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Abstract. Let T be an unrooted tree. The chromatic symmetric function

XT , introduced by Stanley, is a sum of monomial symmetric functions corre-
sponding to proper colorings of T . The subtree polynomial ST , first considered
under a different name by Chaudhary and Gordon, is the bivariate generating
function for subtrees of T by their numbers of edges and leaves. We prove that
ST = 〈Φ,XT 〉, where 〈·, ·〉 is the Hall inner product on symmetric functions
and Φ is a certain symmetric function that does not depend on T . Thus the
chromatic symmetric function is a stronger isomorphism invariant than the
subtree polynomial. As a corollary, the path and degree sequences of a tree
can be obtained from its chromatic symmetric function. As another applica-
tion, we exhibit two infinite families of trees (spiders and some caterpillars),
and one family of unicyclic graphs (squids) whose members are determined
completely by their chromatic symmetric functions.

Introduction

Let G be a simple graph with vertices V (G) and edges E(G), and let P denote
the positive integers. A (proper) coloring of G is a function κ : V (G) → P such
that κ(v) 6= κ(w) whenever the vertices v, w are adjacent. Stanley ([16]; see also
[17, pp. 462–464]) defined the chromatic symmetric function of G as

XG = XG(x1, x2, . . . ) =
∑

κ

∏

v∈V (G)

xκ(v),

the sum over all colorings κ, where x1, x2, . . . are countably infinitely many com-
muting indeterminates. This definition is invariant under permutations of {xi}, so
XG is a symmetric function, homogeneous of degree n = #V (G).

The chromatic symmetric function is a much stronger isomorphism invariant
than the well-known chromatic polynomial χG(k), a polynomial function of k that
gives the number of colorings of G using at most k colors. Indeed, for any integer k,
the number χG(k) can be obtained from XG by setting x1 = · · · = xk = 1 and
xi = 0 for all i > k.

It is natural to ask whether XG is a complete isomorphism invariant; that is,
whether two non-isomorphic graphs must have different chromatic symmetric func-
tions. The answer is no; the smallest example, shown in Figure 1, was given by
Stanley in [16]. Brylawski [2] introduced a graph invariant called the polychro-
mate and constructed an infinite family of pairs of nonisomorphic graphs with the
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Figure 1. Stanley’s example [16] of two non-isomorphic graphs
with the same chromatic symmetric function.

same polychromate. Sarmiento [15] proved that the polychromate is equivalent to
the U -polynomial studied by Noble and Welsh [13], a stronger invariant than XG;
therefore, each pair in Brylawski’s construction shares the same chromatic sym-
metric functions. (We thank Anna de Mier for directing our attention to these
results.) In another direction, the non-commutative version of the chromatic sym-
metric function, studied by Gebhard and Sagan [7], is easily seen to be a complete
invariant.

Stanley’s question of whether XG is a complete isomorphism invariant for trees
remains open. This is equivalent to the problem of whether a tree is determined
by its U -polynomial, since the formula for XG in terms of the U -polynomial [13,
Theorem 6.1] is easily seen to be reversible for trees. Stanley’s question was an-
swered in the affirmative for certain special kinds of trees by Fougere [6] and the
second author [12], both of whom listed several other tree invariants that can be
extracted from the chromatic symmetric function. Additionally, Tan [18] has ver-
ified computationally that the answer is “yes” for trees with 23 or fewer vertices.
(In contrast, the chromatic polynomial is nearly useless for distinguishing trees,
because χT (k) = k(k − 1)n−1 for every tree T with n vertices.)

Our main tool is Stanley’s expansion of the chromatic symmetric function in
the basis of power-sum symmetric functions pλ [16, Theorem 2.5]; see equation (5)
below. When T is a (possibly trivial) tree, the coefficient cλ(T ) of pλ in XT has a
particularly simple combinatorial interpretation. For A ⊆ E(T ), define the type of
A to be the partition whose parts are the sizes of the vertex sets of the graph with
vertices V (T ) and edges A (see Figure 3 for an example). Then, up to a sign, cλ(T )
is the number of edge sets A of type λ. As we will see, many other invariants of T
can be recovered from XT .

Recall that the degree of a vertex is the number of edges incident to it. A leaf
of a tree is a vertex of degree 1, and the unique incident edge is called a leaf edge.
We define the subtree polynomial of T by

ST = ST (q, r) =
∑

subtrees S

q#Sr#L(S),

where the sum runs over all subtrees S of T with at least one edge, and L(S)
denotes the set of leaf edges of S. Setting q = t(z + 1) and r = 1/(z + 1) in
ST recovers the polynomial fE(T ; t, z) studied by Chaudhary and Gordon in [3,
Section 3]. Conversely, fE(T ; qr, (1 − r)/r) = ST (q, r), so the two polynomials
provide identical information about T .

For every non-empty set A ⊆ E(T ), there is a unique minimal subset K(A) ⊆
E(T ) −A, called the connector of A, such that A ∪K(A) is a tree. (So K(A) = ∅
if and only if A is itself a subtree of T .) The connector polynomial of T is then
defined as

KT = KT (x, y) =
∑

∅6=A⊆E(T )

x#Ay#K(A).
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T1 T2

Figure 2. Two trees with the same subtree polynomial but dif-
ferent chromatic symmetric functions.

The polynomials ST and KT provide equivalent information about T ; we will
prove in Proposition 4 below that each of these invariants can be obtained from the
other. Moreover, the path sequence and degree sequence of T can easily be recovered
from ST (q, r), as observed by Chaudhary and Gordon [3, Proposition 18].

