()" (G/FGypr. 0
F'eF(G)

3.1. Inversion of characters. We now apply the antipode formula to give
combinatorial interpretations of several instances of inversion in the group
of characters.

Proposition 3.2. Let Q be any family of graphs such that GW H € Q) if
and only if G € Q and H € Q; equivalently, such that the function

1 ifGeq,
val@) = {o ifG¢0
1s a character. Then
o' (G) = (- Pa(G/F).

FeF(G): Gy,reQ
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Proof. From equation and Theorem we have
g (G) = ¥(5G) = Y _(-1)" ™ Da(G/F)y(Gv.r)

F

= > ()" Pa(G/F). O

FeQ

Example 3.3. Let € be the family of graphs with no edges. Then g, is just
the character ¢ of (), and Pr (k) is the chromatic polynomial x(G; k) of G.
Therefore, Propositionimplies that ¥ (G) = x(G; —1) = (=1)"a(G), a
classic theorem of Stanley [Sta73].

Example 3.4. Let ) be the family of acyclic graphs, and let a = 1q. Then
a (@)=Y (- EG/F).

acyclic flats F’

We examine two special cases. First, suppose that G = C,, the cycle of
length n. The acyclic flats of G are just the sets of n — 2 or fewer edges, so
an elementary calculation (which we omit) gives a=!(C,) = (=1)" + 1, the
Euler characteristic of an n-sphere.

For many other families §2, the Q-free flats of C,, are just its flats, i.e., the
edge sets of cardinality # n — 1. In such cases, the same omitted calculation
gives 65 (Cn) = (—1)".

Second, suppose that G = K,,. Now the acyclic flats of G are matchings,
i.e., sets of edges that cover no vertex more than once. For 0 < m < [n/2],
the number of m-edge matchings is n!/(2™(n — 2m)!m!), and contracting
each such matching yields a graph whose underlying simple graph is K,,_,.
Therefore

[n/2]
0N (Kn) = Y (1)

m=0

n!

(n —2m)!m! (n—m)l

Starting at n = 1, these numbers are as follows:

~1,1, 0, =6, 30, —90, 0, 2520, —22680, 113400, 0, —7484400, ....
This is sequence A009775 in [Slo10], for which the exponential generating
function is — tanh(In(1 + x)).

Example 3.5. Fix any connected graph H. Say that G is H-free if it has
no subgraph isomorphic to H. (This is a stronger condition than saying that
G has no induced subgraph isomorphic to H.) The corresponding avoidance
character ny is defined by

1 if G is H-free,
nu(G) = {

0 otherwise.

Avoidance characters are special cases of the characters described by Propo-
sition [3.2} specifically, ng = 1q, where Q is the family of graphs with no
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subgraph isomorphic to H. For instance, i, = € and ng, = ¢; more gener-
ally, if H = K, is the complete bipartite graph with partite sets of sizes
m and 1, then the corresponding avoidance character ng detects whether or
not G has maximum degree strictly less than m. In general, for an avoid-
ance character 7y, the summands in Proposition include only the H-free
flats.

In the case that T' is a tree, every subset F' C E(T) is a flat, and every
contraction T/F is acyclic, so all 2¢7/F) orientations of T/F are acyclic.
Therefore, Proposition [3.2] simplifies to

ﬁﬁl(T) _ Z(_l)r+1—|F|2r—|F| — _Z(_Q)'r—|F|

F F
where r = r(T') = n(T")—1, and both sums run over all H-free forests F* C T'.

Example 3.6. For every avoidance character ng, the polynomial P, (G; k)
counts the number of k-colorings of G such that every color-induced sub-
graph is H-free. As an extreme example, if G = H, then P, (G;k) =
kE™G) — k. because the non-G-free colorings are precisely those using only
one color.

If H = Kp1, then P, (G;k) = P, (G;k) counts the k-colorings such
that no vertex belongs to m or more monochromatic edges, or equivalently
such that no color-induced subgraph has a vertex of degree > m. We call
this the degree-chromatic polynomial; if m = 1, then P;(G;k) is just the
usual chromatic polynomial. In general, two trees with the same number
of vertices need not have the same degree-chromatic polynomials for all m
(though they do share the same chromatic polynomial). For example, if Z
is the three-edge path on four vertices and Y = K3 is the three-edge star,
then Po(Z; k) = k* — 2k? + k and P»(Y; k) = k* — 3k% + 2k.

In an earlier version of this article, we had conjectured, based on experi-
mental evidence, that if T is any tree on n vertices and m < n, then

dr(v)\, ,,_
P . — 1 _ n—m
(T3 k) =k Z < m >k + (lower order terms)
veV(T)
where dp(v) denotes the degree of vertex v. This conjecture has since been
proven combinatorially by Diego Cifuentes [Cif11].

