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4 Chapter 1. Shortest paths and trees

1. Shortest paths and trees

1.1. Shortest paths with nonnegative lengths

Let D = (V, A) be a directed graph, and let s,t € V. A pathis asequence P = (vg, a1, 01, ..., Qm,y Urm)
where a; is an arc from v;_1 to v; fori =1,...,m. If s = vy and t = v,,, the vertices s and t are
the starting and end vertex of P, respectively, and P is called an s — ¢t path. The length of P is m.
The distance from s to ¢ is the minimum length of any s — ¢ path. (If no s — ¢ path exists, we set
the distance from s to ¢ equal to co.)

It is not difficult to determine the distance from s to t: Let V; denote the set of vertices of D at
distance i from s. Note that for each i:

(1) Vit1 is equal to the set of vertices v € V' \ (Vo U Vi U---UV;) for which (u,v) € A
for some u € V.

This gives us directly an algorithm for determining the sets V;: we set V := {s} and next we

determine with rule (1) the sets Vi, Vs, ... successively, until V; 11 = 0.

In fact, it gives a linear-time algorithm:

Theorem 1.1. The algorithm has running time O(|A]).

Proof. Directly from the description. |

In fact the algorithm finds the distance from s to all vertices reachable from s. Moreover, it
gives the shortest paths. These can be described by a rooted (directed) tree T'= (V’, A"), with root
s, such that V’ is the set of vertices reachable in D from s and such that for each u,v € V', each
directed u — v path in 7T is a shortest u — v path in D.!

Indeed, when we reach a vertex ¢ in the algorithm, we store the arc by which ¢ is reached. Then
at the end of the algorithm, all stored arcs form a rooted tree with this property.

There is also a trivial min-max relation characterizing the minimum length of an s — ¢ path. To
this end, call a subset A" of A an s — ¢ cut if A’ = §°"*(U) for some subset U of V satisfying s € U
and t ¢ U.2 Then the following was observed by Robacker [1956]:

Theorem 1.2. The minimum length of an s —t path is equal to the maximum number of pairwise
disjoint s — t cuts.

Proof. Trivially, the minimum is at least the maximum, since each s — ¢t path intersects each s — ¢
cut in an arc. The fact that the minimum is equal to the maximum follows by considering the s — ¢
cuts §°%(U;) for i = 0,...,d — 1, where d is the distance from s to ¢ and where U; is the set of
vertices of distance at most 7 from s. |

This can be generalized to the case where arcs have a certain ‘length’. For any ‘length’ function
l:A— Qs and any path P = (vg, a1,v1, .. .,am,Um), let [(P) be the length of P. That is:

(2) I(P) =" l(a).

=1

Now the distance from s to t (with respect to ) is equal to the minimum length of any s — ¢ path.
If no s — t path exists, the distance is +oc.

LA rooted tree, with root s, is a directed graph such that the underlying undirected graph is a tree and such that
each vertex t # s has indegree 1. Thus each vertex ¢t is reachable from s by a unique directed s — ¢ path.
260Ut (77) and 6™ (U) denote the sets of arcs leaving and entering U, respectively.
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Again there is an easy algorithm, due to Dijkstra [1959], to find a minimum-length s — ¢ path
for all ¢. Start with U := V and set f(s) := 0 and f(v) = oo if v # s. Next apply the following
iteratively:

(3) Find v € U minimizing f(u) over u € U. For each a = (u,v) € A for which
f() > f(u)+1(a), reset f(v):= f(u) +I(a). Reset U :=U \ {u}.

We stop if U = (). Then:

Theorem 1.3. The final function f gives the distances from s.

Proof. Let dist(v) denote the distance from s to v, for any vertex v. Trivially, f(v) > dist(v) for
all v, throughout the iterations. We prove that throughout the iterations, f(v) = dist(v) for each
v € V\U. At the start of the algorithm this is trivial (as U = V).

Consider any iteration (3). It suffices to show that f(u) = dist(u) for the chosen u € U. Suppose
f(w) > dist(u). Let s = vg,v1,...,v, = u be a shortest s — u path. Let ¢ be the smallest index with
v; €U.

Then f(v;) = dist(v;). Indeed, if i = 0, then f(v;) = f(s) =0 = dist(s) = dist(v;). If i > 0, then
(as vi—1 € V\U):

(4) f(Ui) < f('l}ifl) + l(vi,l,vi) = diSt(’Uifl) + l('l)ifl,’l)i) = dlSt(Uz)
This implies f(v;) < dist(v;) < dist(u) < f(u), contradicting the choice of w. |

Clearly, the number of iterations is |V|, while each iteration takes O(]V|) time. So the algorithm
has a running time O(|V|?). In fact, by storing for each vertex v the last arc a for which (3) applied
we find a rooted tree T' = (V', A’) with root s such that V' is the set of vertices reachable from s
and such that for each u,v € V', each directed u — v path in T is a shortest 4 — v path in D.

Thus we have:

Theorem 1.4. Given a directed graph D = (V,A), s,t € V, and a length functionl: A — Q4, a
shortest s —t path can be found in time O(|V]?).

Proof. See above. |

For an improvement, see Section 1.2.
A weighted version of Theorem 1.2 is as follows:

Theorem 1.5. Let D = (V, A) be a directed graph, s,t € V, and letl: A — Z. Then the minimum
length of an s—t path is equal to the mazimum number k of s—t cuts Cy,...,Cy (repetition allowed)
such that each arc a is in at most l(a) of the cuts C;.

Proof. Again, the minimum is not smaller than the maximum, since if P is any s — ¢ path and

C4,...,C} is any collection as described in the theorem:?
(5) I(P)= Z l(a) > Z ( number of ¢ with a € C;)
acAP ac€AP

k k
=Y |CinAP| =Y 1=k
=1 =1

To see equality, let d be the distance from s to t, and let U; be the set of vertices at distance less
than ¢ from s, for i = 1,...,d. Taking C; := §°"*(U;), we obtain a collection C1, ..., Cy as required.

3 AP denotes the set of arcs traversed by P
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Application 1.1: Shortest path. Obviously, finding a shortest route between cities is an example of a
shortest path problem. The length of a connection need not be the geographical distance. It might represent
the time or energy needed to make the connection. It might cost more time or energy to go from A to B
than from B to A. This might be the case, for instance, when we take differences of height into account
(when routing trucks), or air and ocean currents (when routing airplanes or ships).

Moreover, a route for an airplane flight between two airports so that a minimum amount of fuel is used,
taking weather, altitude, velocities, and air currents into account, can be found by a shortest path algorithm
(if the problem is appropriately discretized — otherwise it is a problem of ‘calculus of variations’). A similar
problem occurs when finding the optimum route for boring say an underground railway tunnel.

Application 1.2: Dynamic programming. A company has to perform a job that will take 5 months.
For this job a varying number of extra employees is needed:

(6) month number of extra employees needed
1 b1=10
2 ba=T7
3 b3=9
4 bs=8
5 bs=11

Recruiting and instruction costs DFL 800 per employee, while stopping engagement costs DFL 1200 per
employee. Moreover, the company has costs of DFL 1600 per month for each employee that is engaged
above the number of employees needed that month. The company now wants to decide what is the number
of employees to be engaged so that the total costs will be as low as possible.

Clearly, in the example in any month i, the company should have at least b; and at most 11 extra
employees for this job. To solve the problem, make a directed graph D = (V, A) with

(7) Vi={(i,2) | i=1,...,5b <a < 11}U{(0,0),(6,0)},
A= {((7'7x)a(l+17y)) eV x V"LZO,,E)}
(Figure 1.1).
At the arc from (¢, ) to (i + 1,y) we take as length the sum of

(8) (i) the cost of starting or stopping engagement when passing from x to y employees
(this is equal to 8(y — z) if y > = and to 12(z — y) if y < z);
(ii) the cost of keeping the surplus of employees in month ¢ + 1 (that is, 16(y — b;+1))
(taking DFL 100 as unit).

Now the shortest path from (0,0) to (6,0) gives the number of employees for each month so that the
total cost will be minimized. Finding a shortest path is thus a special case of dynamic programming.

Exercises

1.1. Solve the dynamic programming problem in Application 1.2 with Dijkstra’s method.

1.2. Speeding up Dijkstra’s algorithm with heaps

For dense graphs, a running time bound of O(|V'|?) for a shortest path algorithm is best possible,
since one must inspect each arc. But if |A| is asymptotically smaller than |V|?, one may expect
faster methods.

In Dijkstra’s algorithm, we spend O(|A|) time on updating the values f(u) and O(|V|?) time on
finding a v € U minimizing f(u). As |A] < |V]?, a decrease in the running time bound requires a
speed-up in finding a v minimizing f(u).
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A way of doing this is based on storing the w in some order so that a u minimizing f(u) can
be found quickly and so that it does not take too much time to restore the order if we delete a
minimizing u or if we decrease some f(u).

This can be done by using a ‘heap’, which is a rooted forest (U, F') on U, with the property that
if (u,v) € F then f(u) < f(v).* So at least one of the roots minimizes f(u).

Let us first consider the 2-heap. This can be described by an ordering uy, ..., u, of the elements
of U such that if i = [ ] then f(u;) < f(u;). The underlying rooted forest is in fact a rooted tree:
its arcs are the pairs (u;, u;) with ¢ = L%J

In a 2-heap, one easily finds a w minimizing f(u): it is the root u;. The following theorem is
basic for estimating the time needed for updating the 2-heap:

Theorem 1.6. If u; is deleted or if some f(u;) is decreased, the 2-heap can be restored in time
O(logp), where p is the number of vertices.

Proof. To remove w7, perform the following ‘sift-down’ operation. Reset u; := u,, and n :=n — 1.
Let i = 1. While there is a j < n with 2 +1 < j < 2i 4+ 2 and f(u;) < f(u;), choose one with
smallest f(u;), swap u; and u;, and reset i := j.

If f(u;) has decreased perform the following ‘sift-up’ operation. While ¢ > 0 and f(u;) > f(u;)
for j := L%J, swap u; and u;, and reset ¢ := j. The final 2-heap is as required.

Clearly, these operations give 2-heaps as required, and can be performed in time O(log |U]). |

4A rooted forest is an acyclic directed graph D = (V, A) such that each vertex has indegree at most 1. The vertices
of indegree 0 are called the roots of D. If (u,v) € A, then w is called the parent of v and v is called a child of u.
If the rooted forest has only one root, it is a rooted tree.
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This gives the result of Johnson [1977]:

Corollary 1.6a. Given a directed graph D = (V, A), s,t € V and a length functionl: A — Q4, a
shortest s — t path can be found in time O(]A|log|V]).

Proof. Since the number of times a minimizing vertex u is deleted and the number of times a value
f(u) is decreased is at most |A[, the theorem follows from Theorem 1.6. |

Dijkstra’s algorithm has running time O(]|V|?), while Johnson’s heap implementation gives a
running time of O(|A|log|V]). So one is not uniformly better than the other.

If one inserts a ‘Fibonacci heap’ in Dijkstra’s algorithm, one gets a shortest path algorithm with
running time O(|A| + |V|log|V]), as was shown by Fredman and Tarjan [1984].

A Fibonacci forest is a rooted forest (V, A), so that for each v € V the children of v can be
ordered in such a way that the ith child has at least 4 — 2 children. Then:®

Theorem 1.7. In a Fibonacci forest (V, A), each vertex has at most 1 + 2log |V| children.

Proof. For any v € V, let o(v) be the number of vertices reachable from v. We show that o(v) >
2(d011t(”)’1)/2, which implies the theorem.®

Let k := d°"*(v) and let v; be the ith child of v (for i = 1,...,k). By induction, o(v;) >
9(d (vi)-1)/2 > 20=3)/2 "as d°"(v;) > i — 2. Hence o(v) =1+ Zle o(v;)) > 1+ Zle 20=3)/2 —
ok=1)/2 4 9k=2)/2 4 1 _ L /3> o(k=1)/2, I

Now a Fibonacci heap consists of a Fibonacci forest (U, F'), where for each v € U the children of
v are ordered so that the ith child has at least ¢ — 2 children, and a subset T' of U with the following
properties:
(9) (i) if (u,v) € F then f(u) < f(v);
(ii) if v is the ith child of v and v € T then v has at least ¢ — 1 children;
)

(iii) if v and v are two distinct roots, then d°"*(u) # d°"*(v).

So by Theorem 1.7, (9)(iii) implies that there exist at most 2 + 2log |U| roots.
The Fibonacci heap will be described by the following data structure:

(10) (i) for each u € U, a doubly linked list C,, of children of u (in order);
(ii) a function p: U — U, where p(u) is the parent of w if it has one, and p(u) = u
otherwise;
(iii) the function d°"* : U — Z;
(iv) afunctiond: {0,...,t} — U (with ¢ := 1+[2log|V|]) such that b(d°"*(u)) = u
for each root wu;
(v) afunction ! : U — {0,1} such that [(u) =1 if and only if u € T'.

Theorem 1.8. When finding and deleting n times a u minimizing f(u) and decreasing m times
the value f(u), the structure can be updated in time O(m + p + nlogp), where p is the number of
vertices in the initial forest.

540Ut (y) and di®(v) denote the outdegree and indegree of v.
61n fact, o(v) > F(d°U(v)), where F(k) is the kth Fibonacci number, thus explaining the name Fibonacci forest.
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Proof. Indeed, a u minimizing f(u) can be identified in time O(log p), since we can scan f(b(7)) for
i =0,...,t. It can be deleted as follows. Let vq,...,v; be the children of u. First delete v and all

arcs leaving u from the forest. In this way, vy, ..., v, have become roots, of a Fibonacci forest, and
conditions (9)(i) and (ii) are maintained. To repair condition (9)(iii), do for each r = vy, ..., vy the
following:

(11) repair(r):

if d°"(r) = d°"*(s) for some root s # r, then:
{if f(r) < f(s), add s as last child of r and repair(r);
otherwise, add r as last child of s and repair(s)}.

Note that conditions (9)(i) and (ii) are maintained, and that the existence of a root s # r with
d°U(r) = d°"*(s) can be checked with the functions b, d°**, and p. (During the process we update
the data structure.)

If we decrease the value f(u) for some u € U we apply the following to u:

(12) make root(u):
if u has a parent, v say, then:
{delete arc (v,u) and repair(u);
if v T, add v to T; otherwise, remove v from 7" and make root(v)}.

Now denote by incr(..) and decr(..) the number of times we increase and decrease .. , respectively.
Then:

(13) number of calls of make root = decr(f(u)) + decr(T)
< decr(f(u)) + incr(T) + p < 2decr(f(u)) + p = 2m + p,

since we increase T' at most once after we have decreased some f(u).
This also gives, where R denotes the set of roots:

(14) number of calls of repair= decr(F') + decr(R)
< decr(F) + incr(R) 4+ p = 2decr(F) +p
< 2(nlog p+number of calls of make root)+p < 2(nlogp + 2m + p) + p.

Since deciding calling make root or repair takes time O(1) (by the data structure), we have that

the algorithm takes time O(m + p + nlogp). |

As a consequence one has:

Corollary 1.8a. Given a directed graph D = (V, A), s,t € V and a length functionl: A — Q4, a
shortest s —t path can be found in time O(JA| + |V ]log |V ).

Proof. Directly from the description of the algorithm. |

1.3. Shortest paths with arbitrary lengths

If lengths of arcs may take negative values, it is not always the case that a shortest path exists.
If the graph has a directed circuit of negative length, then we can obtain r — s paths of arbitrary
small negative length (for appropriate r and s).

However, it can be shown that if there are no directed circuits of negative length, then for each
choice of r and s there exists a shortest r — s path (if there exists at least one r — s path).
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Theorem 1.9. Let each directed circuit have nonnegative length. Then for each pair r,s of vertices
for which there exists at least one v — s path, there exists a shortest r — s path. In fact, there exists
a shortest r — s path that is simple.

Proof. Clearly, if there exists an r — s path, there exists a simple r — s path. Hence there exists also
a shortest simple path P, that is, a simple r — s path that has minimum length among all simple
r — s paths. This follows from the fact that there exist only finitely many simple paths.

We show that P is shortest among all r — s paths. Let P have length L. Suppose there exists
an r — s path @ of length less than L. Choose such a ) with a minimum number of arcs. Since
Q is not simple (as it has length less than L), @ contains a directed circuit C. Let Q' be the path
obtained from @ by removing C. As I(C) > 0, [(Q') = (Q) — I(C) < I(Q) < L. So Q' is another
r — s path of length less than L, however with a smaller number of arcs than (. This contradicts
the assumption that () has a minimum number of arcs. |

In particular, it follows that,

(15) if there are no directed circuits of negative length, there is a shortest path traversing
at most |V| — 1 arcs.

Also in this case there is an easy algorithm, the Bellman-Ford method (Bellman [1958], Ford
[1956]), determining a shortest r — s path.

Let n := |V|]. The algorithm calculates functions fy, f1, f2,..., fn : V — RU {0} successively
by the following rule:

(16) (i) Put fo(r) :=0 and fo(v) := oo for all v € V' \ {r}.
(ii) For k < n, if fi has been found, put

frg1(v) == min{fi(v), min (fi(w)+1(u,v))}

(u,v)€A

for all v e V.

Then f,(v) is equal to the length of a shortest » — v path, for each v € V. (If there is no r — v path
at all, f,,(v) = 00.)
This follows directly from the following theorem:

Theorem 1.10. For each k =0,...,n and for each v € V,
(17) fr(v) = min{l(P) |P is an r — v path traversing at most k arcs}.

Proof. By induction on k from (16). |

So the above method gives us the length of a shortest » — s path. It is not difficult to derive
a method finding an explicit shortest » — s path. To this end, determine parallel to the functions
fos- -+ fn, functions

(18) 90s---sgn : V. — {P | P path} U{oco}
as follows:
(19) (i) Put go(r) := (r) and go(v) := oo for all v € V' \ {r}.

(ii) For k < n, if g; has been found, put gg+1(v) := gr(v) if fr+1(v) = fr(v), and
put gr11(v) := (gk(u), (u, v),v) if frp1(v) = fi(u) +1(u, v) for some arc (u, v).
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Then g, (v) is a shortest r — v path.
This implies:

Corollary 1.10a. Given a directed graph D = (V, A), s,t € V and a length functionl: A — Q, such
that D has no negative-length directed circuit, a shortest s —t path can be found in time O(|V||4]).

Proof. Directly from the description of the algorithm. |

Application 1.3: Knapsack problem. Suppose we have a knapsack with a volume of 8 liter and a
number of articles 1,2, 3,4,5. Each of the articles has a certain volume and a certain value:

(20) article  volume value
1 5 4
2 3 7
3 2 3
4 2 5
5 1 4

So we cannot take all articles in the knapsack and we have to make a selection. We want to do this so that
the total value of articles taken into the knapsack is as large as possible.
We can describe this problem as one of finding 1, x2, 3, x4, x5 such that:

(21) Ty, T2, T3, T4, 05 € {0,1},
5x1 + 3x2 + 223 + 224 + x5 < 8,
4x1 + Txa + 3x3 + bxa + 4as is as large as possible.

We can solve this problem with the shortest path method as follows. Make a directed graph in the following
way:

There are vertices (i,z) for 0 <7 < 6 and 0 < z < 8 and there is an arc from (i — 1,z) to (i,y) if y ==
or y = = + a; (where a; is the volume of article 7) if ¢ < 5 and there are arcs from each (5,z) to (6,8). We
have deleted in the picture all vertices and arcs that do not belong to any directed path from (0,0).

The length of arc ((¢ — 1, ), (4,y)) is equal to 0 if y = 2 and to —¢; if y = x + a; (where ¢; denotes the
value of 7). Moreover, all arcs ending in (6, 8) have length 0.

Now a shortest path from (0,0) to (6,8) gives us the optimal selection.

Application 1.4: PERT-CPM. For building a house certain activities have to be executed. Certain
activities have to be done before other and every activity takes a certain number of days:

(22) activity days needed to be done before
activity #
1. groundwork 2 2
2. foundation 4 3
3. building walls 10 4,6,7
4.  exterior plumbing 4 5,9
5. interior plumbing 5 10
6. electricity 7 10
7. roof 6 8
8. finishing off outer walls 7 9
9. exterior painting 9 14
10. panelling 8 11,12
11.  floors 4 13
12.  interior painting 5 13
13.  finishing off interior 6
14.  finishing off exterior 2

We introduce two dummy activities O (start) and 15 (completion), each taking 0 days, where activity 0 has
to be performed before all other activities and 15 after all other activities.
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The project can be represented by a directed graph D with vertices 0,1,...,14, 15, where there is an arc
from 4 to j if 7 has to be performed before j. The length of arc (z,j) will be the number ¢; of days needed
to perform activity ¢. This graph with length function is called the project network.

Now a longest path from 0 to 15 gives the minimum number of days needed to build the house. Indeed,
if [; denotes the length of a longest path from 0 to i, we can start activity ¢ on day [;. If activity j has been
done after activity ¢, then I; > l; +t; by definition of longest path. So there is sufficient time for completing
activity ¢ and the schedule is practically feasible. That is, there is the following min-max relation:

(23) the minimum number of days needed to finish the project is equal to the maximum length
of a path in the project network.

A longest path can be found with the Bellman-Ford method, as it is equivalent to a shortest path when
we replace each length by its opposite. Note that D should not have any directed circuits since otherwise
the whole project would be infeasible.

So the project network helps in planning the project and is the basis of the so-called ‘Program Evaluation
and Review Technique’ (PERT). (Actually, one often represents activities by arcs instead of vertices, giving
a more complicated way of defining the graph.)

Any longest path from 0 to 15 gives the minimum number of days needed to complete the project. Such
a path is called a critical path and gives us the bottlenecks in the project. It tells us which activities should
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oce
=l J
N

Figure 1.3

be controlled carefully in order to meet a deadline. At least one of these activities should be sped up if we
wish to complete the project faster. This is the basis of the ‘Critical Path Method’ (CPM).

Application 1.5: Price equilibrium. A small example of an economical application is as follows. Consider
a number of remote villages, say B,C, D, E and F. Certain pairs of villages are connected by routes (like in
Figure 1.4).

C D
B
E F
Figure 1.4

If villages X and Y are connected by a route, let kx y be the cost of transporting one liter of oil from
XtoY.

At a certain day, one detects an oil well in village B, and it makes oil freely available in village B. Now
one can follow how the oil price will develop, assuming that no other oil than that from the well in B is
available and that only once a week there is contact between adjacent villages.

It will turn out that the oil prices in the different villages will follow the iterations in the Bellman-Ford
algorithm. Indeed in week 0 (the week in which the well was detected) the price in B equals 0, while in all
other villages the price is oo, since there is simply no oil available yet.

In week 1, the price in B equals 0, the price in any village Y adjacent to B is equal to kg y per liter
and in all other villages it is still co.

In week ¢ + 1 the liter price pi+1,y in any village Y is equal to the minimum value of p;y and all
pi,x + kx,y for which there is a connection from X to Y.

There will be price equilibrium if for each village Y one has:

(24) it is not cheaper for the inhabitants of Y to go to an adjacent village X and to transport
the oil from X to Y.

Moreover, one has the min-max relation for each village Y:

(25) the maximum liter price in village Y is equal to the the minimum length of a path in the
graph from B to Y

taking kx,y as length function.

A comparable, but less spatial example is: the vertices of the graph represent oil products (instead of
villages) and kx,y denotes the cost per unit of transforming oil product X to oil product Y. If oil product
B is free, one can determine the costs of the other products in the same way as above.
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Exercises

1.2. Find with the Bellman-Ford method shortest paths from r to each of the other vertices in the following
graphs (where the numbers at the arcs give the length):

-2
(i) r 3 4
7 /\ -5
1
° 1 1 —e
(i) e 3 -3 4 N\
v 2

1.3. Let be given the distance table:

IS

to: | A B CcC D E F G
from: A 0 1 oo oo 00 2 12
B | 0 oo oo 00 o) o)
C|l oo -—15 0 4 8 oo o
D | o 00 4 0 00 co =2
E | «© oo 00 4 0 00 0o
F | oo oo 00 9 3 0 12
G| oo -—-12 2 3 -1 -4 0

A distance oo from X to Y should be interpreted as no direct route existing from X to Y.
Determine with the Bellman-Ford method the distance from A to each of the other cities.

1.4. Solve the knapsack problem of Application 1.3 with the Bellman-Ford method.

1.5. Describe an algorithm that tests if a given directed graph with length function contains a directed
circuit of negative length.

1.6. Let D = (V, A) be a directed graph and let r and s be vertices of D. Show that the minimum number
of arcs in an 7 — s path is equal to the maximum value of ¢(s) — ¢(r), where ¢ ranges over all functions
¢ : V — Z such that ¢(w) — ¢(v) < 1 for each arc (v, w).

1.4. Minimum spanning trees
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Let G = (V, E) be a connected graph and let [ : E — R be a function, called the length function.
For any subset F of E, the length [(F) of F is, by definition:

(26) I(F) = le).

ecF

In this section we consider the problem of finding a spanning tree in G of minimum length. There
is an easy algorithm for finding a minimum-length spanning tree, essentially due to Boruvka [1926].
There are a few variants. The first one we discuss is sometimes called the Dijkstra-Prim method
(after Prim [1957] and Dijkstra [1959)]).

Choose a vertex v; € V arbitrarily. Determine edges e, es ... successively as follows. Let
Uy := {v1}. Suppose that, for some k > 0, edges eq,...,e; have been chosen, spanning a tree on
the set Uy. Choose an edge ex11 € 6(Uy) that has minimum length among all edges in §(Uy).” Let
Ukt1 := Uk Uegi1.

By the connectedness of G we know that we can continue choosing such an edge until Uy = V.
In that case the selected edges form a spanning tree 7' in G. This tree has minimum length, which
can be seen as follows.

Call a forest F' greedy if there exists a minimum-length spanning tree 7" of G that contains F'.

Theorem 1.11. Let F be a greedy forest, let U be one of its components, and let e € §(U). If e has
minimum length among all edges in §(U), then F'U {e} is again a greedy forest.

Proof. Let T be a minimum-length spanning tree containing F. Let P be the unique path in T
between the end vertices of e. Then P contains at least one edge f that belongs to §(U). So
T := (T\{f}) U{e} is a tree again. By assumption, I(e) < I(f) and hence {(T”) < I(T). Therefore,
T’ is a minimum-length spanning tree. As F'U {e} C T”, it follows that F'U {e} is greedy. |

Corollary 1.11a. The Dijkstra-Prim method yields a spanning tree of minimum length.

Proof. It follows inductively with Theorem 1.11 that at each stage of the algorithm we have a greedy
forest. Hence the final tree is greedy — equivalently, it has minimum length. |

In fact one may show:

Theorem 1.12. Implementing the Dijkstra-Prim method using Fibonacci heaps gives a running
time of O(|E| + |V]log|V]).

Proof. The Dijkstra-Prim method is similar to Dijkstra’s method for finding a shortest path.
Throughout the algorithm, we store at each vertex v € V' \ Uy, the length f(v) of a shortest edge
{u,v} with u € Uy, organized as a Fibonacci heap. A vertex ui41 to be added to Uy to form Ugyq
should be identified and removed from the Fibonacci heap. Moreover, for each edge e connecting
ug+1 and some v € V' \ Ugy1, we should update f(v) if the length of ug4qv is smaller than f(v).
Thus we find and delete < |V| times a « minimizing f(u) and we decrease < |F| times a value
f(v). Hence by Theorem 1.8 the algorithm can be performed in time O(|E| + |V|log|V]). |

The Dijkstra-Prim method is an example of a so-called greedy algorithm. We construct a spanning
tree by throughout choosing an edge that seems the best at the moment. Finally we get a minimum-
length spanning tree. Once an edge has been chosen, we never have to replace it by another edge
(no ‘back-tracking’).

7§(U) is the set of edges e satisfying |e N U| = 1.
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There is a slightly different method of finding a minimum-length spanning tree, Kruskal’s method
(Kruskal [1956]). It is again a greedy algorithm, and again iteratively edges eq, e, ... are chosen,
but by some different rule.

Suppose that, for some k > 0, edges eq, ..., e, have been chosen. Choose an edge ej41 such that
{e1,... €k, ert1} forms a forest, with l(eg;1) as small as possible. By the connectedness of G we
can (starting with k& = 0) iterate this until the selected edges form a spanning tree of G.

Corollary 1.12a. Kruskal’s method yields a spanning tree of minimum length.

Proof. Again directly from Theorem 1.11. |

In a similar way one finds a mazimum-length spanning tree.

Application 1.6: Minimum connections. There are several obvious practical situations where finding
a minimum-length spanning tree is important, for instance, when designing a road system, electrical power
lines, telephone lines, pipe lines, wire connections on a chip. Also when clustering data say in taxonomy,
archeology, or zoology, finding a minimum spanning tree can be helpful.

Application 1.7: The maximum reliability problem. Often in designing a network one is not primarily
interested in minimizing length, but rather in maximizing ‘reliability’ (for instance when designing energy or
communication networks). Certain cases of this problem can be seen as finding a mazimum length spanning
tree, as was observed by Hu [1961]. We give a mathematical description.

Let G = (V,E) be a graph and let s : E — R, be a function. Let us call s(e) the strength of edge e.
For any path P in G, the reliability of P is, by definition, the minimum strength of the edges occurring in
P. The reliability rc(u,v) of two vertices u and v is equal to the maximum reliability of P, where P ranges
over all paths from u to v.

Let T be a spanning tree of maximum strength, i.e., with Y __ ... s(e) as large as possible. (Here ET is
the set of edges of T.) So T can be found with any maximum spanning tree algorithm.

Now T has the same reliability as G, for each pair of vertices u,v. That is:

(27) rr(u,v) = re(u,v) for each u,v € V.

We leave the proof as an exercise (Exercise 1.11).

Exercises

1.7. Find, both with the Dijkstra-Prim algorithm and with Kruskal’s algorithm, a spanning tree of mini-
mum length in the graph in Figure 1.5.

Figure 1.5
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1.8. Find a spanning tree of minimum length between the cities given in the following distance table:

Ame Ams Ape Arn Ass BoZ Bre Ein Ens s-G Gro Haa DH s-H Hil Lee Maa Mid Nij Roe Rot Utr Win Zut Zwo
Amersfoort 0 47 47 46 139 123 86 111 114 81 164 67 126 73 18 147 190 176 63 141 78 20 109 65 70
Amsterdam 47 0O 89 92 162 134 100 125 156 57 184 20 79 87 30 132 207 175 109 168 77 40 151 107 103
Apeldoorn 47 89 0 25 108 167 130 103 71 128 133 109 154 88 65 129 176 222 42 127 125 67 66 22 41
Arnhem 46 92 25 0 132 145 108 78 85 116 157 112 171 63 64 154 151 200 17 102 113 59 64 31 66
Assen 139 162 108 132 0 262 225 210 110 214 25 182 149 195 156 68 283 315 149 234 217 159 143 108 69
Bergen op Zoom 123 134 167 145 262 0 37 94 230 83 287 124 197 82 119 265 183 59 128 144 57 103 209 176 193
Breda 86 100 130 108 225 37 0 57 193 75 250 111 179 45 82 228 147 96 91 107 49 66 172 139 156
Eindhoven 111 125 103 78 210 94 57 0 163 127 235 141 204 38 107 232 100 153 61 50 101 91 142 109 144
Enschede 114 156 71 85 110 230 193 163 0 195 135 176 215 148 132 155 236 285 102 187 192 134 40 54 71
’s-Gravenhage 81 57 128 116 214 83 75 127 195 0 236 41 114 104 72 182 162 124 133 177 26 61 180 146 151
Groningen 164 184 133 157 25 287 250 235 135 236 0 199 147 220 178 58 308 340 174 259 242 184 168 133 94
Haarlem 67 20 109 112 182 124 111 141 176 41 199 0 73 103 49 141 203 165 129 184 67 56 171 127 123
Den Helder 126 79 154 171 149 197 179 204 215 114 147 73 0 166 109 89 276 238 188 247 140 119 220 176 144
’s-Hertogenbosch 73 87 88 63 195 82 45 38 148 104 220 103 166 0 69 215 123 141 46 81 79 53 127 94 129
Hilversum 18 30 65 64 156 119 82 107 132 72 178 49 109 69 0 146 192 172 81 150 74 16 127 83 88
Leeuwarden 147 132 129 154 68 265 228 232 155 182 58 141 89 215 146 0 306 306 171 256 208 162 183 139 91
Maastricht 190 207 176 151 283 183 147 100 236 162 308 203 276 123 192 305 0 242 135 50 188 176 213 182 217
Middelburg 176 175 222 200 315 59 96 153 285 124 340 165 238 141 172 306 242 0 187 203 98 156 264 231 246
Nijmegen 63 109 42 17 149 128 91 61 102 133 174 129 188 46 81 171 135 187 0 85 111 76 81 48 83
Roermond 141 168 127 102 234 144 107 50 187 177 259 184 247 81 150 256 50 203 85 0 151 134 166 133 168
Rotterdam 78 77 125 113 217 57 49 101 192 26 242 67 140 79 74 208 188 98 111 151 0 58 177 143 148
Utrecht 20 40 67 59 159 103 66 91 134 61 184 56 119 53 16 162 176 156 76 134 58 0 123 85 90
Winterswijk 109 151 66 64 143 209 172 142 40 180 168 171 220 127 127 183 213 264 81 166 177 123 0 44 92
Zutphen 65 107 22 31 108 176 139 109 54 146 133 127 176 94 83 139 182 231 48 133 143 85 44 0 48
Zwolle 70 103 41 66 69 193 156 144 71 151 94 123 144 129 88 91 217 246 83 168 148 90 92 48 0

1.9. Let G = (V,E) be a graph and let [ : E — R be a ‘length’ function. Call a forest T' good if

I(ET") > I(ET) for each forest T" satisfying |[ET’| = |ET|. (Again, ET is the set of edges of T.)
Let T be a good forest and e be an edge not in T such that T'U {e} is a forest and such that I(e) is
as small as possible. Show that T'U {e} is good again.

1.10. Let G = (V, E) be a complete graph and let [ : E — R be a length function satisfying I(uw) >
min{l(wv), [(vw)} for all distinct u,v,w € V. Let T be a longest spanning tree in G.
Show that for all u,w € V, [(uw) is equal to the minimum length of the edges in the unique u — w
path in 7T

1.11. Prove (27).
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2. Polytopes, polyhedra, Farkas’ lemma, and linear
programming

2.1. Convex sets

A subset C of R™ is called convez if for all z,y in C' and any 0 < A < 1 also Az + (1 — A)y belongs
to C. So C'is convex if with any two points in C, the whole line segment connecting = and y belongs
to C.

