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ABSTRACT. A MacMahon symmetric function is an invariant of the diagonal action of the symmetric group on
power series in multiple alphabets of variables. We introduce an analogue of the chromatic symmetric function for
vertex-weighted graphs, taking values in the MacMahon symmetric functions on two sets of variables, recording
information about both cardinalities and weights of vertex sets. We prove that the chromatic symmetric MacMa-
hon function of a tree determines the generating function for its vertex subsets by cardinality, weight, and the
numbers of internal and external edges. This result generalizes the one for the unweighted case, first conjectured
by Crew and proved independently by Aliste-Prieto–Martin–Wagner–Zamora and Liu–Tang.

1. BACKGROUND

The chromatic symmetric function (or CSF) of a (finite, simple, undirected) graph G = (V,E) is

XG =
∑

κ∈PCol(G)

∏
v∈V

xκ(v)

where PCol(G) is the set of proper colorings of G, taking values in the positive integers P, and x1, x2, . . . are
commuting indeterminates. The CSF was introduced in the context of knot theory by Chmutov, Duzhin and
Lando [CDL94] and in combinatorics by Stanley [Sta95]; another important early paper connecting the two
points of view is Noble and Welsh [NW99]. Stanley posed the problem of whether the CSF distinguishes
trees up to isomorphism. This problem remains open and is considered very difficult. One approach is to
study what other graph invariants can be recovered from the CSF of a tree [MMW08, Cre20, Cre22, WYZ24,
APMWZ24, LT24]. In particular, Crew [Cre20, Cre22] conjectured that the CSF of a tree determines its
generalized degree polynomial (GDP), which is defined as

GG =
∑
A⊆V

x|A|yext(A)zint(A)

where ext(A) (resp., int(A)) is the number of edges of E with one endpoint (resp., two endpoints) in A.
Crew’s conjecture was proven by Aliste-Prieto et al. [APMWZ24, Thm. 6], who gave an explicit linear
transformation mapping the CSF to the GDP, and independently by Liu and Tang [LT24, Prop. 2.4], using
Hopf algebra methods.

The CSF may be generalized to weighted graphs. Let G = (V,E) be a graph equipped with a weight
function wt : V → P. The weighted chromatic symmetric function (or wCSF) of G is

XG =
∑

κ∈PCol(G)

∏
v∈V

x
wt(v)
κ(v) .

This invariant was introduced by Crew and Spirkl [CS20] (although the idea of chromatic invariants of
weighted graphs can be traced back to [NW99]), who showed that it admits a deletion/contraction recur-
rence, unlike the unweighted version. For this reason, the wCSF has proven useful in attacking Stanley’s
tree uniqueness problem; see, e.g., [APdMOZ23].

Aliste-Prieto asked the authors whether an analogue of Crew’s conjecture holds for weighted graphs.
The most elementary way to adapt the GDP to the weighted setting is to replace x|A| in the definition by
xwt(A), where wt(A) =

∑
v∈A wt(v). In fact, this polynomial is not determined by the wCSF. We give a

counterexample below in Figure 1 by adapting a construction of Loebl and Sereni [LS19].
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The proof of Crew’s conjecture in [APMWZ24] can almost be adapted to the weighted setting, but the
topological information provided by counting vertices appears to be indispensable. This observation sug-
gests expanding the definitions of both the CSF and GDP to keep track of both number of vertices and
weight data. Accordingly, we define a new coloring enumerator, the chromatic MacMahon symmetric
function, by

X̃G =
∑

κ∈PCol(G)

∏
v∈V

xκ(v)y
wt(v)
κ(v)

in two alphabets of commuting variables. This power series is a MacMahon symmetric function: it is
invariant under the diagonal action of the symmetric group, acting simultaneously on each alphabet. Power
series of this form were introduced (under the name “symmetric functions of several systems of quantities”)
by MacMahon [Mac60, Sec. XI], and studied more recently in [Ros01, RRS02]. Similarly, we define the
extended generalized degree polynomial (or EGDP) of a weighted graph (G,wt) as the polynomial

G̃G = G̃G(w, x, y, z) =
∑
A⊆V

wext(A)x|A|ywt(A)zint(A).

We can now state the main result of the article, which generalizes Crew’s conjecture.

Theorem 1.1. Let (F,wt) be a weighted forest. Then G̃F is determined by X̃F .

The paper is structured as follows. Section 2 sets up basic definitions and tools for (weighted) graphs
and chromatic symmetric functions. Section 3 concerns MacMahon symmetric functions, including the
chromatic MacMahon symmetric function of a graph, its expansion in the MacMahon power-sum basis,
and the Hopf algebra structure of MacMahon symmetric functions. Section 4 contains two proofs of The-
orem 1.1, by adapting each of the arguments of [LT24] and [APMWZ24] to the weighted setting. Finally,
in Section 5, we observe that the theory of chromatic bases of symmetric functions [CvW16] carries over
well to MacMahon symmetric functions, and discuss an easy generalization of the theory to Pr-weighted
graphs.