4. TUTTE CHARACTERS

The Tutte polynomial Tg(x,y) is a powerful graph invariant with many
important properties (for a comprehensive survey, see [BO92|). It is defined
in closed form by the formula

Ta(z,y) = Z (x — 1)Tk(G)—rk(A) (y — 1)null(A)
ACE(G)

where rk(A) is the graph rank of A, and null(A) = |A| — rk(A) (the nullity
of A). The Tutte polynomial is a universal deletion-contraction invariant in



12 BRANDON HUMPERT AND JEREMY L. MARTIN

the sense that every graph invariant satisfying a deletion-contraction recur-
rence can be obtained from T¢(x,y) via a standard “recipe” [Bol98| p. 340].
In particular, T (x, y) is multiplicative on connected components, so we can
regard it as a character on the graph algebra:

Toy(G) = Ta(z,y).

We may regard z,y either as indeterminates or as (typically integer-valued)
parameters. It is often more convenient to work with the rank-nullity poly-
nomsal

Ra(z,y) = > (v — 1) (y— )™ = (@ - )MDTG(z/(z — 1), y) (8)
ACE

which carries the same information as Tz (x, y), and is also multiplicative on
connected components, hence is a character on G. Note that Rg(1,y) = 1,
and that

To(z,y) = (z = )9 Rg(a/(x - 1),y). (9)

Let ps4 denote the function G — Rg(z,y), viewed as a character of the
graph algebra G.
For later use, we record the relationship between p and 7:

rk(G)pa:/(x—l),ya Pzy = (:L' - l)rk(G)Tm/(ax—l),y' (10)

Toy = (x —1)
In particular,

Toy = p2y and  Toy = poy- (11)

4.1. The main theorem on Tutte characters. Let
Pry(Gs k) = pl ,(G)

be the image of G under the CHA morphism (G, p, ) — F(z, y)[k] of Propo-
sition Thus P, ,(G;k) € C(z,y)[k]. The main theorem of this section
is that P, ,(G; k) is itself essentially an evaluation of the Tutte polynomial.

Theorem 4.1. We have

-1
R R e

Proof. Since P, ,(G;k) is a polynomial in k, it suffices to prove that the
identity holds for all positive integer values of k.
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We have

k
Poy(Gik) = b @ = S ] eealGli) (122)

VlLﬂ---UVk_V(G) =1

— Z H Z (x _ 1)rk(A¢)(y B 1)null(Ai)

Vig-wVp=V(G) =1 A;CE(Gly,)
(12b)

k
_ Z H Z - rk(A )( 1)nu11(Ai) (12C)

f:V—=lk] i=1 A CfY(
— Z Z ($ rk A)( )null(A) (12d)
fV—[k]  ACM(f

G)

where M(f,G) denotes the set of f-monochromatic edges, that is, edges
e = uv € E(G) such that f(u) = f(v) (including, in particular, all loops).
Here the sum is over all ordered partitions of V(G) into pairwise disjoint
subsets (possibly empty). In order to find a recipe for P, ,(G; k) as a Tutte
specialization, we need to know its value on edgeless graphs, and how it
behaves with respect to deleting a loop, deleting a cut-edge, or deletion and
contraction of an “ordinary” edge.

Step 1: Edgeless graphs. If E(G) = 0, then Ry(x,y) = 1 for every
subgraph H C G. Therefore, every summand in is 1, so P, y(G; k) is
just the number of ordered partitions with n = |V (G)| parts, that is:

Pyoy(Kni k) = k™. (13)

Step 2: Loops. Suppose G has a loop ¢. For every ordered partition
V(G) = ViW--- WV, let V; be the part that contains the endpoint of /.
Then p,(Glv;) = ypzy((G — £)|y;), and we conclude that

P,y(Gik) =y Ppy(G— k). (14)

Step 3: Nonloop edges. Suppose G has a nonloop edge e (possibly a
cut-edge) with endpoints u,v. For a function f : V — [k], if f(u) # f(v)
then M(f,G —e) = M(f,G), while if f(u) = f(v) then M(f,G —e) =
M(f,G) \ {e}. For every edge set A C M(f,G) containing e, the edge set
B = A\{e} C M(f,G/e) satisfies null(B) = null(A) and rk(B) = rk(A4) —
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moreover, the correspondence between A and B is a bijection. Therefore,

Pry(Gik)= D, Y (o= Wy —1nmi,

fiV—lk] ACM(f,G )

P, y(G Z Z (& — 1)) (yy — 1)mll(4),

[:V—[k] ACM(f,G—e)