For a partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λ`) ` n, and integers a, b, i, j, define

ψ(λ, a, b) = (−1)a+b

(

`− 1

`− n+ a+ b

)

∑̀

k=1

(

λk − 1

a

)

, (1)

φ(λ, i, j) = (−1)i+j

(

`− 1

`− n+ i

) j
∑

d=1

(−1)d

(

i− d

j − d

)

∑̀

k=1

(

λk − 1

d

)

. (2)

We can now state our main theorem, which asserts that the subtree and connector
polynomials can be recovered from the chromatic symmetric function XT .

Theorem 1. For every n ≥ 1, and for every tree T with n vertices,

KT (x, y) =
∑

a>0

∑

b≥0

xayb
∑

λ`n

ψ(λ, a, b)cλ(T ) (3)

and

ST (q, r) =

n−1
∑

i=1

i
∑

j=1

qirj
∑

λ`n

φ(λ, i, j)cλ(T ). (4)

It follows that the chromatic symmetric function is at least as strong an invariant
as the subtree and connector polynomials. In particular, the path and degree
sequences of T can be recovered from XT , as announced previously in [11]; this
generalizes a earlier result of Fougere [6, Theorem 3.3.1]. Section 2 contains the
proof of Theorem 1, as well as explicit formulas for the path and degree sequences,
and a reinterpretation of (3) and (4) in terms of the usual scalar product on the
space of symmetric functions.

Theorem 1 implies that XT is a stronger invariant than ST . In fact, it is strictly
stronger: the two trees shown in Figure 2 have different chromatic symmetric func-
tions, but the same subtree polynomial. (Eisenstat and Gordon [4] constructed an
infinite family of pairs of non-isomorphic trees with the same subtree polynomials,
of which Figure 2 is the smallest example.) Thus Stanley’s question remains open.

As another application of the combinatorial interpretation of the coefficients
cλ(T ), we identify some classes of trees for which the chromatic symmetric function
is in fact a complete invariant. These trees include all spiders (trees having exactly
one vertex of degree ≥ 3) and some caterpillars (trees from which deleting all leaves
yields a path, such as those in Figure 2). We prove in Section 3 that every spider
can be reconstructed from its subtree polynomial, hence from its chromatic sym-
metric function (generalizing results of Fougere [6]). The corresponding problem
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for caterpillars is more difficult; however, certain special kinds of caterpillars can in-
deed be reconstructed from their chromatic symmetric functions, and the methods
we use to prove this may be extendible to all caterpillars.

A unicyclic graph is a graph with one cycle. Connected unicyclic graphs can be
recognized as such from their chromatic symmetric functions. While the combina-
torial data provided by Stanley’s expansion (5) is not as fine for unicyclic graphs
as it is for trees, we can still obtain some uniqueness results for special unicyclic
graphs by mimicking our results for spiders and caterpillars. In particular, we show
in Section 5 that no two squids (unicyclic graphs with at most one vertex of degree
two or more) can have the same chromatic symmetric function, although it is not
clear whether membership in the class of squids can be determined from XG. An
analogous result holds for crabs (unicyclic graphs in which every vertex not on the
cycle is a leaf) satisfying an additional technical condition.

Acknowledgements. Our collaboration began at the Graduate Student Com-
binatorics Conference held at the University of Minnesota on April 16 and 17,
2005. We thank the organizers of the conference for their efforts, and we thank
François Bergeron, Tom Enkosky, Gary Gordon, Brandon Humpert, Rosa Orellana,
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[14], and John Stembridge’s freely available Maple package SF, were invaluable for
calculating examples and formulating (and checking small cases of) Conjectures 6
and 7. Finally, we thank two anonymous referees for their suggestions, and in
particular for making us aware of Fougere’s undergraduate thesis [6].

1. Background

We assume that the reader is familiar with basic facts about graphs and trees
(see, e.g., [1, Chapter I]). We denote a graph G by an ordered pair (V,E), where
V = V (G) is the set of vertices and E = E(G) is the set of edges. All our graphs
are simple; that is, we forbid loops and parallel edges. The order of a graph is its
number of vertices. A tree is a graph G which is acyclic and connected and for
which #V (G) = #E(G) + 1; any two of these conditions together imply the third.
We consider the graph with one vertex and no edges to be a tree, the trivial tree;
unless otherwise specified, all our statements about trees include this possibility. A
leaf of a tree is a vertex of degree 1, that is, with exactly one incident edge. Every
nontrivial tree has at least two leaves [1, p. 11]. It is often notationally convenient
to ignore the distinction between a graph and its edge set.

We now review some facts about symmetric functions (for which the standard
references are [10] and [17, Chapter 7]) and about the chromatic symmetric function
(introduced by Stanley in [16]).

A partition is a sequence λ = (λ1, . . . , λ`) of positive integers in weakly decreasing
order. The numbers λk are called the parts of λ. We say that λ is a partition of n,
written λ ` n, if

∑

k λk = n. The number ` = `(λ) is called the length of λ.
Let x1, x2, . . . be a countably infinite set of commuting indeterminates. For

k ∈ P, the kth power-sum symmetric function is

pk =
∑

i≥1

xk
i
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Figure 3. An edge set of type (3, 3, 2, 1, 1).

and for a partition λ we define

pλ =

`(λ)
∏

k=1

pλk
.

It is well known that {pλ | λ ` n} is a basis for the Q-vector space Λn consisting of
all symmetric functions that are homogeneous of degree n.

