CHROMATIC MACMAHON SYMMETRIC FUNCTIONS OF GRAPHS

JEREMY L. MARTIN AND MAY B. TRIST

ABSTRACT. A MacMahon symmetric function is an invariant of the diagonal action of the symmetric group on
power series in multiple alphabets of variables. We introduce an analogue of the chromatic symmetric function for
vertex-weighted graphs, taking values in the MacMahon symmetric functions on two sets of variables, recording
information about both cardinalities and weights of vertex sets. We prove that the chromatic symmetric MacMa-
hon function of a tree determines the generating function for its vertex subsets by cardinality, weight, and the
numbers of internal and external edges. This result generalizes the one for the unweighted case, first conjectured
by Crew and proved independently by Aliste-Prieto-Martin-Wagner-Zamora and Liu-Tang.

1. BACKGROUND

The chromatic symmetric function (or CSF) of a (finite, simple, undirected) graph G = (V, E) is

Xg = Z H Tk (v)

KEPCol(G) veV

where PCol(G) is the set of proper colorings of G, taking values in the positive integers P, and x1, 2, ... are
commuting indeterminates. The CSF was introduced in the context of knot theory by Chmutov, Duzhin and
Lando [CDL94] and in combinatorics by Stanley [Sta95]; another important early paper connecting the two
points of view is Noble and Welsh [NW99]. Stanley posed the problem of whether the CSF distinguishes
trees up to isomorphism. This problem remains open and is considered very difficult. One approach is to
study what other graph invariants can be recovered from the CSF of a tree [MMWO08, Cre20, Cre22, WYZ24,
APMWZ24, LT24]. In particular, Crew [Cre20, Cre22] conjectured that the CSF of a tree determines its
generalized degree polynomial (GDP), which is defined as

G = Z Al yext(4) Jint(4)
ACV

where ext(A) (resp., int(A)) is the number of edges of E with one endpoint (resp., two endpoints) in A.
Crew’s conjecture was proven by Aliste-Prieto et al. [APMWZ24, Thm. 6], who gave an explicit linear
transformation mapping the CSF to the GDP, and independently by Liu and Tang [LT24, Prop. 2.4], using
Hopf algebra methods.

The CSF may be generalized to weighted graphs. Let G = (V, E) be a graph equipped with a weight
function wt : V' — P. The weighted chromatic symmetric function (or wCSF) of G is

wt(v
Xg= > J[=0
KEPCol(G) veV
This invariant was introduced by Crew and Spirkl [CS20] (although the idea of chromatic invariants of
weighted graphs can be traced back to [NW99]), who showed that it admits a deletion/contraction recur-
rence, unlike the unweighted version. For this reason, the wCSF has proven useful in attacking Stanley’s
tree uniqueness problem,; see, e.g., [APdMOZ23].

Aliste-Prieto asked the authors whether an analogue of Crew’s conjecture holds for weighted graphs.
The most elementary way to adapt the GDP to the weighted setting is to replace =4l in the definition by
"4, where wt(A) = Y .4 wt(v). In fact, this polynomial is not determined by the wCSF. We give a
counterexample below in Figure 1 by adapting a construction of Loebl and Sereni [LS19].
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The proof of Crew’s conjecture in [APMWZ24] can almost be adapted to the weighted setting, but the
topological information provided by counting vertices appears to be indispensable. This observation sug-
gests expanding the definitions of both the CSF and GDP to keep track of both number of vertices and
weight data. Accordingly, we define a new coloring enumerator, the chromatic MacMahon symmetric

function, by
v t(v)
Xe= D [l owuviy
KEPCol(G) veV

in two alphabets of commuting variables. This power series is a MacMahon symmetric function: it is
invariant under the diagonal action of the symmetric group, acting simultaneously on each alphabet. Power
series of this form were introduced (under the name “symmetric functions of several systems of quantities”)
by MacMahon [Mac60, Sec. XI], and studied more recently in [Ros01, RRS02]. Similarly, we define the
extended generalized degree polynomial (or EGDP) of a weighted graph (G, wt) as the polynomial

Ge = Gelw,z,y,2) = Z WA g AL wt(4) Jint(4)
ACV

We can now state the main result of the article, which generalizes Crew’s conjecture.
Theorem 1.1. Let (F,wt) be a weighted forest. Then G is determined by X .