Clearly, the intersection of any number of convex sets is again a convex set. So, for any subset
X of R™, the smallest convex set containing X exists. This set is called the convex hull of X and is
denoted by conv.hull(X). One easily proves:

(1) conv.hull(X) =
{x|3t€N73x17'~~7xt€X7§|>\1,...,>\t20:
T = MT1 4 N, A+ A= 1)

A basic property of closed convex sets is that any point not in C' can be separated from C by a
‘hyperplane’. Here a subset H of R™ is called a hyperplane (or an affine hyperplane) if there exist a
vector ¢ € R™ with ¢ # 0 and a § € R such that:

(2) H={zecR"|Tzx=0¢}
We say that H separates z and C if z and C are in different components of R™ \ H.

Theorem 2.1. Let C be a closed convex set in R™ and let z ¢ C'. Then there exists a hyperplane
separating z and C'.

Proof. Since the theorem is trivial if C' = ), we assume C # (). Then there exists a vector y in C
that is nearest to z, i.e., that minimizes ||z — y||.

(The fact that such a y exists, can be seen as follows. Since C' # (), there exists an r > 0 such
that B(z,7)NC # 0. Here B(z,r) denotes the closed ball with center z and radius r. So y minimizes
the continuous function ||z — y|| over the compact set B(z,7)NC.)

Now define:
3) ei=z—y,8:= o(l22 ~ o).
We show
(®) () 72> 5,

(ii) Tz < 6 for each z € C.

Indeed, ¢z = (z —y)Tz > (z — y)Tz — §||z — y||*> = 6. This shows (4)(i).
If (4)(ii) would not hold, there exists an @ in C such that ¢z > . Since ¢’y < Ty + ||c[|* =6,
we know ¢T'(x —y) > 0. Hence there exists a A with 0 < A < 1 and

2¢"(z — y)

5 A< ————=2,
(5) EEE

(6) w:=Ar+ (1 - N)y.
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So w belongs to C. Moreover,

™ o = 2 = M@ = 9) + (5 = 2| = M@ =)
= X —yl* = 22" (@ =) + el < el = 1y — 2|

Here < follows from (5).
However, (7) contradicts the fact that y is a point in C nearest to z. |

Theorem 2.1 implies a characterization of closed convex sets — see Exercise 2.1. Call a subset H
of R™ a halfspace (or an affine halfspace) if there exist a vector ¢ € R™ with ¢ # 0 and a ¢ € R such
that

(8) H={zxecR"| Tz <5}

Clearly, each affine halfspace is a closed convex set.
Theorem 2.1 implies that if C' is a closed convex set and z ¢ C, then there exists an affine
halfspace H so that C C H and z € H.

Exercises

2.1. Let C C R"™. Then C is a closed convex set, if and only if C = [ F for some collection F of affine
halfspaces.

2.2. Let C C R"™ be a convex set and let A be an m x n matrix. Show that the set {Az | z € C'} is again
convex.

2.3. Let X be a finite set of vectors in R™. Show that conv.hull(X) is compact.

(Hint: Show that conv.hull(X) is the image under a continuous function of a compact set.)

2.4. Show that if z € conv.hull(X), then there exist affinely independent vectors z1,...,Zm in X such
that z € conv.hull{z1,...,z,}. (This is the affine form of ‘Carathéodory’s theorem’ (Carathéodory
[1911]).)

(Vectors x1,...,xm are called affinely independent if there are no reals A1,..., Am, such that \iz1 +
“ + AmZm =0 and A1 + -+ - + A, = 0 and such that A1, ..., A, are not all equal to 0.)
2.5. (i) Let C and D be two nonempty, bounded, closed, convex subsets of R™ such that C N D = 0.
Derive from Theorem 2.1 that there exists an affine hyperplane separating C' and D.
(Hint: Consider the set C — D :={z—y |z € C,y € D}.)

(if) Show that in (i) we cannot delete the boundedness condition.

2.2. Polytopes and polyhedra

Special classes of closed convex sets are formed by the polytopes and the polyhedra. In the
previous section we saw that each closed convex set is the intersection of affine halfspaces, possibly
infinitely many. If it is the intersection of a finite number of affine halfspaces, the convex set is called
a polyhedron.

So a subset P of R™ is a polyhedron if and only if there exists an m x n matrix A and a vector
b € R™ such that

(9) P={z eR"| Az <b}.
Here Az < b means:
(10) ar1x <by,...,amx < by,

where aq,...,a,, are the rows of A.
The matrix A may have zero rows, i.e. m = 0. In that case, P = R"™.
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Related is the notion of ‘polytope’. A subset P of R is called a polytope if P is the convex hull
of a finite number of vectors. That is, there exist vectors x1,...,z; in R™ such that

(11) P = conv.hull{zy,...,2¢}.

We will show that a subset P of R™ is a polytope, if and only if it is a bounded polyhedron. This
might be intuitively clear, but a strictly mathematical proof requires some work.

We first give a definition. Let P be a convex set. A point z € P is called a vertex of P if z is not
a convex combination of two other points in P. That is, there do not exist points z,y in P and a A
with 0 < A < 1 such that © # z,y # z and z = Az + (1 — N)y.

To characterize vertices we introduce the following notation. Let P = {z | Az < b} be a
polyhedron and let z € P. Then A, is the submatrix of A consisting of those rows a; of A for which
;2 = bz

Then we can show:

Theorem 2.2. Let P = {x | Az < b} be a polyhedron in R™ and let z € P. Then z is a vertex of
P, if and only if rank(A,) = n.

Proof. Necessity. Let z be a vertex of P and suppose rank(A,) < n. Then there exists a vector
¢ # 0 such that A,c = 0. Since a;z < b; for every a; that does not occur in A,, there exists a § > 0
such that:

(12) ai(z + dc) < b; and a;(z — dc) < b;
for every row a; of A not occurring in A,. Since A,c =0 and Az < b it follows that
(13) A(z 4+ dc) <band A(z — dc) <b.

So z+dc and z—dc belong to P. Since z is a convex combination of these two vectors, this contradicts
the fact that z is a vertex of P.

Sufficiency. Suppose rank(A,) = n while z is not a vertex of P. Then there exist points = and
y in P such that x # z # y and z = %(l‘ + y). Then for every row a; of A,:

(14) a;x <b,=a;z = ai(r—z)
aiy <b =aiz = a;(y—2)

Since y — z = —(x — z), this implies that a;(x — z) = 0. Hence A,(z — z) = 0. Since z — z # 0, this
contradicts the fact that rank(A,) = n.

Theorem 2.2 implies that a polyhedron has only a finite number of vertices: For each two different
vertices z and 2’ one has A, # A,/ since A,x = b, has only one solution, namely z = z (where b,
denotes the part of b corresponding to A,). Since there exist at most 2" collections of subrows of
A, P has at most 2™ vertices.

From Theorem 2.2 we derive:

Theorem 2.3. Let P be a bounded polyhedron, with vertices x1,...,x¢. Then P =
conv.hull{xy, ..., z:}.

Proof. Clearly
(15) conv.hull{zy,...,2:} C P,

since x1, ..., x; belong to P and since P is convex.
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The reverse inclusion amounts to:
(16) if z € P then z € conv.hull{xy,...,z}.

We show (16) by induction on n — rank(A4,).

If n —rank(A,) = 0, then rank(A,) = n, and hence, by Theorem 2.2, z itself is a vertex of P. So
z € conv.hull{zy, ...,z }.

If n — rank(A,) > 0, then there exists a vector ¢ # 0 such that A,c = 0. Define

(17) po = max{u | z+ uc € P},
vy :=max{v | z — vc € P}.

These numbers exist since P is compact. Let x := z + pgc and y := z — pyc.
Now

bi — a;z

(18) Ho = min{ | a; is a row of A; a;c > 0}.

K2

This follows from the fact that pg is the largest pu such that a;(z + pc) < b; for each i = 1,...,m.
That is, it is the largest p such that

bi — a;z

(19)

a;C

for every i with a;c > 0.
Let the minimum (18) be attained by io. So for iy we have equality in (18). Therefore

(20) (i) A,x=A,z4 poA.c= Az,
(i) aiox = ai, (2 + poc) = by,.

So A, contains all rows in A, and moreover it contains row a;,. Now A,c = 0 while a;,c # 0. This
implies rank(A,) > rank(A,). So by our induction hypothesis, x belongs to conv.hull{z1,...,2:}.
Similarly, y belongs to conv.hull{zy,...,2:}. Therefore, as z is a convex combination of z and y, z
belongs to conv.hull{zy, ..., x:}. |

As a direct consequence we have:

Corollary 2.3a. Fach bounded polyhedron is a polytope.

Proof. Directly from Theorem 2.3. |

Conversely:

Theorem 2.4. Fach polytope is a bounded polyhedron.

Proof. Let P be a polytope in R™, say
(21) P = conv.hull{zy,...,2¢}.

We may assume that ¢ > 1. We prove the theorem by induction on n. Clearly, P is bounded.

If P is contained in some affine hyperplane, the theorem follows from the induction hypothesis.

So we may assume that P is not contained in any affine hyperplane. It implies that the vectors
To9 —T1,...,Ts —x1 span R™. It follows that there exist a vector xg in P and a real » > 0 such that
the ball B(xg,r) is contained in P.

Without loss of generality, xg = 0. Define P* by

(22) P*:={ycR" | 2Ty <1 for each = € P}.
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Then P* is a polyhedron, as
(23) P*:{yeR”|x?y§1forj:1,...,t}.

This follows from the fact that if y belongs to the right hand set in (23) and « € P then =
Aix1 + -+ Apg for certain Aq,..., A\ >0 with Ay +--- 4+ Ay = 1, implying

t t
(24) .TTy = Z )\j.’I?jTy S Z )\j =1.
Jj=1 Jj=1

So y belongs to P*.
Moreover, P* is bounded, since for each y # 0 in P* one has that z := r - |ly[|~! - y belongs to
B(0,7) and hence to P. Therefore, 27y < 1, and hence

(25) lyll = (=) /r < 1/r.

So P* C B(0,1/r).
This proves that P* is a bounded polyhedron. By Corollary 2.3a, P* is a polytope. So there
exist vectors yi,...,ys in R™ such that

(26) P* = conv.hull{yy,...,ys}
We show:
(27) P={zeR"|ylz<lforalj=1,... s}

This implies that P is a polyhedron.

To see the inclusion C in (27), it suffices to show that each of the vectors x; belongs to the right
hand side in (27). This follows directly from the fact that for each j = 1,...,s, yJT% =aly; <1,
since y; belongs to P*.

To see the inclusion D in (25), let 2 € R™ be such that y]Tac <1forall j =1,...,s. Suppose
x ¢ P. Then there exists a hyperplane separating z and P. That is, there exist a vector ¢ # 0
in R"” and a § € R such that ¢”'z’ < § for each ' € P, while ¢’z > §. As0 € P, § > 0. So we
may assume 6 = 1. Hence ¢ € P*. So there exist p1,...,us > 0 such that ¢ = pyy; + - - psys and
p1+ -+ ps = 1. This gives the contradiction:

(28) 1<cla= Z,ujy]rx < Zuj =1. |
j=1 j=1

Convex cones

Convex cones are special cases of convex sets. A subset C of R™ is called a convex cone if for
any z,y € C' and any A\, > 0 one has Az + py € C.
For any X C R", cone(X) is the smallest cone containing X. One easily checks:

(29) cone(X) ={ Az 4+ Ny | 21, .., 20 € X5 A1, ., A > 0}

A cone C is called finitely generated if C' = cone(X) for some finite set X.

Exercises
2.6. Determine the vertices of the following polyhedra:
i) P={(z,y) |z>0,y>0,y—x<2,z+y<8z+2y <10,z < 4}.
(i) P=A(z,y,2) |z +y<2,y+z2<4,z+2<3,-20—y<3,-y—22<3 —2z—2<2}
(iii) P={(z,y) |z +y <1z -y <2}



Section 2.3. Farkas’ lemma 23

(iv) P=A{(z,y) |z +y=122>3}
v) P={(z,y,2) |2>0,y >0,z +y < 1}.
Vi) P={(z,y,2) |z+y>1l,z+2>1,y—2>0}.
(vii)) P={(z,y) | 3z +2y <18,z —y > —6,5z + 2y < 20,z > 0,y > 0}.
2.7. Let C CR". Then C is a closed convex cone, if and only if C = [ F for some collection F of linear
halfspaces.

(A subset H of R™ is called a linear halfspace if H = {x € R™ | ¢" 2 < 0} for some nonzero vector c.)

2.8. Show that if z € cone(X), then there exist linearly independent vectors x1,...,Z, in X such that
z € cone{z1,...,ZTm}. (This is the linear form of ‘Carathéodory’s theorem’.)

2.9. Let A be an m x n matrix of rank m and let b € R™. Derive from Exercise 2.8 that the system Az =b
has a nonnegative solution z, if and only if it has a nonnegative basic solution.

(A submatrix B of A is called a basis of A if B is a nonsingular m x m submatrix of A. A solution z
of Ax = b is a basic solution if A has a basis B so that x is 0 in those coordinates not corresponding
to columns in B.)

2.10. Prove that every finitely generated convex cone is a closed set. (This can be derived from Exercise
2.3 and Corollary 2.3a.)

2.11. Prove that a convex cone is finitely generated, if and only if it is the intersection of finitely many
linear halfspaces.

(Hint: Use Corollary 2.3a and Theorem 2.4.)

2.12. Let P be a subset of R". Show that P is a polyhedron, if and only if P = @ + C for some polytope
Q@ and some finitely generated convex cone C.

. . . 1 . .
(Hint: Apply Exercise 2.11 to cone(X) in R™™! where X is the set of vectors ( . ) in R*™! with

z€P.)
2.13. For any subset X of R™, define

(30) X*:={yeR"| 2"y <1 for each z € X}.

(i) Show that for each convex cone C, C* is a closed convex cone.

(i1) Show that for each closed convex cone C, (C*)* = C.

2.14. Let P be a polyhedron.

(i) Show that P* is again a polyhedron.

(Hint: Use previous exercises.)
(if) Show that P contains the origin, if and only if (P*)* = P.
(iii) Show that the origin is an internal point of P, if and only if P* is bounded.

2.3. Farkas’ lemma

Let A be an m x n matrix and let b € R™. With the Gaussian elimination method one can prove
that

(31) Az =10
has a solution z, if and only if there is no solution y for the following system of linear equations:
(32) yTA=0,9Tb=—1.

Farkas’ lemma (Farkas [1894,1896,1898]) gives an analogous characterization for the existence of
a nonnegative solution x for (31).
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Theorem 2.5 (Farkas’ lemma). The system Ax = b has a nonnegative solution, if and only if there
is no vector y satisfying yT A >0 and yT'b < 0.

Proof. Necessity. Suppose Az = b has a solution xy > 0 and suppose there exists a vector yg
satisfying yd A > 0 and yd'b < 0. Then we obtain the contradiction

(33) 0> yg'b = yg (Azo) = (yg A)ao > 0.
Sufficiency. Suppose Ax = b has no solution = > 0. Let a1, ..., a, be the columns of A. So
(34) b¢ C :=cone{ay,...,an}.

So by Exercise 2.7 there exists a linear halfspace H containing C' and not containing b. That is,
there exists a vector ¢ such that ¢Tb < 0 while ¢Tz > 0 for each z in C. In particular, cTaj > (0 for
j=1,...,n. Soy:= csatisfies y" A > 0 and yTb < 0. |

So Farkas’ lemma states that exactly one of the following two assertions is true:

(35) (i) 3z >0: Az =b,
(i) Jy:yTA>0and y'b < 0.

There exist several variants of Farkas’ lemma, that can be easily derived from Theorem 2.5.

Corollary 2.5a. The system Ax < b has a solution x, if and only if there is no vector y satisfying
y>0,y7A=0 and yTb < 0.

Proof. Let A’ be the matrix
(36) A=A —A I,

where I denotes the identity matrix.
Then Az < b has a solution z, if and only if the system A’z’ = b has a nonnegative solution z’.
Applying Theorem 2.5 to A’z’ = b gives the corollary. |

Another consequence is:

Corollary 2.5b. Suppose the system Ax < b has at least one solution. Then for every solution x of
Az < b one has cTx < 6, if and only if there exists a vector y > 0 such that yT A = cT and yT'b < 6.

Proof. Sufficiency. If such a vector y exists, then for every vector x one has

(37) Ar <b=yTAz <yTb= cTa <yTb= T2 <.

Necessity. Suppose such a vector y does not exist. It means that the following system of linear
inequalities in the variables y and A has no solution (y7 A) > (0 0):

(39) o (5 Y )=e o

According to Farkas’ lemma this implies that there exists a vector < Z ) so that

(39) (‘31{)(;>2(8)and(cT5)(Z)<o.
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We distinguish two cases.

Case 1: ¢ =0. Then Az > 0 and ¢z < 0. However, by assumption, Az < b has a solution .
Then, for 7 large enough:

(40) A(xg —72) < band ¢’ (zg — 72) > 6.

This contradicts the fact that Az < b implies ¢’z < 6.

Case 2: > 0. As (39) is homogeneous, we may assume that g = 1. Then for z := —z one has:
(41) Az <band ¢’z > .
Again this contradicts the fact that Az < b implies ¢Zx < 6. |
Exercises

2.15. Prove that there exists a vector z > 0 such that Az < b, if and only if for each y > 0 satisfying
yT A >0 one has y7b > 0.

2.16. Prove that there exists a vector > 0 such that Az = 0, if and only if for each y satisfying y7 A > 0
one has y7 A = 0. (Stiemke’s theorem (Stiemke [1915]).)

2.17. Prove that there exists a vector x # 0 satisfying x > 0 and Az = 0, if and only if there is no vector y
satisfying y* A > 0. (Gordan’s theorem (Gordan [1873]).)

2.18. Prove that there exists a vector x satisfying Ax < b, if and only if y = 0 is the only solution for
y>0,y7A=0y"b<0.
2.19. Prove that there exists a vector x satisfying Az < b and A’z <V, if and only if for all vectors y,y" > 0
one has:
G) if yTA+yTA =0 then y"b+ ¢V >0, and
(i) if y"A+¢y'TA" =0 and y # 0 then y7b + 4’7" > 0.
(Motzkin’s theorem (Motzkin [1936]).)

2.20. Let A be an m x n matrix and let b € R™, with m > n + 1. Suppose that Az < b has no solution z.
Prove that there exist indices o, ..., in so that the system a;,z < by, ..., a:,x < b;,, has no solution
x. Here a; is the ith row of A and b; is the ith component of b.

(Hint: Combine Farkas’ lemma with Carathéodory’s theorem.)

2.4. Linear programming

One of the standard forms of a linear programming (LP) problem is:

(42) maximize ¢’ x,

subject to Az < b.

So linear programming can be considered as maximizing a ‘linear function’ ¢”x over a polyhedron

P = {z | Az < b}. Geometrically, this can be seen as shifting a hyperplane to its ‘highest’ level,
under the condition that it intersects P.
Problem (42) corresponds to determining the following maximum:

(43) max{c’z | Az < b}.

This is the form in which we will denote an LP-problem.
If P = {x| Ar < b} is a nonempty polytope, then it is clear that max{c’z | Az < b} is attained
by a vertex of P (cf. Exercise 2.21).
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Clearly, also any minimization problem can be transformed to form (43), since
(44) min{c’z | Az < b} = —max{—cTz | Az < b}.

One says that x is a feasible solution of (43) if x satisfies Az < b. If x moreover attains the
maximum, x is called an optimum solution.

The famous method to solve linear programming problems is the simplex method, designed by
Dantzig [1951b]. The first polynomial-time method for LP-problems is due to Khachiyan [1979,
1980], based on the ellipsoid method. In 1984, Karmarkar [1984] published another polynomial-time
method for linear programming, the interior point method, which turns out to be competitive in
practice with the simplex method.

The Duality theorem of linear programming, due to von Neumann [1947], states that if the
maximum (43) is finite, then the maximum value is equal to the minimum value of another, so-
called dual LP-problem:

(45) min{y’b |y > 0;97A =c"}.
In order to show this, we first prove:

Lemma 2.1. Let P be a polyhedron in R"™ and let ¢ € R™. If sup{c’x | x € P} is finite, then
max{cTz | z € P} is attained.

Proof. Let § := sup{cTz | x € P}. Choose matrix A and vector b so that P = {z | Az < b}. We
must show that there exists an € R™ such that Az < b and ¢Tz > 4.

Suppose such an x does not exist. Then by Farkas’ lemma, in the form of Corollary 2.5a, there
exists a vector y > 0 and a real number A > 0 such that:

(46) yTA=XeT =0,yTb— X6 < 0.

Since Az < b has a solution z( (as the supremum is finite), we know A > 0 (since if A = 0 then
0=y" Az <yTb < 0).

As (46) is homogeneous, we may assume A = 1. Then y7A = ¢ and y7b < §. So for each =
satisfying Az < b we have o = yT Az < yTb. This implies § = sup{c’x | Az < b} <yTb< 4, a
contradiction.

From this we derive:

Theorem 2.6 (Duality theorem of linear programming). Let A be an m xn matriz, b € R™, ¢ € R™.
Then

(47) max{c’z | Az < b} = min{y"b |y > 0;97A =T},
provided that both sets are nonempty.

Proof. First note that

(48) sup{cTz | Az < b} <inf{yTb|y>0;yTA=cT},
because if Az < b,y > 0,yT A =c”, then

(49) e =yt A)r =y (Az) < yTb.

As both sets are nonempty,the supremum and the infimum are finite. By Lemma 2.1 it suffices to
show that we have equality in (48).
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Let § :=sup{c’x | Az < b}. Hence:
(50) if Az <b then Tz <.
So by Corollary 2.5b there exists a vector y such that
(51) y>0yTA=cl yTb<o.

This implies that the infimum in (48) is at most . |

The Duality theorem can be interpreted geometrically as follows. Let
(52) max{c’z | Az < b} =:§

be attained at a point x*. Without loss of generality we may assume that the first k£ rows of A belong
to the matrix A,«. So a1x < by,...,axx < by are those inequalities in Az < b for which a;x* = b;
holds. Elementary geometric insight (cf. Figure 2.1) gives that ¢’z = § must be a nonnegative
linear combination of the equations ayx = by, ..., arx = by.

Figure 2.1

That is, there exist A1,..., Ay > 0 such that:

(53) Aiag + -+ dpay =T,
A1by + -+ Apbp = 0.

Define

(54) Y = (A, A 0,...,0)T.

Then y* is a feasible solution for the dual problem min{y?b | y > 0;y7 A = ¢T'}. Therefore,
(55) max{c’z | Az <b} =6 = \by + -+ M\ebp > min{y”b |y > 0,97 A =T}
Since trivially the converse inequality holds:

(56) max{cTz | Az < b} <min{yTb |y >0;yTA=c"}

(cf. (49)), y* is an optimum solution of the dual problem.
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There exist several variants of the Duality theorem.
Corollary 2.6a. Let A be an m x n matriz, b € R™ ¢ € R™. Then
(57) max{c’z |z > 0; Az = b} = min{y"b | yTA > T},
provided that both sets are nonempty.

Proof. Define

) AN b
(58) A=| —-A |,b:=| b
-1 0

Then
(59) max{c’z | > 0; Az = b} = max{c"z | Az <b} =

min{z7b| 2> 0;2TA=c"} =

min{u?b — vTb +w?0 | u,v,w > 0;uTA—vTA—wl =T} =

min{yTb | yTA > cT}.
The last equality follows by taking y := u — v. |
Exercises

2.21. Let P = {x | Az < b} be a nonempty polytope. Prove that max{c”x | Az < b} is attained by a vertex
of P.

2.22. Let P = {z | Az < b} be a (not necessarily bounded) polyhedron, such that P has at least one vertex.
Prove that if max{c”z | Az < b} is finite, it is attained by a vertex of P.

2.23. Prove the following variant of the Duality theorem:
(60) max{c’ z |z > 0; Az < b} = min{y b |y > 0;57A> "}
(assuming both sets are nonempty).

2.24. Prove the following variant of the Duality theorem:
(61) max{c’ z | Az > b} =min{y b |y < 0;y" A =c"}
(assuming both sets are nonempty).

2.25. Let a matrix, a column vector, and a row vector be given:

A B (C a
(62) D E F , b ,(d e f),
G H K c

where A, B,C,D, E, F,G, H, K are matrices, a,b, c are column vectors, and d, e, f are row vectors (of
appropriate dimensions). Then

(63) max{dzx +ey+ fz| z>0;2<0;
Ax + By + Cz < a;
Dx+ Ey+ Fz =1b;
Gr+ Hy+ Kz > c}
= min{ua+vb+wec| u>0;w<0;
uA+vD + wG > d;
uB +vE 4+ wH = ¢
uC +vF +wK < f},

assuming that both sets are nonempty.

2.26. Give an example of a matrix A and vectors b and ¢ for which both {z | Az < b} and {y |y > 0;yT A =
cT'} are empty.
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2.27.

2.28.

Let & be a feasible solution of max{c’z | Az < b} and let § be a feasible solution of min{y”b | y >
0;yTA= cT}. Prove that £ and § are optimum solutions of the maximum and minimum, respectively,
if and only if for each i = 1,...,m one has: §; =0 or a;T = b;.

(Here A has m rows and a; denotes the ith row of A.)

Let A be an m x n matrix and let b € R™. Let {z | Az < b} be nonempty and let C' be the convex
cone {x | Az < 0}. Prove that the set of all vectors ¢ for which max{cTz | Az < b} is finite, is equal
to C™.
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3. Matchings and covers in bipartite graphs

3.1. Matchings, covers, and Gallai’s theorem

Let G = (V, E) be a graph. A coclique is a subset C' of V such that e € C for each edge e of G.
A wvertex cover is a subset W of V such that e N W # ) for each edge e of G. It is not difficult to
show that for each U C V:

(1) U is a coclique <= V' \ U is a vertex cover.

A matching is a subset M of E such that ene’ = 0 for all e,e’ € M with e # ¢/. A matching is
called perfect if it covers all vertices (that is, has size |V|). An edge cover is a subset F' of E such
that for each vertex v there exists e € F satisfying v € e. Note that an edge cover can exist only if
G has no isolated vertices.

Define:

(2) a(G) = max{|C]|C is a coclique},
p(G) = min{|F|| F is an edge cover},
7(G) = min{|W|| W is a vertex cover},
v(G) = max{|M|| M is a matching}.

These numbers are called the coclique number, the edge cover number, the vertex cover number, and
the matching number of G, respectively.
It is not difficult to show that:

(3) a(G) < p(G) and v(G) < 7(G).

The triangle K3 shows that strict inequalities are possible. In fact, equality in one of the relations
(3) implies equality in the other, as Gallai [1958,1959] proved:

Theorem 3.1 (Gallai’s theorem). For any graph G = (V, E) without isolated vertices one has
(4) a(G) +7(G) = V] =v(G) + p(G).

Proof. The first equality follows directly from (1).

To see the second equality, first let M be a matching of size v(G). For each of the |V| — 2|M]|
vertices v missed by M, add to M an edge covering v. We obtain an edge cover of size |M|+ (|]V|—
2M]) = [V| - |M]. Hence p(G) < |V] - »(G).

Second, let F' be an edge cover of size p(G). For each v € V delete from F', dp(v)—1 edges incident
with v. We obtain a matching of size at least [F'| =) . (dr(v) —1) = [F| - (2[F|—|V]) = [V|—|F]|.
Hence v(G) > V| — p(G).

This proof also shows that if we have a matching of maximum cardinality in any graph G, then
we can derive from it a minimum cardinality edge cover, and conversely.

Exercises
3.1. Let G = (V, E) be a graph without isolated vertices. Define:
(5) a2(G) := the maximum number of vertices such that no edge contains
more than two of these vertices;
p2(G) == the minimum number of edges such that each vertex is con-
tained in at least two of these edges;
72(G) :=  the minimum number of vertices such that each edge contains
at least two of these vertices
v2(G@) :==  the maximum number of edges such that no vertex is contained

in more than two of these edges;
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possibly taking vertices (edges, respectively) more than once.

(i) Show that a2(G) < p2(G) and that v2(G) < 72 (G).
(ii) Show that az(G) + 7=2(G) = 2|V].
(iii) Show that v2(GQ) + p2(G) = 2|V|.

3.2. Kénig’s theorems

A classical min-max relation due to Kénig [1931] (extending a result of Frobenius [1917]) char-
acterizes the maximum size of a matching in a bipartite graph:

Theorem 3.2 (Kénig’s matching theorem). For any bipartite graph G = (V, E) one has
(6) v(G) =7(G).

That is, the maximum cardinality of a matching in a bipartite graph is equal to the minimum cardi-
nality of a vertex cover.

Proof. Let G = (V, E) be a bipartite graph, with colour classes U and W, say. By (3) it suffices to
show that v(G) > 7(G), which we do by induction on |V|. We distinguish two cases.

Case 1: There exists a vertex cover C with |C| = 7(G) intersecting both U and W.

Let U :=UNC,U":=U\C, W :=W\C and W" := WNC. Let G’ and G” be the subgraphs
of G induced by U’ UW’ and U"” U W" respectively.

We show that 7(G’) > |U’|. Let K be a vertex cover of G’ of size 7(G'). Then K UW" is a
vertex cover of G, since K intersects all edges of G that are contained in U’ UW' and W intersects
all edges of G that are not contained in U’ U W’ (since each edge intersects C' = U’ U W"). So
I[IKUW"| > 7(G) = |U'| +|W"]| and hence |K| > |U’|.

So 7(G") > |U’|. Tt follows by our induction hypothesis that G’ contains a matching of size |U’|.
Similarly, G” contains a matching of size |IW"”|. Combining the two matchings we obtain a matching
of G of size |U’'| + [W"| = 7(G).

Case 2: There exists no such vertex cover C.

Let e = uw be any edge of G. Let G’ be the subgraph of G induced by V \ {u,w}. We show
that 7(G") > 7(G) — 1. Suppose to the contrary that G’ contains a vertex cover K of size 7(G) — 2.
Then C' := K U {u,w} would be a vertex cover of G of size 7(G) intersecting both U and W, a
contradiction.

So 7(G') > 7(G) — 1, implying by our induction hypothesis that G’ contains a matching M of
size T7(G) — 1. Hence M U {e} is a matching of G of size 7(G). |

Combination of Theorems 3.1 and 3.2 yields the following result of Kénig [1932].

Corollary 3.2a (Kénig’s edge cover theorem). For any bipartite graph G = (V, E), without isolated
vertices, one has

(7) a(G) = p(G).

That is, the mazimum cardinality of a coclique in a bipartite graph is equal to the minimum cardi-
nality of an edge cover.

Proof. Directly from Theorems 3.1 and 3.2, as o(G) = |V| — 7(G) = |V| — v(G) = p(G). |

Exercises
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3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

3.11.

Chapter 3. Matchings and covers in bipartite graphs

(i) Prove that a k-regular bipartite graph has a perfect matching (if £ > 1).
(ii) Derive that a k-regular bipartite graph has k disjoint perfect matchings.
(iii) Give for each k > 1 an example of a k-regular graph not having a perfect matching.

Prove that in a matrix, the maximum number of nonzero entries with no two in the same line (=row
or column), is equal to the minimum number of lines that include all nonzero entries.

Let A= (Ai,...,A,) be a family of subsets of some finite set X. A subset Y of X is called a transversal
or a system of distinct representatives (SDR) of A if there exists a bijection 7 : {1,...,n} — Y such
that 7(i) € A; for eachi=1,...,n.

Decide if the following collections have an SDR:

(1) {37 47 5}7 {27 5’ 6}’ {17 27 5}’ {1? 27 3}7 {17 37 6}’

(i) {1,2,3,4,5,6},{1,3,4},{1,4,7},{2,3,5,6},{3,4,7},{1,3,4,7},{1,3,7}.
Let A = (A1,...,A,) be a family of subsets of some finite set X. Prove that A has an SDR if and
only if
(8) [ 4| = 1]

iel
for each subset I of {1,...,n}.
[Hall’s ‘marriage’ theorem (Hall [1935]).]
Let A = (A1,...,As) be subsets of the finite set X. A subset Y of X is called a partial transversal
or a partial system of distinct representatives (partial SDR) if it is a transversal of some subcollection
(Ah?' . 7A1k) of (Al,. . ,An)
Show that the maximum cardinality of a partial SDR of A is equal to the minimum value of
(9) X\ Z|+ [{i | AinZ # 0},
where Z ranges over all subsets of X.
Let A = (A1,...,Ay) be a family of finite sets and let k& be a natural number. Show that A has k
pairwise disjoint SDR’s of A, if and only if
(10) | 4| = Kl
iel

for each subset I of {1,...,n}.
Let A = (A1,...,A,) be a family of subsets of a finite set X and let k be a natural number. Show
that X can be partitioned into k partial SDR’s, if and only if
(11) k-l{i] AinY # 0} > |Y]
for each subset Y of X.
(Hint: Replace each A; by k copies of A; and use Exercise 3.6 above.)
Let (A1,...,Ay) and (Bu,..., By,) be two partitions of the finite set X.

(i) Show that (Ai,...,A,) and (By,...,B,) have a common SDR if and only if for each subset I
of {1,...,n}, the set | J,.; A: intersects at least |I| sets among B, ..., Bn.

(ii) Suppose that |[Ai| = .-+ = |An| = |B1| = -+ = |Bn|. Show that the two partitions have a
common SDR.

Let (A1,...,An) and (Bq,..., Bn) be two partitions of the finite set X. Show that the minimum car-
dinality of a subset of X intersecting each set among A;1,..., A, B1,..., B, is equal to the maximum
number of pairwise disjoint sets in A4,..., A,, B1,..., By.

A matrix is called doubly stochastic if it is nonnegative and each row sum and each column sum is equal
to 1. A matrix is called a permutation matriz if each entry is 0 or 1 and each row and each column
contains exactly one 1. Show that each doubly stochastic matrix is a convex linear combination of
permutation matrices.

[Birkhoff-von Neumann theorem (Birkhoff [1946], von Neumann [1953]).]
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3.12.

3.13.

3.14.

3.15.