We thank José Aliste-Prieto for suggesting this line of research, and Ira Gessel and Mercedes Rosas for
helpful references on MacMahon symmetric functions.

2. BASIC DEFINITIONS AND NOTATION

The symbols P and N denote the positive integers and the nonnegative integers, respectively. We write
[n] for the set {1, 2, . . . , n}. We assume familiarity with standard notions of graph theory; see, e.g., [Die18].
All graphs are assumed to be finite, simple, and undirected.

We either write a graph as an ordered pair G = (V,E), or use the notation V (G) and E(G) for its vertex
and edge sets, as convenient. The symbols n(G), e(G), c(G) denote respectively the numbers of vertices,
edges, and connected components of G. For A ⊆ V (G), we write E(A) for the set of edges of G with both
endpoints in A. The subgraph induced by A is G|A = (A,E(A)).

A weighted graph (G,wt) = (V,E,wt) is a graph G = (V,E) together with a function wt : V → P. The
total weight of G is wt(G) =

∑
vi∈V wt(vi).

Definition 2.1. The type of G is the partition type(G) ⊢ n(G) whose parts are the numbers of vertices of
its connected components. For an edge set S ⊆ E, we define type(S) = type(V, S). Similarly, the weighted
type of a weighted graph (G,wt) is the partition wtype(G) ⊢ wt(G) whose parts are the total weights of its
connected components, and for S ⊆ E, we define wtype(S) = wtype(V, S,wt).

A coloring of a graph is a function κ : G → P. A coloring κ is proper if κ(v) ̸= κ(w) whenever vw ∈ E(G).
The set of all proper colorings of G is denoted by PCol(G).

Definition 2.2. [Sta95] The chromatic symmetric function (or CSF) of a graph G is the power series

XG =
∑

κ∈PCol(G)

∏
v∈V

xκ(v).
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The CSF is a symmetric function in commuting variables x1, x2, . . . . A standard reference on symmetric
functions is [Sta99, Chap. 7]. The power-sum expansion of the CSF is

(2.1) XG =
∑

S⊆E(G)

(−1)|S|ptype(S)

[Sta95, Thm. 2.5]. When G = F is a forest (and not otherwise), there is no cancellation in this expression,
and the formula may be rewritten as

(2.2) XF =
∑
λ⊢n

βλ(F )(−1)n−ℓ(λ)pλ

where βλ(F ) = |{S ⊆ E(F ) : type(S) = λ}| [Sta95, Cor. 2.8].

Definition 2.3. [Cre20, Sec. 4.3] Let G be a graph and A ⊆ V (G). Say that an edge is internal to A if it
has both endpoints in A, and external to A if it has exactly one endpoint in A. The numbers of internal
and external edges are denoted by int(A) and ext(A) respectively. The generalized degree polynomial (or
GDP) of G is the polynomial

GG = GG(x, y, z)
∑

A⊆V (G)

x|A|yext(A)zint(A).

These invariants naturally generalize to weighted graphs, as studied in [CS20, Cre20].

Definition 2.4. [CS20] The weighted chromatic symmetric function (or wCSF) of a weighted graph (G,wt)
is the power series

XG,wt =
∑

κ∈PCol(G)

∏
v∈V

x
wt(v)
κ(v) .

The wCSF is equivalent to the W -polynomial introduced in [NW99]; see also [LS19].
Stanley’s proof of (2.1) carries over easily to the weighted setting, so that (2.1) and (2.2) have the ana-

logues

XG,wt =
∑
S⊆E

(−1)|S|pwtype(S),(2.3)

or, when F is a forest,

XF,wt =
∑
λ⊢n

βλ,wt(F )(−1)n−ℓ(λ)pλ,(2.4)

where βλ,wt(F ) = |{S ⊆ E(F ) : wtype(S) = λ}|.

Definition 2.5. The weighted generalized degree polynomial (or wGDP) of a weighted graph (G,wt) is
the polynomial

GG,wt = GG,wt(x, y, z) =
∑

A⊆V (G)

xwt(A)yext(A)zint(A) =
∑
a,b,c

gT (a, b, c)x
aybzc.

where gT (a, b, c) = |{A ⊆ V : wt(A) = a, ext(A) = b, int(A) = c}|.