The paper is structured as follows. Section 2 sets up basic definitions and tools for (weighted) graphs
and chromatic symmetric functions. Section 3 concerns MacMahon symmetric functions, including the
chromatic MacMahon symmetric function of a graph, its expansion in the MacMahon power-sum basis,
and the Hopf algebra structure of MacMahon symmetric functions. Section 4 contains two proofs of The-
orem 1.1, by adapting each of the arguments of [LT24] and [APMWZ24] to the weighted setting. Finally,
in Section 5, we observe that the theory of chromatic bases of symmetric functions [CvW16] carries over
well to MacMahon symmetric functions, and discuss an easy generalization of the theory to P"-weighted
graphs.

We thank José Aliste-Prieto for suggesting this line of research, and Ira Gessel and Mercedes Rosas for
helpful references on MacMahon symmetric functions.

2. BASIC DEFINITIONS AND NOTATION

The symbols P and N denote the positive integers and the nonnegative integers, respectively. We write
[n] for the set {1,2,...,n}. We assume familiarity with standard notions of graph theory; see, e.g., [Diel8].
All graphs are assumed to be finite, simple, and undirected.

We either write a graph as an ordered pair G = (V, E), or use the notation V(G) and E(G) for its vertex
and edge sets, as convenient. The symbols n(G), e(G), ¢(G) denote respectively the numbers of vertices,
edges, and connected components of G. For A C V(G), we write E(A) for the set of edges of G with both
endpoints in A. The subgraph induced by Ais G|, = (A, E(A)).

A weighted graph (G,wt) = (V, E,wt) is a graph G = (V, E) together with a function wt: V' — P. The
total weight of G is wt(G) = ), <y wt(v;).

Definition 2.1. The type of G is the partition type(G) - n(G) whose parts are the numbers of vertices of
its connected components. For an edge set S C E, we define type(S) = type(V, S). Similarly, the weighted

type of a weighted graph (G, wt) is the partition wtype(G) F wt(G) whose parts are the total weights of its
connected components, and for S C E, we define wtype(S) = wtype(V, S, wt).

A coloring of a graph s a function x: G — P. A coloring « is properif x(v) # x(w) whenever vw € E(G).
The set of all proper colorings of G is denoted by PCol(G).

Definition 2.2. [Sta95] The chromatic symmetric function (or CSF) of a graph G is the power series
XG = Z H l’ﬁ(,“).

r€EPCol(G) veV
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The CSF is a symmetric function in commuting variables z1, zs, . ... A standard reference on symmetric
functions is [Sta99, Chap. 7]. The power-sum expansion of the CSF is

2.1) Xe= Y, (—1)¥pypes)
SCE(G)

[Sta95, Thm. 2.5]. When G = F is a forest (and not otherwise), there is no cancellation in this expression,
and the formula may be rewritten as

(22) Xp = B(F)(=1)""Pp,
AFn

where 8\ (F') = |[{S C E(F): type(S) = A}| [Sta95, Cor. 2.8].

Definition 2.3. [Cre20, Sec. 4.3] Let G be a graph and A C V(G). Say that an edge is internal to A if it
has both endpoints in A, and external to A if it has exactly one endpoint in A. The numbers of internal
and external edges are denoted by int(A) and ext(A) respectively. The generalized degree polynomial (or
GDP) of G is the polynomial

G = Gg(I,y, Z) Z I\A|yext(A)Zint(A)'
ACV(G)

These invariants naturally generalize to weighted graphs, as studied in [CS20, Cre20].