3.16.

Let G = (V, E) be a bipartite graph with colour classes U and W. Let b : V — Z4 be so that
ZUeU b(v) = ZUEW b(v) =:t.
A b-matching is a function ¢ : E — Z so that for each vertex v of G:
(12) Y. cle) =b(v)
ecFE,vEe
Show that there exists a b-matching if and only if
(13) > bw) >t
veEX
for each vertex cover X.
Let G = (V, E) be a bipartite graph with colour classes U and W. Let b : V — Z4 be so that
Z’UEU b(’l}) = Z’UGW b(’l}) =t.
Show that there exists a subset F' of E so that each vertex v of G is incident with exactly b(v) of the
edges in F, if and only if

(14) t+[EX)] 2 ) b(v)
veX
for each subset X of V, where E(X) denotes the set of edges contained in X.

Let G = (V, E) be a bipartite graph and let b : V' — Z. Show that the maximum number of edges in
a subset F' of E so that each vertex v of G is incident with at most b(v) of the edges in F, is equal to

(15) min 3 b(o) + BV \ X).

Let G be a bipartite graph with colour classes U and W satisfying |U| = |W| = t. Prove that G has k
disjoint perfect matchings if and only if for all U’ C U and W’ C W there are at least k(|U’|+|W'| —t)
edges connecting U’ and W'.

Show that each 2k-regular graph contains a set F of edges so that each vertex is incident with exactly
two edges in F'.

3.3. Cardinality bipartite matching algorithm

We now focus on the problem of finding a maximum-sized matching in a bipartite graph algo-
rithmically. Basis is finding an ‘augmenting path’.

Let M be a matching in a graph G = (V,E). A path P = (vg,v1,...,v:) in G is called M-
augmenting if

(16)

(i) tis odd and vg, v, ..., v are all distinct;
(i) vive,v3vs,..., V4201 € M;

(iii) vo,ve € M.

Note that this implies that vovy, vevs,...,v:—1v; do not belong to M.

O L ® Ly @ & L & L & L O

— edgein M e vertex covered by M
——— edgenot in M o vertex not covered by M
Figure 3.1

Clearly, if P = (vg,v1,...,v;) is an M-augmenting path, then

(17)

M' .= MAEP
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is a matching satisfying |M’'| = M|+ 1.8
In fact, it is not difficult to show that:

Theorem 3.3. Let G = (V,E) be a graph and let M be a matching in G. Then either M is a
matching of mazimum cardinality, or there exists an M -augmenting path.

Proof. If M is a maximum-cardinality matching, there cannot exist an M-augmenting path P, since
otherwise MAEP would be a larger matching.

If M’ is a matching larger than M, consider the components of the graph G’ := (V, M U M’).
As G’ has maximum valency two, each component of G’ is either a path (possibly of length 0) or a
circuit. Since |M'| > |M]|, at least one of these components should contain more edges of M’ than
of M. Such a component forms an M-augmenting path. |

So in any graph, if we have an algorithm finding an M-augmenting path for any matching M,
then we can find a maximum cardinality matching: we iteratively find matchings My, My, ..., with
|M;| = 4, until we have a matching M}, such that there does not exist any My-augmenting path.

We now describe how to find such an augmenting path in a bipartite graph.

Matching augmenting algorithm for bipartite graphs

input: a bipartite graph G = (V, E) and a matching M,

output: a matching M’ satisfying |M’| > |M]| (if there is one).

description of the algorithm: Let G have colour classes U and W. Orient each edge e = {u,w}
of G (with u € U,w € W) as follows:

(18) if e € M then orient e from w to u,
if e ¢ M then orient e from u to w.

Let D be the directed graph thus arising. Consider the sets
(19) U :=U\UM and W :=W\JM.

Now an M-augmenting path (if it exists) can be found by finding a directed path in D from any
vertex in U’ to any vertex in W’. Hence in this way we can find a matching larger than M. |

The correctness of this algorithm is immediate. Since a directed path can be found in time
O(|E]), we can find an augmenting path in time O(|E|). Hence a maximum cardinality matching in
a bipartite graph can be found in time O(|]V||E|) (as we do at most |V iterations). Hopcroft and
Karp [1973] gave an O(|V|'/2|E|) algorithm — see Section 4.2.

Application 3.1: Assignment problem. Suppose we have k machines at our disposal: m1,...,mr. On
a certain day we have to carry out n jobs: ji,...,jn. Each machines is capable of performing some jobs,
but can do only one job a day. E.g., we could have five machines m1, ..., ms and five jobs j1,...,js and the

capabilities of the machines are indicated by crosses in the following table:

L a2 [ s [ ja]Js |
mp || X | X X
me || X | X | X | X
ms X X
ma X
ms X

8 EP denotes the set of edges in P. A denotes symmetric difference.
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We want to assign the machines to the jobs in such a way that every machine performs at most one job
and that a largest number of jobs is carried out.

In order to solve this problem we represent the machines and jobs by vertices m1,...,mg and ji,...,Jn
of a bipartite graph G = (V, E), and we make an edge from m; to j; if job j can be performed by machine i.
Thus the example gives Figure 3.2. Then a maximum matching in G corresponds to a maximum assignment
of jobs.

m N

Figure 3.2

Exercises

3.17. Find a maximum matching and a minimum vertex cover in the bipartite graph in Figure 3.3.

Figure 3.3

3.18. Solve the assignment problem given in Application 3.1.
3.19. Derive Kénig’s matching theorem from the cardinality matching algorithm for bipartite graphs.
3.20. Show that a minimum-size vertex cover in a bipartite graph can be found in polynomial time.

3.21. Show that, given a family of sets, a system of distinct representatives can be found in polynomial
time (if it exists).

3.4. Weighted bipartite matching

We now consider the problem of finding a matching of maximum weight for which we describe the
so-called Hungarian method developed by Kuhn [1955], using work of Egervary [1931] (see Corollary
3.5b below).

Let G = (V, F) be a graph and let w : E — R be a ‘weight’ function. For any subset M of E
define the weight w(M) of M by

(20) w(M) =Y w(e).

ec M
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The maximum-weight matching problem consists of finding a matching of maximum weight.
Again, augmenting paths are of help at this problem. Call a matching M extreme if it has
maximum weight among all matchings of cardinality |M|.
Let M be an extreme matching. Define a ‘length’ function [ : E — R as follows:

(21) le) :==w(e) if e M,
l(e) :=—w(e) if e M.

Then the following holds:

(22) Let P be an M-augmenting path of minimum length. Then M’ := MAEP is
extreme again

(Exercise 3.22).

This implies that if we are able to find a minimum-length M-augmenting path in polynomial time,
we can find a maximum-weight matching in polynomial time: find iteratively extreme matchings
My, My, ... such that |My| = k for each k. Then the matching among My, M, ... of maximum
weight is a maximum-weight matching.

If G is bipartite, we can find a minimum-length M-augmenting path as follows. Let G have colour
classes U and W. Orient the edges of G as in (18), making the directed graph D, and let U’ and W’
as in (19). Then a minimum-length M-augmenting path can be found by finding a minimum-length
path in D from any vertex in U’ to any vertex in W’. This can be done in polynomial time since:

Theorem 3.4. Let M be an extreme matching. Then D has no directed circuit of negative length.

Proof. Suppose C'is a directed circuit in D with length [(C) < 0. We may assume C = (ug, w1, U1, . .., W, Ug)
with ug = uy and uq,...,u; € U and wy,...,wy € W. Then the edges wiuq,...,wiu; belong to M
and the edges ugwi, uiws,. .., u;_1w; do not belong to M. Then M” := MAEC is a matching of
cardinality k of weight w(M") = w(M) — I(C) > w(M), contradicting the fact that M is extreme.

|

This gives a polynomial-time algorithm to find a maximum-weight matching in a bipartite graph.
The description above yields an O(|V|?|E|) algorithm, since we do O(|V|) iterations, each consisting
of finding a shortest path (in a graph without negative-length directed circuits), which can be done
in O(|V||E|) time (with the Bellman-Ford algorithm — see Corollary 1.10a).

In fact, a sharpening of this method (by transmitting a ‘potential’ p : V' — @ throughout the
matching augmenting iterations, making the length function ! nonnegative, so that Dijkstra’s method
can be used) gives an O(|V|(|E| + |V|log|V|)) algorithm.

Application 3.2: Optimal assignment. Suppose that we have n jobs and m machines and that each
job can be done on each machine. Moreover, let a cost function (or cost matrix) k; ; be given, specifying
the cost of performing job j by machine . We want to perform the jobs with a minimum of total costs.

This can be solved with the maximum-weight bipartite matching algorithm. To this end, we make a
complete bipartite graph G with colour classes of cardinality m and n. Let K be the maximum of k; ; over
all 4,j. Define the weight of the edge connecting machine ¢ and job j to be equal to K — k; ;. Then a
maximum-weight matching in G corresponds to an optimum assignment of machines to jobs.

So the algorithm for solving the assignment problem counters the remarks made by Thorndike [1950)
in an Address delivered on September 9, 1949 at a meeting of the American Psychological Association at
Denver, Colorado:

There are, as has been indicated, a finite number of permutations in the assignment of men to
jobs. When the classification problem as formulated above was presented to a mathematician,
he pointed to this fact and said that from the point of view of the mathematician there was
no problem. Since the number of permutations was finite, one had only to try them all and
choose the best. He dismissed the problem at that point. This is rather cold comfort to the
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psychologist, however, when one considers that only ten men and ten jobs mean over three and
a half million permutations. Trying out all the permutations may be a mathematical solution
to the problem, it is not a practical solution.

Application 3.3: Transporting earth. Monge [1784] was one of the first to consider the assignment
problem, in the role of the problem of transporting earth from one area to another, which he considered as
the discontinuous, combinatorial problem of transporting molecules:

Lorsqu’on doit transporter des terres d’un lieu dans un autre, on a coutime de donner le nom de
Déblai au volume des terres que ’on doit transporter, & le nom de Remblai & 'espace qu’elles
doivent occuper apres le transport.

Le prix du transport d’une molécule étant, toutes choses d’ailleurs égales, proportionnel a son
poids & a I’espace qu’on lui fait parcourir, & par conséquent le prix du transport total devant étre
proportionnel a la somme des produits des molécules multipliées chacune par I’espace parcouru,
il s’ensuit que le déblai & le remblai étant donné de figure & de position, il n’est pas indifférent
que telle molécule du déblai soit transportée dans tel ou tel autre endroit du remblai, mais qu’il
y a une certaine distribution & faire des molécules du premier dans le second, dapres laquelle la
somme de ces produits sera la moindre possible, & le prix du transport total sera minimum.®

Monge describes an interesting geometric method to solve the assignment problem in this case: let | be a
line touching the two areas from one side; then transport the earth molecule touched in one area to the
position touched in the other area. Then repeat, until all molecules are transported.

Exercises
3.22. Prove (22).

3.23. Five mechanics, stationed in the cities A, B, C, D, E, have to perform jobs in the cities F,G, H, 1, J.
The jobs must be assigned in such a way to the mechanics that everyone gets one job and that the
total distance traveled by them is as small as possible. The distances are given in the tables below.
Solve these assignment problems with the weighted matching algorithm.

F G H I J

A 6 17 10 1 3

(i) B 9 23 21 4 5
C 2 8 5 0 1

D19 31 19 20 9

E |21 25 22 39

F G H I J

A1l 5 21 7 18

(ii) B |17 4 20 9 25
C 4 1 3 2 4

D 6 2 19 3 9

E|19 7 23 18 26

3.24. Derive from the weighted matching algorithm for bipartite graphs an algorithm for finding a minimum-
weight perfect matching in a bipartite graph G = (V, E). (A matching M is perfect if | JM =V.)

9When one must transport earth from one place to another, one usually gives the name of Déblai to the volume of
earth that one must transport, & the name of Remblai to the space that they should occupy after the transport.

The price of the transport of one molecule being, if all the rest is equal, proportional to its weight & to the distance
that one makes it covering, & hence the price of the total transport having to be proportional to the sum of the
products of the molecules each multiplied by the distance covered, it follows that, the déblai & the remblai being
given by figure and position, it makes difference if a certain molecule of the déblai is transported to one or to another
place of the remblai, but that there is a certain distribution to make of the molcules from the first to the second, after
which the sum of these products will be as little as possible, & the price of the total transport will be a minimum.
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3.25. Let Ai,..., A, be subsets of the finite set X and let w : X — R4 be a ‘weight’ function. Derive from
the weighted matching algorithm a polynomial-time algorithm to find a minimum-weight SDR.

3.5. The matching polytope

The weighted matching problem is related to the ‘matching polytope’. Let G = (V, E) be a
graph. For each matching M let the incidence vector x™ : E — R of M be defined by:

(23) xM(e):=1ifee M,
xM(e):=0ifeg M,

for e € E.

It is important to realize that the set of functions f : F — R can be considered as a vector
space and each such function as a vector. Thus we can denote f(e) by f.. The function x™ can be
considered alternatively as a vector in the vector space R¥. Similarly for functions g : V — R.

The matching polytope of G is defined as:

(24) Pratching(G) :=conv.hull{x™ | M is a matching in G}.

S0 Pratching (G) is a polytope in RE.

The matching polytope is a polyhedron, and hence can be described by linear inequalities. For
bipartite graphs, these inequalities are quite simple. To this end it is convenient first to consider
perfect matchings. A matching M is perfect if | JM = V. Now the perfect matching polytope of G is
defined by:

(25) Pperfect matching (G) :=conv.hull{x* | M is a perfect matching in G}.

Again, Pperfect matching (G) is a polytope in R, Now the following can be derived quite directly from
Exercise 3.11:

Theorem 3.5. Let G = (V, E) be a bipartite graph. Then the perfect matching polytope Pperfect matching(G)
is equal to the set of vectors x € R¥ satisfying:

(26) x. >0 foreachecE;
Yese®e =1 foreachveV.

Proof. Left to the reader (Exercise 3.26). |

Clearly, each vector & in Pperfect matching (G) should satisfy (26), since each vector M satisfies
(26). The essence of the theorem is that the inequalities (26) are enough to define the polytope
Pperfect matching(G)-

(An alternative way of proving Theorem 3.5 is using the ‘total unimodularity’ of the incidence
matrix of a bipartite graph, together with the Hoffman-Kruskal theorem on integer solutions to
linear programming problems with integer data and totally unimodular constraint matrix — see
Section 8.3.)

From Theorem 3.5 one can derive the linear inequalities describing the matching polytope of a
bipartite graph:

Corollary 3.5a. Let G = (V, E) be a bipartite graph. Then the matching polytope Ppatching(G) is
equal to the set of vectors x € R satisfying:

(27) x. >0 foreachec€E;
DoeseTe <1 foreachvelV.
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Proof. Left to the reader (Exercise 3.27). |

Clearly, one cannot delete the bipartiteness condition: if G is the triangle K3 then the function
x defined by z. := 1/2 for each edge e satisfies (27), but does not belong to the matching polytope.

Corollary 3.5a asserts that the weighted matching problem can be formulated as a linear pro-
gramming problem:

(28) maximize wlz,
subject to z, >0 foreachee€kFE;
Zeav z. <1 foreachvelV.

With linear programming duality one can derive from this a ‘weighted’ extension of Koénig’s
matching theorem, due to Egervéry [1931]:

Corollary 3.5b. Let G = (V, E) be a bipartite graph and let w : E — Ry be a ‘weight’ function.
Then the maximum weight of a matching is equal to the minimum value of ) .\ y(v), where y
ranges over all functions y : V — Ry satisfying y(u) + y(v) > w(e) for each edge e = uv of G.

Proof. The maximum weight of a matching in G is equal to
(29) max{w?xM | M is a matching in G}.

Since Pratching(G) is the convex hull of the x*, (29) is equal to
(30) max{w?z | £ € Pnatching(G)}-

By Corollary 3.5a this is equal to

(31) max{wTz | ze >0 foreachee€ E;
ooy Te <1 foreachveV}.

edv e
By linear programming duality this is equal to

(32) min{} " v Yo | yp >0  foreachv eV,
Yu + Yy > w. for each edge e = uv}.

This is exactly the minimum described in the Corollary. |

An extension of this corollary gives a further extension of Kénig’s matching theorem (Theorem
3.2):

Theorem 3.6. In Corollary 3.5b, if w is integer-valued, then we can take also y integer-valued.

Proof. Let y € RK attain the minimum, and assume that we have chosen y so that the number of
vertices v with y, € Z is as small as possible. Let U and W be the two colour classes of G and let
X be the set of vertices v of G with ¥, € Z. If X = () we are done, so assume that X # (). Without
loss of generality, |[X NU| > |X NW|. Let u be a vertex in X NU with y,, — |y.] as small as possible.
Let € := yy, — |Yu]- Reset

(33) Yo =y —e ifveXnU,
T =Yy +e ifveXNW,
Yo = Yo ifvegX.

One easily checks that again g, + §,» > w(e) for each edge e = vv’ of G (using the fact that w is
integer-valued). Moreover, > oy %o = D ey Yo —| X NU|+e|XNW[ <37 1 4. So § also attains
the minimum. However, § has fewer noninteger-valued components than y (as ¢, € Z), contradicting
our assumption.
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Exercises
3.26. Derive Theorem 3.5 from Exercise 3.11.
3.27. Derive Corollary 3.5a from Theorem 3.5.
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4. Menger’s theorem, flows, and circulations

4.1. Menger’s theorem

Let D = (V, A) be a directed graph and let s and t be vertices of D. A path is called an s — ¢
path if it begins in s and ends in t.

In this section we study the maximum number k of pairwise disjoint s — ¢ paths in D. Here
‘disjoint’ can mean: internally vertex-disjoint (= having no vertex in common except for s and t) or
arc-disjoint (= having no arc in common).

A basic result is Menger’s theorem (Menger [1927], Kénig [1931]) on the maximum number of
pairwise internally vertex-disjoint s — ¢ paths. We first show however the arc-disjoint version (which
can be shown to be equivalent to the vertex-disjoint version).

To formulate this theorem, we say that a set A’ of arcs is an s — ¢ cut if A’ = §°"*(U) for some
subset U of V with s € U and t ¢ U.1°

Theorem 4.1 (Menger’s theorem (directed arc-disjoint form)). Let D = (V, A) be a directed graph
and let s,t € V. Then the maximum number of pairwise arc-disjoint s — t paths is equal to the
minimum cardinality of any s —t cut.

Proof. Clearly, the maximum is not more than the minimum. To see the reverse inequality, let
Py, ..., Py be a maximum number of pairwise arc-disjoint s — ¢ paths in D. We may assume that
they are simple. Let A’ be the set of arcs occurring in these paths. So, in D’ = (V, A’), the indegree
of any vertex v # s,t is equal to its outdegree, while s has indegree 0 and outdegree k, and t has
indegree k£ and outdegree 0. Let D be the directed graph arising from D by reversing the orientation
of each of the arcs in A’.

Then D has no s — t path. For suppose Q is an s — ¢ path in D. Let A; be the set of arcs in Q
that belong to A\ A’, and let Ay := AQ\ A;. Let A” := (A’'UA;)\ Ay, Then in D" = (V, A”), the
indegree of any vertex v # s, t is equal to its outdegree, while s has indegree 0 and outdegree k + 1,
and ¢ has indegree k + 1 and outdegree 0. This however implies that A” contains k + 1 pairwise
arc-disjoint s — ¢ paths, contradicting the maximality of k.

So D has no s — t path. Let U be the set of vertices that are reachable in D from s. So
s €U and t ¢ U. Since no arc of D leaves U, we have that no arc in A’ enters U, and hence
|699%(U)| = k. Moreover, no arc in A\ A’ leaves U, and hence §9"(U) = d94*(U). Therefore we have
0524 ()] = |03 (U)]| = k. I

The proof also directly yields a polynomial-time algorithm for finding a maximum number of
arc-disjoint s — ¢t paths. We treat this in further detail in Section 4.2.

The following are direct corollaries of Theorem 4.1. Let D = (V, A) be a directed graph and let
s,t € V. A subset W of V is called s — t disconnecting if each s — t path has at least one vertex in
common with W.

Corollary 4.1a (Menger’s theorem (directed vertex-disjoint form)). Let D = (V, A) be a directed
graph and let s and t be two nonadjacent vertices of D. Then the maximum number of internally
verter-disjoint s — t paths is equal to the minimum cardinality of any s — t disconnecting subset of

VA {s,t}.

Proof. Make an auxiliary directed graph D’ as follows. Replace each vertex v # s,t by two vertices
v" and v”, and redirect each arc with head v to v’ and redirect each arc with tail v from v”; moreover
add an arc from v’ to v”.

1050ut (17) and 6™ (U) denote the sets of arcs leaving U and entering U, respectively.
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Then the maximum number of internally vertex-disjoint s—¢ paths in D is equal to the maximum
number of arc-disjoint s —¢ paths in D’. Similarly, the minimum size of an s —¢ disconnecting subset
of V'\ {s,t} in D is not more than the minimum size of an s — ¢ cut in D’. Hence Theorem 4.1
implies the Corollary. |

Similarly as before this gives a polynomial-time algorithm to find a maximum number of pairwise
internally vertex-disjoint s — ¢ paths.

Note that the arc-disjoint version of Menger’s theorem can be derived in turn from the vertex-
disjoint version. Similar theorems hold for undirected graphs. They can be derived from the directed
case by replacing each undirected edge uw by two opposite arcs (u,w) and (w,u).

Application 4.1: Routing airplanes. An airline company carries out a certain number of flights
according to some fixed timetable, in a weekly cycle. The timetable is basically given by a flight number ¢
(for instance 562), a departure city de; (for instance Vancouver), a departure time dt; (for instance Monday
23.15h), an arrival city ac; (for instance Tokyo), and an arrival time at; (for instance Tuesday 7.20h). All
times include boarding and disembarking and preparing the plane for a next flight. Thus a plane with arrival
time Tuesday 7.20h at city ¢, can be used for any flight from ¢ with departure time from Tuesday 7.20h on.

The flights are carried out by n airplanes of one type, denoted by ai,...,a,. At each weekday there
should be an airplane for maintenance at the home basis, from 6.00h till 18.00h. Legal rules prescribe
which of the airplanes ai, ..., a, should be at the home basis during one day the coming week, but it is not
prescribed which airplane should be at the home basis at which day (see Application 9.4 for an extension
where this is prescribed).

The timetable is made in such a way that at each city the number of incoming flights is equal to the
number of outgoing flights. Here ‘maintenance’ is also considered as a flight. However, there is flexibility
in assigning the airplanes to the flights: if at a certain moment at a certain city two or more airplanes are
available for a flight, in principle any of them can be used for that flight. Which of the available airplanes
will be used, is decided by the main office of the company. This decision is made at 18.00h on the Saturday
before. At that time the company makes the exact routing of the planes for the coming week.

A . \[\ maintenance (\\‘G maintenance maintenance maintenance _\ maintenance S
TS L R _
A NI L NN TIPS
D \ N / )g =N /\ . / N\
; OSSN T VAR
T T TSI
G Nes ” \\. - — LI\ 4\ e
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H ¥ /g = SRV
| N?‘ = N # =
RN \ < >< >< 2 2&/ .
N I ot/ / . NN
NS A NS &
< » »

M %/ \/ g\‘ N \/ \. = = / 7
N N T — A NS
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Figure 4.1

At that moment, certain planes are performing certain flights, while other planes are grounded at certain
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cities. Routing the airplanes is easy as the timetable is set up in such a way that at each moment and each
city enough airplanes are available.

Indeed, one can make a directed graph D (Figure 4.1) with vertex set all pairs (dc;,dt;) and (ac;, at;)
for all flight numbers i. For each flight ¢ that is not in the air at Saturday 18.00h, one makes an arc from
(dei, dt;) to (aci, at;). We also do this for the “flights” representing maintenance.

Moreover, for each city ¢ and each two consecutive times t,t’ at which any flight departs or arrives at
¢, one makes m parallel arcs from (c,t) to (c,t’), where m is the number of airplanes that will be in city ¢
during the period t-¢'.

In this way we obtain a directed graph such that at each vertex the indegree is equal to the outdegree,
except at any (c, t.) where t. is the earliest time after Saturday 18.00h at which any flight arrives at or leaves
city c. Hence we can find in D arc-disjoint paths P41, ..., P, (where n is the number of airplanes) in D such
that each arc is in exactly one of the P;. This would give a routing for the airplanes.

However, the restriction that some prescribed airplanes must undergo maintenance the coming week gives
some complications. It means for instance that if a certain airplane a; (say) is now on the ground at city ¢
and should be home for maintenance the coming week, then the path P; should start at (c,t.) and should
traverse one of the arcs representing maintenance. If a; is now in the air, then path P; should start at (c,t)
where ¢ is the first-coming arrival time of a; and should traverse a maintenance arc. So the company first

finds arc-disjoint paths P;,,..., P, where a;,,...,a;, are the airplanes that should undergo maintenance
the coming week. These paths can be extended to paths Pi,..., P, such that each arc is traversed exactly
once.

So the problem can be solved by finding arc-disjoint paths starting in a given set of vertices and ending
in a given set of vertices (by slightly extending the graph D).

Exercises
4.1. Let D = (V,A) be a directed graph and let 7, s1,...,sr be vertices of D. Prove that there exist
pairwise arc-disjoint paths Pi,..., Py such that P; is an r — s; path (¢ = 1,...,k), if and only if for
each U C V with » € U one has
(1) 57 (U)] > [{i | 55 & U}

4.2. Let A= (A1,...,Ay,) and B = (Bu,...,B,) be families of subsets of a finite set. Show that .4 and B
have a common SDR, if and only if for all I,J C {1,...,n} one has

(2) [JAinJ By = 1]+ 1J] = n.

i€l JEJT

4.3. Let G = (V, E) be a bipartite graph, with colour classes V7 and Va2, such that |V1| = |V2|. Show that
G has k pairwise disjoint perfect matchings, if and only if for each subset U of Vi:

3) S min{k, | E() NUJ} > KU,
vEV
where E(v) denotes the set of vertices adjacent to v.
4.4. Let D = (V, A) be a simple directed graph and let s,¢ € V. Let a be the minimum length of an s — ¢
path. Show that the maximum number of pairwise arc-disjont s — ¢ paths is at most (|V|/a)?.

(Hint: Let Uy, denote the set of vertices at distance at most k from s. Show that [§°"(Uy)| < (|V]/a)?
for some k < a.)

4.2. Path packing algorithmically

Let D = (V, A) be a directed graph, and let s,¢ € V. The proof of Theorem 4.1 gives directly a
polynomial-time algorithm to find a maximum number of pairwise arc-disjoint s — ¢t paths. To this
end, let, for any directed graph D and any path P in D, the graph D/P arise from D by reversing
the orientation of each arc occurring in P.

We determine Dy, D, ... as follows. Set Dy := D. If D; has been found and contains an s — ¢
path P, set Dy11 := Dy /P. If Dy, does not contain any s — ¢ path we stop.
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Now, as in the proof of Theorem 4.1, the set of arcs of D that are reversed in the final D forms
a maximum number of arc-disjoint s — ¢ paths in D. For the discussion below it is important to
observe that it follows similarly, that for any i, the set of arcs of D; that are reversed in the final
Dy, (compared with D;) forms a maximum number of arc-disjoint s — ¢ paths in D;.

Since an s — t path in Dy can be found in time O(]A|), and since the maximum number of
arc-disjoint s — ¢ paths is at most |A|, the algorithm described has running time O(]A|?).

The process might be fastened by selecting, at each iteration, not just one path P, but several
arc-disjoint paths P, ..., P, in Dy at one blow, and setting

(4) Dyy1:=Dy/P1/--- /P

This might give a reduction of the number of iterations — but of course this should be weighed
against the increase in complexity of each iteration.

Such a fastening is obtained by a method of Dinits [1970] as follows. For any directed graph
D = (V,A) and s,t € V, let u(D) denote the minimum length of an s —t path in D. (If no such path
exists, set p(D) = 0o.) If we choose the paths Py, ..., P, in such a way that pu(Dgy1) > pu(Dy), then
the number of iterations clearly is not larger than |V| (as u(Dy) < |V] for each k). In fact, as Even
and Tarjan [1975] noted, in that case there are the following better bounds on the total number N
of iterations:

Theorem 4.2. If (Dyy1) > pu(Dy) for each k < N, then N < 2|A|'/2. If moreover D is simple,
then N < 2|V|%/3.

Proof. Let k := [|A|'/2]. So each s — ¢ path in D}, has length at least |A|'/2. Hence Dy contains
at most |A|/|A|'/? = | A|'/? pairwise arc-disjoint s — ¢ paths. Therefore N — k < |A|'/2, and hence
N < 2|A|Y/2,

If D is simple, then let k := ||V|?/3]. So each s —t path in Dy has length at least [V|?/3. From
Exercise 4.4 we know that Dy, contains at most (|V|/|V[*/3)? = |V|?/? pairwise arc-disjoint paths.
Therefore N — k < |V|?/3, and hence N < 2|V|?/5. |

We show that a collection P4, ..., P, with the property that u(D/Py/---/P;) > u(D) indeed can
be found quickly, namely in linear time.

To that end, call a collection of arc-disjoint s — ¢t paths Py, ..., P, blocking if deleting in D all
arcs occurring in the P; gives a directed graph with no s — ¢ path. This is weaker than a maximum
number of arc-disjoint paths, but can be found in linear time. (This gives a fast ‘heuristic’ for finding
a large number of arc-disjoint paths. Such heuristics go back to the ‘flooding technique’ of Boldyreff
[1955], while Dinits [1970] and Karzanov [1974] gave fast implementations.)

Theorem 4.3. Given a directed graph D = (V, A) and s,t € V', a blocking collection of arc-disjoint
s —t paths can be found in time O(]A]).

Proof. With depth-first search we can find in time O(|A’|) a subset A’ of A and an s — ¢ path P
in A’ such that each s —t path in D intersecting A’ also intersects AP;.!!

Next we find (recursively) a blocking collection Ps, ..., Py of arc-disjoint s — ¢ paths in the graph
D' .= (V,A\ A’). Then Py,..., Py is blocking in D. For suppose not. Then D contains an s — ¢
path @ that is arc-disjoint from Py, ..., P,. Then AQ N A’ # 0, since P, ..., Py is blocking in D’.

1To this end, define the operation of scanning a vertex v recursively by:
(5) For each arc a = (v, w) € §°"(v): reset A’ := A’ U {a}; if w = t stop; otherwise scan w.

Now starting with A’ = (), scan s, until we get the stop signal. This gives the required A’ and s — t path P in A’, in
time O(|A’|).
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So AQ intersects APy, a contradiction. |

This implies:

Corollary 4.3a. Given a directed graph D = (V, A) and s,t € V, a collection of arc-disjoint s — t
paths Py, ..., P, such that u(D/Py/---/P;) > pu(D) can be found in time O(|A]).

Proof. Let D be the subgraph of D consisting of all arcs of D that occur in at least one shortest
s —t path. These arcs can be identified in time O(]A]).
By Theorem 4.3 we can find in time O(|A|) a blocking collection Py, ..., P;in D. Then u(D/Py/---/P;) >
u(D). For suppose u(D/Py/---/P;) < u(D). Let for each v € V, d(v) be the minimum length of
an s — v path in D. Let vy, a1, v1,...,0m,Um be an s —t path in D/Py/--- /P, with m < d(¢).

Then for each i = 1,...,m, if a; is an arc of D, then d(v;) < d(v;_1) + 1; if a; ' is an arc of D,
then d(v;_1) = d(v;) + 1, since a; * belongs to one of the P;.

Now at least one of the a; is not an arc of D (as Py, ..., P, is blocking in D). Hence m > d(vy,) =
d(t), a contradiction. |

This gives the following result of Even and Tarjan [1975]:

Theorem 4.4. Given a directed graph D = (V, A) and s,t € V, a mazimum number of pairwise
arc-disjoint s — t paths can be found in time O(|A|*/?). If D is simple, the paths can be found also
in time O(|V|?/3|A]).

Proof. Directly from Corollary 4.3a and Theorem 4.2. |

The vertex-disjoint case. If we are interested in vertez-disjoint paths, the results can be sharp-
ened. Note that if D = (V,A) is a directed graph and s,t € V, then the problem of finding
a maximum number of pairwise internally vertex-disjoint s — ¢ paths can be reduced to the arc-
disjoint case by replacing each vertex v # s,¢ by two vertices v’,v”, while each arc with head v is
redirected to v’ and each arc with tail v is redirected from v”; moreover, an arc (v’,v”) is added.

By Theorem 4.4, this construction directly yields algorithms with running time O(|A|*/2) and
O(|V|?/3|A]). But one can do better. Note that, with this construction, each of the directed graphs
Dy, has the property that each vertex has indegree at most 1 or outdegree at most 1. Under this
condition, the bound in Theorem 4.2 can be improved to 2|V|'/2. Hence we have similarly to
Theorem 4.4 another result of Even and Tarjan [1975]:

Theorem 4.5. Given a directed graph D = (V, A) and s,t € V, a mazimum number of pairwise
internally vertez-disjoint s — t paths can be found in time O(|V|/2|A]).

Proof. Similarly to Theorem 4.4. |

As a corollary one has the result of Hopcroft and Karp [1973]:

Corollary 4.5a. In a bipartite graph G = (V, E), a mazimum matching can be found in time
O(IV[1/2|E)).

Proof. Make a directed graph D = (V, A) as follows. Let U and W be the colour classes of G.
Orient all edges from U to W. Moreover, add a new vertex s, with arcs (s,u) for all u € U, and
a new vertex t, with arcs (w,t) for all w € W. Then the maximum number of pairwise internally
vertex-disjoint s — ¢ paths in D is equal to the maximum size of a matching in G. The result follows
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now from Theorem 4.5. |

Exercises

4.5. Show that in a bipartite graph G = (V, E) with colour classes V7 and V>, a maximum matching can
be found in time O(|Vi|'/?|E]).

4.3. Flows in networks

Other consequences of Menger’s theorem concern ‘flows in networks’. Let D = (V,A) be a
directed graph and let r,s € V. A function f: A — R is called an r — s flow if:'2

(6) (i) fla) > for each a € A;
(ii) Z fla) = Z f(a) for each v € V'\ {r,s}.

ae6in(v) aeé‘out )

Condition (6)(ii) is called the flow conservation law: the amount of flow entering a vertex v # 7, s
should be equal to the amount of flow leaving v.
The value of an r — s flow f is, by definition:

(7) value(f):= > fla)— > f(a)
a€sout (1) a€sin(r)

So the value is the net amount of flow leaving r. It can be shown that it is equal to the net amount
of flow entering s.
Let ¢: A — Ry, called a capacity function. We say that a flow f is under ¢ (or subject to c) if

(8) f(a) < ¢(a) for each a € A.