Crew [Cre22] conjectured that the CSF of a tree determines its GDP. This conjecture was proven by
Aliste-Prieto, Martin, Wagner and Zamora [APMWZ24, Thm. 6] and independently by Liu and Tang [LT24,
Prop. 2.4] using different methods. On the other hand, the weighted analogue of Crew’s conjecture is false.
Consider the two weighted 5-vertex paths T1, T2 shown in Figure 1, where the numbers indicate weights.

It was observed in [LS19, p. 5], T1 and T2 have the same W -polynomial, hence the same wCSF. On the
other hand, let us count the vertex sets whose total weight, external edge count, and internal edge count
are 4,3,0 respectively. T1 has exactly one such set, namely {r, t}, and T2 has two such sets, namely {r′, u′}
and {s′, v′}. Therefore, the coefficients of x4y3z0 are different in GT1

and GT2
.
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FIGURE 1. Two weighted trees with the same wCSF but different wGDPs.

3. MACMAHON SYMMETRIC FUNCTIONS

Let m ∈ N and let A = {xj,k : j ∈ N, k ∈ [m]} be a family of commuting indeterminates. For each k ∈ [m],
the subset Ak = {xj,k : j ∈ N} is the kth alphabet. Let C[[A]] denote the ring of formal power series in the
variables xj,k, with coefficients in C (here and later one could replace C with any field of characteristic 0).
This ring is Nm-multigraded: for each u = (u1, . . . , um) ∈ Nm, the u-multigraded piece is spanned by
monomials whose total degree in Ak is uk for each k ∈ [m]. Let S∞ denote the group of permutations of N.

Definition 3.1. The diagonal action of S∞ on A is defined by

σ(xj,k) = xσ(j),k.

The MacMahon symmetric functions are the invariants of the diagonal action. They form a Nm-multigraded
subalgebra of C[[A]] denoted by Macm.

The ring Mac1 is just the familiar ring Λ of symmetric functions. For general m, the ring Macm has
analogues of the monomial, power-sum, elementary, and complete homogeneous bases of Λ, as described
in [Ros01], all of which are indexed by objects called vector partitions, which generalize integer partitions.

Definition 3.2. Let u = (u1, . . . , um) ∈ Pm. A vector partition of u is an unordered list Λ = (λ(1), . . . ,λ(ℓ))

of vectors λ(i) ∈ Nm \ {(0, 0 . . . , 0)} such that λ(1) + · · ·+ λ(ℓ) = u. For short, we write Λ ⊢ u. The vectors
λ(i) are the parts of Λ. The number of parts is called its length, written ℓ(Λ), and the number m is its width.
Note that a vector partition of width 1 is simply an integer partition.

Definition 3.3. Let λ = (λ1, . . . , λm) ∈ Nm. The corresponding power-sum MacMahon symmetric func-
tion is

pλ =

∞∑
j=1

m∏
k=1

(xj,k)
λk .

For a vector partition Λ = (λ(1), . . . ,λ(ℓ)) of width m, we define the power-sum MacMahon symmetric
function pΛ by

pΛ = pλ(1) · · · pλ(ℓ) .

For each u ∈ Nm, the set {pΛ | Λ ⊢ u} is a vector space basis for the u-multigraded piece of Macm.

Henceforth, we focus on the ring Mac2. We simplify notation by setting xj = xj,1 and yj = xj,2.

Example 3.4. The power-sum basis for the graded piece of Mac2 with multidegree u = (2, 1) consists of the
following elements:

p((2,1)) = x2
1y1 + x2

2y2 + x2
3y3 + · · ·

p((2,0),(0,1)) = (x2
1 + x2

2 + x2
3 + · · · )(y1 + y2 + y3 + · · · )

p((1,1),(1,0)) = (x1y1 + x2y2 + x3y3 + · · · )(x1 + x2 + x3 + · · · )
p((1,0),(1,0),(0,1)) = (x1 + x2 + x3 + · · · )2(y1 + y2 + y3 + · · · )

Definition 3.5. Let (G,wt) be a weighted graph with connected components C1, . . . , Ck, and let u =
(n(G),wt(G)). The bitype of G is the vector partition

btype(G) =
(
(n(C1),wt(C1)), . . . , (n(Ck),wt(Ck))

)
⊢ u.

For S ⊆ E, we set btype(S) = btype(V, S,wt). Similarly, if A ⊆ V , we set btype(A) = btype(A,E(A),wt|A),
where E(A) is the set of edges internal to A.
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Not every vector partition can occur as a bitype of a graph. Specifically, each part must be a vector in P2

(not merely in N2 \ {(0, 0)}).

Definition 3.6. The chromatic MacMahon symmetric function (or CMF) of a weighted graph G = (V,E,wt)
is the power series

X̃G =
∑

κ∈PCol(G)

∏
v∈V

xκ(v)y
wt(v)
κ(v) .