Definition 2.4. [CS20] The weighted chromatic symmetric function (or wCSF) of a weighted graph (G, wt)

is the power series
wt v)
XG,wt = § H n
~EPCOl(Q) vEV

The wCSF is equivalent to the W-polynomial introduced in [NW99]; see also [LS19].
Stanley’s proof of (2.1) carries over easily to the weighted setting, so that (2.1) and (2.2) have the ana-
logues

(23) XG,wt = Z (_l)lslpwtype(S)a
SCE

or, when F is a forest,

2.4) Xpw = Y Brwt(F)(=1)" " Ppy,
AFn

where 8y wt(F) = [{S C E(F): wtype(S) = A}

Definition 2.5. The weighted generalized degree polynomial (or wGDP) of a weighted graph (G, wt) is
the polynomial

Gow = Gowml(w,y,2) = Y aAyea =Y grla,b,e)a"y’2".
ACV(G) a,b,c

where gr(a,b,c) = |{A CV: wt(A) =a, ext(A) =, int(4) = c}|.

Crew [Cre22] conjectured that the CSF of a tree determines its GDP. This conjecture was proven by
Aliste-Prieto, Martin, Wagner and Zamora [APMWZ24, Thm. 6] and independently by Liu and Tang [LT24,
Prop. 2.4] using different methods. On the other hand, the weighted analogue of Crew’s conjecture is false.
Consider the two weighted 5-vertex paths 77, 75 shown in Figure 1, where the numbers indicate weights.

It was observed in [LS19, p. 5], 71 and T5 have the same W-polynomial, hence the same wCSFE. On the
other hand, let us count the vertex sets whose total weight, external edge count, and internal edge count
are 4,3,0 respectively. T has exactly one such set, namely {r, ¢}, and T» has two such sets, namely {r’, v’}
and {s’,v'}. Therefore, the coefficients of z'y32:" are different in G, and Gr,.
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FIGURE 1. Two weighted trees with the same wCSF but different wGDPs.

3. MACMAHON SYMMETRIC FUNCTIONS

Letm € Nandlet A = {z; x: j € N, k € [m]} be a family of commuting indeterminates. For each k& € [m],
the subset A, = {z,: j € N} is the kth alphabet. Let C[[A]] denote the ring of formal power series in the
variables x; i, with coefficients in C (here and later one could replace C with any field of characteristic 0).
This ring is N™-multigraded: for each u = (u1,...,un) € N, the u-multigraded piece is spanned by
monomials whose total degree in Ay, is uy, for each k € [m]. Let &, denote the group of permutations of N.

Definition 3.1. The diagonal action of G, on A is defined by

o(Zjk) = To(j) k-
The MacMahon symmetric functions are the invariants of the diagonal action. They form a N™-multigraded
subalgebra of C[[A]] denoted by Mac™.

The ring Mac' is just the familiar ring A of symmetric functions. For general m, the ring Mac™ has
analogues of the monomial, power-sum, elementary, and complete homogeneous bases of A, as described
in [Ros01], all of which are indexed by objects called vector partitions, which generalize integer partitions.

Definition 3.2. Letu = (uy,...,u,,) € P™. A vector partition of u is an unordered list A = (A ..., A®)
of vectors AV € N™\ {(0,0...,0)} such that At + ... + A = u. For short, we write A F u. The vectors
A are the parts of A. The number of parts is called its length, written £(A), and the number m is its width.
Note that a vector partition of width 1 is simply an integer partition.

Definition 3.3. Let A = (\q,...,\n) € N, The corresponding power-sum MacMahon symmetric func-
tion is -
= [Tm™
j=1k=1
For a vector partition A = AW AB) of width m, we define the power-sum MacMahon symmetric

function pa by
PA = D) " Do) -
For each u € N, the set {pa | A - u} is a vector space basis for the u-multigraded piece of Mac™.
Henceforth, we focus on the ring Mac?. We simplify notation by setting z; = ;; and y; = 2; 2.