The mazimum flow problem now is to find an r — s flow under ¢, of maximum value.
To formulate a min-max relation, define the capacity of a cut §°**(U) by:

(9) (8 (U) = Y cla)

a€sout (U)

Then:

Proposition 1. For every flow f and every cut 6°“*(W) one has:

(10) value(f) < ¢(6°"(W)).
Proof.
(11) value( f Z f Z f(a)
aedout(r acedin(r)
= > fla Z flay+ > () fla= Y fla)
a€dout(r) a€din(r) veEW\{r} acsout(v) a€din(v)
=ZZf - Y s@y= Y f@- Y fl
vEW aedout(v a€dn(v) a€dout (W) a€dn (W)
< Y f() > cla) = (8O (W)). |
asout (W) a€sout (W)

1250ut () and 6 (v) denote the sets of arcs leaving v and entering v, respectively.
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It is convenient to note the following:

(12) equality holds in (10) <= Va € §™(W): f(a) =0 and
Va € 6°"Y (W) : f(a) = c(a).

This follows directly from the inequalities x and *x in (11).
Now from Menger’s theorem one can derive that equality can be attained in (10), which is a
theorem of Ford and Fulkerson [1956]:

Corollary 4.5b (max-flow min-cut theorem). For any directed graph D = (V, A), r,s € V, and
c: A — Ry, the mazimum value of an r — s flow under c is equal to the minimum capacity of an
r — s cut. In formula:

— : out

(13) f r’rI—lg)iElow Vahle<f) B 6°“t(UI§1H7}—s cut 0(6 (U))
Proof. If ¢ is integer-valued, the corollary follows from Menger’s theorem by replacing each arc a
by c¢(a) parallel arcs. If ¢ is rational-valued, there exists a natural number N such that Nec(a) is
integer for each a € A. This resetting multiplies both the maximum and the minimum by N. So
the equality follows from the case where c is integer-valued.

If ¢ is real-valued, we can derive the corollary from the case where ¢ is rational-valued, by
continuity and compactness arguments. |

Moreover, one has (Dantzig [1951a]):

Corollary 4.5¢ (Integrity theorem). If ¢ is integer-valued, there exists an integer-valued maximum

flow.

Proof. Directly from Menger’s theorem. |

Exercises

4.6. Let D = (V, A) be a directed graph and let ,s € V. Let f: A — R4 be an r — s flow of value 5.
Show that there exists an r — s flow f’ : A — Z4 of value [3] such that | f(a)] < f'(a) < [f(a)] for
each arc a. (Integer flow theorem (Dantzig [1951a]).)

4.7. Let G = (V, E) be a graph and let ¢c: E — R4 be a ‘capacity’ function. Let K be the complete graph
on V. For each edge rs of K, let w(rs) be the minimum capacity of any r — s cut in G. [An r — s cut
is any subset (W) with r € W, s ¢ W]

Let T be a spanning tree in K of maximum total weight with respect to the function w. Prove that
for all ;s € V, w(rs) is equal to the minimum weight of the edges of T in the unique r — s path in 7T
(Hint: Use Exercise 1.10.)

4.4. Finding a maximum flow

Let D = (V, A) be a directed graph, let r,s € V, and let ¢ : A — Q4 be a ‘capacity’ function.
We now describe the algorithm of Ford and Fulkerson [1956] to find an r — s flow of maximum value
under c.

In this section, by flow we will mean an r — s flow under ¢, and by cut an r — s cut. A mazimum
flow is a flow of maximum value.

We now describe the algorithm of Ford and Fulkerson [1957] to determine a maximum flow. We
assume that ¢(a) > 0 for each arc a. First we give an important subroutine:

Flow augmenting algorithm
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input: a flow f.
output: either (i) a flow f’ with value(f’) > value(f),
or (ii) a cut 6°U (W) with ¢(5°"(W)) = value(f).
description of the algorithm: For any pair a = (v,w) define a=! := (w,v). Make an auxiliary
graph Dy = (V, Ay) by the following rule: for any arc a € A,

(14) if f(a) < c(a) then a € Ay,
if f(a) >0 thena™! € Ay.

So if 0 < f(a) < c(a) then both a and a~! are arcs of Ay.
Now there are two possibilities:

(15) Case 1: There exists an r — s path in Dy,
Case 2: There is no r — s path in Dy.

Case 1: There exists an r — s path P = (v, a1,v1,...,a:,v) in Dy = (V, Ay).
So vg = r and v; = s. We may assume that P is a simple path. As ay,...,a; belong to Ay, we know
by (14) that for each ¢ =1,...,t:

(16) either (i) a; € A and o; := c(a;) — f(a;) >0
or (ii) a;'€ Aando;:= f(a; ') >0.

Define € := min{oy,...,0¢}. Soe > 0. Let f': A — R be defined by, for a € A:

(17) f'(a) = fla)+e, ifa=a;forsomei=1,...,1t
= f(a)—¢e, ifa=a;"'forsomei=1,...,1
= f(a), for all other a.

Then f’ again is an r — s flow under ¢. The inequalities 0 < f/(a) < ¢(a) hold because of our

choice of e. It is easy to check that also the flow conservation law (6)(ii) is maintained.
Moreover,

(18) value(f’) = value(f) + e,

since either (vg,v1) € A, in which case the outgoing flow in r is increased by ¢, or (v1,v9) € A, in
which case the ingoing flow in r is decreased by e.
Path P is called a flow augmenting path.

Case 2: There is no path in Dy = (V, Ay) from r to s.
Now define:

(19) W := {w € V| there exists a path in Dy from r to w}.

Then r € W while s ¢ W, and so §°"*(W) is an r — s cut.
By definition of W, if w € W and v ¢ W, then (u,v) ¢ As (as otherwise also v would belong to
W). Therefore:

(20) %f (u,v) € 6°" (W), then (u,v) € Ay, and so (by (14)): f(u,v) = c(u,v),

Then (12) gives:
(21) c(6°% (W) = value(f). |

This finishes the description of the flow augmenting algorithm. The description of the (Ford-
Fulkerson) mazimum flow algorithm is now simple:
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Maximum flow algorithm

input: directed graph D = (V, A),r,s € V,c: A — R,.
output: a maximum flow f and a cut §°**(W) of minimum capacity, with value(f) = ¢(5°*(W)).
description of the algorithm: Let fy be the ‘null flow’ (that is, fo(a) = 0 for each arc a).

Determine with the flow augmenting algorithm flows f1, fa,..., fiv such that f;y1 = f/, until, in the
Nth iteration, say, we obtain output (ii) of the flow augmenting algorithm. Then we have flow fx
and a cut §°**(W) with the given properties. |

We show that the algorithm terminates, provided that all capacities are rational.

Theorem 4.6. If all capacities c(a) are rational, the algorithm terminates.

Proof. If all capacities are rational, there exists a natural number K so that Kc¢(a) is an integer for
each a € A. (We can take for K the l.c.m. of the denominators of the c(a).)

Then in the flow augmenting iterations, every flow f;(a) and every e is a multiple of 1/K. So
at each iteration, the flow value increases by at least 1/K. Since the flow value cannot exceed
c(6°%¢({r})), we can have only finitely many iterations. |

We should note here that this theorem is not true if we allow general real-valued capacities.

In Section 4.5 we shall see that if we choose always a shortest path as flow augmenting path,
then the algorithm has polynomially bounded running time.

Note that the algorithm also implies the max-flow min-cut theorem (Theorem 4.5b). Note more-
over that in the maximum flow algorithm, if all capacities are integer, then the maximum flow will
also be integer-valued. So it also implies the integrity theorem (Corollary 4.5¢).

Application 4.2: Transportation problem. Suppose there are m factories, that all produce the same
product, and n customers that use the product. Each month, factory i can produce s; tons of the product.
Customer j needs every month d; tons of the product. From factory i to customer j we can transport every
month at most ¢; ; tons of the product. The problem is: can the needs of the customers be fulfilled?

In order to solve the problem with the maximum-flow algorithm, we make the graph as in Figure 4.2
(for m =3,n =5):

Figure 4.2

We define a capacity function ¢ on the arcs as follows:

(22) clr,fi) =8 fori=1,...,m,
C(fi7bj) =c¢y; fori=1,....m;j=1,...,n,
c(bj,8) =d; forj=1,...,n.
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Now we have:

(23) the needs of the customers can be fulfilled <= there is an r — s flow under ¢ with value

Since there cannot exist an 7 —s flow under ¢ of value larger than dy +- - - +d., (since c(6°**(s)) = di+- - -+dn),
the problem can be solved with the maximum-flow algorithm.

If there exists a flow of value dyi + - - - 4+ dyn, then the flow on arc (f;,b;) gives the amount that should
be transported each month from factory ¢ to customer j. The flow on arc (r, f;) gives the amount to be
produced each month by factory f;.

Exercises

4.8. Determine with the maximum flow algorithm an r — s flow of maximum value and an r — s cut of
minimum capacity in the following graphs (where the numbers at the arcs give the capacities):

2
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o 3

4

2
2
3 4 1
(iv) r 10 >¢ 2 = 4 ®S
5
5 2 7 12
2

6

4.9. Solve the transportation problem with the maximum-flow algorithm for the following data: m =n =
3,81 =5 13,82 B 9,83 = 4,d1 =5 3,d2 B 7,d3 = 12,

cij |j=1 j=2 j=3
i=1 2 0 8
i=2 3 8 3
i=3 0 1 3

4.10. Describe the problem of finding a maximum matching in a bipartite graph as a maximum flow problem.

4.11. Determine with the maximum-flow algorithm if there exists a 3 x 3 matrix A = (a;;) satisfying:'®
a;; > 0foralli,j=1,2,3;

13
Al < 9
4

174 = (3,7,12);
2 0 8
A<| 3 8 3
0 1 3

4.12. Give an example of a directed graph with irrational capacities, in which, at a bad choice of flow
augmenting paths, the maximum flow algorithm does not terminate.

4.13. Let D = (V, A) be a directed graph, let ,s € V and let f: A — Q4 be an r — s flow of value b. Show
that for each W C V with r € W, s € W one has:

(24) S f@) - > fla)=b.
)

aesout (W) a€sin(W

4.5. Speeding up the maximum flow algorithm

We saw that the number of iterations in the maximum flow algorithm is finite, if all capacities
are rational. If we choose as our flow augmenting path P in the auxiliary graph Dy an arbitrary
s — t path, the number of iterations yet can get quite large. For instance, in the graph in Figure 4.3
the number of iterations, at a bad choice of paths, can become 2000.

However, if we choose always a shortest s —t path in Dy as our flow augmenting path P (that
is, with a minimum number of arcs), then the number of iterations is at most |V - |A|. This was
shown by Dinits [1970] and Edmonds and Karp [1972].

131 denotes the vector (1,1,1)T.
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Figure 4.3

Again, for any directed graph D = (V, A) and r,s € V, let u(D) denote the minimum length of
an r — s path. Moreover, let a(D) denote the set of arcs contained in at least one shortest r — s
path. Then one has:

Proposition 2. Let D = (V,A) andr,s € V. Let D' := (V,AUa(D)™1). Then pu(D') = u(D) and
a(D') = a(D).

Proof. It suffices to show that u(D) and a(D) are invariant if we add a~! to D for one arc a € a(D).
Suppose not. Then there is an r — s path P traversing a~!, of length at most u(D). As a € a(D),
there is an r — s path Q traversing a, of length u(D). Hence AP U AQ \ {a,a™'} contains an r — s
path of length less than u(D), a contradiction. |

This implies the result of Dinits [1970] and Edmonds and Karp [1972]:

Theorem 4.7. If we choose in each iteration a shortest r — s path as flow augmenting path, the
number of iterations is at most |V||A].

Proof. If we augment flow f along a shortest path P, obtaining flow f’, then Dy is a subgraph
of D' := (V,A; Ua(Dys)™1). Hence u(Dys) > w(D') = u(Dy) (by Proposition 2). Moreover, if
w(Dyr) = p(Dy), then a(Dy) C a(D’) = a(Dy) (again by Proposition 2). As at least one arc in P
belongs to D¢ but not to D¢/, we have a strict inclusion. |

Since a shortest path can be found in time O(]A|), this gives:

Corollary 4.7a. The mazimum flow problem can be solved in time O(|V||A]?).

Proof. Directly from Theorem 4.7. |

This algorithm can be improved, as was shown by Karzanov [1974]. In each iteration we find a
shortest path in O(|A|) time. But as long as the distance from r to s does not increase, we could
use the data-structure of the previous shortest path search so as to find the next shortest path.

This can be described as follows. Call an r — s flow f blocking if for each r — s flow g > f one
has g = f. Now Karzanov [1974] showed the following (we give the short proof of Malhotra, Kumar,
and Maheshwari [1978]; see also Tarjan [1984]):

Theorem 4.8. Given an acyclic directed graph D = (V,A), r,s € V, and a capacity function
c:A— Qy, a blocking flow can be found in time O(|V|?).

Proof. First order the vertices reachable from s as s = vy, vs,...,vy_1, v, topologically; that is, if



Section 4.5. Speeding up the maximum flow algorithm 53

(vi,vj) € A then i < j. This can be done in time O(]A]).!*

We describe the procedure recursively. Consider the minimum of the values ¢(6(v)) for all
v e V\{s} and ¢(6°"(v)) for all v € V' \ {t}. Let the minimum be attained by v; and ¢(5°"*(v;))
(without loss of generality). Define f(a) := c(a) for each a € §°"*(v;) and f(a) := 0 for all other a.

Next for j =i+1,...,n—1, redefine f(a) for each a € 6°**(v;) so that f(a) < ¢(a) and so that
F(6°" (v;)) = f(6™(v;)). By the minimality of v; and ¢(6™(v)), we can always do this, as initially
F(6™(v))) < e(8°U(v;)) < (6™ (v;)). We do this in such a way that finally f(a) € {0,c(a)} for all
but at most one a in 6°*(v,).

After that, for j =4, —1,...,2, redefine similarly f(a) for a € §™(v;) so that f(a) < c(a) and
so that (57 (1;)) = /(57" (7))

If v; € {r, s} we stop, and f is a blocking flow.

If v; & {r,s}, set ¢’(a) := ¢(a) — f(a) for each a € A, and delete all arcs a with ¢’(a) = 0
and delete v; and all arcs incident with v;, thus obtaining the directed graph D’ = (V’; A’). Obtain
(recursively) a blocking flow f’ in D’ subject to the capacity function ¢’. Define " (a) := f(a)+ f'(a)
for a € A" and f”(a) = f(a) for a € A\ A’. Then f” is a blocking flow in D.

This describes the algorithm. The correctness can be seen as follows. If v; € {r, s} the correctness
is immediate. If v; & {r,s}, suppose f” is not a blocking flow in D, and let P be an r — s
path in D such that f”(a) < ¢(a) for each arc a in P. Then each arc of P belongs to A’, since
f"(a) = f(a) = c(a) for each a € A\(A’Ud™(v;)). So for each arc a of P one has ¢/(a) = c(a)— f(a) >
f”(a) — f(a) = f’(a). This contradicts the fact that f’ is a blocking flow in D’.

The running time of the algorithm is O(|V|?), since the running time of the iteration is O(|V| +
|A\ A’|), and since there are at most |V| iterations. (Note that we determine the topological ordering
only once, at the preprocessing.) |

Theorem 4.8 has the following consequence:

Corollary 4.8a. Given a directed graph D = (V, A), r,s € V, and a capacity function ¢ : A — Q,
a flow f satisfying u(Dy) > u(D) can be found in time O(|V]?).

Proof. Let D be the subgraph of D consisting of all arcs that are contained in a shortest 7 — s path
in D. Find a blocking flow in D. Then u(Dy) > u(D) (by Proposition 2). |

Hence we have:

Corollary 4.8b. Given a directed graph D = (V, A), r,s € V, and a capacity function ¢ : A — Q,
a mazimum r — s flow can be found in time O(|V|?).

Proof. Directly from the foregoing. |

Goldberg and Tarjan [1990] gave an O(|A|log(|V'|?/|A])) algorithm for finding a blocking flow in
an acyclic directed graph, implying an O(|V'||A|log(|V|?/]A|)) algorithm for finding a maximum flow
in any directed graph. An alternative approach finding a maximum flow in time O(|V'||A|log(|V'|?/|A]))
was described in Goldberg and Tarjan [1988].

For surveys on maximum flow algorithms, see Goldberg, Tardos, and Tarjan [1990] and Ahuja,
Magnanti, and Orlin [1993].

4 This can be done recursively as follows (cf. Knuth [1968], Tarjan [1974]). If §°Ut(s) = @, then the ordering is trivial.
If §°Ut(s) # @, choose (s,v) € §°Ut(s), and order the vertices reachable from v topologically, as w1, ..., wm, delete
them from D, and order the remaining vertices reachable from s topologically as v1,...,vg; then vy, ..., vg, w1, ..., wmn
gives a required topological ordering.
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4.6. Circulations

A theorem related to the max-flow min-cut theorem is due to Hoffman [1960] and concerns
circulations. Let D = (V| A) be a directed graph. A function f: A — R is called a circulation if for
each vertex v € V one has:

(25) Y fl= ) fla)

a€sin (v) a€sout (v)

So now the flow conservation law holds at each vertex v.

Hoffman [1960] proved the following theorem (which can also be derived from the max-flow
min-cut theorem, but a direct proof seems shorter). For any directed graph D = (V| A), and any
d,e,f: A— Rwith d(a) < f(a) < c(a) for each a € A, we define

(26) Api=A{al f(a) <c(a)}Ufa™" | d(a) < f(a)},
and Df = (V,Af)

Theorem 4.9 (Hoffman’s circulation theorem). Let D = (V, A) be a directed graph and let d,c :
A — R be such that d(a) < c¢(a) for each arc a. Then there exists a circulation f such that
(27) d(a) < f(a) < c(a)

for each arc a, if and only if
(28) Yo da< Y ca)
agsin(U) agsout (U)
for each subset U of V.
Proof. To see necessity of (28), suppose that a circulation f satisfying (27) exists. Then
(29) d(d™(U)) < f(6™(U)) = f(8°U(U)) < e(8(V)).

To see sufficiency, define for any f: A — R and any v € V, lossf(v) := f(6°*(v)) — f(6™(v)).
Choose a function f satisfying d < f < ¢ and minimizing ||losss||1. Let S := {v € V | lossy(v) < 0}
and T := {v € V | loss¢(v) > 0}. Suppose S # ). If Dy contains an S — T path, we can modify f so
as to reduce |[lossf||1. So Dy does not contain any S —T path. Let U be the set of vertices reachable
in Dy from S. Then for each a € 6°**(U) we have a € Ay and hence f(a) = ¢(a). Similarly, for each
a € §™(U) we have a~' € Ay and hence f(a) = d(a). Therefore

(30) c(8*(U)) = d(6™(U)) = F(8°*(U)) = f(8™(U)) = loss;(U) = loss;(S) <0,
contradicting (28). |

One has moreover:

Theorem 4.10. In Theorem 4.9, if ¢ and d are integer and there exists a circulation [ satisfying
d < f <, then there exists an integer-valued circulation f satisfying d < f < c.

Proof. Directly from the proof above. |

Exercises

4.14. Let D = (V, A) be a directed graph and let f : A — R be a circulation. Show that there exists a
circulation f’ such that f’ is integer-valued and such that | f(a)] < f'(a) < [f(a)] for each arc a.
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4.15. Let D = (V, A) be a directed graph and let d,c: A — R.
Derive an algorithm finding a circulation f satisfying d < f < ¢ from the maximum flow algorithm.

4.16. Let A = (A41,...,Ay) and B = (Bu,...,B,) be partitions of a finite set X and let k be a natural
number. Prove that X can be covered by k& common SDR’s of A and B, if and only if

(31) (JAiu B)| = X+ k(I + ]| —n)
iel jeJ
for all 1, J C {1,...,n} with U,c.; AiNU,c, B; = 0.
4.17. Let D = (V, A) be a directed graph, and let f : A — R4. Let C be the collection of directed circuits

in D. For each directed circuit C' in D let x be the incidence vector of C. That is, ¢ : A — {0,1},
with x%(a) = 1 if C traverses a and x“(a) = 0 otherwise.

Show that f is a nonnegative circulation, if and only if there exists a function A : C — R4 such that

(32) F=3 MONE.

ceC

That is, the circulations form the cone generated by {x° | C € C}.

4.7. Minimum-cost flows

In the previous sections we were searching for flows of maximum value. In this section we consider
the problem of finding a flow of maximum value with the additional property that it has ‘minimum
cost’.

Let be given again a directed graph D = (V, A), vertices r and s of D, and a capacity function
c¢: A— Ry. Let moreover be given a function k : A — R, called the cost function.

Define for any function f: A — R the cost of f as:

(33) cost(f) := Z k(a)f(a).

a€cA

The following is the minimum-cost flow problem (or min-cost flow problem):

(34) given: a directed graph D = (V, A), r,s € V, a capacity function ¢: A — R, and a
cost function k: A — Ry;

find: an r — s flow subject to ¢ of maximum value, such that f has minimum cost
among all  — s flows subject to ¢ of maximum value.

This problem can be solved with an adaptation of the algorithm described in Section 4.4. Let us
define an r — s flow f < ¢ to be an extreme flow if f has minimum cost among all » — s flows g < ¢
with value(g) = value(f).

So an extreme flow does not need to have maximum value. An extreme flow is a flow f that has
minimum cost among all flows with the same value as f.

Let f be a flow and let Dy = (V, Af) be the auxiliary graph corresponding to f (in the sense of
the flow augmenting algorithm). Define a length function ! : Ay — R on Ay by:

(35) l(a) :=k(a) ifae€ A,
= —k(a™t) ifaleA

for each a € Ay.
Given this the following can be shown:

Proposition 3. f is an extreme flow, if and only if Dy has no directed circuits of negative length
(with respect to 1).
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Proof. Necessity. Suppose that C' = (a1,...,as) is a directed circuit in Dy of negative length; that
is,

(36) length(C) = l(a1) + l(az) + -+ -+ l(ay) < 0.
So a1,...,a; are arcs in Dy. Define fori =1,...,t:
(37) o, =cla;) — fla;) ifa; € A;

= f(a;h) if a; ' € A.

Note that by definition of Dy, o; > 0 for each i = 1,...,t. Let € := min{oy,...,0:} and define for
each a € A:

(38) gla) =fla)+e ifaeC,
= f(a)—e ifa"teC,
= f(a) otherwise.

Then g is again an r — s flow subject to ¢, with value(g) = value(f). Moreover one has
(39) cost(g) = cost(f) + ¢ - length(C) < cost(f).
So f is not an extreme flow.

Sufficiency. Let g be any flow with value(g) =value(f). Define h : Ay — R4 by:

(40) ha)  =gla)— fla) if g(a)> f(a), and
hal) = fla)—gla) if gla) < fla),

for a € A, while h(a) = 0 for all other arcs a of Ay. Then h is a circulation in Dy.

Hence, by Exercise 4.17, there exists a function A : C — Ry such that h = Y- A(C)x“. Hence
cost(g) —cost(f) = > e AM(C)length(C'). Assuming Dy has no directed circuits of negative length,
it follows that cost(g) > cost(f). So f is an extreme flow. |

With this we can show:

Proposition 4. Let f be an extreme flow. Let f' arise by choosing in the flow augmenting algorithm
a path in Dy of minimum length with respect to . Then f’ is an extreme flow again.

Proof. Suppose Dy has a directed circuit C of negative length with respect to I. As C' does not
occur in Dy, part of C occurs in the flow augmenting path chosen. But then we could have chosen
a shorter flow augmenting path. |

This implies that the min-cost flow problem can be solved by choosing in the flow augmenting
algorithm a shortest path in the auxiliary graph throughout. The first flow, the all-zero flow fj,
is trivially a min-cost flow. Hence also all further flows fy, fo, f3,... will be min-cost flows by
Proposition 4. Therefore, also the last flow, which is of maximum value, is a min-cost flow. So we
have a solution to the min-cost flow problem. (Here we assume that all capacities are rational.)

In this process, we should be able to find a shortest » — s path in the auxiliary graphs D;. This is
indeed possible with the Bellman-Ford method, since D¢ does not have directed circuits of negative
length as we saw in Proposition 3.

One can show that the running time of this algorithm is O(M - (m + nlogn)), where M is the
value of a maximum flow (assuming all capacities to be integer). So it is not polynomial-time. At
the moment of writing, the asymptotically fastest method for finding a minimum-cost maximum
flow was designed by Orlin [1988,1993] and runs in O(mlogn(m + nlogn)) time.

In a similar way one can describe a minimum-cost circulation algorithm.
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For more about network flows we refer to the books of Ford and Fulkerson [1962] and Ahuja,
Magnanti, and Orlin [1993].

Application 4.3: Minimum-cost transportation problem. Beside the data in Application 4.2 one may
also have a cost function k; j, giving the cost of transporting 1 ton from factory ¢ to costumer j. Moreover,
there is given a cost k; of producing 1 ton by factory i (for each 7). We want to make a production and
transportation plan that minimizes the total cost.

This problem can be solved by assigning also costs to the arcs in Application 4.2. We can take the costs
on the arcs from b; to s equal to 0.

Application 4.4: Routing empty freighters. Historically, in his paper “Optimum utilization of the
transportation system”, Koopmans [1948] was one of the first studying the minimum-cost transportation
problem, in particular with application to the problem of routing empty freighters. Koopmans considered
the surplus and need of register ton of ship capacity at harbours all over the world, as given by the following
table (data are aggregated to main harbours):

Net receipt of dry cargo in overseas trade, 1925
Unit: Millions of metric tons per annum

Harbour Received | Dispatched | Net receipts
New York 23.5 32.7 —9.2
San Francisco 7.2 9.7 —2.5
St. Thomas 10.3 11.5 —1.2
Buenos Aires 7.0 9.6 —2.6
Antofagasta 1.4 4.6 —-3.2
Rotterdam 126.4 130.5 —4.1
Lisbon 37.5 17.0 20.5
Athens 28.3 14.4 13.9
Odessa 0.5 4.7 —4.2
Lagos 2.0 2.4 —0.4
Durban 2.1 4.3 —2.2
Bombay 5.0 8.9 —-3.9
Singapore 3.6 6.8 —3.2
Yokohama 9.2 3.0 6.2
Sydney 2.8 6.7 —-3.9
Total 266.8 266.8 0.0

Given is moreover a distance table between these harbours. Koopmans wondered how ships should be
routed between harbours so as to minimize the total amount of ton kilometers made by empty ships.

This problem is a special case of the min-cost flow problem. Make a graph with vertex set all harbours,
together with two dummy harbours r and s. From any harbour u with a surplus (positive net receipt) to
any harbour w with a need (negative net receipt) make an arc with cost equal to the distance between u
and w, and with capacity co. Moreover, from r to any harbour v with a surplus o, make an arc with cost
0 and capacity equal to o. Similarly, from any harbour w with a need v, make an arc to s, with cost 0 and
capacity equal to v.

Now a maximum flow of minimum cost corresponds to an optimum routing of ships between harbours.

A similar model applies to the problem of routing empty box cars in a railway network (Feeney [1957],
cf. Norman and Dowling [1968], White and Bomberault [1969]).

Application 4.5: Routing of railway stock. NS (Nederlandse Spoorwegen = Dutch Railways) performs
a daily schedule on its line Amsterdam—Vlissingen, with the following (weekday) timetable:

[ ride number |2123[2127] 2131 | 2135 | 2139 | 2143 | 2147 | 2151 | 2155 | 2159 | 2163 | 2167 | 2171 | 2175 | 2179 | 2183 | 2187 | 2191 |

Amsterdam d 6.48 | 7.55| 8.56| 9.56|10.56|11.56|12.56|13.56|14.56|15.56|16.56|17.56|18.56|19.56(20.56 [21.56[22.56
Rotterdam a 7.55| 8.58| 9.58|10.58|11.58|12.58|13.58|14.58|15.58|16.58|17.58|18.58|19.58|20.58(21.58(22.58(23.58
Rotterdam d|7.00(8.01 9.02{10.03(11.0212.03[13.02{14.02{15.02|16.00(17.01(18.01{19.02|20.02(21.02(22.02(23.02
Roosendaal a|7.40|8.41 9.41[10.43|11.41|12.41(13.41(14.41|15.41|16.43|17.43(18.42|19.41|20.41|21.41(22.41(23.54
Roosendaal d|7.43(8.43[ 9.43(10.45[11.43(12.43(13.43(14.43(15.43(16.45(17.45|18.44(19.43(20.43(21.43

Vlissingen a|8.38(9.38|10.38/11.38|12.38|13.38|14.38|15.38|16.38|17.40[18.40[19.39(20.38[21.38[22.38

[ ride number [2108]2112] 2116 | 2120 | 2124 [ 2128 | 2132 | 2136 | 2140 | 2144 | 2148 | 2152 | 2156 | 2160 | 2164 | 2168 | 2172 | 2176 |

Vlissingen d 5.30| 6.54| 7.56| 8.56| 9.56(10.56(11.56(12.56(13.56(14.56(15.56(16.56(17.56(18.56(19.55
Roosendaal a 6.35| 7.48| 8.50| 9.50[10.50(11.50[12.50[13.50[14.50(15.50[16.50[17.50(18.50[19.50[20.49
Roosendaal d 5.29| 6.43| 7.52| 8.53| 9.53|10.53|11.53|12.53|13.53|14.53|15.53(16.53|17.53|18.53(19.53(20.52(21.53
Rotterdam a 6.28 | 7.26| 8.32| 9.32]|10.32]11.32]12.32|13.32|14.32|15.32|16.32|17.33|18.32[19.32(20.32(21.30[22.32
Rotterdam d[5.31(6.29( 7.32( 8.35( 9.34(10.34(11.34(12.34(13.35(14.35(15.34(16.34(17.35|18.34(19.34[20.35(21.32(22.34
Amsterdam a|6.39|7.38| 8.38| 9.40|/10.38|11.38|12.38|13.38|14.38|15.38(16.40|17.38|18.38[19.38(20.38(21.38(22.38(23.38
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The rides are carried out by one type of stock, that consists of two-way units that can be coupled with
each other. The length of the trains can be changed at the end stations and at two intermediate stations:
Rotterdam and Roosendaal. So in this example, each train ride consists of three ride ‘segments’.

Based on the expected number of passengers, NS determines for each ride segment a minimum number
of units that should be deployed for that segment:

[ ride number [2123]2127[2131][2135[2139[2143][2147[2151[2155[2159[2163[2167][2171[2175[2179]2183][2187[2191]
Amsterdam-Rotterdam 3 5 4 3 3 3 3 3 3 4 5 5 3 2 2 2 1
Rotterdam-Roosendaal 2 3 4 4 2 3 3 3 3 4 5 5 4 2 2 2 1
Roosendaal-Vlissingen 3 2 2 2 2 3 2 3 3 3 4 4 3 2 1

[ ride number [2108[2112[2116][2120[2124[2128[2132][2136][2140[2144[2148][2152][2156]2160[2164[2168][2172[2176]

Vlissingen-Roosendaal 2 4 4 4 2 2 3 2 2 2 3 3 2 2 2
Roosendaal-Rotterdam 2 4 5 4 5 3 3 3 2 3 3 4 3 2 2 2 2
Rotterdam-Amsterdam 1 3 5 4 4 5 3 3 3 3 3 4 5 3 2 2 2 2

Figure 4.4

A unit uncoupled from a train at a station can be coupled at any other later train, in the same direction
or the other. Moreover, for each segment there is a maximum number of units given that can be used for
that segment (depending for instance on the length of station platforms).

The company now wishes to find the minimum number of units that should be used to run the schedule
(excluding maintenance).

As was observed by Bartlett [1957] (cf. van Rees [1965]) this problem can be considered as a minimum-
cost circulation problem (cf. Figure 4.4). Make a directed graph D with vertex set all pairs (s,t) where s
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is any station where the train composition can be changed (in our example: the end stations and the two
intermediate stations) and ¢ is any time at which there is a train arriving at or leaving s. For each ride
segment make an arc from (s, t) to (s',t') if the segment leaves s at time ¢ and arrives at s’ at time t'.

Moreover, for each station s and each two consecutive times ¢,t’ at which segments arrive or leave, one
makes an arc from (s,t) to (s,t'). One also does this overnight.

Now for each arc a coming from a segment assign a lower bound d(a) equal to the number given in the
table above for the segment. Moreover, define an upper bound ¢(a) equal to the maximum number of units
that can be used for that segment. For each arc a from (s,t) to (s,t') let d(a) := 0 and c(a) := co.

For each arc a define a cost k(a) := 0, except if a corresponds to an overnight stay at one of cities, when
k(a) := 1. Then a minimum-cost circulation corresponds to a routing of the stock using a minimum number
of units.

There are several variations possible. Instead of an upper bound c¢(a) = oo for the arcs a from (c,t) to
(s,t") one can take c(a) equal to the capacity of the storage area at s. Instead of a cost k(a) = 0 at each
segment one can take k(a) equal to the cost of riding one unit of stock over that segment. This can be
weighed against the cost of buying extra units.

A similar model for routing airplanes was considered by Ferguson and Dantzig [1955].

Exercises

4.18. Determine in the following networks a maximum r — s flow of minimum-cost (cost in italics, capacity
in bold):

(i) .