Let G be a graph of order n. Stanley [16, Thm. 2.5] proved that

XG =
∑

A⊆E(G)

(−1)#Aptype(A), (5)

where type(A) is the partition whose parts are the orders of the connected com-
ponents of the subgraph of G induced by A (see Figure 3 for an example). Note
that type(A) depends upon A and V (G), but not on E(G). We write cλ(G) for the
coefficient of pλ in the expansion (5); that is,

XG =
∑

λ`n

cλ(G)pλ. (6)

We will abbreviate cλ = cλ(G) when no confusion can arise.
The chromatic symmetric function of a graph provides much more combinatorial

information when that graph is a tree. In general, the coefficient cλ does not count
edge sets of type λ, because (−1)#A is not constant for all such sets A. On the
other hand, if T = (V,E) is a tree of order n, then every A ⊆ E is acyclic, so its
induced subgraph has n−#A connected components. Hence `(type(A)) = n−#A,
and we obtain a useful combinatorial interpretation for the numbers cλ:

cλ = (−1)n−`(λ)#{A ⊆ E | type(A) = λ}. (7)

The invariants cλ are far from independent; in particular, (7) implies that

∑

λ: `(λ)=k

(−1)n−`(λ)cλ(T ) =

(

n− 1

k

)

. (8)

We next list some basic invariants of graphs that can be recovered from its
chromatic symmetric function. Several of these facts were previously observed
by the second author in [12]. For notational simplicity, we shall often omit the
parentheses and singleton parts of a partition, for instance, writing cj rather than
c(j,1,1,...,1).

Proposition 2. For every graph G = (V,E),

(i) the symmetric function XG is homogeneous of degree #V ;
(ii) −c2(G) = #E; and
(iii) the number k of connected components of G is min{`(λ) | cλ(G) 6= 0}.

If G is a tree, then in addition

(iv) for k ≥ 2, |cj(G)| is the number of subtrees of G with j vertices; and
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(v) cn−1(G) is the number of leaves of G.

Proof. Assertion (i) is immediate from the definition of XG, and (ii) follows easily
from (5). For (iii), (5) implies that cλ = 0 whenever `(λ) < k. On the other
hand, cλ =

∑

A(−1)#A = (−1)n−ktG(1, 0), the sum over all A ⊆ E(G) with
λ(A) = λ(E(G)), where tG is the Tutte polynomial of G (see [1, Ch. X]). Up to
sign, this formula counts acyclic orientations of G with exactly one sink in each
component (this follows from [1, Thm. 8, p. 348]). In particular, cλ 6= 0.

Assertion (iv) holds because A ⊆ E(G) is the set of edges of a j-vertex subtree
if and only if type(A) = (j, 1, . . . , 1), and (v) follows because every subtree of order
n− 1 is of the form G− v, where v is a leaf. �

By (i), (ii) and (iii) of Proposition 2, trees can be distinguished from non-trees by
their chromatic symmetric functions. Moreover, part (v) implies that paths (trees
with exactly two leaves) and stars (trees with exactly one non-leaf) are determined
up to isomorphism by their chromatic symmetric functions.

The girth of a graph G is defined as the length of the smallest cycle in G, or ∞
if G is acyclic. With a little more work, we can compute the girth of G from XG.
The idea is to find the smallest edge set for which (8) fails.

Proposition 3. Let G = (V,E) be a graph with n vertices and m edges. Let k be
the largest number such that

∑

λ`n, `(λ)=k cλ(G) 6= (−1)n−k
(

m
n−k

)

. Then the girth

of G is n− k + 1.

Proof. Let g be the girth of G. Suppose first that k > n−g+1. Then n−k < g−1,
so every subset A ⊆ E with n − k edges is acyclic and hence has k connected
components. On the other hand, if `(type(A)) = k, then the maximum size of a
component of A is n− (k−1) < g, so A must be acyclic and hence must have n−k
edges. Therefore

∑

λ`n
`(λ)=k

cλ(G) =
∑

A⊆E
`(type(A))=k

(−1)#A =
∑

A⊆E
#A=n−k

(−1)#A = (−1)n−k

(

m

n− k

)

.

Now suppose that k = n − g + 1. We claim that A ⊆ E has k components if
and only if it either has n − k edges (hence is acyclic) or is precisely a cycle of
length g. The “if” direction is evident. For the “only if” direction, suppose that
A has k components and is not acyclic, hence contains a cycle C. By definition
of G, the length of C cannot be less than g; on the other hand, there are at least
k − 1 vertices that do not belong to C (one for each other component of A), so
#V (C) ≤ n− (k − 1) = g. Thus C has length exactly g. Moreover, A− C cannot
contain any other edge with an endpoint outside C (because then it would have
fewer than k components) or an edge joining two vertices of C (because then G
would contain a cycle of length < g). Hence A = C as desired. Denoting by Γ the
set of g-cycles of G, we have

∑

λ`n
`(λ)=k

cλ(G) =
∑

A⊆E
#A=n−k

(−1)#A +
∑

A∈Γ

(−1)#A

= (−1)n−k

(

m

n− k

)

+ (−1)n−k+1#Γ 6= (−1)n−k

(

m

n− k

)

as desired. �
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2. Proof of the main theorem

Theorem 1 expresses the subtree polynomial ST and connector polynomial KT

of a tree T in terms of the chromatic symmetric function XT . The first step is to
show that ST and KT are interchangeable. In what follows, we will often abuse
notation by ignoring the distinction between a tree T = (V,E) and its edge set E.

Proposition 4. Let T be a tree. Then:

(1) ST (q, r) = KT (qr, q(1 − r)).
(2) KT (x, y) = ST (x+ y, x/(x+ y)).