Example 3.4. The power-sum basis for the graded piece of Mac? with multidegree u = (2, 1) consists of the
following elements:

P((2,1) = T1Y1 + T3Y2 + T3Ys + -
P20 01) = (@ +a3 + a3+ ) v +ys+o0)
P((1,1),(1,0) = (T1y1 + Toy2 + x3Yy3 + -+ ) (w1 + w2+ 23+ -+ +)
P((1,0),(1,0),(0,1)) = (T1 + 22 + 23+ -+ P +y2+ys+-00)

Definition 3.5. Let (G,wt) be a weighted graph with connected components Ci,...,Cy, and let u =
(n(G),wt(G)). The bitype of G is the vector partition
btype(G) = ((n(C’l),wt(C'1)), ceey (n(C’k),wt(Ck))) Fu.

For S C E, we set btype(S) = btype(V, .S, wt). Similarly, if A C V, we set btype(A) = btype(A4, E(A),wt| ,),
where E(A) is the set of edges internal to A.
4



Not every vector partition can occur as a bitype of a graph. Specifically, each part must be a vector in P2
(not merely in N2\ {(0,0)}).

Definition 3.6. The chromatic MacMahon symmetric function (or CMF) of a weighted graph G = (V, E, wt)

is the power series
v wt(v)
XG - Z H 'T"f('“ rk(v) *
KEPCol(G) veV

As a note, this chromatic MacMahon symmetric function is unrelated to the one defined by Rosas [Ros01,
Defn. 9].

Remark 3.7. The chromatic MacMahon symmetric function of a weighted graph G determines X wt by
setting z; = 1 for every ¢, and determines X by setting y; = 1 for every 7. On the other hand, X¢ : and
X do not together determine X . For instance, let T1,T5 be the two weighted trees shown in Figure 1,
which have the same CSF and weighted CSF. On the other hand, if we set z; = y; = 0 forall i > 3 (i.e., we
consider only colorings x: V' — {1,2}), then the chromatic MacMahon symmetric functions of T} and T
become respectively
wiyiady; +otyiasy; and  aiyiady; + oiyiady;,

SO )(T1 7é )(T2 .

The chromatic MacMahon symmetric function admits a power-sum expansion analogous to (2.1). The
proof of that result in [Sta95] carries over to the setting of MacMahon symmetric functions, as we now show.

Proposition 3.8. Let (G, wt) be a weighted graph. Then

XG = Z (_1)‘S‘pbtype(s)-

SCE(G)

Proof. Fix S C E, and suppose that G|s = (V, .S, wt) has connected components C1, ..., Cy, of sizesnq, ..., ng
and weights wy, . .., we. Then btype(S) = (n1,w1) - - - (ng, we) and

Potype(S) = Hp(ni,wi)

_ ni, wi . ..ne, W
= Z Trr Yy " Thy Yk

(K1yeee,ke) ENE
— Z chl‘yk;71€C1 Wt( ) . xlﬁcllykz:“ecz Wt(v)
1 " y ;
(K1,...,ke)ENE

> I zwwuts)

KEKs(G)veV

where K5(G) is the set of all colorings x: V' — N that are monochromatic on every C; (specifically, assigning
color k; to all vertices of C;). Multiplying by (—1)!°l and summing over all S, we obtain

> (D ey = D DI DT ] wewuiy

SCE(G) SCE(G) KEKs(G) veV
= > Iewue) | X e
Kk:V—-NoveV SCE,.(G)

where E,(G) = {uv € E(G) | k(u) = k(v)}. The parenthesized sum is 1 if F,,(G) = 0 (i.e., when « is a
proper coloring) and 0 otherwise. Therefore,

Xo = Z Hxﬁ(v :t(v = Z (—1)"* phrype(s)- O

KEPCol(G) veV SCE(G)

When F' is a forest, the following analogue of (2.2) follows from grouping the terms in Proposition 3.8 by
the vector partition btype(S) and observing that | S| = n — ¢(btype(S)), so no cancellation occurs.
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Corollary 3.9. Let (F,wt) be a weighted forest with n = n(F) and w = wt(F). Then

Xp= Y Ba(F)(=1)"""Wpy
AF(n,w)
where
BA(F) = |{S C E(F): btype(S) = A}|.