@
3 5
22
1
5
\
@
3
2
(i) r 20 7
\
7
|

4 5
18
2 ®S
/
4
=@
o
1
1
\
301 N\

NN




60 Chapter 4. Menger’s theorem, flows, and circulations

o 51
2
9
o7 7 1 8
3 74
() 63 .4 62 Ny 24

4.19. Solve the minimum-cost transportation problem for the following data sets:

(1) m:n:3,sl :9732:15,83:7,d1:5,d2:13,d3:7,k1:2,k2:3,k3:2,

Ci,j j=1 j:2 ]:3 k‘i’j j:l j=2 j=3
=1 6 4 0 1=1 8 3 5
=2 3 9 4 i =2 2 7 1
1=3 0 2 6 1=3 2 5 9

(ii) m:n:3,sl :11,52:7,83:6,d1 :9,d2:7,d3:5

Cij j=1 j3=2 j=3 ki j j=1 j53=2 j=3
1=1 7 4 0 1=1 3 2 4
1=2 3 3 2 1=2 2 8 4
1=3 0 2 4 1=3 1 3 2

4.20. Describe the problem of finding a maximum-weight matching in a bipartite graph as a minimum-cost
flow problem.

4.21. Reduce the problem of finding a min-cost flow of given value, to the min-cost flow problem as described
above.
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5. Nonbipartite matching

5.1. Tutte’s 1-factor theorem and the Tutte-Berge formula

A basic result on matchings in arbitrary (not necessarily bipartite) graphs was found by Tutte
[1947]. Tt characterizes graphs that have a perfect matching. A perfect matching (or a 1—factor) is
a matching M that covers all vertices of the graph. (So M partitions the vertex set of G.)

Berge [1958] observed that Tutte’s theorem implies a min-max formula for the maximum size of
a matching in a graph, the Tutte-Berge formula, which we prove first.

Call a component of a graph odd if it has an odd number of vertices. For any graph G, let

(1) 0(G) := number of odd components of G.

Let v(G) denotes the maximum size of a matching. Then:

Theorem 5.1 (Tutte-Berge formula). For each graph G = (V, E),

(2) V(G):,I}lgig%(\VIHUI*O(G*U))-

Proof. To see <, we have for each U C V:
(3) v(G) <|U[+v(G-U) <|U|+ 5(IV\U| = o(G = U)) = 5(I[V|+|U] - o(G = U)).

We prove the reverse inequality by induction on |V|, the case V' = ) being trivial. We can assume
that G is connected, since otherwise we can apply induction to the components of G.

First assume that there exists a vertex v covered by all maximum-size matchings. Then v(G—v) =
v(G) — 1, and by induction there exists a subset U’ of V'\ {v} with

(4) V(G —v) = 3(IV\{}| + U] = o(G —v = U")).
Then U := U’ U {v} gives equality in (2), since

(5) v(G) =v(G—v)+1=S([V\{v}+|U'| —0o(G—v-U"))+1
= 5(IV[+ U] = o(G = U)).

So we can assume that there is no such v. In particular, v(G) < 3|V|. We show that there exists
1

a matching of size 5(|V/| — 1), which implies the theorem (taking U := ().

Indeed, suppose to the contrary that each maximum-size matching M misses at least two distinct
vertices u and v. Among all such M, u,v, choose them such that the distance dist(u,v) of u and v
in G is as small as possible.

If dist(u,v) = 1, then v and v are adjacent, and hence we can augment M by the edge v,
contradicting the maximality of |[M|. So dist(u,v) > 2, and hence we can choose an intermediate
vertex t on a shortest u — v path. By assumption, there exists a maximum-size matching N missing
t. Choose such an N with |[M N N| maximal.

By the minimality of dist(w,v), N covers both w and v. Hence, as M and N cover the same
number of vertices, there exists a vertex x # t covered by M but not by N. Let x € e = 2y € M.
Then y is covered by some edge f € N, since otherwise N U {e} would be a matching larger than
N. Replacing N by (N \ {f}) U{e} would increase its intersection with M, contradicting the choice

of N. |

(This proof is based on the proof of Lovész [1979] of Edmonds’ matching polytope theorem.)
The Tutte-Berge formula immediately implies Tutte’s 1-factor theorem.
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Corollary 5.1a (Tutte’s 1-factor theorem). A graph G = (V, E) has a perfect matching if and only
if G — U has at most |U| odd components, for each U C V.

Proof. Directly from the Tutte-Berge formula (Theorem 5.1), since G has a perfect matching if and
only if v(G) > %|V| |

In the following sections we will show how to find a maximum matching algorithmically.
With Gallai’s theorem, the Tutte-Berge formula implies a formula for the edge cover number

p(G):
Corollary 5.1b. Let G = (V, E) be a graph without isolated vertices. Then

Proof. By Gallai’s theorem (Theorem 3.1) and the Tutte-Berge formula (Theorem 5.1),

™) o(@) = V] = 1(G) = V| — guin VIHITLZ VAT i U121 oAT),

Exercises

5.1. (i) Show that a tree has at most one perfect matching.

(ii) Show (not using Tutte’s 1-factor theorem) that a tree G = (V, E) has a perfect matching if and
only if the subgraph G — v has exactly one odd component, for each v € V.

5.2. Let G be a 3-regular graph without any isthmus. Show that G has a perfect matching.

5.3. Let Ai,..., A, be a collection of nonempty subsets of the finite set X so that each element in X is
in exactly two sets among Aq, ..., A,. Show that there exists a set Y intersecting all sets A4,..., A,,
and satisfying |Y| < ¢ if and only if for each subset I of {1,...,n} the number of components of
(A; | i € I) containing an odd number of sets in (A; | i € I) is at most 2t — |I|.

(Here a subset Y of X is called a component of (A; | ¢ € I) if it is a minimal nonempty subset of X
with the property that for eachi € I: A;,NY #QPor A; CY.)

5.4. Let G = (V,E) be a graph and let T be a subset of V. Then G has a matching covering T, if and
only if the number of odd components of G — W contained in T is at most |W|, for each W C V.

5.5. Let G = (V, E) be a graph and let b: V — Z. Show that there exists a function f: E — Z4 so that
for each v € V:

(8) Y. fle)=b(v),
ecE,v€e
if and only if for each subset W of V' the number 8(W) is at most b(V \ W).

(Here for any subset W of V, b(W) := >~ y;, b(v). Moreover, 3(WW) denotes the following. Let U be
the set of isolated vertices in the graph G|W induced by W and let ¢ denote the number of components
C of the graph G|W \ U with b(C) odd. Then 8(W) := b(U) + t.)

5.6. Let G = (V, E) be a graph and let b: V — Z,. Show that there exists a subset F' of E so that each
vertex v is incident with exactly b(v) edges in F, if and only if for each two disjoint subsets U and W
of V one has

€) > b)) > q(U, W) + > (b(v) — da-u(v)).

(Here q(U, W) denotes the number of components K of G — (U U W) for which b(K) plus the number
of edges connecting K and W, is odd. Moreover, dg_y (v) is the degree of v in the subgraph induced
by V\U.)
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5.2. Cardinality matching algorithm

We now investigate the problem of finding a maximum-cardinality matching algorithmically. Like
in the bipartite case, the key is to find an augmenting path. However, the idea for bipartite graphs
to orient the edges using the two colour classes, does not apply to nonbipartite graphs.

Yet one could try to find an M-augmenting path by finding a so-called M-alternating path, but
such a path can run into a loop that cannot immediately be deleted. It was J. Edmonds who found
the trick to resolve this problem, namely by ‘shrinking ’ the loop (which he called a ‘blossom’). Then
applying recursion to a smaller graph solves the problem.

We first describe the operation of shrinking. Let X and Y be sets. Then we define X/Y as
follows:

(10) X/Y =XifXNY =0,
XY = (X\Y)U{Y}if XNY #£0.

So if G = (V,E) is a graph and C C V, then V/C arises from V by deleting all vertices in C,
and adding one new vertex called C. For any edge e of G, e/C = e if e is disjoint from C, while
e/C =uCife=uv withu & C,v e C. (If e = uv with u,v € C, then e/C is a loop CC; they can
be neglected in the context of matchings.) Then for any F' C E:

(11) F/C:={f/C|[eF}.

So G/C := (V/C,E/C) is again a graph. We say that G/C arises from G by shrinking C.

Let G = (V, E) be a graph and let M be a matching in G, and let W be the set of vertices missed
by M. A path P = (vo,v1,...,v:) is called M-alternating if for each ¢ = 1,...,t — 1 exactly one of
v;—1v; and v;v;41 belongs to M. Note that one can find a shortest M-alternating W — W path, by
considering the auxiliary directed graph D = (V, A) with

(12) A:={(w,w') |z €V {w,z} € E,{z,w'} € M}.

Then M-alternating W — W paths correspond to directed paths in D from a vertex in W to a vertex
that is adjacent to at least one vertex in W.

As before, we call an M-alternating path P = (v, v1,...,v:) M-augmenting if v, ..., vs are
distinct and vy and v; are missed by M. (Hence t is odd.) So by Theorem 3.3, a matching M has
maximum size if and only if there is no M-augmenting path. We call an M-alternating path P an
M -blossom if vg,...,v,_1 are distinct, vy is missed by M, and vy = vg.

The core of the algorithm is the following observation.

Theorem 5.2. Let C be an M-blossom in G. Then M has mazimum size in G if and only if M/C
has mazimum size in G/C.

Proof. Let C = (vo,v1,...,v), G :=G/C and M’ := M/C.

First let P be an M-augmenting path in G. We may assume that P does not start in vg (otherwise
we can inverse P). If P does not traverse any vertex in C, then P is also M’-augmenting in G’. If
P does traverse a vertex in C, we can decompose P as P = QR, where @ ends in a vertex in C,
and no other vertex on Q) belongs to C'. Then by replacing the last vertex of @ by C makes @ to an
M’-augmenting path in G'.

Conversely, let P’ be an M’-augmenting path in G'. If P’ does not traverse vertex C of G, then
P’ is also an M-augmenting path in G. If P’ traverses vertex C' of G’, we may assume it ends in C
(as C'is missed by M’). So we can replace C in P’ by some vertex v; € C' to obtain a path @ in G
ending in v;. If 7 is odd, extending @ by v;41,...,v:—1, v gives an M-augmenting path in G. If i is
even, extending @ by v;_1,...,v1, v gives an M-augmenting path in G. |

Another useful observation is:
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Theorem 5.3. Let P = (vg,v1,...,v:) be a shortest even-length M -alternating W — v path. Then
either P is simple or there exist i < j such that v; = v, 1 is even, j is odd, and vo,...,vj_1 are all
distinct.

Proof. Assume P is not simple. Choose i < j such that v; = v; and such that j is as small as

possible. If j — i is even, we can delete v;y1,...,v; from P so as to obtain a shorter M-alternating
W —wv path. So j —1iis odd. If j is even and ¢ is odd, then v;41; = v;_; (as it is the vertex matched
to v; = v;), contradicting the minimality of j. |

We now describe an algorithm for the following problem:

(13) given: a matching M;

find: a matching N with |N| = |M]| + 1 or conclude that M is a maximum-size
matching.

Let W be the set of vertices missed by M.

(14) Case 1. There is no M-alternating W —W path. Then M has maximum size (as there
is no M-augmenting path).

Case 2. There is an M -alternating W —W path. Let P = (vg, v1,. .., v¢) be a shortest
such path.

Case 2a. P is M-augmenting. Then output N := MAEP.

Case 2b. P is not M-augmenting. Choose i < j such that v; = v; with j as
small as possible. Reset M := M A{vgv1,v1v9,...,0v;—1v;}. Then C :=
(Viy, Vix1, - - ., v;) is an M-blossom. Apply the algorithm (recursively) to
G'=G/C and M’ := M/C.
e If it gives an M’-augmenting path P’ in G’, transform P’ to an
M-augmenting path in G (as in the proof of Theorem 5.2).
e If it concludes that M’ has maximum size in G’, then M has maxi-
mum size in G (by Theorem 5.2).

This gives a polynomial-time algorithm to find a maximum matching, which is a basic result of
Edmonds [1965c].

Theorem 5.4. Given an undirected graph, a mazimum matching can be found in time O(|V|?|E|).

Proof. The algorithm directly follows from algorithm (14), since one can iteratively apply it, starting
with M = ), until a maximum-size matching is attained.

By using (12), a shortest M-alternating W — W path can be found in time O(m). Moreover,
the graph G/C can be constructed in time O(m). Since the recursion has depth at most n, each
application of algorithm (14) takes O(nm) time. Since the number of applications is at most n, we
have the time bound given in the theorem. |

In fact, the method can be sharpened to O(n3) (Balinski [1969]), O(n®/?) (Even and Kariv
[1975]) and even to O(n'/?m) (Micali and Vazirani [1980]). For surveys, see Lawler [1976] Ch. 6
and Christofides [1975] Ch. 12.

Application 5.1: Pairing. If a certain group of people has to be split into pairs, where certain pairs fit
and other pairs do not fit (for instance, when assigning hotel rooms or bus seats to a touring group), we
have an example of a (perfect) matching problem.
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Application 5.2: Two-processor scheduling. Suppose we have to carry out certain jobs, where some
of the jobs have to be done before other. We can represent this by a partially ordered set (X, <) where X
is the set of jobs and = < y indicates that job = has to be done before job y. Each job takes one time-unit,
say one hour.

Suppose now that there are two workers, each of which can do one job at a time. Alternatively, suppose
that you have one machine, that can do at each moment two jobs simultaneously (such a machine is called
a two-processor).

We wish to do all jobs within a minimum total time span. This problem can be solved with the matching
algorithm as follows. Make a graph G = (X, E), with vertex set X (the set of jobs) and with edge set

(15) E = {{u,v} |u £ vand v £ u}.

(So (X, E) is the complementary graph of the ‘comparability graph’ associated with (X, <).)

Consider now a possible schedule of the jobs. That is, we have a sequence p1,...,p:, where each p; is
either a singleton vertex or an edge of G so that p1,...,p; partition X and so that if z € p; and y € p; and
x <y then i < j.19

Now the pairs in this list should form a matching M in G. Hence ¢ = | X| — |M]. In particular, ¢ cannot
be smaller than | X| — v(G), where v(G) is the matching number of G.

Now it can be shown that in fact one can always make a schedule with ¢ = | X| — v(G). To this end, let
Q@ be a minimum partition of V' into vertices and edges of GG, and let Y be the set of minimal elements of
X. If ¢ CY for some ¢q € @, we can replace X by X \ ¢ and Q by Q \ {¢}, and apply induction.

So we may assume that each y € Y is contained in an edge yz € Q with z € Y. Choose an edge yz € Q
such that y € Y and such that the height of z is as small as possible. (The height of an element z is the
maximum size of a chain in (X, <) with maximum element z.) As z € Y there exists an y'2’ € Q with
y €Y and ¢/ < 2.

Now clearly 3’ is an edge of G, as y and 3’ are minimal elements. Moreover, 2z’ is an edge of G. For
if z < 2/ then y' < z < 2/, contradicting the fact that 3’2’ € EG; and if 2’ < z than 2’ would have smaller
height than z.

So replacing yz and 3’2" in Q by yy’ and zz’, we have yy’ C Y, and we can apply induction as before.

Exercises

5.7. Apply the matching augmenting algorithm to the matchings in the following graphs:

(i)

(iii)

15Here we identify a vertex v with the set {v}.
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5.3. Weighted matching algorithm

Edmonds [1965a] proved that also the maximum-weight matching problem can be solved in
polynomial time. Equivalently, the minimum-weight perfect matching problem can be solved in
polynomial time. It is the problem:

(16) given: a graph G = (V, E) and a ‘weight’ function w : £ — Q;

find: a perfect matching M minimizing ) ., w(e).

We describe the algorithm, assuming without loss of generality that G has at least one perfect
matching and that w(e) > 0 for each edge e (we can add a constant to all edge weights without
changing the problem).

Like the cardinality matching algorithm, the weighted matching algorithm is based on shrinking
sets of vertices. Unlike the cardinality matching algorithm however, for weighted matchings one has
to ‘deshrink’ sets of vertices (the reverse operation of shrinking). Thus we have to keep track of the
shrinking history throughout the iterations.

The algorithm is ‘primal-dual’. The ‘vehicle’ carrying us to a minimum-weight perfect matching
is a pair of a nested!® collection € of odd-size subsets of V, and a function 7 : Q — Q satisfying:

(17) (i) w(U)>0 if U € Q with |U| > 3,
(ii) Z 7(U) <w(e) foreachec€FE.
c€5(U)

This implies that for each perfect matching N in G one has w(N) > Z w(U), since
UeQ

(18) wN)=>"wle)>> " Y wU)=> aU)NNU) = x(U).
eeN eGNegée(%) UeQ UeQ

Notation and assumptions. Let be given © and 7 :  — Q. Define

(19) wy(e) :=w(e) — Z w(U)
Uven
eed(U)
for any edge e € E. (So (17)(ii) implies w,(e) > 0.)

G/Q denotes the graph obtained from G by shrinking all sets in Q™#* the set of inclusionwise
maximal sets in . We will assume throughout that {v} € Q for each v € V. Hence, as 2 is nested
and covers V', Q2™?* is a partition of V.

When shrinking a set U € 2, we denote the new vertex representing the shrunk set U just by U.
So G/ has vertices the sets in Q™** with two distinct elements U, U’ € Q™ adjacent if and only
if G has an edge connecting U and U’. We denote any edge of G/ by the original edge in G.

Throughout we restrict ourselves to €2 and 7 satisfying:

(20) for each U € Q with |U| > 3, the graph obtained from G|U by shrinking all inclu-
sionwise maximal proper subsets of U that are in €2, has a Hamiltonian circuit Cy
of edges e with w,(e) = 0.

Hungarian forests. An important role in the algorithm is played by a so-called ‘Hungarian forest’
relative to a matching M.

Let M be a matching in a graph G = (V, E) and let W be the set of vertices missed by M.
Then a subset F' of E is an M-Hungarian forest in G if F' is a forest containing M such that each

16 A collection Q of subsets of a set V is called nested if UNW =@ or U C W or W C U for any U, W € Q.
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component of (V| F') consists either of an edge in M or contains exactly one vertex in W and such
that each simple path in F' starting in W is M-alternating.

The set of vertices v € V for which there exists an even-length (odd-length, respectively) W — v
path in F' is denoted by even(F') (odd(F’), respectively).

The algorithm. We iterate with Q and 7 :  — Q satisfying (17) and (20), a matching M in G/Q
and an M-Hungarian forest F' in G/Q with w,(F) = 0.

Initially, we set M := 0, F := 0, Q := {{v} | v € V}, and 7({v}) := 0 for each v € V. Then, as
long as M is not a perfect matching in G/, we perform the following iteratively:

(21) Reset w(U) := 7w(U) — € for U € odd(F) and #n(U) := n(U) + ¢ for U € even(F),
where ¢ is the largest value such that (17) is maintained. After that

(i) there exists an edge e of G/ with w,(e) = 0 such that e intersects
even(F') but not odd(F),
or (ii) there exists a U € odd(F") with |U| > 3 and «(U) = 0.

First assume (i) holds. If only one end of e belongs to even(F'), extend F' by e. If
both ends of e belong to even(F) and F U {e} contains an M-blossom U, add U
to  (defining 7(U) := 0), replace F by F/U and M by M/U. If both ends of e
belong to even(F') and F' U {e} contains an M-augmenting path, augment M and
reset F':= M.

Next assume (ii) holds. Delete U from {2, replace F' by FUPUN and M by MUN,
where P is the even-length path in C'y connecting the two edges of F' incident with
U and where N is the matching in Cyy covering all vertices in U that are not covered
by M.

(Note that in this iteration e is bounded, since ) ;. 7(U) is bounded (by (18), as there is at least
one perfect matching), and since |even(F')| > |odd(F')| (as M is not perfect).)

If M is a perfect matching in G/, we are done: by (20) we can expand M to a perfect matching
N in G with w;(N) = 0 and [N N§(U)| = 1 for each U € Q; then N has equality throughout in
(18), and hence it is a minimum-weight perfect matching.

Theorem 5.5. There are at most |V|? iterations.

Proof. In any iteration where we augment M, the value of |V(G/Q)| —2| M| decreases by 2. If there
is no matching augmentation, this value remains invariant. So there are at most 3|V| matching
augmentations.

Let Veven be the set of vertices v € V that are shrunk to a vertex in even(F'). Let Q¢ be the
set of vertices of G/ that do not belong to even(F'). Then in any iteration with no matching
augmentation, 2|Veven| + |{20| increases. Since this value cannot exceed 2|V|, between any two
matching augmentations there are at most 2|V| iterations. |

This gives the theorem of Edmonds [1965a]:

Corollary 5.5a. A minimum-weight perfect matching can be found in polynomial time.

Proof. The nestedness of Q implies that [€2] < 2|V| (which is an easy exercise — see Exercise 5.10).
Hence each iteration can be performed in polynomial time. With any U € © with |U| > 3 we should
keep the Hamiltonian circuit Cy of (20) — which we had obtained earlier when shrinking U. |

As a consequence one can derive:
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Corollary 5.5b. In any graph with weight function on the edges, a mazimum-weight matching can
be found in polynomial time.

Proof. Left to the reader. (Exercise 5.9.) |

The above algorithm can be implemented in time O(|V|?), which is a result of Gabow [1973] and
Lawler [1976]. Faster algorithms were given by Galil, Micali, and Gabow [1986] (O(|E||V|log|V]))
and Gabow [1990] (O(|V||E| + |V |*log [V])).

For more about matchings we refer to the book of Lovdsz and Plummer [1986].

Application 5.3: Optimal pairing. In several practical situations one has to find an ‘optimal pairing’,
for example, when scheduling crews for airplanes. Also if one has to assign bus seats optimally to the
participants of an organized tour, or to accommodate the participants most satisfactorily in two-bed hotel
rooms, one has to solve a maximum-weight perfect matching problem.

Application 5.4: Airline timetabling. A European airline company has for its European flights a
number of airplanes available. Each plane can make on any day two return flights to European destinations
(not necessarily the same destinations). The profit one makes on any flight depends on the departure and
arrival times of the flight (also due to intercontinental connections). The company wants to make a timetable
so that it can be performed by the available fleet and so that the total profit is maximized. Assume that
the number of destinations to be reached is equal to twice the number of airplanes available.

To solve this problem, consider the complete graph with vertex set all possible destinations. For each
edge of this graph, connecting destinations B and C say, one calculates the profit that will be made if one
and the same air plane will make its flights to B and C' (in one order or the other). So one determines the
optimum schedule for the flights to B and C so that the two return flights can be done by the same airplane
and so that the total profit on the two flights is maximized.

Now a timetable yielding maximum profit is found by determining a maximum-weight perfect matching
in this graph.

Application 5.5: Chinese postman problem. The Chinese postman problem, first studied by Guan
[1960], consists of the following. Given a graph G = (V, E) and a length function [ : E — Qy, find a
minimum-length tour 7" that traverses each edge at least once.

It is not difficult to see that if each vertex of G has an even degree, then the optimal tour traverses each
edge exactly once. But if the graph has vertices of odd degree, certain edges have to be traversed more than
once. To find such edges we can proceed as follows.

First determine the set U of vertices of odd degree. Note that |U| is even. For each pair u,u’ of vertices
in U determine the distance d(u,u’) between u and v’ in the graph G (taking [ as length). Consider the
complete graph H = (U, E’) on U. Determine a minimum-weight perfect matching M in H, taking d as
weight function. For each edge uu’ in M we can determine a path P, . in G of length d(u,u’). It can be
shown that any two different such paths do not have any edge in common (assuming that each edge has
positive length) — see Exercise 5.13. Let E be the set of edges occurring in the P, .,/ (uu’ € M). Then
there exists a tour T so that each edge e € E'\ E is traversed exactly once and each edge e € E is traversed
exactly twice. This tour 7T is a shortest ‘Chinese postman tour’.

Application 5.6: Christofides’ approximative algorithm for the traveling salesman problem.

Christofides [1976] designed the following algorithm to find a short traveling salesman tour in a graph

(generally not the shortest however). The traveling salesman problem is the problem, given a finite set V'

and a ‘length’ function [ : V x V — Q, to find a shortest traveling salesman tour. A traveling salesman

tour (or Hamiltonian circuit) is a circuit in the complete graph on V' traversing each vertex exactly once.
Suppose that the length function satisfies the triangle inequality:

(22) l(u,w) <Il(u,v) + (v, w)

for all u,v,w € V. Then a reasonably short traveling salesman tour can be found as follows.
First determine a shortest spanning tree S (with the greedy algorithm). Next, let U be the set of vertices
that have odd degree in S. Find a shortest perfect matching M on U, taking [ as weight function. Now
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ES U M forms a set of edges such that each vertex has even degree. (If an edge occurs both in ES and in
M, we take it as two parallel edges.) So we can make a cycle T such that each edge in ES U M is traversed
exactly once. Then T traverses each vertex at least once. By inserting shortcuts we obtain a traveling
salesman tour 7" with length(T") <length(T).

How far away is the length of T’ from the length of a shortest traveling salesman tour? Let p be the
length of a shortest traveling salesman tour. It is not difficult to show that:

(23) (i) length(S) < p;
(ii) length(M) < %ﬂ

(Exercise 5.17.) Hence
(24) length(7") <length(T) =length(S)+length(M) < 2p.

So the tour obtained with Christofides’ algorithm is not longer than % times the optimal tour.

The factor % seems quite large, but it is the smallest factor for which a polynomial-time method is known.
Don’t forget moreover that it is a worst-case bound, and that in practice (or in average) the algorithm might
have a much better performance.

Exercises

5.8. Find with the weighted matching algorithm a minimum-weight perfect matching in the following
weighted graphs:

2
1 5
(i) 1 3 6
1 7
4
0 2
0 0 5 1 >
(ii) ) 1 1 3 6
0
0 4

5.9. Derive Corollary 5.5b from Corollary 5.5a.
5.10. A collection 2 of subsets of a finite set V' is called cross-free if:
(25) if X, YeQ then XCY,orYCX,or XNY =0, or XUY =V.
Show that if Q is cross-free, then Q| < 4|V
5.11. Find a shortest Chinese postman route in the graph in Figure 5.1.
5.12. Find a shortest Chinese postman route in the map of Figure 5.2.

5.13. Show that the paths found in the algorithm for the Chinese postman problem pairwise do not have
any edge in common (if each edge has positive length).
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5.14.
5.15.

5.16.

5.17.
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(4]

6
4
5
4
1
2
8
2 3
3
2 4
3 5 3 3
4, 5 2
4
3
9
Figure 5.1

Figure 5.2 Part of the Xuhui district of Shanghai

Apply Christofides’ algorithm to the table in Exercise 1.8.

Let G = (V, E) be a graph and let T C V with |T| even. Call a subset F' of E a T-join if T' is equal

to the set of vertices of odd degree in the graph (V, F).

Derive from Corollary 5.5a that a minimum-weight T-join can be found in polynomial time.

Let G = (V, E) be agraph and let [ : E — Q be a length function such that each circuit has nonnegative

length. Let r,s € V.

Derive from the minimum-weight perfect matching algorithm an algorithm to find a minimum-length

(simple) r — s path in G.
Show (23).

5.4. The matching polytope

The weighted matching algorithm of Edmonds [1965a] gives as a side result a characterization
of the perfect matching polytope Pperfect matching(G) of any graph G. This is Edmonds’ matching
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polytope theorem.
The perfect matching polytope of a graph G = (V, E), denoted by Pperfect matching(G), is the
convex hull of the incidence vectors of the perfect matchings in G.'7 That is,

(26) Pyerfect matching (G) =conv.hull{x™ | M perfect matching in G}.

S0 Pyerfect matching(G) is a polytope in R.
In Section 3.5 we saw that for a bipartite graph G = (V| E), the perfect matching polytope is
fully determined by the following set of inequalities:

(27) (1) z. >0 foreacheeFE;
(i) >.5pre =1 foreachveV.

These inequalities are not enough for, say, K3: taking x(e) := % for each edge e of K3 gives a vector
x satisfying (27) but not belonging to the perfect matching polytope of K.

Edmonds [1965a] showed that it is enough to add the following set of inequalities:

(28) Z Ze > 1 for each odd subset U of V.
eed(U)

It is clear that for any perfect matching M in G the incidence vector x™ satisfies (28). So
clearly, Pperfect matching(G) is contained in the polyhedron @ defined by (27) and (28). The essence
of Edmonds’ theorem is that one does not need more.

In order to show Edmonds’ theorem, we derive from Edmonds’ algorithm the following theorem,
where Poqa(V') denotes the collection of odd subsets of V:

Theorem 5.6. Let G = (V,E) be a graph and let w : E — Q be a ‘weight’ function. Then the
minimum weight of a perfect matching is equal to the mazimum value of ZXEPodd(V) w(X) where w
ranges over all functions 7 : Poga(V) — Q satisfying (17).

Proof. We may assume that w is nonnegative: if u is the minimum value of w(e) over all edges e,
decreasing each w(e) by p decreases both the maximum and the minimum by 2|V|p.

The fact that the minimum is not smaller than the maximum follows from (18). Equality follows
from the fact that in the algorithm the final perfect matching and the final function 7 have equality
throughout in (18). |

This implies:

Corollary 5.6a (Edmonds’ perfect matching polytope theorem). The perfect matching polytope of
any graph G = (V, E) is determined by (27) and (28).

Proof. By Theorem 5.6 and LP-duality, for any weight function w € Q¥ the minimum weight of a
perfect matching is equal to the minimum of w”'z taken over the polytope determined by (27) and
(28). Hence the two polytopes coincide.

From this one can derive Edmonds’ matching polytope theorem, characterizing the matching
polytope of a graph G = (V, E), denoted by Patching(G), which is the convex hull of the incidence
vectors of the matchings in G. That is,

(29) Pratching(G) =conv.hull{x™ | M matching in G}.

17For any finite set X and any subset Y of X, the incidence vector or incidence function of a subset Y of X is the
vector x¥ € RX defined by: x¥ :=1if x € Y and x) := 0 otherwise.
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Again, Pratching(G) is a polytope in RE.

Corollary 5.6b (Edmonds’ matching polytope theorem). For any graph G = (V, E) the matching
polytope is determined by:

(30) (i) e >0 for each e € F;
(i)  Desp®e =<1 for each v € V;
(i) Y.cp®e < [3U]] for each U C V with |U] odd.
Proof. Left to the reader (Exercise 5.20). |

This in turn has the following consequence:

Corollary 5.6c. Let G = (V, E) be a graph and let w : E — Q4. Then the mazimum weight of a
matching is equal to the minimum value of

(31) St > ZU|_%|U|J»

VeV Uucv

where y € QY and z € Qf“dd(v) satisfy D, ce Yo + ZUGPodd(V) ocu 2u = w(e) for each edge e.

Proof. Directly with LP-duality from Corollary 5.6b. |

In fact, Cunningham and Marsh’ theorem shows that if w is integer-valued, we can restrict y and
z to integer vectors — see Section 5.5.

Exercises

5.18. Show that for any graph G = (V,E), if the inequalities (30)(i)(ii) fully determine the matching
polytope, then G is bipartite.

5.19. Show that the perfect matching polytope of a graph G = (V, E) is also determined by the following

inequalities:
(32) e >0 for each e € E;
Z e >1 for each odd subset U of V;
eed(U)
Z z. =3[V
eckE

5.20. Derive Edmonds’ matching polytope theorem from Edmonds’ perfect matching polytope theorem.

5.21. Derive from Edmonds matching polytope theorem the linear inequalities determining the convex hull
of all symmetric permutation matrices.

5.22. Let G = (V, E) be a graph. Show that the convex hull of the incidence vectors of matchings of size k
is equal to the intersection of the matching polytope of G' with the hyperplane {z | 17z = k}.

5.23. Let G = (V,E) be a graph. Show that the convex hull of the incidence vectors of matchings of
size at least k and at most [ is equal to the intersection of the matching polytope of G with the set
{z |k <17z <1}

5.5. The Cunningham-Marsh formula

Cunningham and Marsh [1978] showed a more general result, which generalizes both Edmonds’
matching polytope theorem and the Tutte-Berge formula. We give a direct proof.
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Theorem 5.7 (Cunningham-Marsh formula). In Corollary 5.6c, if w is integer, we can take y and
z integer.

Proof. We must give a matching M and integer values y,, 2y as required with w(M) equal to (31).

Let T be equal to the maximum weight of a matching and let M be the set of matchings M of
weight T. We prove the theorem by induction on 7. We may assume that G is the complete graph
on V. Let G,w be a counterexample to the theorem with (fixing V' and T') > .5 w(e) as large as
possible.

First assume that there exists a vertex u of G covered by every matching M € M. Let w’ be
obtained from w by decreasing w(e) by 1 for each edge e incident with « with w(e) > 1. Then the
maximum of w'(M) over all matchings M is equal to T — 1, since each M € M contains an edge
e incident with u with w(e) > 1. Hence, by induction, there exist y/, z;; as required for w’. Now
increasing y,, by 1 and leaving all other values of y.,, z;, invariant, gives y,, zy as required for w.

So we may assume that for each vertex v there exists a matching M € M not covering v. We
show that for each three distinct vertices a, b, c € V' one has

(33) w(ac) > min{w(ab), w(bec)}.

Indeed, by the maximality of 3 ., w(e) there exists a matching M € M containing ac. (Otherwise
we could increase the weight of ac without increasing T', contradicting the maximality of ) . 5 w(e).)
Moreover, there exists a matching M’ € M not covering b. Let P be the component of M U M’
containing ac. At least one component, @ say, of P\ {ac} does not contain b. By symmetry of a
and ¢ we may assume that @ contains a. Then MA(Q U {ac}) and M'A(Q U {ab}) are matchings
again. Now w(MA(Q U {ac})) <T = w(M), and so w(Q N M’) < w(Q N M) + w(ac). Moreover,
w(M'A(QU {ab})) <T = w(M’'), and so w(Q N M) + w(adb) < w(Q N M'). Hence w(ab) < w(ac),
proving (33).

For each natural number n > 1 let G,, be the graph on V with as edges all e € E with w(e) > n,
and let IC,, be the set of components of G,,. Consider some n and some U € ,,.

By (33), G|U is a complete graph. We show that each M € M contains exactly |$|U|] edges
that are in EU (= set of edges contained in U).

Suppose to the contrary that U contains two vertices a and b such that a and b are not covered by
any edge in M N EU. If a or b is not covered by M we could replace the edge in M incident with a or
b (if any) by the edge ab, thereby increasing the weight — a contradiction. So we may assume that
ac,bd € M for some c¢,d € U. By (33), w(ed) > min{w(ac), w(ad)} > min{w(ac), w(ab),w(bd)} =
min{w(ac), w(bd)}. Since w(ab) > max{w(ac), w(bd)} this implies w(ab) + w(cd) > w(ac) + w(bd).
Therefore, replacing ac and bd in M by ab and cd would increase the weight — a contradiction. So
M N EU| = [L|U]].