Pry(Gik) = Poy(G—esk) = > > (z— )Wy — i)

f:V—lk]: ACM(f,G):
eeM(f,G) ecA

_ Z Z (.%' o 1>rk(B)+1 (y - 1)null(B)

FV—s[k]: BCM(f,G/e)
Fw)=f()

= (z - 1)P,y(G/e; k).
To put this recurrence in a more familiar form,
P, y(G;k) = Ppy(G—e;k)+ (x — 1) Py y(G/es k). (15)
Step 4: C’ut—edges. Now suppose that e = uv is a cut-edge. We have

P, (G Z Z (& — 1)) (y — )mill(A)

£V —[k] ACM(f,G—e)

xy G/e k Z Z (I‘ _ 1)rk(A)(y _ 1)null(A)‘

[:V—[k] ACM(f,G/e)

and

Let H be the connected component of G—e containing u, and let H' = G—H.
Then E(G —e) = E(H) U E(H'). Let the cyclic group Zj act on colorings
f by cycling the colors of vertices in H modulo k and fixing the colors of
vertices in H'; i.e., if we fix a generator 7 of Zj, then (v/ f)(w) = f(w) + j
(mod k) for w € V(H), while (vf)(w) = f(w) for w € V(H'). Then the
set M(f,G — e) is invariant under the action of Zj; moreover, each orbit
has size k and has exactly one coloring for which f(u) = f(v). In that
case, contracting the edge e does not change the nullity or rank. Therefore,
P, (G/e;k) = k1P, (G — e; k), which when combined with yields

Poy(Gik) = Ppy(G—eik)+ (x — 1)Poy(G — e; k) [k

- ("T) Pyuy(G — k). (16)

Now combining , , , and with the “recipe theorem”
[Bol98, p. 340] (replacing Bollobés’ z,y,a, 0,7 with (k +z — 1)/k, y, k,
1, = — 1 respectively) gives the desired result. ([

4.2. Applications to Tutte polynomial evaluations. Theorem has
many enumerative consequences, some familiar and some less so. Many of
the formulas we obtain resemble those in the work of Ardila [Ard07]; the
precise connections remain to be investigated.
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First, observe that setting x = y = ¢ in Theorem [4.1] yields

PEi(G) = Poy(Gik) = kOt — 1)1y (Wt)

= k9xq(k;t) (17)

where Y denotes Crapo’s coboundary polynomial; see [MRO5, p. 236] and
[BO92, §6.3.F]. (As a note, the bar in the notation X has no relation to the
bar involution on X(G).)

Corollary 4.2. For k € Z and y arbitrary, the Tutte characters 12, and
To,y satisfy the identities

(ra) (G) = KO Tk + 1,), (18)
— kO (1O TG(1 — k). (19)

In particular, (To,) "' = Tay.

Proof. Setting x = 2 or x = 0 in Theorem and applying , we obtain
respectively

Q) = Poy(Gi k) = kKD Ta(k + 1, ),
KO (1) DT (1 - k,y).

—~~
37
< <
~— ~—
> >
—~
Q Q
~—
i
~~
D
) N
< <
~— ~—
B >
—~~
Q
~—
I
e
<
—~
Q
>
~—
I

establishing and . In particular, setting k = —1 in gives

(10) (@) = (=)D ()MDT(2,y) = (-1)" D2 (G) = 72(G). O

Similarly, we can find combinatorial interpretations of convolution powers
of the characters 12, ™0, 702, and 79o. In the last case, we recover the
standard formula for the chromatic polynomial as a specialization of the
Tutte polynomial (note that 799 = 700 = ().

One can deduce combinatorial interpretations of other evaluations of the
Tutte polynomial. If G is connected, then substituting y = 2 and k = 2 into

yields (12,2)%(G) = 27¢(3,2), or

T(G:3,2) = (r22 % 122)(G) S gelGlo)e(Glp)-t, (20)

2
UCV(G)

That is, 27(G; 3,2) counts the pairs (f, A), where f is a 2-coloring of G and
A is a set of f-monochromatic edges.
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In order to interpret more general powers of Tutte characters, we use
to expand the convolution power pg’;y(G) in Theorem

-1
EO e -1y O1s (FEETLy) = k(0

k
= Z H pay(Gi)

Vi WV, =V (G)

k
= > [T =)™ %7 01,4 (Gi)
i=1

Viw-wV, =V (G)

where G; = G|y;. Note that in the special case G = K,,, we have G; = Ky,
and rk(G;) = |V;| — 1 for all i, so the equation simplifies to