Observe that 84 (F) = 0 if A has any parts not in P2. Moreover, for each subset A C F(F), the subgraph
(V(F), A) has n — |A| components, so its bitype has length n — | A|. Therefore, we obtain the useful equation

_ (elF)
(3.) > a-(1).
AF(n(F)wt(F))
(A)=
As observed by Rosas, Rota and Stein [RRS02], the MacMahon symmetric functions admit a Hopf algebra
structure. We very briefly sketch the definition of a combinatorial Hopf algebra; for more details, see, e.g.,
[GR14].

Definition 3.10. [GR14, Chap. 1] A bialgebra is a vector space A over a field (say C) endowed with a
product m: A® A — A, a coproduct A: A - A® A, aunitu: C = A, and a counit ¢ — C, satisfying a
variety of axioms, of which the three most important are associativity, coassociativity, and compatibility,
given by the diagrams shown below.

ARA®A 5 AR A A—2 5 A4 ARA —" 5 A
Ml ll“@l Al lA@I A®Al lA
AgA —12 4 AoA %% AgApA ARA®A®A "R A4
associativity coassociativity compatibility

where m; ; denotes multiplication of the ith and jth coordinates.
The bialgebra A is graded if there is a vector space decomposition A = €p,,-, A, such that

Vi, k: m(Ax ® Ap_) € A, and Vn: AA, C €D Ap ® Ay
k<n

A graded bialgebra A is connected if dim¢ Ay = 1. Every graded connected bialgebra has a unique structure
as a Hopf algebra [GR14, Prop. 1.4.16]; that is, there is an antipode map S: A — A, defined recursively as
follows: S is the identity on Ay, and, for all x € A; with & > 0, we have

(3.2) > S(ar)za =0
in Sweedler notation [GR14, p.8].

The ring Mac™ of MacMahon symmetric functions is evidently a graded connected C-algebra. In fact,
we prove that it is a bialgebra. For a vector partition A = AL Ay and J C [, let A ; be the vector
partition with parts A forie J,andlet J = [(]\ J.

Proposition 3.11. The ring Mac™ is a graded connected Hopf algebra, with (i) product defined on the power sum
basis by

(3.3) PQPA = PAQ
where ASY is the vector partition obtained by concatenating Q@ with A, and (ii) coproduct defined by
(34) Alpa) = Y. paj, @paj,-

JC[e(A)]

Remark 3.12. It was proven by Rosas, Rota and Stein [RRS02] that Mac™ is a Hopf algebra. The content

of Proposition 3.11 is the coproduct formula in the power-sum basis, which to our knowledge does not ap-

pear explicitly in the literature. It generalizes the well-known formula for power-sum symmetric functions

(equation (3.5), below), which is just the case m = 1, and it naturally resembles the formula for power-sum
6



noncommutative symmetric functions given explicitly by Lauve and Mastnak [LM11, eqn. (3)]. Indeed, it
is possible to verify (3.4) by applying the projection map of Rosas [Ros01, Defn. 1] to the Lauve-Mastnak
formula. Instead, we give a self-contained proof without using noncommutative symmetric functions.

Proof. The product formula is immediate from Definition 3.3, so Mac™ is a graded connected ring. It re-

mains to show that the coproduct (3.4) satisfies coassociativity and compatibility. For coassociativity, it is
routine to show that

(I @ A)(Alpa)) = Z PAl,, ®PA|,, @D, =ART Z PA|, ®PA;
TIUJUTs=([(A)] JCE(A)]

For compatibility, observe that

mi3®@maoy4 (AR A (pa @ pa)) Z (pal, - Pal,,) ® (PAf; - Pal,)

JCIUA)]
J'Cle(e)]
= Z PAQ|,. ©® DAQ|+~
KC[((ARQ)]
= A(paa) = A(pa - pa) = A(m(pa ® pa)). O

The Hopf algebra Mac™ is evidently commutative and cocommutative. The special case Mac' is just
the standard Hopf algebra of symmetric functions, with coproduct given on the power-sum symmetric
functions by

A(pn) =1®pn, +pn®1

[GR14, Prop. 2.3.6] and

(3.5) Alpr) = D paj, @pay-
JCEN)]

When A consists of a single vector A, Proposition 3.11 specializes to A(px) = px ® 1 + 1 ® py, so (when
A # 0) the antipode formula (3.2) yields S(px) = —pa. Therefore, the antipode acts on the basis {pa } by

(3.6) S(pa) = (—1)"®pq,

generalizing the well-known result for symmetric functions [GR14, Prop. 2.4.1(i)]
The coproduct of a chromatic MacMahon symmetric symmetric function also has a particularly simple
form.