For each U C V with |U| > 1, define zy as the number of natural numbers n > 1 for which
U € Ky. Then ) -, 2zv > w(e) for each edge e (since e is in w(e) graphs G,,). Moreover, choose
M € M arbitrarily. Then

(34 Sl =3 Y 5= ¥ MnEy
Ucv n=1yck, n=1yekC.
= Z (number of n,U with e CU € K,,) = Z w(e). |
ecM ecM

Exercises
5.24. Derive the Tutte-Berge formula from the Cunningham-Marsh formula (Theorem 5.7).
5.25. Derive Edmonds’ matching polytope theorem from the Cunningham-Marsh formula (Theorem 5.7).
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6. Problems, algorithms, and running time

6.1. Introduction

Probably most of the readers will have some intuitive idea about what is a problem and what
is an algorithm, and what is meant by the running time of an algorithm. Although for the greater
part of this course this intuition will be sufficient to understand the substance of the matter, in some
cases it is important to formalize this intuition. This is particularly the case when we deal with
concepts like NP and NP-complete.

The class of problems solvable in polynomial time is usually denoted by P. The class NP, that
will be described more precisely below, is a class of problems that might be larger (and many people
believe it is larger). It includes most combinatorial optimization problems, including all problems
that are in P. That is: PCNP. In particular, NP does not mean: “non-polynomial time”. The
letters NP stand for “nondeterministic polynomial-time”. The class NP consists, roughly speaking,
of all those questions with the property that for any input that has a positive answer, there is a
‘certificate’ from which the correctness of this answer can be derived in polynomial time.

For instance, the question:

(1) ‘Given a graph G, is G Hamiltonian?’

belongs to NP. If the answer is ‘yes’, we can convince anyone that this answer is correct by just
giving a Hamiltonian circuit in G as a certificate. With this certificate, the answer ‘yes’ can be
checked in polynomial time — in fact: trivially. Here it is not required that we are able to find the
certificate in polynomial time. The only requirement is that there ezists a certificate which can be
checked in polynomial time.

Checking the certificate in polynomial time means: checking it in time bounded by a polynomial
in the original input. In particular, it implies that the certificate itself has size bounded by a
polynomial in the original input.

To elucidate the meaning of NP, it is not known if for any graph G for which question (1) has
a negative answer, there is a certificate from which the correctness of this answer can be derived
in polynomial time. So there is an easy way of convincing ‘your boss’ that a certain graph is
Hamiltonian (just by exhibiting a Hamiltonian circuit), but no easy way is known for convincing
this person that a certain graph is non-Hamiltonian.

Within the class NP there are the “NP-complete” problems. These are by definition the hardest
problems in the class NP: a problem II in NP is NP-complete if every problem in NP can be reduced
to II, in polynomial time. It implies that if one NP-complete problem can be proved to be solvable
in polynomial time, then each problem in NP can be solved in polynomial time. In other words:
then P=NP would follow.

Surprisingly, there are several prominent combinatorial optimization problems that are NP-
complete, like the traveling salesman problem and the problem of finding a maximum clique in
a graph. This pioneering eye-opener was given by Cook [1971] and Karp [1972].

Since that time one generally sets the polynomially solvable problems against the NP-complete
problems, although there is no proof that these two concepts really are distinct. For almost every
combinatorial optimization problem one has been able either to prove that it is solvable in polynomial
time, or that it is NP-complete. But theoretically it is still a possibility that these two concepts are
just the same! Thus it is unknown which of the two diagrams in Figure 6.1 applies.

Below we make some of the notions more precise. We will not elaborate all technical details
fully, but hope that the reader will be able to see the details with not too much effort. For precise
discussions we refer to the books by Aho, Hopcroft, and Ullman [1974], Garey and Johnson [1979],
and Papadimitriou [1994].
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Figure 6.1

6.2. Words

If we use the computer to solve a certain graph problem, we usually do not put a picture of the
graph in the computer. (We are not working with analog computers, but with digital computers.)
Rather we put some appropriate encoding of the problem in the computer, by describing it by a
sequence of symbols taken from some fixed finite ‘alphabet’ 3. We can take for ¥ for instance the
ASCII set of symbols or the set {0,1}. It is convenient to have symbols like (, ), { , } and the
comma in ¥, and moreover some symbol like _ meaning: ‘blank’. Let us fix one alphabet X.

We call any ordered finite sequence of elements from ¥ a word. The set of all words is denoted
by X*.

a e
b
¢ d
Figure 6.2

It is not difficult to encode objects like rational numbers, vectors, matrices, graphs, and so on,
as words. For instance, the graph given in Figure 6.2 can be encoded, as usual, by the word:

(2) ({a,b,¢,d, e}, {{a, b}, {a, ¢}, {b,c}, {c, d}, {d, e}, {e, a}}).

A function f defined on a finite set X can be encoded by giving the set of pairs (x, f(z)) with z € X.
For instance, the following describes a function defined on the edges of the graph above:

(3> {({a’ b}’ 32)7 ({CL, 0}7 _17)’ ({b7 C}, 5/7)’ ({07 d}a 6)7 ({d7 6}7 _1)7 ({ev a}7 _9)}'

A pair of a graph and a function can be described by the word (w,v), where w is the encoding of
the graph and v is the encoding of the function.

The size of a word w is the number of symbols used in w, counting multiplicities. (So the
word abaa32bc has size 8.) The size is important when we make estimates on the running time of
algorithms.

Note that in encoding numbers (integers or rational numbers), the size depends on the number
of symbols necessary to encode these numbers. Thus if we encounter a problem on a graph with
numbers defined on the edges, then the size of the input is the total number of bits necessary to
represent this structure. It might be much larger than just the number of nodes and edges of the
graph, and much smaller than the sum of all numbers occurring in the input.
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Although there are several ways of choosing an alphabet and encoding objects by words over
this alphabet, any way chosen is quite arbitrary. We will be dealing with solvability in polynomial
time in this chapter, and for that purpose most encodings are equivalent. Below we will sometimes
exploit this flexibility.

6.3. Problems

What is a problem? Informally, it is a question or a task, for instance, “Does this given graph
have a perfect matching?” or “Find a shortest traveling salesman tour in this graph!”. In fact there
are two types of problems: problems that can be answered by ‘yes’ or ‘no’ and those that ask you
to find an object with certain prescribed properties. We here restrict ourselves to the first type of
problems. From a complexity point of view this is not that much of a restriction. For instance,
the problem of finding a shortest traveling salesman tour in a graph can be studied by the related
problem: Given a graph, a length function on the edges, and a rational number r, does there exist
a traveling salesman tour of length at most 7 If we can answer this question in polynomial time,
we can find the length of a shortest tour in polynomial time, for instance, by binary search.

So we study problems of the form: Given a certain object (or sequence of objects), does it have
a certain property? For instance, given a graph G, does it have a perfect matching?

As we encode objects by words, a problem is nothing but: given a word w, does it have a certain
property? Thus the problem is fully described by describing the “certain property”. This, in turn,
is fully described by just the set of all words that have the property. Therefore we have the following
mathematical definition: a problem is any subset IT of ¥*.

If we consider any problem II C ¥*, the corresponding ‘informal’ problem is:

(4) Given word w, does w belong to I1?

In this context, the word w is called an instance or the input.
6.4. Algorithms and running time

An algorithm is a list of instructions to solve a problem. The classical mathematical formalization
of an algorithm is the Turing machine. In this section we will describe a slightly different concept
of an algorithm (the ‘Thue system’) that is useful for our purposes (explaining NP-completeness).
In Section 6.10 below we will show that it is equivalent to the notion of a Turing machine.

A basic step in an algorithm is: replace subword u by u’. It means that if word w is equal to
tuv, where ¢t and v are words, we replace w by the word tu’v. Now by definition, an algorithm is a
finite list of instructions of this type. It thus is fully described by a sequence

(5) ((uhu/l)w"v(un’u%)%

where uy,u),..., U, u,, are words. We say that word w’ follows from word w if there exists a
j € {1,...,n} such that w = tu;v and w' = tujv for certain words ¢ and v, in such a way that j is
the smallest index for which this is possible and the size of ¢ is as small as possible. The algorithm
stops at word w if w has no subword equal to one of uy,...,u,. So for any word w, either there is
a unique word w’ that follows from w, or the algorithm stops at w. A (finite or infinite) sequence
of words wq, wy,ws, ... is called allowed if each w;11 follows from w; and, if the sequence is finite,
the algorithm stops at the last word of the sequence. So for each word w there is a unique allowed
sequence starting with w. We say that A accepts w if this sequence is finite.

For reasons of consistency it is important to have the ‘empty space’ at both sides of a word as
part of the word. Thus instead of starting with a word w, we start with w_, where _is a symbol
indicating space.

Let A be an algorithm and let IT C * be a problem. We say that A solves II if II equals the set
of words accepted by A. Moreover, A solves w in polynomial-time if there exists a polynomial p(x)
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such that for any word w € ¥*: if A accepts w, then the allowed sequence starting with w contains
at most p(size(w)) words.

This definition enables us indeed to decide in polynomial time if a given word w belongs to II.
We just take wg := w, and next, for i = 0, 1,2, ..., we choose ‘the first’ subword u; in w; and replace
it by u/; (for some j € {1,...,n}) thus obtaining w;1. If within p(size(w)) iterations we stop, we
know that w belongs to II, and otherwise we know that w does not belong to II.

Then P denotes the set of all problems that can be solved by a polynomial-time algorithm.

6.5. The class NP

We mentioned above that NP denotes the class of problems for which a positive answer has a
‘certificate’ from which the correctness of the positive answer can be derived in polynomial time.
We will now make this more precise.

The class NP consists of those problems IT C X* for which there exist a problem II' €P and a
polynomial p(z) such that for any w € ¥*:

(6) w € II if and only if there exists a word v such that (w,v) € II' and such that
size(v) < p(size(w)).

So the word v acts as a certificate showing that w belongs to II. With the polynomial-time algorithm
solving IT’, the certificate proves in polynomial time that w belongs to II.
As examples, the problems

(7) IT; := {G | G is a graph having a perfect matching} and
II; := {G | G is a Hamiltonian graph}

(encoding G as above) belong to NP, since the problems

(8) I, := {(G,M)|Gisagraph and M is a perfect matching in G} and
I, := {(G,H)|G is agraph and H is a Hamiltonian circuit in G}
belong to P.
Similarly, the problem
(9) TSP := {(G,l,r)|Gisagraph,lisa ‘length’ function on the edges of G and
r is a rational number such that G has a Hamiltonian tour of length
at most r}

(‘the traveling salesman problem’) belongs to NP, since the problem

(10) TSP" = {(G,l,r,H) |G is a graph, [ is a ‘length’ function on the edges of G,
r is a rational number, and H is a Hamiltonian tour in G of length
at most r}

belongs to P.

Clearly, PCNP, since if II belongs to P, then we can just take the empty string as certificate for
any word w to show that it belongs to II. That is, we can take II' := {(w,) | w € II}. As II €P, also
I’ eP.

The class NP is apparently much larger than the class P, and there might be not much reason to
believe that the two classes are the same. But, as yet, nobody has been able to show that they really
are different! This is an intriguing mathematical question, but besides, answering the question might
also have practical significance. If P=NP can be shown, the proof might contain a revolutionary
new algorithm, or alternatively, it might imply that the concept of ‘polynomial-time’ is completely
useless. If P#NP can be shown, the proof might give us more insight in the reasons why certain
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problems are more difficult than other, and might guide us to detect and attack the kernel of the
difficulties.

6.6. The class co-NP

By definition, a problem IT C X* belongs to the class co-NP if the ‘complementary’ problem
IT := ¥* \ II belongs to NP.
For instance, the problem II; defined in (7) belongs to co-NP, since the problem

(11) Iy := {(G,W)]|Gisagraph and W is a subset of the vertex set of G such
that the graph G — W has more than |W| odd components}

belongs to P. This follows from Tutte’s ‘1-factor theorem’ (Corollary 5.1a): a graph G has no perfect
matching, if and only if there is a subset W of the vertex set of G with the properties described
in (11). (Here, strictly speaking, the complementary problem II; of II; consists of all words w
that either do not represent a graph, or represent a graph having no perfect matching. We assume
however that there is an easy way of deciding if a given word represents a graph. Therefore, we might
assume that the complementary problem is just {G | G is a graph having no perfect matching}.)

It is not known if the problems IIy and TSP belong to co-NP.

Since for any problem II in P also the complementary problem II belongs to P, we know that
PCco-NP. So PCNPNco-NP. The problems in NPNco-NP are those for which there exist certificates
both in case the answer is positive and in case the answer is negative. As we saw above, the perfect
matching problem II; is such a problem. Tutte’s theorem gives us the certificates. Therefore, Tutte’s
theorem is called a good characterization.

In fact, there are very few problems known that are proved to belong to NPNco-NP, but that
are not known to belong to P. Most problems having a good characterization, have been proved to
be solvable in polynomial time. The notable exception for which this is not yet proved is primality
testing (testing if a given natural number is a prime number).

6.7. NP-completeness

The NP-complete problems are by definition the hardest problems in NP. To be more precise,
we first define the concept of a polynomial-time reduction. Let IT and II’ be two problems and let A
be an algorithm. We say that A is a polynomial-time reduction of II' to II if A is a polynomial-time
algorithm (‘solving’ ¥*), so that for any allowed sequence starting with w and ending with v one
has: w € IT" if and only if v € II. A problem II is called NP-complete, if II €NP and for each problem
IT" in NP there exists a polynomial-time reduction of II’ to II.

It is not difficult to see that if II belongs to P and there exists a polynomial-time reduction of
I’ to II, then also I’ belongs to P. It implies that if one NP-complete problem can be solved in
polynomial time, then each problem in NP can be solved in polynomial time. Moreover, if II belongs
to NP, I’ is NP-complete and there exists a polynomial-time reduction of I’ to II, then also II is
NP-complete.

6.8. NP-completeness of the satisfiability problem

We now first show that in fact there exist NP-complete problems. In fact we show that the
so-called satisfiability problem, denoted by SAT, is NP-complete.
To define SAT, we need the notion of a boolean expression. Examples are:

(12) (w2 Aa3) V—(x3 Vas) Axa), ((mzar Ax2) A xar), (27 A —y).

Boolean expressions can be defined inductively. First, for each natural number n, the ‘word’ x,, is a
boolean expression (using some appropriate encoding of natural numbers and of subscripts). Next,
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if v and w are boolean expressions, then also (v Aw), (vVw) and —v are boolean expressions. These
rules give us all boolean expressions. (If necessary, we may use other subscripts than the natural
numbers.)

Now SAT is a subcollection of all boolean expressions, namely it consists of those boolean ex-
pressions that are satisfiable. A boolean expression f(x1, 2,3, ...) is called satisfiable if there exist
a1, a9, as, ... € {0,1} such that f(ay, s, as,...) =1, using the well-known identities

(13) 0A0O=0A1=1A0=0,1A1=1,
0V0=0,0V1=1v0=1v1l=1,
~0=1,-1=0,(0)=0,(1) = 1.

Exercise. Let n > 1 be a natural number and let W be a collection of words in {0,1}* all of length
n. Prove that there exists a boolean expression f(x1,...,x,) in the variables x1, ..., 2, such that
for each word w = a ... @, in the symbols 0 and 1 one has: w € W if and only if f(ay,...,a,) = 1.

The satisfiability problem SAT trivially belongs to NP: we can take as certificate for a certain
f(x1, 29, x3,...) to belong to SAT, the equations x; = «; that give f the value 1. (We only give
those equations for which x; occurs in f.)

To show that SAT is NP-complete, it is convenient to assume that ¥ = {0,1}. This is not that
much a restriction: we can fix some order of the symbols in 3, and encode the first symbol by 10, the
second one by 100, the third one by 1000, and so on. There is an easy (certainly polynomial-time)
way of obtaining one encoding from the other.

The following result is basic for the further proofs:

Theorem 6.1. Let I1 C {0,1}* be in P. Then there exist a polynomial p(x) and an algorithm that
finds for each natural number n in time p(n) a boolean expression f(x1,x2,xs,...) with the property:

(14) any word ayay . ..oy in {0,1}* belongs to 11, if and only if the boolean expression
floa,...,an, Tnt1, Tnto, - . .) is satisfiable.

Proof. Since II belongs to P, there exists a polynomial-time algorithm A solving II. So there exists
a polynomial p(x) such that a word w belongs to IT if and only if the allowed sequence for w contains
at most p(size(w)) words. It implies that there exists a polynomial g(x) such that any word in the
allowed sequence for w has size less than ¢(size(w)).

We describe the algorithm meant in the theorem. Choose a natural number n. Introduce
variables z; ; and y; ; for ¢ = 0,1,...,p(n), j = 1,...,¢(n). Now there exists (cf. the Exercise
above) a boolean expression f in these variables with the following properties. Any assignment
xij =0y, €{0,1} and y; j := B;; € {0,1} makes f equal to 1, if and only if the allowed sequence
starting with the word wg := o 10,2 . .. g, is a finite sequence wy, . .., wy, so that:

(15) (i) «;; is equal to the jth symbol in the word w;, for each ¢ < k and each
j < size(w;);
(ii) B;; =1if and only if ¢ > k or j < size(w;).

The important point is that f can be found in time bounded by a polynomial in n. To see this,
we can encode the fact that word w;41 should follow from word w; by a boolean expression in the
‘variables’ z; ; and ;41 ;, representing the different positions in w; and w;41. (The extra variables
¥i; and y;41,; are introduced to indicate the sizes of w; and w;41.) Moreover, the fact that the
algorithm stops at a word w also can be encoded by a boolean expression. Taking the ‘conjunction’
of all these boolean expressions, will give us the boolean expression f. |
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As a direct consequence we have:

Corollary 6.1a. Theorem 6.1 also holds if we replace P by NP in the first sentence.

Proof. Let IT C {0, 1}* belong to NP. Then, by definition of NP, there exists a problem I’ in P and
a polynomial r(x) such that any word w belongs to II if and only if (w,v) belongs to II' for some
word v with size(v) < r(size(w)). By properly re-encoding, we may assume that for each n € N, any
word w € {0,1}* belongs to II if and only if wv belongs to II' for some word v of size r(size(w)).
Applying Theorem 6.1 to IT' gives the corollary.

Now the main result of Cook [1971] follows:

Corollary 6.1b (Cook’s theorem). The satisfiability problem SAT is NP-complete.

Proof. Let II belong to NP. We describe a polynomial-time reduction of IT to SAT. Let w =
ay...a, € {0,1}*. By Corollary 6.1a we can find in time bounded by a polynomial in n a boolean
expression f such that w belongs to II if and only if f(a,...,an,Tpt1,...) is satisfiable. This is
the required reduction to SAT. |

6.9. NP-completeness of some other problems

We next derive from Cook’s theorem some of the results of Karp [1972]. First we show that the
3-satisfiability problem 3-SAT is NP-complete. Let Bj be the set of all words x1, 1,29, 7o, . . ..
Let By be the set of all words (wq V -V wg), where wy,---,wy are words in By and 1 < k < 3.
Let B3 be the set of all words wi A ... A wg, where wq,...,wy are words in By. Again, we say that
a word f(x1,x2,...) € Bs is satisfiable if there exists an assignment x; := a; € {0,1} (1 = 1,2,...)
such that f(aq,as,...) =1 (using the identities (13)).

Now the 3-satisfiability problem 3-SAT is: Given a word f € Bs, decide if it is satisfiable.

Corollary 6.1c. The 3-satisfiability problem 3-SAT is NP-complete.

Proof. We give a polynomial-time reduction of SAT to 3-SAT. Let f(z1,22,...) be a boolean
expression. Introduce a variable y, for each subword g of f that is a boolean expression.
Now f is satisfiable if and only if the following system is satisfiable:

(16) Yg =Yg Vyg (fg=g"Vvyg"),
Yg =Yg Nygr  (fg=g"Ng"),
Yg = WYy (if g = —g'),
yr =1

Now y, = yg Vyg can be equivalently expressed by: y,V-ygy = 1,4,V -ygr = 1, 7y Vyg Vygr = 1.
Similarly, y, = y4 A yg» can be equivalently expressed by: =y, Vyy = 1,7y, Vygr = Lyg V 7y V
—yg = 1. The expression y, = —y, is equivalent to: y, Vyy = 1,7y, V -yy = 1.

By renaming variables, we thus obtain words w1, ..., wy in By, so that f is satisfiable if and only
if the word wy A ... A wy is satisfiable. |

We next derive that the partition problem PARTITION is NP-complete. This is the problem:
Given a collection C of subsets of a finite set X, is there a subcollection of C that forms a partition
of X7

Corollary 6.1d. The partition problem PARTITION is NP-complete.
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Proof. We give a polynomial-time reduction of 3-SAT to PARTITION. Let f = w; A ... A wy be
a word in Bs, where wy,...,wy are words in By. Let x1,...,x,, be the variables occurring in f.
Make a bipartite graph G with colour classes {w1,...,ws} and {z1,..., 2y}, by joining w; and x;
by an edge if and only if z; or —x; occurs in w;. Let X be the set of all vertices and edges of G.

Let C’ be the collection of all sets {w;} U E’, where E’ is a nonempty subset of the edge set
incident with w;. Let C" be the collection of all sets {z;} U E’ and {z;} U E, where E is the set of
all edges {w;, z;} so that z; occurs in w; and where E7 is the set of all edges {w;, z;} so that —z;
occurs in w;.

Now f is satisfiable, if and only if the collection C' U C” contains a subcollection that partitions
X. Thus we have a reduction of 3-SAT to PARTITION. |

We derive the NP-completeness of the directed Hamiltonian cycle problem DIRECTED HAMIL-
TONIAN CYCLE: Given a directed graph, does it have a directed Hamiltonian cycle?

Corollary 6.1e. DIRECTED HAMILTONIAN CYCLE is NP-complete.

Proof. We give a polynomial-time reduction of PARTITION to DIRECTED HAMILTONIAN CY-
CLE. Let C = {C4,...,Cpn} be a collection of subsets of the set X = {x1,...,2}. Introduce
‘vertices’ 7o, 71, .- Tmy S0s S1s - - - 5 Sk-

For each ¢ = 1,...,m we do the following. Let C; = {zj,,...,x;,}. We construct a directed
graph on the vertices r;_1,7;, s;,-1,5;, (for h = 1,...,t) and 3t new vertices, as in Figure 6.3.
Moreover, we make arcs from r,, to sg and from s to rg.

- S S: S; S
% e s]t 1 Jtad J2 i1, J.-1
/ / o o /
\90 =0 =@ - --------------- 9oeo %oeo
o
r ri
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Figure 6.3

Let D be the directed graph arising. Then it is not difficult to check that there exists a sub-
collection C’ of C that partitions X, if and only if D has a directed Hamiltonian cycle C. (Take:
(TZ‘,17’I"¢>EC<:>CZ‘EC/.) I

From this we derive the NP-completeness of the undirected Hamiltonian cycle problem UNDI-
RECTED HAMILTONIAN CYCLE: Given a graph, does it have a Hamiltonian cycle?

Corollary 6.1f. UNDIRECTED HAMILTONIAN CYCLE is NP-complete.

Proof. We give a polynomial-time reduction of DIRECTED HAMILTONIAN CYCLE to UNDI-
RECTED HAMILTONIAN CYCLE. Let D be a directed graph. Replace each vertex v by three
vertices v, v”, v"’, and make edges {v’,v"} and {v”,v""}. Moreover, for each arc (vy,v2) of D, make
an edge {vi,v'” }. This makes the undirected graph G. One easily checks that D has a dlrected
Hamiltonian cycle, if and only if G has an (undirected) Hamiltonian cycle. |

This trivially implies the NP-completeness of the traveling salesman problem TSP: Given a com-
plete graph G = (V, E), a ‘length’ function [ on F, and a rational r, does there exist a Hamiltonian
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cycle of length at most r?7

Corollary 6.1g. The traveling salesman problem TSP is NP-complete.

Proof. We give a polynomial-time reduction of UNDIRECTED HAMILTONIAN CYCLE to TSP.
Let G be a graph. Let G’ be the complete graph on V. Let I(e) := 0 for each edge e of G and let
l(e) := 1 for each edge of G’ that is not an edge of G. Then G has a Hamiltonian cycle, if and only
if G’ has a Hamiltonian cycle of length at most 0. |

6.10. Turing machines

In Section 6.4 we gave a definition of ‘algorithm’. How adequate is this definition? Can any
computer program be modelled after that definition?

To study this question, we need to know what we understand by a ‘computer’. Turing [1937]
gave the following computer model, now called a Turing machine or a one-tape Turing machine.

A Turing machine consists of a ‘processor’ that can be in a finite number of ‘states’ and of a
‘tape’, of infinite length (in two ways). Moreover, there is a ‘read-write head’; that can read symbols
on the tape (one at a time). Depending on the state of the processor and the symbol read, the
processor passes to another (or the same) state, the symbol on the tape is changed (or not) and the
tape is moved one position ‘to the right’ or ‘to the left’.

The whole system can be described by just giving the dependence mentioned in the previous
sentence. So, mathematically, a Turing machine is just a function

(17) T:Mx¥Y— Mx3x{+1,-1}.

Here M and 3 are finite sets: M is interpreted as the set of states of the processor, while X
is the set of symbols that can be written on the tape. The function 7T describes an ‘iteration’:
T(m,o) = (m’,0’,41) should mean that if the processor is in state m and the symbol read on the
tape is o, then the next state will be m’, the symbol o is changed to the symbol ¢’ and the tape is
moved one position to the right. T'(m,o) = (m’,¢’, —1) has a similar meaning — now the tape is
moved one position to the left.

Thus if the processor is in state m and has the word w’a’ca’’w” on the tape, where the symbol
indicated by o is read, and if T'(m,o) = (m/,¢’,+1), then next the processor will be in state m’
and has the word w’a’c’a”w” on the tape, where the symbol indicated by o is read. Similarly if
T(m,o) = (m/,o’,—1).

We assume that M contains a certain ‘start state’ 0 and a certain ‘halting state’ co. Moreover,
Y is assumed to contain a symbol _ meaning ‘blank’. (This is necessary to identify the beginning
and the end of a word on the tape.)

We say that the Turing machine T' accepts a word w € (X \ {_})* if, when starting in state 0 and
with word w on the tape (all other symbols being blank), so that the read-write head is reading the
first symbol of w, then after a finite number of iterations, the processor is in the halting state occ.
(If w is the empty word, the symbol read initially is the blank symbol _.)

Let II be the set of words accepted by T'. So II is a problem. We say that T" solves II. Moreover,
we say that T solves II in polynomial time if there exists a polynomial p(z) such that if T accepts a
word w, it accepts w in at most p(size(w)) iterations.

It is not difficult to see that the concept of algorithm defined in Section 6.4 above is at least as
powerful as that of a Turing machine. We can encode any state of the computer model (processor+tape+read-
write head) by a word (w’, m,w’). Here m is the state of the processor and w'w” is the word on
the tape, while the first symbol of w” is read. We define an algorithm A by:

(18) replace subword ,m, o by ¢’,m’, whenever T'(m, o) = (m’,0’,41) and m # oo;
replace subword «, m, o by m’, ac’, whenever T'(m, o) = (m’,¢’,—1) and m # oo.
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To be precise, we should assume here that the symbols indicating the states in M do not belong to
3. Moreover, we assume that the symbols (and ) are not in ¥.. Furthermore, to give the algorithm a
start, it contains the tasks of replacing subword _a by the word (,0,« , and subword a_by «) (for
any « in ¥\ {_}). Then, when starting with a word w, the first two iterations transform it to the
word (,0,w). After that, the rules (18) simulate the Turing machine iterations. The iterations stop
as soon as we arrive at state oo.

So T accepts a word w if and only if A accepts w — in (about) the same number of iterations.
That is, T solves a problem II (in polynomial time), if and only if A solves IT (in polynomial time).

This shows that the concept of ‘algorithm’ defined in Section 6.4 is at least as powerful as that
of a Turing machine. Conversely, it is not hard (although technically somewhat complicated) to
simulate an algorithm by a Turing machine. But how powerful is a Turing machine?

One could think of several objections against a Turing machine. It uses only one tape, that
should serve both as an input tape, and as a memory, and as an output tape. We have only limited
access to the information on the tape (we can shift only one position at a time). Moreover, the
computer program seems to be implemented in the ‘hardware’ of the computer model; the Turing
machine solves only one problem.

To counter these objections, several other computer models have been proposed that model a
computer more realistically: multi-tape Turing machines, random access machines (RAM’s), the
universal Turing machine. However, from a polynomial-time algorithmic point of view, these models
all turn out to be equivalent. Any problem that can be solved in polynomial time by any of these
computer models, can also be solved in polynomial time by some one-tape Turing machine, and
hence by an algorithm in the sense of Section 6.4. We refer to Aho, Hopcroft, and Ullman [1974]
and Papadimitriou [1994] for an extensive discussion.
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7. Cliques, cocliques, and colourings

7.1. Introduction

We have seen in Chapter 5 that in any graph G = (V, E), a matching of maximum cardinality
can be found in polynomial time. Similarly, an edge-cover of minimum cardinality can be found in
polynomial time.

On the other hand, it is NP-complete to find a maximum-cardinality coclique in a graph. That
is, determining «(G) is NP-complete. To be more precise, the problem COCLIQUE is:

(1) given: a graph G and a natural number k,
decide: if a(G) > k.

Then:

Theorem 7.1. The problem COCLIQUE is NP-complete.

Proof. We reduce SAT to COCLIQUE. Let C; A --- A Ck be a boolean expression in the variables
X1y-eeyTpn. Let x1,-x1,...,T,, T, be the literals. Consider the graph G = (V,E) with V :=
{(0,7) | o is a literal in C;} and E := {{(0,4),(7,7)} | ¢ = j or 0 = =7}. Then the expression is
satisfiable if and only if G has a coclique of size k. |

Since by Gallai’s theorem Theorem 3.1, a(G) = |V| — 7(G), also determining the vertex-cover
number 7(G) is NP-complete.

A cligue in a graph G = (V, E) is a subset C' of V such that v and w are adjacent for any two
distinct u,w in C. The cliqgue number of G, denoted by w(G), is the maximum cardinality of any
clique in G.

Observe that a subset C of V is a clique in G if and only if C is a coclique in the complemen-
tary graph G. So finding a maximum-cardinality clique in G is equivalent to finding a maximum-
cardinality coclique in G, and w(G) = a(G). As determining a(G) is NP-complete, also determining
w(@) is NP-complete.

A (vertez-)colouring of a graph G = (V, E) is a partition of V into cocliques C1,...,Ck. The
sets Cq,...,Cy are called the colours of the colouring. The (vertex-)colouring number, or (vertex-
)chromatic number, of G, denoted by v(G), is the minimum number of colours in any vertex-colouring
of G. A graph G is called k-colourable if v(G) < k.

Well-known is the four-colour conjecture (4CC), stating that v(G) < 4 for each planar graph G.
This conjecture was proved by Appel and Haken [1977] and Appel, Haken, and Koch [1977], and is
now called the four-colour theorem (4CT).

Again, it is NP-complete to decide if a graph is k-colourable. In fact, it is NP-complete to decide
if a planar graph is 3-colourable. [Note that one can decide in polynomial time if a graph G is
2-colourable, as bipartiteness can be checked in polynomial time.]

These NP-completeness results imply that if NPz£co-NP, then one may not expect a min-max
relation characterizing the coclique number a(G), the vertex-cover number 7(G), the clique number
w(G), or the colouring number v(G) of a graph G.

There is a trivial upper bound on the colouring number:

(2) (@) <AG) +1,

where A(G) denotes the maximum valency of G. Brooks [1941] sharpened this inequality as follows:
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Theorem 7.2 (Brooks’ theorem). For any connected graph G one has v(G) < A(G), except if
G =K, or G=Co,.1 for somen > 1.8

Another inequality relates the clique number and the colouring number:
(3) w(@) <7(G).

This is easy, since in any clique all vertices should have different colours.

But there are several graphs which have strict inequality in (3). We mention the odd circuits
Cok11, with 2k 41 > 5: then w(Caxy1) = 2 and y(Cax11) = 3. Moreover, for the complement Cay 1
of any such graph we have: w(Caxy1) =k and y(Cogy1) = k + 1.

It was a conjecture of Berge [1963] that these graphs are crucial, which was proved in 2002 by
Chudnovsky, Robertson, Seymour, and Thomas: '°

Strong perfect graph conjecture: Let G be a graph. If w(G) < v(G) then G contains C,, or

C,,, for some odd n > 5, as an induced subgraph.

Another conjecture is due to Hadwiger [1943]. Since there exist graphs with w(G) < v(G), it
is not true that if v(G) > n then G contains the complete graph K,, on n vertices as a subgraph.
However, Hadwiger conjectured the following, where a graph H is called a minor of a graph G if H
arises from some subgraph of G by contracting some (possible none) edges.

Hadwiger’s conjecture: If v(G) > n then G contains K,, as a minor.

In other words, for each n, the graph K, is the only graph G with the property that G is not
(n — 1)-colourable and each proper minor of G is (n — 1)-colourable.

Hadwiger’s conjecture is trivial for n = 1,2,3, and was shown by Hadwiger for n = 4 (see
Exercise 7.8). As planar graphs do not contain K5 as a minor, Hadwiger’s conjecture for n = 5
implies the four-colour theorem. In fact, Wagner [1937] showed that Hadwiger’s conjecture for
n = 5 is equivalent to the four-colour conjecture. Recently, Robertson, Seymour, and Thomas [1993]
showed that Hadwiger’s conjecture is true also for n = 6, by showing that in that case it is equivalent
to the four-colour theorem. For n > 7 Hadwiger’s conjecture is unsettled.

Application 7.1: Map colouring. A well-known application of colouring the vertices of a graph is that
of colouring the countries in a map in such a way that adjacent countries obtain different colours. So the
four-colour theorem implies that if each country is connected, then the map can be coloured using not more
than four colours. (One should not consider countries as ‘adjacent’ if they have a common boundary of
measure 0 only.)

There are several other cases where colouring a map amounts to finding a minimum vertex-colouring in
a graph. For instance, consider a map of the Paris Métro network (Figure 7.1).

Suppose now that you want to print a coloured map of the network, indicating each of the 13 lines by
a colour, in such a way that lines that cross each other or meet each other in a station, are indicated by
different colours and in such a way that a minimum number of colours is used. This easily reduces to a
graph colouring problem.