_ k+z—1 B
k=17 i, (LI 0) = 0 0
or
_ kE+x—1 B
(= 0T, (I ) = K e ) (2)
This equation has further enumerative consequences: setting x = 2 gives
1 n!
T, (k+1y) = > mﬁ,y(Kal) o Toy(Kay ). (22)

al+--+ap=n

Setting y = 0 in and observing that 7 o(K,) = a! (the number of acyclic
orientations of K, ), we get Tk, (k+1,0) = (n+k—1)!/Ekl. This is not a new
formula; it follows from the standard specialization of the Tutte polynomial
to the chromatic polynomial [BO92, Prop. 6.3.1], together with the well-
known formula k(k —1)---(k —n+ 1) for the chromatic polynomial of K.
On the other hand, setting y = 2 in , and recalling that m2(K,) =

9lE(K) = 2(3) | gives

' a e a
T (h+1,2) = k0 S —— ) g
' a1+-+ap=n CL1!(L2! PN ak!

This formula may be obtainable from the generating function for the Crapo
coboundary polynomials of complete graphs, as computed by Ardila [Ard07,
Thm. 4.1]; see also sequence A143543 in [Slol0]. Notice that setting k = 2
in recovers .

It is natural to ask what happens when we set x = 1, since this specializa-
tion of the Tutte polynomial has well-known combinatorial interpretations
in terms of, e.g., the chip-firing game [ML97] and parking functions [GS96].
The equations and @ degenerate upon direct substitution, but we can
instead take the limit of both sides of Theorem as * — 1, obtaining
(after some calculation, which we omit)

ok () = k7@,


http://oeis.org/A143543
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What can be said about Tutte characters in light of Proposition [2.2]
Replacing = with (k+ 2z —1)/(z — 1) in Theorem {4.1] . we get
Plheta—1)/o-1)5(Gi k) = kD (k/(x —1))™MDT(G;2,y)
= KDz —1)"MDT(G; 2, y).
One consequence is a formula for the Tutte polynomial in terms of P:
T(G;a,y) = k™D (@ — 1)™MDPyia1yj@-1)4(Gi ). (25)

In addition, the left-hand-side of — which is an element of F(z, y)[k] —
is actually just £™(%) times a rational function in z and y. Setting k = z —1
or k =1 — x, we can write down simpler formulas for the Tutte polynomial
in terms of P:

T(Giw,y) = (v — 1) D Py (G — 1),
T(G;z,y) = (—1)"D(z - 1)4D Py (G;1 - z).

(24)

5. A RECIPROCITY RELATION BETWEEN K,, AND K,

For each nonzero scalar ¢ € F, there is a character & on G defined by
£(G) = @, In this concluding section, we list some basic identities
involving convolution powers of these characters and their interactions with
the character (. The main result, Proposition is a “reciprocity” relation
between the complete graphs K,, and K,,.

First, let ¢,d € F be arbitrary nonzero scalars, and let £ be an integer.
The definition of convolution, together with a straightforward application of
the binomial theorem, yields the identities

Eexba=Ebcra, E=Eam &l=Ec=C
In particular, the characters &, form a subgroup of X(G) isomorphic to the
additive group F. Another easily obtained fact is the following: for every

graph G,
Cxe)@) = Y V@l

cocliques @

Proposition 5.1. For all n,m € Z>(, we have
(C" % &) (Km) = ("™ # &) (Ky).
Proof. Consider the action of the character (" % £&; on the graph K,,:

(" * &) Em) = Y ("(Emlv)éa(Km — V)
VClm]
= Kj)& (Km—j)
;( o

60

JET
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Here the summand j corresponds to m — |V|; note that ("(K;) = (?)]' is
the number of n-colorings of K;. (We are using the convention that (?)

vanishes when j < 0 or j > n.) The expression is symmetric in m and
n, implying the desired result. ([

Corollary 5.2. Let m,n be nonnegative integers. Then
(€M €1)(Kim) = (=1)"F™(C™ % £-1) (Kp).

Proof. The desired identity can be obtained by applying the bar involution
to both sides of Proposition (or, equivalently, redoing the calculation,
replacing &; with £_; throughout). O

Experimental evidence indicates that
(CTH*&)(Kn) = (=1)"Dy,  ((THxE1)(Kp) = (1) Ap,
where D,, is the number of derangements of {1,2,...,n} and A, is the
number of arrangements (sequences A000166/ and |A000522/ of [Slol10], re-
spectively). More generally, we have conjectured that for every scalar ¢ and
integer k, the exponential generating function for (¢* x £.)(K,) is
D)) = e (1t a)f (27)

n>0

(see [Sta97, Example 2.2.1], [Sta99, Example 5.1.2]). In fact, formula (27))
follows from independent, unpublished work of Aguiar and Ardila [AA].
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