Proposition 3.13. Let (G, wt) be a weighted graph. Then

A(Xg) = Z XG\A & XG|A'
ACV(G)

Proof. For an edge set S C E(G), let K(S) denote the set of connected components of (V,S). For conve-

nience, we identify each subset J C K (S) with the disjoint union of its elements. In particular, V(J) =
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V(G)\ V(J)and E(J) = S\ E(J). By Proposition 3.8 and the definition of coproduct,
(=

AXe)= >

)l lA(pbtype(S))

SCE(G)
= Z ( |S| Z Pbtype(J) ®pbtype( J)
SCE(G) JCK(S)

Yo > COFlpypey @ (D) Ppy ey

SCE(G) JCK(S)

Z Z Z I porype(sn) @ (1) poype(s,)

ACV(G) S1CE(A) SoCE(A)

Z ( Z (_1)31|pbtype(s1))®< Z (_1)32|pbtype(S2))

ACV(G) \S1CE(4) S2CE(A)
- Y Xe, 0%, 0
ACV(Q)

Given a Hopf algebra A and two C-linear maps f,g: A — R, where R is a commutative C-algebra, the
convolution of f and g is the function f * g: A — R given by

(f*9)(B)=> f(B1)-g

where A(B) = ) By ® B; in Sweedler notation. The followmg is an immediate consequence of Proposi-
tion 3.13.

Corollary 3.14. Let f,g: Mac® — R be linear maps and (G, wt) a weighted graph. Then

(f*9)(Xg) = Z fXa,) 9Xa,)-
ACV(@)

4. PROOF OF THE MAIN THEOREM

Definition 4.1. The extended generalized degree polynomial (or EGDP) of a weighted graph (G, wt) is
the polynomial

(N;G = GG(w,J},y, Z) = Z weXt(A)mlAlth(A)Zint(A) = Z gT(a’a b7 <) d)waxbyczd
ACV a,b,c,d
where gr(a,b,c,d) = [{ACV : ext(A) =a, |A| =b, wt(4) = ¢, int(A) = d}|.

Our main theorem is that Crew’s conjecture holds in the more general setting of chromatic MacMahon
symmetric functions of weighted forests.

Theorem 1.1. Let (F,wt) be a weighted forest. Then G is determined by X .

Crew’s original conjecture is obtained as the special case when all weights are 1.
We give two proofs of this theorem. The first is modeled on Liu and Tang’s Hopf-theoretic proof of
Crew’s conjecture [LT24, Prop. 2.4].

First proof of Theorem 1.1. We construct a Q-linear map v: M? — Q(w, z,y, z) with the property that
(41) V(XF) = yC(F)GF(’LU,(E,y7Z).

We first show how to recover the numbers n = n(F), e = e(F), and w = wt(F) from X . (The corre-
sponding statement in the unweighted case is [L124, Lemma 2.5].) Consider the Q-linear map

Ptouw: Mac — Q[t u U]
defined on the power-sum basis by

Ceuwa) =t"(1 — u)"_g(A)vw for A+ (n,w).
8



By Corollary 3.9,

‘pt,u,v(XF) = Z BA(F)(_l)nie(A)@t,u,v(pA)

AF(n,w)
— Z ﬂA(F)(—l)n_Z(A)tn(l _ u)n—E(A)Uw
AF(n,w)
— W Z ,8A(F)<’U, _ 1)71—£(A)
AF(n,w)
— W Z Z /BA(F) (’LL _ 1)n—€
=1 A (n,w)
o(A)=t
_ t%wi < ¢ >(u — 1)t
n—1/
=1
= t"uv".