As a note, this chromatic MacMahon symmetric function is unrelated to the one defined by Rosas [Ros01,
Defn. 9].

Remark 3.7. The chromatic MacMahon symmetric function of a weighted graph G determines XG,wt by
setting xi = 1 for every i, and determines XG by setting yi = 1 for every i. On the other hand, XG,wt and
XG do not together determine X̃G. For instance, let T1, T2 be the two weighted trees shown in Figure 1,
which have the same CSF and weighted CSF. On the other hand, if we set xi = yi = 0 for all i ≥ 3 (i.e., we
consider only colorings κ : V → {1, 2}), then the chromatic MacMahon symmetric functions of T1 and T2

become respectively
x3
1y

5
1x

2
2y

4
2 + x2

1y
4
1x

3
2y

5
2 and x3

1y
4
1x

2
2y

5
2 + x2

1y
5
1x

3
2y

4
2 ,

so X̃T1 ̸= X̃T2 .

The chromatic MacMahon symmetric function admits a power-sum expansion analogous to (2.1). The
proof of that result in [Sta95] carries over to the setting of MacMahon symmetric functions, as we now show.

Proposition 3.8. Let (G,wt) be a weighted graph. Then

X̃G =
∑

S⊆E(G)

(−1)|S|pbtype(S).

Proof. Fix S ⊆ E, and suppose that G|S = (V, S,wt) has connected components C1, . . . , Cℓ, of sizes n1, . . . , nℓ

and weights w1, . . . , wℓ. Then btype(S) = (n1, w1) · · · (nℓ, wℓ) and

pbtype(S) =

ℓ∏
i=1

p(ni,wi)

=
∑

(k1,...,kℓ)∈Nℓ

xn1

k1
yw1

k1
· · ·xnℓ

kℓ
ywℓ

kℓ

=
∑

(k1,...,kℓ)∈Nℓ

x
|C1|
k1

y
∑

v∈C1
wt(v)

k1
· · ·x|Cℓ|

kℓ
y

∑
v∈Cℓ

wt(v)

kℓ

=
∑

κ∈KS(G)

∏
v∈V

xκ(v)y
wt(v)
κ(v)

where KS(G) is the set of all colorings κ : V → N that are monochromatic on every Ci (specifically, assigning
color ki to all vertices of Ci). Multiplying by (−1)|S| and summing over all S, we obtain∑

S⊆E(G)

(−1)|S|pbtype(S) =
∑

S⊆E(G)

(−1)|S|
∑

κ∈KS(G)

∏
v∈V

xκ(v)y
wt(v)
κ(v)

=
∑

κ:V→N

∏
v∈V

xκ(v)y
wt(v)
κ(v)

 ∑
S⊆Eκ(G)

(−1)|S|


where Eκ(G) = {uv ∈ E(G) | κ(u) = κ(v)}. The parenthesized sum is 1 if Eκ(G) = ∅ (i.e., when κ is a
proper coloring) and 0 otherwise. Therefore,

X̃G =
∑

κ∈PCol(G)

∏
v∈V

xκ(v)y
wt(v)
κ(v) =

∑
S⊆E(G)

(−1)|S|pbtype(S). □

When F is a forest, the following analogue of (2.2) follows from grouping the terms in Proposition 3.8 by
the vector partition btype(S) and observing that |S| = n− ℓ(btype(S)), so no cancellation occurs.
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Corollary 3.9. Let (F,wt) be a weighted forest with n = n(F ) and w = wt(F ). Then

X̃F =
∑

Λ⊢(n,w)

βΛ(F )(−1)n−ℓ(Λ)pΛ

where
βΛ(F ) = |{S ⊆ E(F ) : btype(S) = Λ}|.

Observe that βΛ(F ) = 0 if Λ has any parts not in P2. Moreover, for each subset A ⊆ E(F ), the subgraph
(V (F ), A) has n−|A| components, so its bitype has length n−|A|. Therefore, we obtain the useful equation

(3.1)
∑

Λ⊢(n(F ),wt(F ))
ℓ(Λ)=ℓ

βΛ =

(
e(F )

n− ℓ

)
.

As observed by Rosas, Rota and Stein [RRS02], the MacMahon symmetric functions admit a Hopf algebra
structure. We very briefly sketch the definition of a combinatorial Hopf algebra; for more details, see, e.g.,
[GR14].

Definition 3.10. [GR14, Chap. 1] A bialgebra is a vector space A over a field (say C) endowed with a
product m : A ⊗ A → A, a coproduct ∆: A → A ⊗ A, a unit u : C → A, and a counit ε → C, satisfying a
variety of axioms, of which the three most important are associativity, coassociativity, and compatibility,
given by the diagrams shown below.