Proof. For each nontrivial subtree S ⊂ T , write L(S) for the set of leaf edges of
S. Note that #L(S) ≥ 1, with equality if and only if S consists of a single edge.
Moreover, observe that A ∪K(A) = S if and only if L(S) ⊆ A ⊆ S. Hence

KT (qr, q(1 − r)) =
∑

A⊆T

(qr)#A(q(1 − r))#K(A)

=
∑

A⊆T

q#(A∪K(A))r#A(1 − r)#K(A)

=
∑

subtrees S⊆T

q#S
∑

A:
L(S)⊆A⊆S

r#A(1 − r)#S−#A

=
∑

S

q#Sr#L(S)
∑

G⊆S−L(S)

r#G(1 − r)#(S−L(S))−#G

=
∑

S

q#Sr#L(S) (r + (1 − r))#(S−L(S)) = ST (q, r),

giving the first equality. Meanwhile, solving the equations x = qr, y = q(1 − r) for
q and r yields q = x+ y, r = x/(x+ y), giving the second equality. �

We now prove the main theorem. To do so, we establish a formula for the
connector polynomial of a tree in terms of its chromatic symmetric function, then
apply Proposition 4 to obtain a formula for the subtree polynomial.

Proof of Theorem 1. By definition, the coefficient of xayb in KT (x, y) is

#{A ⊆ T | #A = a, #K(A) = b} =
∑

A⊆T
#A=a, #K(A)=b

1

= (−1)b
∑

A⊆T
#A=a

∑

B⊆T−A
#B=b

∑

C⊆B
K(A)⊆C

(−1)#C ,

because the innermost sum vanishes unless B = K(A), when it is (−1)b. Setting
D = B − C, we may rewrite this expression as

(−1)b
∑

A⊆T
#A=a

∑

C⊆T−A
K(A)⊆C

∑

D⊆T−A−C
#D=b−#C

(−1)#C
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and setting F = C ∪ A yields

(−1)b
∑

A⊆T
#A=a

∑

F⊆T
A∪K(A)⊆F

∑

D⊆T−F
#D=a+b−#F

(−1)#F−a

= (−1)a+b
∑

F⊆T

∑

A: #A=a,
A∪K(A)⊆F

(

#(T − F )

a+ b− #F

)

(−1)#F

= (−1)a+b
∑

λ`n

∑

F⊆T
type(F )=λ

(

#(T − F )

a+ b− #F

)

∑

A: #A=a,
A∪K(A)⊆F

(−1)#F

= (−1)a+b
∑

λ`n

(

`(λ) − 1

`(λ) − n+ a+ b

)

(−1)n−`(λ)
∑

F⊆T
type(F )=λ

α(F ) (9)

where α(F ) = #{A | #A = a, A∪K(A) ⊆ F}. The set A∪K(A) is connected, so if
it is a subset of F then it must be a subset of some component of F . On the other
hand, if F ′ is a (possibly trivial) component of F and A ⊆ F ′, then A∪K(A) ⊆ F ′,
because F ′ is a tree containing A and A ∪K(A) is the unique minimal such tree.
Thus if type(F ) = λ then

α(F ) =

`(λ)
∑

k=1

(

λk − 1

a

)

. (10)

Note that this formula is valid only if a > 0. Substituting (10) into (9), we obtain

(−1)a+b
∑

λ`n

(

`(λ) − 1

`(λ) − n+ a+ b

)

(−1)n−`(λ)
∑

F⊆T
type(F )=λ

`(λ)
∑

k=1

(

λk − 1

a

)

= (−1)a+b
∑

λ`n

(

`(λ) − 1

`(λ) − n+ a+ b

) `(λ)
∑

k=1

(

λk − 1

a

)

cλ(T )

=
∑

λ`n

ψ(λ, a, b)cλ(T )

(where ψ(λ, a, b) is defined by (1)), giving the desired formula (3).

We now turn to the proof of (4). By Proposition 4, we have

ST (q, r) = KT (qr, q(1 − r))

=
∑

a>0

∑

b≥0

(qr)a(q(1 − r))b(−1)a+b
∑

λ`n

(

`(λ) − 1

`(λ) − n+ a+ b

) `(λ)
∑

k=1

(

λk − 1

a

)

cλ(T ).

Setting i = a+ b, we may rewrite the last expression as

∑

i>0

i
∑

a=1

(−1)iqira(1 − r)i−a
∑

λ`n

(

`(λ) − 1

`(λ) − n+ i

) `(λ)
∑

k=1

(

λk − 1

a

)

cλ(T ).
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Applying the binomial expansion to (1 − r)i−a yields

∑

i>0

i
∑

a=1

(−1)iqira
i−a
∑

h=0

(

i− a

h

)

(−1)hrh
∑

λ`n

(

`(λ) − 1

`(λ) − n+ i

) `(λ)
∑

k=1

(

λk − 1

a

)

cλ(T ).