Application 7.2: Storage of goods, etc. Suppose you are the director of a circus and wish to transport
your animals in a number of carriages, in such a way that no two of the animals put into one carriage eat
each other, and in such a way that you use a minimum number of carriages.

This trivially reduces to a graph colouring problem. A similar problem is obtained if you have to store
a number of chemicals in a minimum number of rooms of a storehouse, in such a way that no two of the
chemicals stored in one room react upon each other in an unwanted way.

18Here C}, denotes the circuit with k vertices.

YLet G = (V, E) be a graph and let V/ C V. Then the subgraph of G induced by V', denoted by G|V’ is the graph
(V',E"), where E’ equals the set of all edges in F contained in V’. The graph G|V’ is called an induced subgraph of
G.
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Figure 7.1

This problem may also occur when assigning multiple-bed rooms to school boys on a school trip.

Application 7.3: Assigning frequencies to radio stations, car phones, etc. Suppose one has to
assign frequencies to radio stations in a certain area. Certain pairs of radio stations that are too close to
each other cannot be assigned the same frequency as it would cause mutual interference. Such pairs of radio
stations form the edge set of a graph G, with vertex set the set of radio stations. The chromatic number of
G is equal to the minimum number of different frequencies that one needs in order to assign a frequency to
each of the stations.

The problem occurs also when assigning frequencies to car phones, where often in a very short time new
frequencies should be determined.

Exercises

7.1. Determine w(G) and v(G) for the graph G obtained from the Paris Métro map given in Application
7.1.

7.2. Colour the map of Figure 7.2 (from the April 1975 issue of Scientific American).

7.3. Show that if G is a bipartite graph, then w(G) = v(G).

7.4. Derive from Kénig’s edge cover theorem (Corollary 3.2a) that if G is the complement of a bipartite
graph, then w(G) = v(G).

7.5. Derive Kénig’s edge cover theorem (Corollary 3.2a) from the strong perfect graph theorem.

7.6. Let H be a bipartite graph and let G be the complement of the line-graph of H. Derive from Ké&nig’s
matching theorem (Theorem 3.2) that w(G) = v(G).

7.7. Derive K6nig’s matching theorem (Theorem 3.2) from the strong perfect graph theorem.
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Figure 7.2

7.8. Let G = (V, E) be a simple graph such that no minor of G is isomorphic to K4. Show that v(G) < 3.

[Hint: One may assume that G is not a forest or a circuit. Then G has a circuit not covering all
vertices of G. As G has no K4-minor, GG is not 3-connected, that is, G has a vertex cut set of size less
than 3; then v(G) < 3 follows by induction.]

7.2. Edge-colourings of bipartite graphs

For any graph G = (V, E), an edge-colouring is a partition II = {M1, ..., M,} of the edge set E,
where each M; is a matching. Each of these matchings is called a colour. Define the edge-colouring
number or edge-chromatic number x(G) by

(4) X(G) := min{|IT| | IT is an edge-colouring of G'}.
Let A(G) denote the maximum degree of (the vertices of) G. Clearly,
(5) x(G) = A(G),

since at each vertex v, the edges incident with v should have different colours. Again the triangle
K3 has strict inequality. Kénig [1916] showed that for bipartite graphs the two numbers are equal.

Theorem 7.3 (Konig’s edge-colouring theorem). For any bipartite graph G = (V, E) one has
(6) xX(G) = A(G).
That is, the edge-colouring number of a bipartite graph is equal to its maximum degree.

Proof. First notice that the theorem is easy if A(G) < 2. In that case, G consists of a number of
vertex-disjoint paths and even circuits.

In the general case, colour as many edges of G as possible with A(G) colours, without giving the
same colour to two intersecting edges. If all edges are coloured we are done, so suppose some edge
e = {u,w} is not coloured. At least one colour, say red, does not occur among the colours given
to the edges incident with u. Similarly, there is a colour, say blue, not occurring at w. (Clearly,
red£blue, since otherwise we could give edge e the colour red.)
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Let H be the subgraph of G having as edges all red and blue edges of G, together with the edge e.
Now A(H) = 2, and hence x(H) = A(H) = 2. So all edges occurring in H can be (re)coloured with
red and blue. In this way we colour more edges of G than before. This contradicts the maximality
assumption. |

This proof also gives a polynomial-time algorithm to find an edge-colouring with A(G) colours.
We remark here that Vizing [1964] proved that for general simple graphs G one has

(7) A(G) < x(G) <A(G) + L.

Here ‘simple’ cannot be deleted, as is shown by the graph G with three vertices, where any two
vertices are connected by two parallel edges: then A(G) = 4 while x(G) = 6.

A theorem ‘dual’ to Koénig’s edge-colouring theorem was also shown by Kénig. Note that the
edge-colouring number x(G) of a graph G is the minimum number of matchings needed to cover the
edges of a bipartite graph. Dually, one can define:

(8) ¢(@) = the maximum number of pairwise disjoint edge covers in G.

So, in terms of colours, £(G) is the maximum number of colours that can be used in colouring the
edges of G in such a way that at each vertex all colours occur. Hence, if §(G) denotes the minimum
degree of GG, then

(9) £(G) <6(G).
The triangle K3 again is an example having strict inequality. For bipartite graphs however:

Corollary 7.3a. For any bipartite graph G = (V, E) one has
(10) §(G) =4(G).
That is, the mazimum number of pairwise disjoint edge covers is equal to the minimum degree.

Proof. One may derive from G a bipartite graph H, each vertex of which has degree §(G) or 1, by
repeated application of the following procedure:

(11) for any vertex v of degree larger than §(G), add a new vertex u, and replace one of
the edges incident with v, {v, w} say, by {u,w}.

So there is a one-to-one correspondence between the edges of the final graph H and the edges of
G. Since H has maximum degree §(G), by Theorem 7.3 the edges of H can be coloured with §(G)
colours such that no two edges of the same colour intersect. So at any vertex of H of degree §(G)
all colours occur. This gives a colouring of the edges of G with §(G) colours such that at any vertex
of G all colours occur. |

Application 7.4: Scheduling classes. Suppose we have n classes and m teachers. In the following scheme
it is indicated by an X which classes should be taught by which teachers (one lesson of one hour a day):

class: | 1 2 3 4 5 6
teacher: a | X X X

b| X X X X
c X X X
d X X
e | X X X X
fl1 X X X X
g X X X X
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The question is: What is the minimum timespan in which all lessons can be scheduled?

Theorem 7.3 tells us that all lessons can be scheduled within a timespan of 4 hours. Indeed, make a
bipartite graph G with colour classes T" := set of teachers and C' := set of classes, where t € T and ¢ € C
are connected if and only if teacher t should teach class ¢; that is, if there is an X in position (¢,¢) in the
scheme.

In the above example G will have maximum degree A(G) equal to 4. Hence according to Theorem 7.3,
the edge-colouring number x(G) of G is also equal to 4. So we can colour the edges of G by 4 colours so that
no two edges of the same colour have a vertex in common. That is, we can colour the X’s in the scheme by
4 colours so that there are no two crosses of the same colour in any row or column. If every colour represent
one hour, we obtain a schedule spanning 4 hours.

This application can be extended to the case where teachers can give more than one lesson a day to a
class. In that case we obtain a bipartite graph with multiple edges.

For any k-edge-colouring of a graph G = (V, E), we can assume that any two colours differ by at most 1
in size (if they differ more, one can exchange the two colours on one of the path components of the union of
the two colours, to bring their cardinalities closer together). That is, each colour has size ||E|/k]| or [|E|/k].
It implies that there is a schedule in which no more than [|E|/k] lessons are scheduled simultaneously. So
the number of classrooms needed is [|E|/k], which is clearly best possible if we want to schedule |F| lessons
within k£ hours.

Exercises

7.9. Determine a schedule for the following scheduling problems:

X[X[X][X
X [ X X | X
(i) X | X[ X X
X | X[ XX
X X [ X[ X
X X[ XX
X | X | X X
X[ X [X[X
(ii) X | X X | X
X X | X[ X
X X X [ X
X | X X X
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7.10.

7.11.
7.12.

7.13.
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10 11 12 13 14 15 16 17 18

(iii)

(Here the slots to be scheduled are indicated by open cells.)

Let G be the line-graph of some bipartite graph H. Derive from Konig’s edge-colouring theorem
(Theorem 7.3) that w(G) = v(G).

Derive Konig’s edge-colouring theorem (Theorem 7.3) from the strong perfect graph theorem.

Let A = (A4,...,A,) and B = (B1,..., By) be partitions of a finite set X such that |41| = -+ =
|An| = |Bi| = --- = |Bn| = k. Show that A and B have k pairwise disjoint common transversals.

Let A= (A4,...,A,) and B = (Bu,..., B,) be families of subsets of a finite set X.

(i) Let k € N. Suppose that X can be partitioned into k partial SDR’s of A, and that X also can be
partitioned into k£ partial SDR’s of B. Derive that X can be partitioned into k& common partial
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SDR’s for A and B.

(ii) Show that the minimum number of common partial SDR’s of A and B needed to cover X is
equal to

Y] Y]
(12) [maxmax{ Sy 20y TEB Y 203

(Hint: Use Exercise 3.8.)

7.14. Let A = (A1,...,A4,) and B = (Bi,..., By) be families of subsets of a finite set X and let k € N.
Suppose that X has a partition (Y1,...,Y%) such that each Y; is an SDR of A. Suppose moreover
that X has a partition (Z1, ..., Zx) such that each Z; is an SDR of B. Derive that X has a partition
(X1,...,Xx) such that each X; is an SDR both of A and of B.

7.15. Let A = (A4,...,4,) and B = (B1,..., By) be families of subsets of a finite set X and let k € N.
Suppose that X has a partition (Y1,...,Y,) such that |Y;| =k and Y; C A, for i = 1,...,n. Suppose
moreover that X has a partition (Z1,...,Z,) such that |Z;| = k and Z; C B; for i = 1,...,n. Derive
that X has a partition (X1,...,Xx) such that each X; is an SDR both of A and of B.

7.16. Let A = (Ai1,...,An) and B = (B1,...,Bn) be families of subsets of a finite set and let k be a
natural number. Prove that A and B have k pairwise disjoint common SDR’s, if and only if for all
I,JC{l,...,n}:

(13) [ Ain U Bs| = k(I + T — n).
il jeJ
(Hint: Use Exercise 7.15.)
7.17. Let A= (A1,...,A,) and B = (Bu,..., By) be families of subsets of a finite set X.

(i) Let k € N. Suppose that A has k pairwise disjoint SDR’s and that also B has k pairwise disjoint
SDR’s. Derive that X can be partitioned into k subsets X1, ..., X, such that each X; contains
an SDR of A and contains an SDR of 5.

(ii) Show that the maximum number k for which there exists a partition as in (i) is equal to

: : {UiGIAi{ |Ui€IBi{
(14) Ly ity mind = =

(Hint: Use Exercise 3.7.)

7.3. Partially ordered sets

A partially ordered set is a pair (X, <) where X is a set and where < is a relation on X satisfying:
(15) (i) @ <z for each z € X
(ii) if x <y and y < x then z = y;
(iii) if z <y and y < z then x < z.

A subset C of X is called a chain if for all z,y € C one has x < y or y < x. A subset A of X is
called an antichain if for all z,y € A with x # y one has z £ y and y £ x. Note that if C' is a chain
and A is an antichain then

(16) ICNA|l<I.

First we observe the following easy min-max relation:

Theorem 7.4. Let (X, <) be a partially ordered set, with X finite. Then the minimum number of
antichains needed to cover X is equal to the mazimum cardinality of any chain.
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Proof. The fact that the maximum cannot be larger then the minimum follows easily from (16). To
see that the two numbers are equal, define for any element x € X the height of z as the maximum
cardinality of any chain in X with maximum z. For any ¢ € N, let A; denote the set of all elements
of height i.

Let k be the maximum height of the elements of X. Then Ay, ..., Ay are antichains covering X,
and moreover there exists a chain of size k. |

Dilworth [1950] proved that the same theorem also holds when we interchange the words ‘chain’
and ‘antichain’:

Theorem 7.5 (Dilworth’s decomposition theorem). Let (X, <) be a partially ordered set, with X
finite. Then the minimum number of chains needed to cover X is equal to the mazximum cardinality
of any antichain.

Proof. We apply induction on |X|. The fact that the maximum cannot be larger then the minimum
follows easily from (16). To see that the two numbers are equal, let « be the maximum cardinality
of any antichain and let A be an antichain of cardinality «. Define

(17) Ab:={ze X |yecA: x<y}
Al ={zeX|yecA: x>y}

Then Al U AT = X (since A is a maximum antichain) and A' N AT = A.

First assume A' # X and A" # X. Then by induction A! can be covered with o chains. Since
A C Al each of these chains contains exactly one element in A. For each z € A, let C,, denote the
chain containing z. Similarly, there exist a chains C?, (for x € A) covering A', where C’, contains
2. Then for each z € A, C,, U C/, forms a chain in X, and moreover these chains cover X.

So we may assume that for each antichain A of cardinality o one has A} = X or AT = X. It
means that each antichain A of cardinality « is either the set of minimal elements of X or the set
of maximal elements of X. Now choose a minimal element x and a maximal element y of X such
that < y. Then the maximum cardinality of an antichain in X \ {z,y} is equal to oo — 1 (since
each antichain in X of cardinality « contains x or y). By induction, X \ {z,y} can be covered with
a — 1 chains. Adding the chain {z,y} yields a covering of X with « chains. |

Application 7.5: Project scheduling. Suppose you have to perform a project consisting of several jobs.

Each job takes one time-unit, say one hour. Certain jobs have to be done before other jobs; this relation is

given by a partial order on the jobs. Assuming that you have sufficient workers, the time required to finish

the project is equal to the size v of the longest chain. Indeed, by Theorem 7.4, the jobs can be split into

antichains A1, ..., Ay; in fact, these antichains can be chosen such that if x € A; and y € A; and x < y then

i < j. As in each of these antichains, the jobs can be done simultaneously, we obtain a feasible schedule.
This is an application quite similar to PERT-CPM (Application 1.4).

Application 7.6: Bungalow assignment. Suppose you are the manager of a bungalow park, with
bungalows that can be rented out during the holiday season. There have been made a number of reservations,
each for a connected period of some weeks, like in Figure 7.3. If the number of reservations during any
of the weeks in the holiday season is not larger than the total number of bungalows available, then there
exists an allocation of customers to bungalows, in such a way that no renter has to switch bungalows during
his/her stay. This rule well-known to bungalow park managers, is a special case of Dilworth’s decomposition
theorem.

Indeed, one can make a partial order as follows. Let X be the set of reservations made, and for any
z,y € X let x < y if the last day for reservation x is earlier than or equal to the first day of reservation y.

Then the maximum size of any antichain of (X, <) is equal to the maximum number n of reservations
made for any week in the season. By Dilworth’s decomposition theorem, X can be split into n chains. Each
chain now gives a series of reservations that can be assigned to one and the same bungalow.
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Figure 7.3

A similar problem occurs when assigning hotel rooms to hotel guests.

Application 7.7: Terminal and platform assignment. A similar problem as in Application 7.6 occurs
when one has to assign airplanes to terminals at an airport, or trains or buses to platforms in a train or
bus station. The model has to be adapted however, if one requires a periodic assignment; this occurs for
instance if the trains or buses run a periodic timetable, say with period one hour.

Exercises

7.18.

7.19.
7.20.

7.21.

7.22.

7.23.

7.24.

Let (X,<) be a partially ordered set. Call a chain mazimal if it is not contained in any other
chain. Prove that the maximum number of pairwise disjoint maximal chains is equal to the minimum
cardinality of a set intersecting all maximal chains.

Derive Ko6nig’s edge cover theorem from Dilworth’s decomposition theorem.

Let G = (V, E) be a bipartite graph, with colour classes V1 and Va, with |Vi| = |[V2] = n. Let k be a
natural number. Derive from Dilworth’s decomposition theorem that the edges of G can be covered
by k perfect matchings, if and only if for each vertex cover W C V' the number of edges contained in
W is at most k(|W| —n).

Let Z = (I1,...,1I,) be a family of intervals on R, in such a way that each x € R is contained in at
most k of these intervals. Show that Z can be partitioned into k classes Z1,...,Z, so that each Z;
consists of pairwise disjoint intervals.

Let D = (V, A) be an acyclic directed graph and let r and s be vertices of D such that each arc of D
occurs in at least one r — s path. Derive from Dilworth’s decomposition theorem that the minimum
number of 7 — s paths needed to cover all arcs is equal to the maximum cardinality of §°%*(U), where
U ranges over all subsets of V satisfying r € U, s ¢ U and §™(U) = 0.

A graph G = (V, E) is called a comparability graph if there exists a partial order < on V such that for
all u,w in V with u # w one has:

(18) {v,w} e E<u<worw<u.
(i) Show that if G is a comparability graph, then w(G) = v(G).
(ii) Show that if G is the complement of a comparability graph, then w(G) = v(G).

(Hint: Use Dilworth’s decomposition theorem (Theorem 7.5).)

Let (X, <) be a partially ordered set, with X finite. Let C and A denote the collections of chains and
antichains in (X, <), respectively. Let w: X — Z4 be a ‘weight’ function.
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(i) Show that the maximum weight w(C') of any chain is equal to the minimum value of ) , - 4 A(4),
where the A(A) range over all nonnegative integers satisfying

(19) S M) =u(@)

AeA,zeA
for each x € X.

ii) Show that the maximum weight w(A) of any antichain is equal to the minimum value of
g y
> cec MC), where the A\(C') range over all nonnegative integers satisfying

(20) Y MO = w(z)
ceC.zec
for each z € X.
(iii) Derive that the convex hull of the incidence vectors of antichains (as vectors in R¥) is equal to

the set of all vectors f € Rf satisfying f(C) < 1 for each chain C.
[For any finite set X and any subset Y of X, define the incidence vector x¥ € RX of Y as:

(21) o= 1 ifzey;

= 0 ifzgY|]

(iv) Derive also that the convex hull of the incidence vectors of chains (as vectors in R*) is equal to
the set of all vectors f € RY satisfying f(A) < 1 for each antichain A.

7.25. Derive Dilworth’s decomposition theorem (Theorem 7.5) from the strong perfect graph theorem.

7.4. Perfect graphs

We now consider a general class of graphs, the ‘perfect’ graphs, that turn out to unify several
results in combinatorial optimization, in particular, min-max relations and polyhedral characteriza-
tions.

As we saw before, the clique number w(G) and the colouring number v(G) of a graph G = (V, E)
are related by the inequality:

(22) w(G) <1(G).

There are graphs that have strict inequality; for instance, the circuit C5 on five vertices.

Having equality in (22) does not say that much about the internal structure of a graph: any
graph G = (V, E) can be extended to a graph G’ = (V' E’) satisfying w(G’') = v(G’), simply by
adding to G a clique of size v(G), disjoint from V.

However, if we require that equality in (22) holds for each induced subgraph of G, we obtain
a much more powerful condition. The idea for this was formulated by Berge [1963]. He defined a
graph G = (V, E) te be perfect if w(G') = ~v(G") holds for each induced subgraph G’ of G.

Several classes of graphs could be shown to be perfect, and Berge [1961,1963] observed the
important phenomenon that for several classes of graphs that were shown to be perfect, also the
class of complementary graphs is perfect. (The complement or the complementary graph G of a
graph G = (V, E) is the graph with vertex set V', where any two distinct vertices in V' are adjacent
in G if and only if they are nonadjacent in G.)

Berge therefore conjectured that the complement of any perfect graph is perfect again. This
conjecture was proved by Lovdsz [1972b], and his perfect graph theorem forms the kernel of perfect
graph theory. It has several other theorems in graph theory as consequence. Lovész [1972a] gave
the following stronger form of the conjecture, which we show with the elegant linear-algebraic proof
found by Gasparian [1996].

Theorem 7.6. A graph G is perfect if and only if w(G")a(G') > |V(G')| for each induced subgraph
G’ of G.



Section 7.4. Perfect graphs 95

Proof. Necessity is easy, since if G is perfect, then w(G’) = v(G’) for each induced subgraph G’ of
G, and since v(G")a(G’) > |[V(G")| for any graph G’.

To see sufficiency, suppose to the contrary that there exists an imperfect graph G satisfying the
condition, and choose such a graph with |V (G)| minimal. So v(G) > w(G), while v(G') = w(G’) for
each induced subgraph G’ # G of G.

Let w:= w(G) and a := a(G). We can assume that V(G) = {1,...,n}.

We first construct

(23) cocliques Cy, . .., C,, such that each vertex is covered by exactly « of the C;.

Let Cy be a coclique in G of size a. By the minimality of G, we know that for each v € Cy, the
subgraph of G induced by V(G) \ {v} is perfect, and that hence its colouring number is at most w
(as its clique number is at most w); therefore V(G) \ {v} can be partitioned into w cocliques. Doing
this for each v € Cj, we obtain cocliques as in (23).

Now for each i = 0,..., aw, there exists a clique K; of size w with K; N C; = (). Otherwise, the
subgraph G’ of G induced by V(G) \ C; would have w(G’) < w, and hence it has colouring number
at most w — 1. Adding C; as a colour would give an w-vertex colouring of GG, contradicting the
assumption that v(G) > w(G).

Then, if ¢ # j with 0 <4, j < aw, we have |K; NC;| = 1. This follows from the fact that K; has
size w and intersects each C; in at most one vertex, and hence, by (23), it intersects aw of the C;.
As K;NC; =0, we have that [K; NC;| =1if i # j.

Now consider the (aw + 1) x n incidence matrices M = (m; ;) and N = (n; ;) of Co,...,Cow
and Ko, ..., K,, respectively. So M and N are 0,1 matrices, with m;; = 1 & j € C}, and
nij =1&j€K; fori=0,...,aw and j = 1,...,n. By the above, MNT = J — I, where J is
the aw X aw all-1 matrix, and I the aw X aw identity matrix. As J — I has rank aw + 1, we have
n > aw + 1. This contradicts the condition given in the theorem. |

This implies:

Corollary 7.6a ((Lovész’s) perfect graph theorem). The complement of a perfect graph is perfect
again.

Proof. Directly from Theorem 7.6, as the condition given in it is maintained under taking the
complementary graph. |

In fact, Berge [1963] also made an even stronger conjecture, which was proved in 2002 by Chud-
novsky, Robertson, Seymour, and Thomas (we mentioned this in Section 7.1 in a different but
equivalent form):

Strong perfect graph theorem. A graph G is perfect if and only if G does not contain any odd
circuit Cox4q with k > 2 or its complement as an induced subgraph.

We now show how several theorems we have seen before follow as consequences from the perfect
graph theorem. First observe that trivially, any bipartite graph G is perfect. This implies Kénig’s
edge cover theorem (Theorem 3.2a):

Corollary 7.6b (Kénig’s edge cover theorem). The complement of a bipartite graph is perfect.
Equivalently, the edge cover number of any bipartite graph (without isolated vertices) is equal to its
coclique number.

Proof. Directly from the perfect graph theorem. Note that if G is a bipartite graph, then its cliques

have size at most 2; hence v(G) is equal to the edge cover number of G if G has no isolated vertices.
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Note moreover that the class of complements of bipartite graphs is closed under taking induced
subgraphs. Hence the second statement in the Corollary indeed is equivalent to the first. |

We saw in Section 3.2 that by Gallai’s theorem (Theorem 3.1), Kénig’s edge cover theorem
directly implies K6nig’s matching theorem (Theorem 3.2), saying that the matching number of a
bipartite graph G is equal to its vertex cover number. That is, the coclique number of the line graph
L(G) of G is equal to the minimum number of cliques of L(G) that cover all vertices of L(G). As
this is true for any induced subgraph of L(G) we know that the complement L(G) of the line graph
L(G) of any bipartite graph G is perfect.

Hence with the perfect graph theorem we obtain Kénig’s edge-colouring theorem (Theorem 7.3):

Corollary 7.6¢ (Kénig’s edge-colouring theorem). The line graph of a bipartite graph is perfect.
Equivalently, the edge-colouring number of any bipartite graph is equal to its maximum degree.

Proof. Again directly from Konig’s matching theorem and the perfect graph theorem. |

We can also derive Dilworth’s decomposition theorem (Theorem 7.5) easily from the perfect
graph theorem. Let (V| <) be a partially ordered set. Let G = (V, E') be the graph with:

(24) uv € E if and only if u < v or v < u.

Any graph G obtained in this way is called a comparability graph.
As Theorem 7.4 we saw the following easy ‘dual’ form of Dilworth’s decomposition theorem:

Theorem 7.7. In any partially ordered set (V, <), the mazimum size of any chain is equal to the
minimum number of antichains needed to cover V.

Proof. For any v € V define the height of v as the maximum size of any chain in V' with maximum
element v. Let k be the maximum height of any element v € V. For i = 1,...,k let A; be the set
of elements of height i. Then Aj, ..., Ay are antichains covering V', and moreover, there is a chain
of size k, since there is an element of height k. |

Equivalently, we have w(G) = v(G) for any comparability graph. As the class of comparability
graphs is closed under taking induced subgraphs we have:

Corollary 7.7a. Any comparability graph is perfect.

Proof. Directly from Theorem 7.7. |

So by the perfect graph theorem:

Corollary 7.7b. The complement of any comparability graph is perfect.

Proof. Directly from Corollary 7.7a and the perfect graph theorem (Corollary 7.6a). |

That is:

Corollary 7.7c (Dilworth’s decomposition theorem). In any partially ordered set (V, <), the max-
imum size of any antichain is equal to the minimum number of chains needed to cover V.

Proof. Directly from Corollary 7.7b. |
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A further application of the perfect graph theorem is to ‘chordal graphs’, which we describe in
the next section.

We note here that it was shown with the help of the ‘ellipsoid method’ that there exists a
polynomial-time algorithm for finding a maximum clique and a minimum vertex-colouring in any
perfect graph (Grotschel, Lovasz, and Schrijver [1981]). However no combinatorial polynomial-time
algorithm is known for these problems.

Exercises
7.26. Show that the graph obtained from the Paris Métro network (see Application 7.1) is perfect.
7.27. Show that Theorem 7.6 is implied by the strong perfect graph theorem.

7.5. Chordal graphs

We finally consider a further class of perfect graphs, the ‘chordal graphs’ (or ‘rigid circuit graphs’
or ‘triangulated graphs’). A graph G is called chordal if each circuit in G of length at least 4 has a
chord. (A chord is an edge connecting two vertices of the circuit that do not form two neighbours
in the circuit.)

For any set A of vertices let N(A) denote the set of vertices not in A that are adjacent to at
least one vertex in A. Call a vertex v simplicial if N({v}) is a clique in G.

Dirac [1961] showed the following basic property of chordal graphs:

Theorem 7.8. Fach chordal graph G contains a simplicial vertez.

Proof. We may assume that G has at least two nonadjacent vertices a,b. Let A be a maximal
nonempty subset of V' such that G|A is connected and such that AU N(A) # V. Such a subset A
exists as G|{a} is connected and {a} U N({a}) # V.

Let B :=V \ (AUN(A)). Then each vertex v in N(A) is adjacent to each vertex in B, since
otherwise we could increase A by v. Moreover, N(A) is a clique, for suppose that u,w € N(A) are
nonadjacent. Choose v € B. Let P be a shortest path in A U N(A) connecting v and w. Then
P U {u,v,w} would form a circuit of length at least 4 without chords, a contradiction.

Now inductively we know that G|B contains a vertex v that is simplicial in G|B. Since N(A) is
a clique and since each vertex in B is connected to each vertex in N(A), v is also simplicial in G. |

This implies a result of Hajnal and Surdnyi [1958]:

Theorem 7.9. The complement of any chordal graph is perfect.

Proof. Let G = (V, E) be a chordal graph. Since the class of chordal graphs is closed under taking
induced subgraphs, it suffices to show w(G) > v(G).

By Theorem 7.1, G has a simplicial vertex v. So K := {v} U N({v}) is a clique. Let G’ be the
subgraph of G induced by V' \ K. By induction we have w(G’) = v(G").

Now w(G) > w(G’) + 1, since we can add v to any clique of G’. Similarly, v(G) < v(G’) + 1,

since we can add K to any colouring of G’. Hence w(G) > v(G). |

With Lovész’s perfect graph theorem, this implies the result of Berge [1960]:

Corollary 7.9a. Any chordal graph is perfect.

Proof. Directly from Theorem 7.9 and the perfect graph theorem (Corollary 7.6a). |
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We can characterize chordal graphs in terms of subtrees of a tree T. Let S be a collection of
nonempty subtrees of a tree T. The intersection graph of S is the graph with vertex set S, where
two vertices S, S’ are adjacent if and only if they intersect (in at least one vertex).

The class of graphs obtained in this way coincides with the class of chordal graphs. To see this,
we first show the following elementary lemma:

Lemma 7.1. Let S be a collection of pairwise intersecting subtrees of a tree T. Then there is a
vertex of T contained in all subtrees in S.

Proof. By induction on |VT|. If |[VT| = 1 the lemma is trivial, so assume |VT| > 2. Let ¢t be an
end vertex of T'. If there exists a subtree in S consisting only of ¢, the lemma is trivial. Hence we
may assume that each subtree in S containing ¢ also contains the neighbour of ¢. So deleting ¢ from
T and from all subtrees in S gives the lemma by induction. |

Then:

Theorem 7.10. A graph is chordal if and only if it is isomorphic to the intersection graph of a
collection of subtrees of some tree.

Proof. Necessity. Let G = (V, E) be chordal. By Theorem 7.8, G contains a simplicial vertex v. By
induction, the subgraph G — v of GG is the intersection graph of a collection S of subtrees of some
tree T. Let S’ be the subcollection of S corresponding to the set N of neighbours of v in G. As N
is a clique, S” consists of pairwise intersecting subtrees. Hence, by Lemma 7.1 these subtrees have
a vertex t of T in common. Now we extend 7 and all subtrees in S’ with a new vertex ¢’ and a new
edge tt'. Moreover, we introduce a new subtree {¢'} representing v. In this way we obtain a subtree
representation for G.

Sufficiency. Let G be the intersection graph of some collection S of subtrees of some tree T.
Suppose that G contains a chordless circuit Cy with k& > 4. Let Cj be the intersection graph of
S1,...,8r € S, with 7 and Sy intersecting. Then Si,S55,53 U --- U S are three subtrees of T'
that are pairwise intersecting. So by Lemma 7.1, T" has a vertex v contained in each of these three
subtrees. So v € S1 NSy N S; for some i € {3,...,k}. This yields a chord in Cy. |

This theorem enables us to interpret the perfectness of chordal graphs in terms of trees:

Corollary 7.10a. Let S be a collection of nonempty subtrees of a tree T'. Then the maximum number
of pairwise vertex-disjoint trees in S is equal to the minimum number of vertices of T intersecting
each tree in S.

Proof. Directly from Theorems 7.9 and 7.10, using Lemma 7.1. |

Similarly we have:

Corollary 7.10b. Let S be a collection of subtrees of a tree T. Let k be the mazimum number of
times that any vertex of T is covered by trees in S. Then S can be partitioned into subcollections
S1,...,Sk such that each S; consists of pairwise vertex-disjoint trees.

Proof. Directly from Corollary 7.9a and Theorem 7.10, again using Lemma 7.1. |

Exercises
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7.28.
7.29.

7.30.

7.31.

7.32.

Show that a graph G = (V, E) is chordal if and only if each induced subgraph has a simplicial vertex.

Show that a graph is an interval graph if and only if it is chordal and its complement is a comparability
graph.

Derive from the proof of Theorem 7.8 that each chordal graph is either a clique or contains two
nonadjacent simplicial vertices.

Let G be a chordal graph. Derive from the proof of Theorem 7.8 that each vertex v that is nonadjacent
to at least one vertex w # v, is nonadjacent to at least one simplicial vertex w # v.

Show that a graph G = (V, E) is chordal if and only if the edges of G can be oriented so as to obtain
a directed graph D = (V, A) with the following properties:

(25) (i) D is acyclic;
(ii) if (u,v) and (u,w) belong to A then (v,w) or (w,v) belongs to A.
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8. Integer linear programming and totally unimodular
matrices

8.1. Integer linear programming

Many combinatorial optimization problems can be described as maximizing a linear function ¢’z

over the integer vectors in some polyhedron P = {z | Ax < b}. (A vector x € R"™ is called integer if
each component is an integer, i.e., if x belongs to Z™.)
So this type of problems can be described as:

(1) max{c’z | Az < b;x € Z"}.

Such problems are called integer linear programming problems. They consist of maximizing a linear
function over the intersection P N Z" of a polyhedron P with the set Z" of integer vectors.

Example. Consider a graph G = (V, E). Then the problem of finding a matching of maximum
cardinality can be described as follows. Let A be the V' x E incidence matrix of G. So the rows of
A are indexed by the vertices of G, while the columns of A are indexed by the edges of G and for
any v € V and e € E:

(2) Aye = 1 ifvee
= 0 ifvde.

Now finding a maximum-cardinality matching is equivalent to:

(3) maximize Z Te
eelE
subject to er <1 foreachveV,
esv

Te >0 for each e € F,
To €L for each e € E.

This is the same as:
4) max{17z | > 0; Az < 1;x integer},

where 1 denotes an all-one vector, of appropriate size. |

Clearly, always the following holds:
(5) max{c’z | Az < b;x integer} < max{c’z | Az < b}.

The above example, applied to the graph K3 shows that strict inequality can hold. This implies,
that generally one will have strict inequality in the following duality relation:

(6) max{cTz | Az < b;x integer} < min{yTb |y > 0;47 A = cT;y integer}.

A polytope P is called integer if each of its vertices is an integer vector. Clearly, if a polytope
P = {z | Az < b} is integer, then the LP-problem

(7) max{c’z | Az < b}
has an integer optimum solution. So in that case,

(8) max{c’z | Az < b;x integer} = max{c’z | Az < b}.
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In Exercise 8.5 below we shall see that in a sense also the converse holds.

No polynomial-time algorithm is known to exist for solving an integer linear programming prob-
lem in general. In fact, the general integer linear programming problem is NP-complete, and it is
conjectured that no polynomial-time algorithm exists.

However, for special classes of integer linear programming problems, polynomial-time algorithms
have been found. These classes often come from combinatorial problems, like the matching problem
above.

Exercises
8.1. Let P be a polytope. Prove that the set conv.hull(P NZ") is again a polytope.
8.2. Let P = {z | Az < b} be a polyhedron, where A is a rational matrix. Show that the set conv.hull(P N
Z") is again a polyhedron.
8.3. Let G = (V, E) be a graph. Describe the problem of finding a vertex cover of minimum cardinality as

an integer linear programming problem.