A⊗A⊗A A⊗A

A⊗A A

µ

µ µ⊗I

I⊗µ

A A⊗A

A⊗A A⊗A⊗A

∆

∆ ∆⊗I

I⊗∆

A⊗A A

A⊗A⊗A⊗A A⊗A

m

∆⊗∆ ∆

m1,3⊗m2,4

associativity coassociativity compatibility

where mi,j denotes multiplication of the ith and jth coordinates.
The bialgebra A is graded if there is a vector space decomposition A =

⊕
n≥0 An such that

∀n, k : m(Ak ⊗An−k) ⊆ An and ∀n : ∆An ⊆
⊕
k≤n

Ak ⊗An−k.

A graded bialgebra A is connected if dimC A0 = 1. Every graded connected bialgebra has a unique structure
as a Hopf algebra [GR14, Prop. 1.4.16]; that is, there is an antipode map S : A → A, defined recursively as
follows: S is the identity on A0, and, for all x ∈ Ak with k > 0, we have

(3.2)
∑

S(x1)x2 = 0

in Sweedler notation [GR14, p.8].

The ring Macm of MacMahon symmetric functions is evidently a graded connected C-algebra. In fact,
we prove that it is a bialgebra. For a vector partition Λ = (λ(1), . . . ,λ(ℓ)) and J ⊆ [ℓ], let Λ|J be the vector
partition with parts λ(i) for i ∈ J , and let J̄ = [ℓ] \ J .

Proposition 3.11. The ring Macm is a graded connected Hopf algebra, with (i) product defined on the power sum
basis by

(3.3) pΩ pΛ = pΛΩ

where ΛΩ is the vector partition obtained by concatenating Ω with Λ, and (ii) coproduct defined by

(3.4) ∆(pΛ) =
∑

J⊆[ℓ(Λ)]

pΛ|J ⊗ pΛ|J .

Remark 3.12. It was proven by Rosas, Rota and Stein [RRS02] that Macm is a Hopf algebra. The content
of Proposition 3.11 is the coproduct formula in the power-sum basis, which to our knowledge does not ap-
pear explicitly in the literature. It generalizes the well-known formula for power-sum symmetric functions
(equation (3.5), below), which is just the case m = 1, and it naturally resembles the formula for power-sum
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noncommutative symmetric functions given explicitly by Lauve and Mastnak [LM11, eqn. (3)]. Indeed, it
is possible to verify (3.4) by applying the projection map of Rosas [Ros01, Defn. 1] to the Lauve–Mastnak
formula. Instead, we give a self-contained proof without using noncommutative symmetric functions.

Proof. The product formula is immediate from Definition 3.3, so Macm is a graded connected ring. It re-
mains to show that the coproduct (3.4) satisfies coassociativity and compatibility. For coassociativity, it is
routine to show that

(I ⊗∆)(∆(pΛ)) =
∑

J1⊔J2⊔J3=[ℓ(Λ)]

pΛ|J1
⊗ pΛ|J2

⊗ pΛ|J3
= ∆⊗ I

 ∑
J⊆[ℓ(Λ)]

pΛ|J ⊗ pΛ|J


For compatibility, observe that

m1,3 ⊗m2,4 (∆⊗∆(pΛ ⊗ pΩ)) =
∑

J⊆[ℓ(Λ)]
J′⊆[ℓ(Ω)]

(pΛ|J · pΩ|J′ )⊗ (pΛ|J · pΩ|
J′ )

=
∑

K⊆[ℓ(ΛΩ)]

pΛΩ|K ⊗ pΛΩ|K

= ∆(pΛΩ) = ∆(pΛ · pΩ) = ∆(m(pΛ ⊗ pΩ)). □

The Hopf algebra Macm is evidently commutative and cocommutative. The special case Mac1 is just
the standard Hopf algebra of symmetric functions, with coproduct given on the power-sum symmetric
functions by

∆(pn) = 1⊗ pn + pn ⊗ 1

[GR14, Prop. 2.3.6] and

(3.5) ∆(pλ) =
∑

J⊆[ℓ(λ)]

pλ|J ⊗ pλ|J .

When Λ consists of a single vector λ, Proposition 3.11 specializes to ∆(pλ) = pλ ⊗ 1 + 1⊗ pλ, so (when
λ ̸= 0) the antipode formula (3.2) yields S(pλ) = −pλ. Therefore, the antipode acts on the basis {pΛ} by

(3.6) S(pΛ) = (−1)ℓ(Λ)pΛ,

generalizing the well-known result for symmetric functions [GR14, Prop. 2.4.1(i)]
The coproduct of a chromatic MacMahon symmetric symmetric function also has a particularly simple

form.

Proposition 3.13. Let (G,wt) be a weighted graph. Then

∆(X̃G) =
∑

A⊆V (G)

X̃G|A ⊗ X̃G|Ā .