Now setting h = j − a gives

∑

i>0

i
∑

a=1

(−1)iqi
i
∑

j=a

(

i− a

j − a

)

(−1)j−arj
∑

λ`n

(

`(λ) − 1

`(λ) − n+ i

) `(λ)
∑

k=1

(

λk − 1

a

)

cλ(T )

and setting a = d and rearranging gives

∑

i>0

i
∑

j=1

qirj
∑

λ`n
`(λ)=`

(

(−1)i+j

(

`− 1

`− n+ i

) j
∑

d=1

(−1)d

(

i− d

j − d

)

∑̀

k=1

(

λk − 1

d

)

)

cλ(T )

=
∑

i>0

i
∑

j=1

qirj
∑

λ`n
`(λ)=`

φ(λ, i, j)cλ(T )

which is the desired formula (4). �

Two basic invariants of a tree are its path sequence and its degree sequence. The
path sequence of T is defined as (π1, π2, . . . ), where πi = πi(T ) is the number
of i-edge paths in T . The degree sequence of T is defined as (δ1, δ2, . . . ), where
δj = δj(T ) is the number of degree-j vertices in T . Knowing the degree sequence
is equivalent to knowing the star sequence (σ1, σ2, . . . ), where σk = σk(T ) is the
number of k-edge stars in T . Indeed, it is not hard to see that

σk =
∑

j≥k

(

j

k

)

δj

for every 2 ≤ k ≤ n− 1, and so

δj =
∑

k≥j

(

k

j

)

(−1)j+kσk.

Corollary 5. The degree and path sequences of a tree T can be recovered from its
chromatic symmetric function.

Proof. The key observation, due to Chaudhary and Gordon [3, Proposition 18], is
that the path and star sequences of T can be recovered from ST . Indeed, π1 is
the number of edges of T , and for every i ≥ 2, πi is just the coefficient of qir2 in
ST (q, r). Meanwhile, for every k ≥ 1, σk is the coefficient of qkrk. �

We note that Fougere had proved [6, Theorem 3.3.1] that the sum of the squared
vertex degrees,

∑

j δjj
2, could be obtained from the coefficient of the monomial

symmetric function m(3,1,1,... ) in XT .
We can rephrase the formulas for KT and ST in terms of the usual scalar product

〈·, ·〉 on the space Λn of degree-n symmetric functions (see [17, §7.9] or [10, §I.4]),
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where n is the order of T . Define symmetric functions Ψn(x, y) and Φn(q, r) by

Ψn(x, y) =
∑

a>0

∑

b≥0

xayb
∑

λ`n

ψ(λ, a, b)
pλ

zλ
,

Φn(q, r) =

n−1
∑

i=1

i
∑

j=1

qirj
∑

λ`n

φ(λ, i, j)
pλ

zλ
.

Then the formulas (3) and (4) are respectively equivalent to

KT (x, y) =
〈

Ψn(x, y), XT

〉

,

ST (q, r) =
〈

Φn(q, r), XT

〉

.

The symmetric function Ψn appears to have certain positivity and integrality
properties, as we now explain. The ith homogeneous symmetric function hi in
indeterminates x1, x2, . . . is the sum of all monomials of degree i, and for a partition
λ = (λ1, . . . , λ`) we define hλ = hλ1

· · ·hλ`
. The symmetric functions {hλ | λ ` n}

form a vector space basis for Λn [10], so there is a unique list of rational numbers
ξ(λ, i, j) ∈ Q such that

Ψn(x, y) =
∑

i,j

∑

λ`n

ξ(λ, i, j)xiyjhλ.

Conjecture 6 (Positivity). Let µ ` n be a partition, and let ε(µ) be the number of
parts of µ of even length. Then, for all integers i, j, (−1)ε(µ)ξ(µ, i, j) ≥ 0.

Conjecture 7 (z-Integrality). Let µ ` n be a partition. Then, for all integers i, j,
the number ξ(µ, i, j)zµ is an integer.

We have verified Conjectures 6 and 7 computationally1 for all n ≤ 20, which
we think is strong evidence that they hold for all n. A formula for ξ(µ, i, j) can
be written out explicitly using the known transition matrices between bases of
symmetric functions (see [5]). However, we do not know a direct combinatorial
interpretation for ξ(µ, i, j) or for ξ(µ, i, j)zµ.

One might hope that for every two trees T, U with #V (T ) > #V (U) > 1,
the number of subtrees of T isomorphic to U might be given by a scalar product
〈

ζU , XT

〉

, where ζU is some symmetric function independent of T . Such a result
would generalize Corollary 5 (which covers only the case that U is a path or a
star) and, by a theorem of Harary and Palmer [9], would imply that every tree is
distinguished by its chromatic symmetric function. In fact, it appears that such a
function ζU exists only if U is a star or a path, as we have verified computationally
for all U of order ≤ 8, with one trivial exception.2

Theorem 1 does not resolve Stanley’s question, because ST is not a complete
isomorphism invariant. Indeed, the two trees T1, T2 shown in Figure 2 share the
same subtree polynomial; this is a special case of a theorem of Eisenstat and Gor-
don [4]. On the other hand, XT1

6= XT2
. This inequality follows from Tan’s

calculations [18], and also for the following elementary reason. Let A ⊂ E(T1) be
the edge set obtained by deleting the two rightmost horizontal edges in Figure 2;

1 A Maple worksheet containing the calculations is available at
http://math.ku.edu/~jmartin/sourcecode/ .

2 Up to isomorphism, there are three four-edge trees: the star S4, the path P4, and another
tree U . Since the number of four-edge subtrees of T is just c5(T ), we have ζU = c5 − ζS4

− ζP4
.

http://jlmartin.faculty.ku.edu/sourcecode/
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then type(A) = (7, 2, 2). On the other hand, no subset of E(T2) has that type.
Therefore c(7,2,2)(T1) 6= 0 and c(7,2,2)(T2) = 0.

The remainder of the article is devoted to identifying special classes of trees T
for which the invariants cλ suffice to reconstruct T up to isomorphism.