where the second-to-last equality follows from (3.1).
Now, we claim that the map v defined by
V= Pwzw-lzy ¥ Pww—1,1
has the desired property (4.1). Indeed, by Corollary 3.14,
(Sowx;w_lz,y * ww,w_17l)(XF) = Z @wz,w_1z7y(xF\A) : @w,w_l,l(xF\K)
ACV (F)
_ Z (wm)\A\ (w—lz)int(A) (y)wt(A) (w) [A] (w—l)int(Z)
ACV/(F)
_ Z ™ (F)=int(A)—int(A) ;| 4] wi(4) int(A)
ACV(F)
_ Z WAV +(F) Al wi(A) int(4)
ACV(F)

= w'FGp(w,z,y, 2)
and ¢(F) = n(F) — e(F) can be recovered from X by the first calculation, completing the proof. O

The second proof of Theorem 1.1 uses the method of Aliste-Prieto et al. [APMWZ24, Thm. 6]: we express
the coefficients of G g (w, z,y, z) as explicit linear combinations of the coefficients of X .
We first need some notation. For vector partitions A, Q F (n,w), define

(o)~ (o)

where m; j(A) is the number of times the vector (i, j) appears in A. Observe that if G is a weighted graph
and A = btype(S) for some S C E(G), then

(btyrg(s)> — [{ACV(G): biype(A) =2, § € E(A) U E(A))].

We need the following simple combinatorial identity [APMWZ24, Lemma 5]: for every set P and every
q € N, we have

4.2 ~1 |Pl+q<|Pl|> — 1 if |P| =4q,
*2 PZQ:P( ) " 0 if|P|#q.
9



Second proof of Theorem 1.1. We claim that for every weighted forest F = (V, E, wt), we have

(4.3) (a,b,c,d)= Y Ba(F)(-1)""Muw(A, a,b,c,d)
AF(n,w)
here () (A) + ()
e c— L2 A\ (n—L0(A)+4(Q2) —c
WA, a,b,e,d) = (1) 1(}%@( . )(Q>( I >

Indeed, let RHS denote the right-hand side of (4.3); then
_ n—t(A : _ nea-1 c— L)\ (A (n—LA)+ () —c
RES = 30 (-1 Wi(s < Bwype(s) = AN 3 () (G

AF(n,w) Q- (b.e) n—a—d—1
_ 5;2 1)ISln—a-1 ng;c) (C —S(Q)> (btyp;(s)) <:|_+a€£f2)_—lc>

(since S is a forest and thus has n — ¢(btype(S)) edges)

_ E \S\+n a—1 § : C_E(Q) |S|+€(Q)—C
Z ( d n—a—d-—1
SCE QF(b,c) ACV
|A|=b, wt(A)=c, btype(A)=Q,
SCE(A)UE(A)

(since (P¥*(9)) = [{A C V(G) : btype(A) = Q, S C E(A) UE(A)}])
n—a—1 c—= E(btype(S)) |S| + K(btype(S)) —-cC
:Z(_l)‘SH— Z ( d )( n—a—d—1 )

SCE ACV:
|A|=b, wt(A)=c,
SCE(A)UE(A)

3 S (cp)shneant (C - E(bgpe(s))> (lSI Zﬁ_(l;tﬁ)z(f)i — c)

ACV SCE(A)UE(A)
|A|=b, wt(A)=c

- ¥ > S (—1)S@HS@kn—ant (lS(dA)|) (n 7|§(7A()1|7 1)

ACV | S(AICE(A) S(A)CE(A)
|A|=b, wt(A)=
1) +n—a—d— 1S(A)]
Z (_1)\S(A)H-n a—d 1(
S(A)CE(A) n-a—d-1