Proof. For an edge set S ⊆ E(G), let K(S) denote the set of connected components of (V, S). For conve-
nience, we identify each subset J ⊆ K(S) with the disjoint union of its elements. In particular, V (J̄) =
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V (G) \ V (J) and E(J̄) = S \ E(J̄). By Proposition 3.8 and the definition of coproduct,

∆(X̃G) =
∑

S⊆E(G)

(−1)|S|∆(pbtype(S))

=
∑

S⊆E(G)

(−1)|S|
∑

J⊆K(S)

pbtype(J) ⊗ pbtype(J̄)

=
∑

S⊆E(G)

∑
J⊆K(S)

(−1)|E(J)|pbtype(J) ⊗ (−1)|E(J̄)|pbtype(J̄)

=
∑

A⊆V (G)

∑
S1⊆E(A)

∑
S2⊆E(Ā)

(−1)|S1|pbtype(S1) ⊗ (−1)|S2|pbtype(S2)

=
∑

A⊆V (G)

 ∑
S1⊆E(A)

(−1)|S1|pbtype(S1)

⊗

 ∑
S2⊆E(Ā)

(−1)|S2|pbtype(S2)


=

∑
A⊆V (G)

X̃G|A ⊗ X̃G|Ā . □

Given a Hopf algebra A and two C-linear maps f, g : A → R, where R is a commutative C-algebra, the
convolution of f and g is the function f ∗ g : A → R given by

(f ∗ g)(B) =
∑

f(B1) · g(B2)

where ∆(B) =
∑

B1 ⊗ B2 in Sweedler notation. The following is an immediate consequence of Proposi-
tion 3.13.

Corollary 3.14. Let f, g : Mac2 → R be linear maps and (G,wt) a weighted graph. Then

(f ∗ g)(X̃G) =
∑

A⊆V (G)

f(X̃G|A) · g(X̃G|Ā).

4. PROOF OF THE MAIN THEOREM

Definition 4.1. The extended generalized degree polynomial (or EGDP) of a weighted graph (G,wt) is
the polynomial

G̃G = G̃G(w, x, y, z) =
∑
A⊆V

wext(A)x|A|ywt(A)zint(A) =
∑

a,b,c,d

gT (a, b, c, d)w
axbyczd

where gT (a, b, c, d) = |{A ⊆ V : ext(A) = a, |A| = b, wt(A) = c, int(A) = d}|.

Our main theorem is that Crew’s conjecture holds in the more general setting of chromatic MacMahon
symmetric functions of weighted forests.

Theorem 1.1. Let (F,wt) be a weighted forest. Then G̃F is determined by X̃F .

Crew’s original conjecture is obtained as the special case when all weights are 1.
We give two proofs of this theorem. The first is modeled on Liu and Tang’s Hopf-theoretic proof of

Crew’s conjecture [LT24, Prop. 2.4].

First proof of Theorem 1.1. We construct a Q-linear map γ : M2 → Q(w, x, y, z) with the property that

(4.1) γ(X̃F ) = yc(F )G̃F (w, x, y, z).

We first show how to recover the numbers n = n(F ), e = e(F ), and w = wt(F ) from X̃F . (The corre-
sponding statement in the unweighted case is [LT24, Lemma 2.5].) Consider the Q-linear map

φt,u,v : Mac2 → Q[t, u, v]

defined on the power-sum basis by

φt,u,v(pΛ) = tn(1− u)n−ℓ(Λ)vw for Λ ⊢ (n,w).
8



By Corollary 3.9,

φt,u,v(X̃F ) =
∑

Λ⊢(n,w)

βΛ(F )(−1)n−ℓ(Λ)φt,u,v(pΛ)

=
∑

Λ⊢(n,w)

βΛ(F )(−1)n−ℓ(Λ)tn(1− u)n−ℓ(Λ)vw

= tnvw
∑

Λ⊢(n,w)

βΛ(F )(u− 1)n−ℓ(Λ)

= tnvw
n∑

ℓ=1

∑
Λ⊢(n,w)
ℓ(Λ)=ℓ

βΛ(F )(u− 1)n−ℓ

= tnvw
n∑

ℓ=1

(
e

n− ℓ

)
(u− 1)n−ℓ

= tnuevw.

where the second-to-last equality follows from (3.1).
Now, we claim that the map γ defined by

γ = φwx,w−1z,y ∗ φw,w−1,1

has the desired property (4.1). Indeed, by Corollary 3.14,

(φwx,w−1z,y ∗ φw,w−1,1)(X̃F ) =
∑

A⊆V (F )

φwx,w−1z,y(X̃F |A) · φw,w−1,1(X̃F |A)