3. The Chromatic Symmetric Function Distinguishes Spiders

A tree is a spider (or starlike tree) if exactly one of its vertices has degree ≥ 3.
By Corollary 5, whether or not a tree is a spider can be determined from its subtree
polynomial. A spider may equivalently be defined as a collection of edge-disjoint
paths (the legs) joined at a common endpoint t (the torso).

Up to isomorphism, every spider on n vertices can be described by a partition
λ ` n − 1 whose parts are the lengths of its legs (so `(λ) ≥ 3). We denote the
corresponding spider by Tλ. Note that `(λ) equals both the number of leaves of Tλ

and the degree of its torso.
We will show that the isomorphism type of a spider can be determined from

its subtree polynomial, hence from its chromatic symmetric function. Fougere [6,
Chapter 2] had previously shown that forks (spiders with exactly one leg of length
> 1 and extended stars (spiders in which every leg has length k or k + 1 for some
k) could be reconstructed from their chromatic symmetric functions.

Before continuing, we describe a combinatorial problem whose solution will play
a role in the proof. Letm1, . . . ,mk be nonnegative integers with

∑

mi = `. Suppose
that we have ` distinguishable boxes, of which mi have capacity i for each i ∈ [k].
Let Ω(m1, . . . ,mk) be the number of ways of distributing k indistinguishable balls
among these boxes so that no box is filled beyond its capacity. In general, it is
not easy to write down a closed formula for Ω(m1, . . . ,mk), although individual
instances can be computed using an inclusion-exclusion argument (for example).

Theorem 8. Let λ ` n− 1 be a partition with ` = `(λ) ≥ 3, and let T = Tλ be the
corresponding spider. Then T can be reconstructed from its subtree polynomial.

Proof. First, suppose that ` = 3. Then λ1 + λ2, λ1 + λ2 + λ3, and λ1λ2λ3 are
respectively the diameter, number of edges, and number of three-leaf subtrees of
Tλ. These invariants can be recovered from Sλ, and together they determine λ.

Now suppose that ` > 3. Let mk denote the number of parts of size k in λ, and
let s(i, j) denote the number of subtrees of the spider T with i edges and j leaf
edges (that is, the coefficient of qirj in ST (q, r)). We will show by induction on k
that mk can be calculated from the numbers s(i, j).

First, suppose k = 1. Since there is a bijection between legs of T of length 1
(i.e., consisting of a single edge) and subtrees with n−2 edges and `−1 legs (which
are formed by deleting such an edge). Hence m1 = s(n− 2, `− 1).

For k > 1, we can choose a subtree S ⊂ T with n−1−k edges and `−1 leaves as
follows. First, fix j ∈ [k] and delete a leg of length j; there are mj ways to do this.
If j < k, then we still need to delete k − j more edges. It suffices to specify how
many edges to delete from the end of each of the other ` − 1 legs, so the number
of ways to do this is the solution to the balls-in-boxes problem described above,
regarding the k − j edges to be deleted as balls and each remaining leg of length
i as a box of capacity min(i − 1, k − j) (since deleting the entire leg will result in
a tree with fewer than `− 1 leaves). Therefore s(n − k − 1, `− 1) is given by the
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formula

mk +

bk/2c
∑

j=1

mjΩ
(

m2, . . . ,mj−1,mj − 1,mj+1, . . . ,mk−j , `− (m1 + · · · +mk−j)
)

+

k−1
∑

j=bk/2c+1

mjΩ
(

m2, . . . , mk−j , `− 1 − (m1 + · · · +mk−j)
)

. (11)

By induction, the s(i, j) determine m1, . . . ,mk−1, and equation (11) implies that
they determine mk as well. �

Another way of reconstructing a spider from its chromatic symmetric function
will be useful in Section 5. Define the two-part portion X̃G of XG by

X̃G =
∑

`(λ)=2

cλpλ. (12)

While X̃G is evidently a much weaker invariant than XG, it contains enough infor-
mation to distinguish among spiders.

Theorem 9. Let T be a spider of order n. Let m = bn
2 c, let ε = n − 2m, let

da = |ca,n−a(T )| for 1 ≤ a ≤ m, and let d(T ) = (d1, . . . , dm). Then one of the
following conditions holds:

(1) The sequence d(T ) is a partition, that is, d1 ≥ d2 ≥ · · · ≥ dm ≥ 0.
(2) There is a number t ≤ m such that d1 ≥ · · · ≥ dt = 1. Moreover, dt+1 =

dt+2 = · · · = dm−1 = 2, and dm ∈ {1, 2}.

In the first case, let µ = d(T ). In the second case, define a partition µ from d(T )
by replacing all 2’s after the tth place with two 1’s.

Then T = Tλ, where λ is the conjugate partition to µ.

Proof. For each edge e ∈ E(T ), denote by ‖e‖ the minimum of the orders of the com-
ponents of T−e, so that da = #{e | ‖e‖ = a}. If we label the legs of T as L1, . . . , L`,
where Li has λi edges, and label the edges of each Li as ei,1, ei,2, . . . , ei,λi

, starting
from the leaf and reading in toward the torso, then ‖ei,j‖ = min(j, n− j).

Case 1: λ1 ≤ n − λ1. Then j ≤ n − j for every edge ei,j . In this case da =
#{i | λi ≥ a}, and d(T ) is just the conjugate partition of λ.

Case 2: λ1 > n − λ1. If i 6= 1, then λi ≤ (λ2 + · · · + λk) − 1 = n − λ1 − 2, and
‖ei,j‖ = j for every j. So we can give a formula for d(T ) in terms of λ:

da =











#{i | λi ≥ a} if 1 ≤ a ≤ n− λ1 − 1,

2 if n− λ1 ≤ a ≤ m− 1,

1 + ε if a = m.