— (—1)/S)l+d 1S(A)
AEC:V (S(A)EQ:E(A) < d )

|A|=b, wt(A)=c
=[{ACV :ext(4) =a, |A|l =b, wt(A) = ¢, int(A) = d}|

and applying (4.2) yields the left-hand side of (4.3). O

5. ADDITIONAL REMARKS

5.1. Chromatic bases of MacMahon symmetric functions. The theory of chromatic bases of symmetric func-
tions was introduced in [CvW16] (and anticipated in [Sco08]). Let G = {G,, | n € P} be a family of connected
graphs such that G, has n vertices. Then the chromatic symmetric functions X, are algebraically inde-
pendent, and the free polynomial algebra they generate is the symmetric functions. To see this, for each
partition A = (A1, ..., \), let G\ be the disjoint union G, + - - - + G,. By Stanley’s formula, the matrix that
expresses the chromatic symmetric functions of the G, in the power-sum basis is triangular, hence invert-
ible, so that they form a graded basis for A. The case that G,, is the star on n vertices has proven especially
useful in approaches to Stanley’s problem; see, e.g., [APdAMOZ23, GOT24].
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There is an analogous notion of chromatic bases for MacMahon symmetric functions. The statement is
slightly different due to the requirement that weight functions be positive. Observe that Mac™ has a Hopf
subalgebra Mac’" generated by the MacMahon power-sum functions ps for which every part of A is a
vector in P™ (as opposed to N™ \ {(0,...,0)}); this property is preserved by the product and coproduct for-
mulas (3.3), (3.4). The theory of chromatic bases then carries over with no essential change from symmetric
functions to MacMahon symmetric functions:

Proposition 5.1. Let G = {Gy . | n,w € P} be a family of connected weighted graphs, where each G,, ., has n
vertices and total weight w. Then the family {X¢,, , } generates Mac?,. as a free polynomial (Hopf) algebra.

5.2. Multiweighted forests. Crew’s conjecture generalizes easily to weighted graphs whose weights are
integer vectors. Fix r € P, and consider a graph G = (V, E) together with a weight function wt: V' — P,
Let C4, ..., Cy be the connected components of G. In analogy to Definitions 3.5 and 3.6, define the weighted
type of G as the vector partition of width r + 1 given by

wtype(G) = ((n(C1),wt(C1)), ..., (n(Ck),wt(Cr))) I (n(G), wt(G)),

and the chromatic MacMahon symmetric function of G as the element of Mac"*' given by

Xo= »  [oww [T
=1

KEPCol(G) veV

This power series is an element of Mac" ™!, where the alphabet {1, x2, ... } records numbers of vertices and
the r alphabets {y1,1,¥2.1,---}, --+, {Y1.r,Y2.r, ... } record weights. Finally, analogously to Definition 4.1,
define the extended generalized degree polynomial of G as

Gg = Z WA Al W (A) e (4) jint(4),
ACV

With this setup, Proposition 3.8 and Corollary 3.9 (expanding the CMF in the power-sum basis) go
through with no changes other than replacing btype(S) with wtype(S). Likewise, the Hopf-theoretic proof of
Theorem 1.1 goes through with little change. First, the map ¢; y.v;,....0, 1 M 1 Q[t, u,v1, .. .,v,] defined
on the power-sum basis by

.....

T
Pt u,v1,...,0, (pA(xa Yy - ;yr)) = tn(l - u)an(A) H ’UZUL
i=1
can be shown to satisfy

Pty (Xp) = t"Ee@® TP o™
=1

for every forest I, and then the map v: M — Q(w, z1, ..., z,,y, 2) defined by

Y = Pwzw—rzy1,...,yr * Puw,w-1,1,...,1
has the property
’Y(XF) = yC(F)GF(w7$15 e Iy Y, Z)

thus showing that the extended GDP of a P"-weighted forest can be recovered from its chromatic MacMa-
hon symmetric function.
The theory of chromatic bases also extends easily to the multiweighted setting. In analogy to Proposi-

tion 5.1: for any family {G, w, ... w, | 7, w1, ..., w, € P} of connected weighted graphs, where each G,, ,, has
n vertices and total weight (wy, . ..,w,), their chromatic MacMahon symmetric functions generate Mac’,"*

as a free polynomial (Hopf) algebra.
11
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