=
∑

A⊆V (F )

(wx)|A|(w−1z)int(A)(y)wt(A)(w)|A|(w−1)int(A)

=
∑

A⊆V (F )

wn(F )−int(A)−int(A)x|A|ywt(A)zint(A)

=
∑

A⊆V (F )

wext(A)+c(F )x|A|ywt(A)zint(A)

= wc(F )GF (w, x, y, z)

and c(F ) = n(F )− e(F ) can be recovered from X̃F by the first calculation, completing the proof. □

The second proof of Theorem 1.1 uses the method of Aliste-Prieto et al. [APMWZ24, Thm. 6]: we express
the coefficients of G̃F (w, x, y, z) as explicit linear combinations of the coefficients of X̃F .

We first need some notation. For vector partitions Λ,Ω ⊢ (n,w), define(
Λ

Ω

)
=

a∏
i=1

d∏
j=1

(
mi,j(Λ)

mi,j(Ω)

)
where mi,j(Λ) is the number of times the vector (i, j) appears in Λ. Observe that if G is a weighted graph
and Λ = btype(S) for some S ⊆ E(G), then(

btype(S)

Ω

)
= |{A ⊆ V (G) : btype(A) = Ω, S ⊆ E(A) ∪ E(A)}|.

We need the following simple combinatorial identity [APMWZ24, Lemma 5]: for every set P and every
q ∈ N, we have

(4.2)
∑
P ′⊆P

(−1)|P
′|+q

(
|P ′|
q

)
=

{
1 if |P | = q,

0 if |P | ≠ q.

9



Second proof of Theorem 1.1. We claim that for every weighted forest F = (V,E,wt), we have

(4.3) gF (a, b, c, d) =
∑

Λ⊢(n,w)

βΛ(F )(−1)n−ℓ(Λ)ω(Λ, a, b, c, d)

where

ω(Λ, a, b, c, d) = (−1)n−a−1
∑

Ω⊢(b,c)

(
c− ℓ(Ω)

d

)(
Λ

Ω

)(
n− ℓ(Λ) + ℓ(Ω)− c

n− a− d− 1

)
.

Indeed, let RHS denote the right-hand side of (4.3); then

RHS =
∑

Λ⊢(n,w)

(−1)n−ℓ(Λ)|{S ⊆ E : btype(S) = Λ}|(−1)n−a−1
∑

Ω⊢(b,c)

(
c− ℓ(Ω)

d

)(
Λ

Ω

)(
n− ℓ(Λ) + ℓ(Ω)− c

n− a− d− 1

)

=
∑
S⊆E

(−1)n−ℓ(btype(S))(−1)n−a−1
∑

Ω⊢(b,c)

(
c− ℓ(Ω)

d

)(
btype(S)

Ω

)(
n− ℓ(btype(S)) + ℓ(Ω)− c

n− a− d− 1

)

=
∑
S⊆E

(−1)|S|+n−a−1
∑

Ω⊢(b,c)

(
c− ℓ(Ω)

d

)(
btype(S)

Ω

)(
|S|+ ℓ(Ω)− c

n− a− d− 1

)
(since S is a forest and thus has n− ℓ(btype(S)) edges)

=
∑
S⊆E

(−1)|S|+n−a−1
∑

Ω⊢(b,c)

∑
A⊆V

|A|=b, wt(A)=c, btype(A)=Ω,

S⊆E(A)∪E(A)

(
c− ℓ(Ω)

d

)(
|S|+ ℓ(Ω)− c

n− a− d− 1

)

(since
(
btype(S)

Ω

)
= |{A ⊆ V (G) : btype(A) = Ω, S ⊆ E(A) ∪ E(A)}|)

=
∑
S⊆E

(−1)|S|+n−a−1
∑
A⊆V :

|A|=b, wt(A)=c,

S⊆E(A)∪E(A)

(
c− ℓ(btype(S))

d

)(
|S|+ ℓ(btype(S))− c

n− a− d− 1

)

=
∑
A⊆V

|A|=b, wt(A)=c

∑
S⊆E(A)∪E(Ā)

(−1)|S|+n−a−1

(
c− ℓ(btype(S))

d

)(
|S|+ ℓ(btype(S))− c

n− a− d− 1

)

=
∑
A⊆V

|A|=b, wt(A)=c

∑
S(A)⊆E(A)

∑
S(Ā)⊆E(Ā)

(−1)|S(A)|+|S(Ā)|+n−a−1

(
|S(A)|

d

)(
|S(Ā)|

n− a− d− 1

)

=
∑
A⊆V

|A|=b, wt(A)=c

 ∑
S(A)⊆E(A)

(−1)|S(A)|+d

(
|S(A)|

d

) ∑
S(Ā)⊆E(Ā)