(13)

Note that dn−λ1−1 = 1, because e1,n−λ1−1 is the unique edge whose deletion
contains a component of order n−λ1−1. On the other hand, n−λ1 = 2m+ε−λ1 ≤
2m+ ε− (m+ 1) = m+ ε− 1, so dn−λ1

= 2 whether n is odd or even. Therefore,
d(T ) is not a partition, but has the form described in case (2) of the theorem.
Formula (13) implies that if we “iron out” d(T ) by replacing every 2 after the
(n− λ1)

th entry with two 1’s, we will obtain the conjugate partition to λ.

We now see how to recover λ, and thus the isomorphism type of the spider Tλ,
from the data d(Tλ). Either d(Tλ) is a partition, in which case it is the conjugate



CHROMATIC SYMMETRIC FUNCTIONS 13

of λ, or it has the form just described, in which case the “ironing-out” operation
yields the conjugate of λ. This is precisely the statement of the theorem. �

4. Chromatic Symmetric Functions of Some Caterpillars

A caterpillar is a tree T with the property that the induced subgraph on the
non-leaf vertices is a nontrivial path, called the spine of T . That is, every vertex
of T either lies on the spine, or is a leaf whose unique neighbor lies on the spine.
Since the spine is nontrivial, a caterpillar must have at least four vertices.

While Eisenstat and Gordon’s result in [4] rules out the possibility of distinguish-
ing caterpillars by their subtree polynomials, there is still reason to hope that the
additional information provided by the chromatic symmetric function of a caterpil-
lar may suffice to reconstruct it up to isomorphism.

Our first result is that the chromatic symmetric function distinguishes caterpil-
lars from non-caterpillars. The number of leaves and the diameter of a tree T (the
maximum length of a path in T ) can be recovered from XT by Corollary 5, so it
suffices to prove the following fact.

Proposition 10. Let T be a tree with n ≥ 4 vertices. Then T is a caterpillar if
and only if diam(T ) − 1 = n− δ1(T ).

Proof. If T is a caterpillar, then every path of maximum length consists of the spine
together with a leaf attached to each of its endpoints, hence contains all the non-leaf
vertices and two other (leaf) vertices. In particular, the number of edges in such a
path is one more than the number of non-leaf vertices. On the other hand, if P is
a path of maximum length in T , then the internal vertices of P are not leaves of T
(because each has two neighbors in P ) but its endpoints are (otherwise P could be
lengthened). If diam(T )− 1 = n− δ1(T ), then all the vertices not lying on P must
be leaves, which is to say that T is a caterpillar. �

Let T be a caterpillar with spine vertices v0, . . . , vs. For each i, let ei = deg(vi)−
1, where deg(vi) denotes the degree of the vertex vi. Gordon and McDonnell [8,
Lemma 2] showed that the numbers ei are almost determined by the path sequence
of T , and are indeed determined by the path sequence when the caterpillar is
symmetric (that is, ei = es−i for 0 ≤ i ≤ s). Therefore, every symmetric caterpillar
is determined up to isomorphism by its chromatic symmetric function, a result
proved in another way by the second author [12, Theorem 4.3.1].

We now describe another class of caterpillars that can be reconstructed from
their chromatic symmetric functions. We retain the labeling of the vertices of T as
v0, . . . , vs. Let fi be the number of leaves adjacent to vi, so that fi = deg(vi) − 1
for i = 0, s and fi = deg(vi) − 2 for 0 < i < s. Call fi the ith leaf number of T . In
addition, call a partition λ singleton-free if all its parts are at least 2.

Theorem 11. Let T be a caterpillar whose leaf numbers fi are strictly positive and
distinct. Then T can be reconstructed from its chromatic symmetric function.

Proof. Let L be the set of leaf edges of T . Since fi > 0 for all i, every spine vertex
is adjacent to at least one leaf. Therefore, the edge sets A ⊆ T such that type(A) is
singleton-free are precisely those that contain L. In particular, λ = type(L) is the
unique singleton-free partition with s+ 1 parts whose coefficient cλ(T ) is non-zero.
Up to reordering, the parts of λ are the numbers f0 + 1, . . . , fs + 1. Furthermore,
for each spine edge ei = vi−1vi, the edge set L∪{ei} contributes (−1)n−s to cµi

(T ),
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where µi = {f0 + 1, . . . , fi−2 + 1, fi−1 + fi + 2, fi+1 + 1, . . . , fs + 1}. Note that
the partitions µi are all distinct. Moreover, µi has s − 1 of its parts in common
with λ; the remaining two parts of λ must be the leaf numbers of adjacent spine
vertices of T . (This statement is valid even if the parts of µi are not all distinct.)
In this way we can recover the leaf numbers of the endpoints of every edge of T ,
and this data specifies the caterpillar up to isomorphism. �

Using the same argument, we can relax the condition of the theorem slightly:
we need only require that all leaf numbers are positive and that for each k, the set
of spine vertices with leaf number k form a subpath of the spine.

5. Unicyclic Graphs: Squids and Crabs

Despite the title of this article, we devote the last section to a family of graphs
G that are not trees, but rather unicyclic; that is, G contains a unique cycle.
Equivalently, c = n − e + 1, where c, n, e are the numbers of components, vertices
and edges respectively, so unicyclicity can be detected from XG by Proposition 2.
While we can no longer interpret the coefficients cλ as in (7), we can use Stanley’s
expansion of XG in terms of broken circuits [16, Thm. 2.9]. A special case of that
result is the following: if G has a unique cycle C and e0 is an edge of C, then

XG =
∑

A⊆E(G)
C−e0 6⊆A

(−1)#Aptype(A). (14)

We do not know whether there exist two unicyclic graphs with the same chro-
matic symmetric functions.

A squid is a connected unicyclic graph with a single vertex v of degree greater
than 2. Note that v must lie on the cycle. A squid is described up to isomorphism
by the length of its cycle and of the tentacles (the paths from the leaf vertices to v).
For example, if Tλ is the spider whose leg lengths are given by the parts of λ, then
adding an edge between the leaves at the ends of the two longest legs produces a
squid with cycle length λ1 + λ2 and tentacle lengths λ3, λ4, . . . .

It is not clear how to determine from XG whether or not a unicyclic graph G is
a squid (for instance, we cannot recover the degree sequence of an arbitrary graph
from its chromatic symmetric function as we can for a tree). Nevertheless, the
following uniqueness result does hold.

Theorem 12. No two non-isomorphic squids have the same chromatic symmetric
function.

Proof. Let S be a squid with unique cycle C. Let k + 1 be the length of C; this
number can be recovered from XS by Proposition 3. Let v be the unique vertex
of S of degree > 2, and let µ be the partition whose parts are the edge lengths of
the tentacles. Label the edges of C as e0, e1, . . . , ek, starting at v and proceeding
around the cycle. By (14) and inclusion-exclusion, we obtain

XS =

k
∑

i=1





∑

ei 6∈A

(−1)#Aptype(A)



−
∑

1≤i<j≤k





∑

ei,ej 6∈A

(−1)#Aptype(A)



+ . . .

=

k
∑

i=1

XS−ei
−

∑

1≤i<j≤k

XS−ei−ej
+ . . .
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where the omitted terms involve edge sets A lacking three or more edges from C−e0.
Deleting three or more edges from S produces a graph with three or more connected

components, so passing to two-part portions as in (12) yields X̃S =
∑k

i=1 X̃S−ei
−

∑

1≤i<j≤k X̃S−ei−ej
. Each graph S − ei − ej has exactly two components, of sizes

j − i and n− j + i. Removing additional edges will strictly increase the number of
components, so

X̃S =

k
∑

i=1

X̃Tµ,i,k−i
−

∑

1≤i<j≤k

(−1)n−2p(j−i,n−j+i)

where Tµ,i,k−i = S − ei is the spider with legs whose lengths are i, k − i, and the
parts of µ. Therefore, XS determines the quantity

k
∑

i=1

X̃Tµ,i,k−i
= X̃S +

∑

1≤i<j≤k

(−1)n−2p(j−i,n−j+i). (15)

Leaving the foregoing calculations aside for the moment, we note that if T is
a tree with n − 1 edges, then to calculate X̃T we need only consider the edge
subsets of cardinality n − 2. In particular, if T = Tλ is a spider, then X̃T =

(−1)n−2
∑`(λ)

i=1

∑λi

j=1 p(j,n−j). It follows that for any partition µ and numbers k, i,
we have

X̃Tµ,k
= X̃Tµ,i,k−i

+ (−1)n−2





k
∑

j=1

p(j,n−j) −
i
∑

j=1

p(j,n−j) −
k−i
∑

j=1

p(j,n−j)





=
1

k

k
∑

i=1



X̃Tµ,i,k−i
+ (−1)n−2





k
∑

j=1

p(j,n−j) −
i
∑

j=1

p(j,n−j) −
k−i
∑

j=1

p(j,n−j)









which can be computed from XS using (15). Meanwhile, by Theorem 9, we can re-

construct the spider Tµ,k from X̃Tµ,k
. In particular, we can reconstruct the partition

µ, which gives the tentacle lengths of the squid S. �

Just as squids can be regarded as the unicyclic analogues of spiders, the unicyclic
analogues of caterpillars are crabs : connected unicyclic graphs in which every vertex
not lying on the cycle is a leaf. In analogy to Theorem 12 and its proof, we
ask whether is it possible to use the results of Section 4 to classify the chromatic
symmetric functions of (some) crabs. As a starting point, we prove the following
analogue of Theorem 11.

Proposition 13. Let G be a crab such that the degrees of its non-leaf vertices are
all distinct and all greater than 2. Then, if H is another crab with this property,
and XG = XH , then G ≡ H.

Proof. We will show that the coefficients of XG, together with the knowledge that
G is a crab with the property just mentioned, determine G up to isomorphism.

The girth g of G can be recovered from XG by Proposition 3. Let C be the unique
cycle of G, and label its vertices in cyclic order as v1, . . . , vg . Let fi = deg(vi)−2 be
the number of leaves adjacent to vi. Note that G can be specified up to isomorphism
by the cyclically ordered list of numbers f1, . . . , fg.

Let L denote the set of leaf edges of G. The subsets of E(G) whose type is
singleton-free are precisely those that contain L as a subset. In particular, L itself
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is the unique edge set whose type is a singleton-free partition of length g. Thus
type(L) = {f1 − 1, f2 − 1, . . . , fg − 1} can be recovered from XG. Moreover, there
are precisely g edge sets whose type is a singleton-free partition of length g − 1;
these edge sets are of the form L ∪ {e} for some e ∈ C. Just as in Theorem 11,
the types of these edge sets are all distinct, and they specify which pairs of the fi

correspond to adjacent vertices of the cycle. �
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