(−1)|S(Ā)|+n−a−d−1

(
|S(Ā)|

n− a− d− 1

)
= |{A ⊆ V : ext(A) = a, |A| = b, wt(A) = c, int(A) = d}|

and applying (4.2) yields the left-hand side of (4.3). □

5. ADDITIONAL REMARKS

5.1. Chromatic bases of MacMahon symmetric functions. The theory of chromatic bases of symmetric func-
tions was introduced in [CvW16] (and anticipated in [Sco08]). Let G = {Gn | n ∈ P} be a family of connected
graphs such that Gn has n vertices. Then the chromatic symmetric functions XGn

are algebraically inde-
pendent, and the free polynomial algebra they generate is the symmetric functions. To see this, for each
partition λ = (λ1, . . . , λℓ), let Gλ be the disjoint union Gλ1

+ · · ·+Gλℓ
. By Stanley’s formula, the matrix that

expresses the chromatic symmetric functions of the Gλ in the power-sum basis is triangular, hence invert-
ible, so that they form a graded basis for Λ. The case that Gn is the star on n vertices has proven especially
useful in approaches to Stanley’s problem; see, e.g., [APdMOZ23, GOT24].
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There is an analogous notion of chromatic bases for MacMahon symmetric functions. The statement is
slightly different due to the requirement that weight functions be positive. Observe that Macm has a Hopf
subalgebra Macm+ generated by the MacMahon power-sum functions pΛ for which every part of Λ is a
vector in Pm (as opposed to Nm \ {(0, . . . , 0)}); this property is preserved by the product and coproduct for-
mulas (3.3), (3.4). The theory of chromatic bases then carries over with no essential change from symmetric
functions to MacMahon symmetric functions:

Proposition 5.1. Let G = {Gn,w | n,w ∈ P} be a family of connected weighted graphs, where each Gn,w has n

vertices and total weight w. Then the family {X̃Gn,w
} generates Mac2+ as a free polynomial (Hopf) algebra.

5.2. Multiweighted forests. Crew’s conjecture generalizes easily to weighted graphs whose weights are
integer vectors. Fix r ∈ P, and consider a graph G = (V,E) together with a weight function wt : V → Pr.
Let C1, . . . , Ck be the connected components of G. In analogy to Definitions 3.5 and 3.6, define the weighted
type of G as the vector partition of width r + 1 given by

wtype(G) =
(
(n(C1),wt(C1)), . . . , (n(Ck),wt(Ck))

)
⊢ (n(G),wt(G)),

and the chromatic MacMahon symmetric function of G as the element of Macr+1 given by

X̃G =
∑

κ∈PCol(G)

∏
v∈V

xκ(v)

r∏
i=1

y
wti(v)
i,κ(v) .

This power series is an element of Macr+1, where the alphabet {x1, x2, . . . } records numbers of vertices and
the r alphabets {y1,1, y2,1, . . . }, . . . , {y1,r, y2,r, . . . } record weights. Finally, analogously to Definition 4.1,
define the extended generalized degree polynomial of G as

G̃G =
∑
A⊆V

wext(A)x|A|y
wt1(A)
1 · · · ywtr(A)

r zint(A).

With this setup, Proposition 3.8 and Corollary 3.9 (expanding the CMF in the power-sum basis) go
through with no changes other than replacing btype(S) with wtype(S). Likewise, the Hopf-theoretic proof of
Theorem 1.1 goes through with little change. First, the map φt,u,v1,...,vr : M

r+1 → Q[t, u, v1, . . . , vr] defined
on the power-sum basis by

φt,u,v1,...,vr (pΛ(x, y1, . . . , yr)) = tn(1− u)n−ℓ(Λ)
r∏

i=1

vwi
i

can be shown to satisfy

φt,u,v1,...,vr (X̃F ) = tn(F )ue(F )
r∏

i=1

v
wti(F )
i

for every forest F , and then the map γ : Mr+1 → Q(w, x1, . . . , xr, y, z) defined by

γ = φwx,w−1z,y1,...,yr
∗ φw,w−1,1,...,1

has the property

γ(X̃F ) = yc(F )G̃F (w, x1, . . . , xr, y, z)

thus showing that the extended GDP of a Pr-weighted forest can be recovered from its chromatic MacMa-
hon symmetric function.

The theory of chromatic bases also extends easily to the multiweighted setting. In analogy to Proposi-
tion 5.1: for any family {Gn,w1,...,wr

| n,w1, . . . , wr ∈ P} of connected weighted graphs, where each Gn,w has
n vertices and total weight (w1, . . . , wr), their chromatic MacMahon symmetric functions generate Macr+1

+

as a free polynomial (Hopf) algebra.
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