8.4. Let G = (V,E) be a graph. Describe the problem of finding a clique (= complete subgraph) of
maximum cardinality as an integer linear programming problem.

8.5. Show that a polytope P is integer, if and only if for each vector ¢, the linear programming problem
max{cTz | Az < b} has an integer optimum solution.

8.2. Totally unimodular matrices

Total unimodularity of matrices turns out to form an important tool in studying integer vectors
in polyhedra.

A matrix A is called totally unimodular if each square submatrix of A has determinant equal to
0, +1, or —1. In particular, each entry of a totally unimodular matrix is 0, +1, or —1.

A link between total unimodularity and integer linear programming is given by the following
fundamental result.

Theorem 8.1. Let A be a totally unimodular m x n matriz and let b € Z™. Then each vertex of
the polyhedron

(9) P:={x| Az <b}
15 an integer vector.

Proof. Let A have order m X n. Let z be a vertex of P. By Theorem 2.2, the submatrix A, has
rank n. So A, has a nonsingular n x n submatrix A’. Let b’ be the part of b corresponding to the
rows of A that occur in A’.

Since, by definition, A, is the set of rows a; of A for which a;z = b;, we know A’z = /. Hence
z = (A") 7. However, since |det A’| = 1, all entries of the matrix (A’)~! are integer. Therefore, z
is an integer vector. |

As a direct corollary we have a similar result for polyhedra in general (not necessarily having
vertices). Define a polyhedron P to be integer if for each vector ¢ for which

(10) max{c’z | z € P}
is finite, the maximum is attained by some integer vector. So:

(11) if P={x | Az < b} where A is an m x n matrix of rank n, then P is integer if and
only if each vertex of P is integer.
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Then we have:

Corollary 8.1a. Let A be a totally unimodular m x n matriz and let b € Z™. Then the polyhedron
(12) P:={z|Ax <b}
is an integer polyhedron.

Proof. Let z* be an optimum solution of (10). Choose integer vectors d’,d” € Z™ such that
d' < z* <d”. Consider the polyhedron

(13) Q={zeR"| Az <bd <z <d'}

So @ is bounded.
Moreover, @ is the set of all vectors = satisfying

A b
(14) I |e<| -d
I d//

Now the matrix here is again totally unimodular (this follows easily from the total unimodularity
of A). Hence by Theorem 8.1, @) is an integer polytope. This implies that the linear programming
problem max{cTz | z € Q} is attained by some integer vector 7.

But then 7 is also an optimum solution for the original LP-problem max{c’x | Az < b}. Indeed,
T satisfies A% < b, as & belongs to Q). Moreover,

(15) Tz > cla* = max{c’z | Az < b},
implying that Z is an optimum solution. |

It follows that each linear programming problem with integer data and totally unimodular con-
straint matrix has integer optimum primal and dual solutions:

Corollary 8.1b. Let A be a totally unimodular m X n matriz, let b € Z™ and let ¢ € Z™. Then
both problems in the LP-duality equation:

(16) max{c’z | Az < b} = min{y"b |y > 0;yTA=c"}
have integer optimum solutions (if the optima are finite).

Proof. Directly from Corollary 8.1a, using the fact that with A also the matrix

-1
(17) AT
_AT
is totally unimodular. |

Hoffman and Kruskal [1956] showed, as we shall see below, that the above property more or less
characterizes total unimodularity.

To derive this result, define an m X n matrix A to be unimodular if it has rank m and each
m X m submatrix has determinant equal to 0, +1, or —1. It is easy to see that a matrix A is totally
unimodular, if and only if the matrix [I A] is unimodular.

We follow the proof of Hoffman and Kruskal’s result given by Veinott and Dantzig [1968]. As a
preparation one first shows:
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Theorem 8.2. Let A be an integer m x n matriz of rank m. Then A is unimodular, if and only if
for each integer vector b the polyhedron

(18) P={z|x>0;Az = b}
1S 1nteger.

Proof. Necessity. First suppose that A is unimodular. Let b be an integer vector. Let D be the
matrix

-1 0
(19) D = A | and f:= b
—A —b

Note that the system x > 0, Az = b is the same as Dx < f.
Since D has rank n, we know that for each ¢ € R™, the linear programming problem

(20) max{c’z | x > 0; Ar = b} = max{c’2 | Dz < f}

is attained by a vertex z of P (if the optima are finite).

Now consider the matrix D,. By definition, this is the submatrix of D consisting of those rows
D; of D which have equality in Dz < f.

Clearly, D, contains all rows of D that are in A and in —A. Since A has rank m, this implies
that D, contains a nonsingular n X n matrix B that fully contains A and moreover, part of —I.
Since A is unimodular, det B equals +1 or —1. Let f’ be the part of f corresponding to B. So
Bz = f’, and hence 2 = B~1f’. As |det B| = 1, it follows that z is an integer vector.

Sufficiency. Suppose that P = {x | x > 0; Az = b} is integer, for each choice of an integer vector
b. Let B be an m x m nonsingular submatrix of A. We must show that det B equals +1 or —1.

Without loss of generality, we may assume that B consists of the first m columns of A.

It suffices to show that B~!v is an integer vector for each choice of an integer vector v. (This
follows from the fact that then B~! itself is an integer matrix, and hence (det B)“'=det(B~1) is an
integer. This implies that det B equals +1 or —1.)

So let v be an integer vector. Then there exists an integer vector u € R™ such that

(21) z:=u+ B v >0.
Define
(22) b:= Bz.

So b= Bz = Bu+ BB~ 'v = Bu + v is an integer vector.
Let 2z’ arise from z by adding zero-components to z so as to obtain a vector in R™. So

(23) (O)

where 0 is the all-zero vector in R"~™.

Then 2’ is a vertex of the polyhedron P (since 2z’ € P and since there are n linearly independent
rows in the matrix D for which Dz < f holds with equality).

So 2’ is integer, and hence

(24) B lw=2z—-u

is an integer vector. |

This gives the result of Hoffman and Kruskal [1956]:
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Corollary 8.2a (Hoffman-Kruskal theorem). Let A be an integer m x n matriz. Then A is totally
unimodular, if and only if for each integer vector b the polyhedron

(25) P={z|x>0;Az <b}
s integer.
Proof. Necessity. Directly from Corollary 8.1a.

Sufficiency. Let P be an integer polyhedron, for each choice of an integer vector b. We show
that, for each choice of b € Z™, each vertex z of the polyhedron

(26) Q:={z]z>0;[I Alz=0b}.

is integer. Indeed, z can be decomposed as

(27) = (5),

where 2z’ € R™ and z” € R". So 2/ =b— AZ".
Then 2" is a vertex of P. [This follows from the fact that if z”” would be equal to i (v + w) for
two other points v, w in P, then

1 1
(28) z’:b—Az”z§(b—Av)—|—§(b—Aw).

Hence

(29) Z:(j’):%(b_vAv)jL%(b_wAw).

This contradicts the fact that z is a vertex of @Q.]

So, by assumption, z” is integer. Hence also 2z’ = b — Az"” is integer, and hence z is integer.

So for each choice of b in Z™, the polyhedron @ is integer. Hence, by Theorem 8.2, the matrix
[I A] is unimodular. This implies that A is totally unimodular. |

Exercises

8.6. Show that an integer matrix A is totally unimodular, if and only if for all integer vectors b and ¢, both
sides of the linear programming duality equation

(30) max{c’ x|z > 0; Az < b} = min{y” b |y > 0;5"A> "}
are attained by integer optimum solutions = and y (if the optima are finite).

8.7. Give an example of an integer matrix A and an integer vector b such that the polyhedron P := {z |
Az < b} is integer, while A is not totally unimodular.

8.8. Let A be a totally unimodular matrix. Show that the columns of A can be split into two classes such
that the sum of the columns in one class, minus the sum of the columns in the other class, gives a
vector with entries 0, +1, and —1 only.

8.9. Let A be a totally unimodular matrix and let b be an integer vector. Let x be an integer vector
satisfying z > 0; Az < 2b. Show that there exist integer vectors =’ > 0 and z” > 0 such that Az’ < b,
Az” <band z =2’ +z".

8.3. Totally unimodular matrices from bipartite graphs

Let A be the V x E incidence matrix of a graph G = (V, E) (cf. (2)). The matrix A generally is
not totally unimodular. E.g., if G is the complete graph K3 on three vertices, then the determinant
of A is equal to +2 or —2.
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However, the following can be proved:

Theorem 8.3. Graph G is bipartite, if and only if its incidence matriz A is totally unimodular.

Proof. Sufficiency. Let A be totally unimodular. Suppose G is not bipartite. Then G contains

an odd circuit, say with vertices vq,...,v; and edges eq,...,e;. The submatrix of A on the rows
indexed by wv1,...,v; and the columns indexed by ey, ..., e, is of type

110 - --- 0 0

011 -+ --- 0 0

001 --- --- 0 0
(31) ;

000 -~ --- 1 1

100 - --- 0 1

up to permutation of rows and columns.
It is not difficult to see that matrix (31) has determinant 2. This contradicts the total unimod-
ularity of A.

Necessity. Let G be bipartite. Let B be a square submatrix of A, of order ¢ x ¢, say. We show
that det B equal 0 or =1 by induction on t. If ¢ = 1, the statement is trivial.
So let t > 1. We distinguish three cases.

Case 1. B has a column with only 0’s. Then det B=0.

Case 2. B has a column with exactly one 1. In that case we can write (possibly after permuting
rows or columns):

(32) B:(é ?),

for some matrix B’ and vector b, where 0 denotes the all-zero vector in R*~!. By the induction
hypothesis, det B’ € {0, +1}. Hence, by (32), det B € {0, £1}.

Case 3. Fach column of B contains exactly two 1’s. Then, since G is bipartite, we can write
(possibly after permuting rows):

(33 5=( g )

in such a way that each column of B’ contains exactly one 1 and each column of B” contains exactly
one 1. So adding up all rows in B’ gives the all-one vector, and also adding up all rows in B gives
the all-one vector. Therefore, the rows of B are linearly dependent, and hence det B=0. |

As direct corollaries of this theorem, together with Corollary 8.1b, we obtain some theorems of
Konig. First:

Corollary 8.3a (Koénig’s matching theorem). Let G be a bipartite graph. Then the mazimum
cardinality of a matching in G is equal to the minimum cardinality of a vertex cover in G.

Proof. Clearly, the maximum cannot be larger than the minimum. To see that equality holds, let
A be the V x FE incidence matrix of G. Then by Corollary 8.1b, both optima in the LP-duality
equation

(34) max{17z |z > 0; Az <1} = min{y”"1 |y > 0;57 A > 1}
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are attained by integer optimum solutions z* and y*.

Since x* is an integer vector satisfying > 0; Az < 1, z* is a {0,1} vector. Let M be the set
of edges e of G for which #} = 1. Then M is a matching, since Ax* < 1 holds, implying that for
each vertex v there is at most one edge e with 2% = 1. Moreover, the cardinality |M| of M satisfies
|M| = 1Tz*. So |[M| is equal to the maximum in (34).

On the other hand, as vector y* attains the minimum in (34), it should be a {0,1} vector. (If
some component would be 2 or larger, we could reduce it to 1, without violating y”A > 1 but
decreasing 7 1. This contradicts the fact that y* attains the minimum.)

Let W be the set of vertices of G’ for which ¢ = 1. Then W is a vertex cover, since y*7A4 > 1
holds, implying that for each edge e of G there is at least one vertex v with y* = 1. Moreover, the
cardinality |W| of W satisfies [W| = y*T1. So |[W| is equal to the minimum in (34). |

One similarly derives:

Corollary 8.3b (Kénig’s edge cover theorem). Let G be a bipartite graph. Then the maximum
cardinality of a coclique in G is equal to the minimum cardinality of an edge cover in G.

Proof. Similar to the proof of Corollary 8.1a (now with A instead of A). |
One can also derive weighted versions of these two min-max relations. Let X be some finite set

and let w : X — R be a ‘weight’ function on X. The weight w(Y") of some subset Y C X is, by
definition:

(35) w(Y) = Z w(x).

Then:

Corollary 8.3c. Let G = (V, E) be a bipartite graph and let w: V — Z4 be a weight function on
E. Then:

(i) The mazimum weight of a matching in G is equal to the minimum value of Y, oy, f(v), where
f ranges over all functions f:V — Zy such that f(u) + f(v) > w({u,v}) for each edge {u,v}
of G;

(ii) The minimum weight of an edge cover in G is equal to the mazimum value of ) .y f(v),
where f ranges over all functions f :' V — Z such that f(u) + f(v) < w({u,v}) for each edge
{u,v} of G.

Proof. The statements are equivalent to both sides in

(36) max{w’z |z > 0; Az <1} = min{y"1 |y > 0;y" A > w}

and in

(37) min{w’z | z > 0; Az > 1} = max{y”1 |y > 0;y7 A < w}

having integer optimum solutions. These facts follow from Theorem 8.3 and Corollary 8.1b. |

Similarly one has min-max relations for the maximum weight of a coclique and the minimum
weight of a vertex cover in bipartite graphs (cf. Exercises 8.10 and 8.11).
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Another corollary is as follows. For any finite set X and any subset Y of X, define the incidence
vector x¥ € RX of Y as:

(38) XY = 1 ifzey;
0 ifzgY.

Now let G = (V, E) be a graph. The matching polytope Pmatching(G) of G is, by definition, the
convex hull (in R¥) of the incidence vectors of all matchings in G. That is:

(39) Paatching (G) = conv.hull{x™ | M matching in G}.

Now with Theorem 8.3 we can give the linear inequalities describing Prhatching(G):

Corollary 8.3d. If G is bipartite, the matching polytope Pmatching(G) of G is equal to the set of
vectors = in RY satisfying:

(40) (i) ze > 0 foreache€ E;
(i) er < 1 foreachvelV.

esSv

Proof. Let @ be the polytope defined by (40). Clearly, Ppatching(G) C @, since the incidence vector
XM of any matching M satisfies (40).
To see that Q C Patching(G), observe that @ satisfies

(41) Q={x]x>0;Ax <1},

where A is the incidence matrix of A.

Since A is totally unimodular (Theorem 8.3), we know that @ is integer, i.e., that each vertex of
Q is an integer vector (Corollary 8.1a). So @ is the convex hull of the integer vectors contained in
Q. Now each integer vector in Q is equal to the incidence vector x™ of some matching M in G. So
@ must be contained in Pyatching(G)- |

Again, one cannot delete the bipartiteness condition here, as for any odd circuit there exists a
vector satisfying (40) but not belonging to the matching polytope Puatching (G).

Similarly, let the perfect matching polytope Pperfoct matching (G) of G be defined as the convex hull
of the incidence vectors of the perfect matchings in G. Then we have:

Corollary 8.3e. If G is bipartite, the perfect matching polytope Pperfect matching(G) of G is equal to
the set of vectors x in R satisfying:

(42) (i) ze > 0 foreacheeE;
(ii) er = 1 foreachveV.
esv
Proof. Similarly as above. |

Exercises
8.10. Give a min-max relation for the maximum weight of a coclique in a bipartite graph.
8.11. Give a min-max relation for the minimum weight of a vertex cover in a bipartite graph.

8.12. Let G = (V, E) be a nonbipartite graph. Show that the inequalities (40) are not enough to define the
matching polytope of G.
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8.13. The edge cover polytope Pegge cover(G) of a graph is the convex hull of the incidence vectors of the
edge covers in G. Give a description of the linear inequalities defining the edge cover polytope of a
bipartite graph.

8.14. The coclique polytope Pooclique(G) of a graph is the convex hull of the incidence vectors of the cocliques
in G. Give a description of the linear inequalities defining the coclique polytope of a bipartite graph.

8.15. The wvertez cover polytope Pyertex cover (G) of a graph is the convex hull of the incidence vectors of the
vertex covers in G. Give a description of the linear inequalities defining the vertex cover polytope of
a bipartite graph.

8.16. Derive from Corollary 8.3e that for each doubly stochastic matrix M there exist permutation matrices
Pi,..., P, and reals A1,..., Ay, > 0 such that Ay +--- 4+ A\, =1 and

(43) M =MPy+ - AP

(A matrix M is called doubly stochastic if each row sum and each column sum is equal to 1. A matrix
P is called a permutation matriz if it is a {0, 1} matrix, with in each row and in each column exactly
one 1.)

8.4. Totally unimodular matrices from directed graphs

A second class of totally unimodular matrices can be derived from directed graphs. Let D =
(V, A) be a directed graph. The V' x A incidence matriz M of D is defined by:

(44) My, = 41 ifaleavesw,
:= —1 if a enters v,
= 0 otherwise.

So each column of M has exactly one +1 and exactly one —1, while all other entries are 0.
Now we have:

Theorem 8.4. The incidence matrix M of any directed graph D is totally unimodular.

Proof. Let B be a square submatrix of M, of order ¢ say. We prove that det B € {0,£1} by
induction on ¢, the case t = 1 being trivial.
Let ¢ > 1. We distinguish three cases.

Case 1. B has a column with only zeros. Then det B = 0.

Case 2. B has a column with exactly one nonzero. Then we can write (up to permuting rows
and columns):

+1 b7
for some vector b and matrix B’.
Now by our induction hypothesis, det B € {0, 41}, and hence det B € {0, £1}.

Case 3. Fach column of B contains two nonzeros. Then each column of B contains one +1
and one —1, while all other entries are 0. So the rows of B add up to an all-zero vector, and hence
det B = 0. |

The incidence matrix M of a directed graph D = (V, A) relates to flows and circulations in D.
Indeed, any vector x € R4 can be considered as a function defined on the arcs of D. Then the
condition

(46) Mz =0
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is just the ‘flow conservation law’. That is, it says:
(47) Z z(a) = Z x(a) for each v € V.
a€dout(v) a€dn(v)
So we can derive from Theorem 8.4:
Corollary 8.4a. Let D = (V, A) be a directed graph and let ¢ : A — Z and d : A — Z. If there

exists a circulation © on A with ¢ < x < d, then there exists an integer circulation x on A with
c<uz<d.

Proof. If there exists a circulation x with ¢ < z < d, then the polytope
(48) P={z|c<z<d;Mz=0}

is nonempty. So it has at least one vertex x*. Then, by Corollary 8.1a, =* is an integer circulation
satisfying ¢ < z* < d. |

In fact, one can derive Hoffman’s circulation theorem— see Exercise 8.17. Another theorem that
can be derived is the max-flow min-cut theorem.

Corollary 8.4b (max-flow min-cut theorem). Let D = (V, A) be a directed graph, let r and s be
two of the vertices of D, and let ¢ : A — Ry be a ‘capacity’ function on A. Then the maximum
value of an r — s flow subject to c is equal to the minimum capacity of an r — s cut.

Proof. Since the maximum clearly cannot exceed the minimum, it suffices to show that there exists
an r — s flow z < c and an r — s cut, the capacity of which is not more than the value of x.

Let M be the incidence matrix of D and let M’ arise from M by deleting the rows corresponding
to r and s. So the condition M’z = 0 means that the flow conservation law should hold in any
vertex v # T, s.

Let w be the row of M corresponding to vertex r. So w, = +1 if arc a leaves r and w, = —1 if
arc a enters r, while w, = 0 for all other arcs a.

Now the maximum value of an r» — s flow subject to ¢ is equal to

(49) max{w’z |0 <z < ¢; Mz =0}.
By LP-duality, this is equal to
(50) min{yTc|y > 0;9y7 + 2T M’ > w}.

The inequality system in (50) is:

61 o (§ )z 0w

The matrix here is totally unimodular, by Theorem 8.4.

Since w is an integer vector, this implies that the minimum (50) is attained by integer vectors y
and z.

Now define

(52) W={veV\{rs}|z, <-1}U{r}

So W is a subset of V' containing r and not containing s.
It suffices now to show that

(53) c(8™ (W) < y'e,
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since yT ¢ is not more than the maximum flow value (49).
To prove (53) it suffices to show that

(54) if a = (u,v) € 6°*(W) then y, > 1.
Define %, := —1, 3, := 0, and 2, = z, for all other u. Then y” 4+ 27 M > 0. Hence for all
a = (u,v) € (W) one has y, + Z, — Z, > 0, implying y, > Z, — Z, > 1. This proves (54). |

Similarly as in Corollary 8.4a it follows that if all capacities are integers, then there exists a
maximum integer flow.
Next define a matrix to be an interval matriz if each entry is 0 or 1 and each row is of type

(55) (0,...,0,1,...,1,0,...,0).

Corollary 8.4c. FEach interval matriz is totally unimodular.

Proof. Let M be an interval matrix and let B be a t x ¢t submatrix of M. Then B is again an
interval matrix. Let N be the ¢ x ¢ matrix given by:

1 -1 0 - --- 0 0
0O 1 =1 -+ -+ 0 0
o o0 1 -+ -0 0
(56) N :=
o 0 0 -+ --- 1 —1
O 0 0 - --- 0 1

Then the matrix N - BT is a {0,+1} matrix, with at most one +1 and at most one —1 in each
column.

So it is a submatrix of the incidence matrix of some directed graph. Hence by Theorem 8.4,
det(N - BT) € {0,41}. Moreover, det N = 1. So det B = det BT € {0, +1}. |

Exercises
8.17. Derive Hoffman’s circulation theorem (Theorem 4.9) from Theorem 8.4.
8.18. Derive Dilworth’s decomposition theorem (Theorem 7.5) from Theorem 8.4.

8.19. Let D = (V, A) be a directed graph and let T = (V, A’) be a directed spanning tree on V.

Let C be the A’ x A matrix defined as follows. Take a’ € A’ and a = (u,v) € A, and define C,s , := +1
if a’ occurs in forward direction in the u—v path in T and C,/ , := —1 if @’ occurs in backward direction
in the u — v path in 7. For all other a’ € A’ and a € A set Cq o :=0.

(i) Prove that C is totally unimodular.
(Hint: Use a matrix similar to matrix N in Corollary 8.4c.)

(ii) Show that interval matrices and incidence matrices of directed graphs are special cases of such
a matrix C.
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9. Multicommodity flows and disjoint paths

9.1. Introduction

The problem of finding a maximum flow from one ‘source’ r to one ‘sink’ s is highly tractable.
There is a very efficient algorithm, which outputs an integer maximum flow if all capacities are
integer. Moreover, the maximum flow value is equal to the minimum capacity of a cut separating r
and s. If all capacities are equal to 1, the problem reduces to finding arc-disjoint paths. Some direct
transformations give similar results for vertex capacities and for vertex-disjoint paths.

Often in practice however, one is not interested in connecting only one pair of source and sink by
a flow or by paths, but several pairs of sources and sinks simultaneously. One may think of a large
communication or transportation network, where several messages or goods must be transmitted all
at the same time over the same network, between different pairs of terminals. A recent application
is the design of wvery large-scale integrated (VLSI) circuits, where several pairs of pins must be
interconnected by wires on a chip, in such a way that the wires follow given ‘channels’ and that the
wires connecting different pairs of pins do not intersect each other.

Mathematically, these problems can be formulated as follows. First, there is the multicommodity
flow problem (or k-commodity flow problem):

(1) given: a directed graph G = (V, E), pairs (r1,s1),..., (T, sk) of vertices of G, a
‘capacity’ function ¢ : E — Q4, and ‘demands’ dy, ..., dg,
find: for eachi=1,...,k, an r; — s; flow x; € (@f so that z; has value d; and so

that for each arc e of G:
k
in(e) < c(e).
i=1

The pairs (r;, s;) are called commodities. (We assume r; # s; throughout.)

If we require each x; to be an integer flow, the problem is called the integer multicommodity
flow problem or integer k-commodity flow problem. (To distinguish from the integer version of this
problem, one sometimes adds the adjective fractional to the name of the problem if no integrality is
required.)

The problem has a natural analogue to the case where G is undirected. We replace each undi-
rected edge e = {v,w} by two opposite arcs (v, w) and (w,v) and ask for flows z1,...,x of values
dy,...,dy, respectively, so that for each edge e = {v,w} of G:

k

(2) Z(mi(v,w) + z;(w,v)) < c(e).

i=1

Thus we obtain the undirected multicommodity flow problem or undirected k-commodity flow problem.
Again, we add integer if we require the x; to be integer flows.

If all capacities and demands are 1, the integer multicommodity flow problem is equivalent to
the arc- or edge-disjoint paths problem:

(3) given: a (directed or undirected) graph G = (V, E), pairs (rq,$1), ..., (Tk, Sg) of
vertices of G,
find: pairwise edge-disjoint paths Pi,..., P, where P; is an r; — s; path (i =
1,...,k).
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Related is the vertex-disjoint paths problem:

(4) given: a (directed or undirected) graph G = (V, E), pairs (r1,$1), ..., (rg,sk) of
vertices of G,
find: pairwise vertex-disjoint paths P,..., Py where P; is an r; — s; path (i =
1,...,k).

We leave it as an exercise (Exercise 9.1) to check that the vertex-disjoint paths problem can be
transformed to the directed edge-disjoint paths problem.

The (fractional) multicommodity flow problem can be easily described as one of solving a system
of linear inequalities in the variables x;(e) for i = 1,...,k and e € E. The constraints are the flow
conservation laws for each flow x; separately, together with the inequalities given in (1). Therefore,
the fractional multicommodity flow problem can be solved in polynomial time with any polynomial-
time linear programming algorithm.

In fact, the only polynomial-time algorithm known for the fractional multicommodity flow prob-
lem is any general linear programming algorithm. Ford and Fulkerson [1958] designed an algorithm
based on the simplex method, with column generation — see Section 9.6.

The following cut condition trivially is a necessary condition for the existence of a solution to
the fractional multicommodity flow problem (1):

(5) for each W C V the capacity of 69" (W) is not less than the demand of 6% (W),
where R := {(r1,$1),...,(rk, Sx)}. However, this condition is in general not sufficient, even not in

the two simple cases given in Figure 9.1 (taking all capacities and demands equal to 1).
S

N
& Sy

Figure 9.1

One may derive from the max-flow min-cut theorem that the cut condition is sufficient if r; =
ro = -+ =ry (similarly if s1 = s9 = --+ = s;) — see Exercise 9.3.
Similarly, in the undirected case a necessary condition is the following cut condition:

(6) for each W C V, the capacity of dg(W) is not less than the demand of dr (W)

(taking R := {{r1,s1},..., {7k, sx}}). In the special case of the edge-disjoint paths problem (where
all capacities and demands are equal to 1), the cut condition reads:

(7) for each W C V, [0g(W)| > |dr(W)].

Figure 9.2 shows that this condition again is not sufficient.

However, Hu [1963] showed that the cut condition is sufficient for the existence of a fractional
multicommodity flow, in the undirected case with k = 2 commodities. He gave an algorithm that
yields a half-integer solution if all capacities and demands are integer. This result was extended by
Rothschild and Whinston [1966]. We discuss these results in Section 9.2.

Similar results were obtained by Okamura and Seymour [1981] for arbitrary k, provided that the
graph is planar and all terminals r;, s; are on the boundary of the unbounded face — see Section
9.5.
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t,=s

t= S

Figure 9.2

The integer multicommodity flow problem is NP-complete, even in the undirected case with
k = 2 commodities and all capacities equal to 1, with arbitrary demands di,ds (Even, Itai, and
Shamir [1976]). This implies that the undirected edge-disjoint paths problem is NP-complete, even
if |{{T17 81}7 cee {Tka Sk}}‘ =2.

In fact, the disjoint paths problem is NP-complete in all modes (directed /undirected, vertex/edge
disjoint), even if we restrict the graph G to be planar (D.E. Knuth (see Karp [1975]), Lynch [1975],
Kramer and van Leeuwen [1984]). For general directed graphs the arc-disjoint paths problem is
NP-complete even for k = 2 ‘opposite’ commodities (r,s) and (s,r) (Fortune, Hopcroft, and Wyllie
[1980]).

On the other hand, it is a deep result of Robertson and Seymour [1995] that the undirected
vertex-disjoint paths problem is polynomially solvable for any fixed number & of commodities. Hence
also the undirected edge-disjoint paths problem is polynomially solvable for any fixed number k of
commodities.

Robertson and Seymour observed that if the graph G is planar and all terminals r;, s; are on
the boundary of the unbounded face, there is an easy ‘greedy-type’ algorithm for the vertex-disjoint
paths problem — see Section 9.4.

It is shown by Schrijver [1994] that for each fixed k, the k disjoint paths problem is solvable in
polynomial time for directed planar graphs. For the directed planar arc-disjoint version, the com-
plexity is unknown. That is, there is the following research problem:

Research problem. Is the directed arc-disjoint paths problem polynomially solvable for planar
graphs with & = 2 commodities? Is it NP-complete?

Application 9.1: Multicommodity flows. Certain goods or messages must be transported through the
same network, where the goods or messages may have different sources and sinks.
This is a direct special case of the problems described above.

Application 9.2: VLSI-routing. On a chip certain modules are placed, each containing a number of
'pins’. Certain pairs of pins should be connected by an electrical connection (a ‘wire’) on the chip, in such
a way that each wire follows a certain (very fine) grid on the chip and that wires connecting different pairs
of pins are disjoint.

Determining the routes of the wires clearly is a special case of the disjoint paths problem.

Application 9.3: Routing of railway stock. An extension of Application 4.5 is as follows. The stock
of the railway company NS for the Amsterdam—Vlissingen line now consists of two types (1 and 2 say) of
units, with a different number of seats s1 and sz and different length /1 and 2. All units (also of different
types) can be coupled with each other.

Again there is a schedule given, together with for each segment a minimum number of seats and a
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maximum length of the train. Moreover, the price p; of buying any unit of type i is given.

Now the company wishes to determine the minimum costs of buying units of the two types so that the
schedule can be performed and so that the total cost is minimized.

This can be considered as a ‘min-cost integer multicommodity circulation problem’. That is we make
the directed graph D as in Application 4.5. For each arc a corresponding to a segment we define d(a) to be
the minimum number of seats that should be offered on that segment, and c(a) to be the maximum length
possible at that segment. For all other arcs a we define d(a) := 0 and ¢(a) := occ.

One should find two integer-valued circulations f; and f2 in D such that

(8) s1fi(a) + s2f2(a) 2 d(a) and l1 f1(a) + 2 f2(a) < c(a)

for each arc a and such that the sum Y (p1 fi1(a) +p2f2(a)) is minimized, where a ranges over all ‘overnight’
arcs. Then f;(a) denotes the number of units of type i that should go on segment a.

Again several variations are possible, incorporating for instance the kilometer costs and maximum ca-
pacities of stock areas.

Exercises

9.1. Show that each of the following problems (a), (b), (c) can be reduced to problems (b), (c), (d),
respectively:

(a) the undirected edge-disjoint paths problem,
(b

(c
(d

) the undirected vertex-disjoint paths problem,
) the directed vertex-disjoint paths problem,
) the directed arc-disjoint paths problem.

9.2. Show that the undirected edge-disjoint paths problem for planar graphs can be reduced to the directed
arc-disjoint paths problem for planar graphs.

9.3. Derive from the max-flow min-cut theorem that the cut condition (5) is sufficient for the existence of
a fractional multicommodity flow if r1 = -+ = ry.

9.4. Show that if the undirected graph G = (V, E) is connected and the cut condition (7) is violated, then
it is violated by some W C V for which both W and V' \ W induce connected subgraphs of G.

9.5. (i) Show with Farkas’ lemma: the fractional multicommodity flow problem (1) has a solution, if and
only if for each ‘length’ function [ : E — Q4 one has:

k
(9) Z d; - dist(rs, 83) < Z l(e)c(e).

i=1 e€E
(Here dist;(r, s) denotes the length of a shortest r — s path with respect to [.)

(ii) Interprete the cut condition (5) as a special case of this condition.

9.2. Two commodities

Hu [1963] gave a direct combinatorial method for the undirected two-commodity flow problem
and he showed that in this case the cut condition suffices. In fact, he showed that if the cut condition
holds and all capacities and demands are integer, there exists a half-integer solution. We first give
a proof of this result due to Sakarovitch [1973].

Counsider a graph G = (V, E), with commodities {r1,s1} and {re,s2}, a capacity function ¢ :
E — 7, and demands d; and ds.

Theorem 9.1 (Hu’s two-commodity flow theorem). The undirected two-commodity flow problem,
with integer capacities and demands, has a half-integer solution, if and only if the cut condition (6)
is satisfied.
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Proof. Suppose the cut condition holds. Orient the edges of G arbitrarily, yielding the directed
graph D = (V, A). For any a € A we denote by c(a) the capacity of the underlying undirected edge.
Define for any € R4 and any v € V:

(10) f(z,v) = Z x(a) — Z x(a).

a€gdout (v) a€din(v)

So f(z,v) is the ‘net loss’ of x in vertex v.
By the max-flow min-cut theorem there exists a function 2’ : A — Z satisfying:

(11) f@' ) =dy, f(2',51) = —dy, f(2',r2) = da, f(a, 52) = —da,
f(@',v) = 0 for each other vertex v,
|2’ (a)] < ¢(a) for each arc a of D.

This can be seen by extending the undirected graph G by adding two new vertices ' and s’ and
four new edges {r’,r1},{s1,s'} (both with capacity d;) and {r’, 72}, {s2, s’} (both with capacity ds)
as in Figure 9.3.

Figure 9.3

Then the cut condition for the two-commodity flow problem implies that the minimum capacity
of any r’ — s’ cut in the extended graph is equal to d; + ds. Hence, by the max-flow min-cut
theorem, there exists an integer-valued r’ — s’ flow in the extended graph of value d; + ds. This
gives z’ satisfying (11).

Similarly, the max-flow min-cut theorem implies the existence of a function 2" : A — Z satisfying:

(12) f(x//a Tl) = dla f(.’l?”, Sl) = _d17 f(.’l?”, TQ) = _d23 f(.’l?”, 82> = d2;
f(@”,v) =0 for each other vertex v,
|z”(a)] < ¢(a) for each arc a of D.

To see this we extend G with vertices " and s” and edges {r”,r1}, {s1,s”} (both with capacity d;)
and {r”, sa}, {re,s”} (both with capacity ds) (cf. Figure 9.4).
After this we proceed as above.

Now consider the vectors

(13) z1 = 1(2' + ") and x5 := (2’ — 2”).

Since f(z1,v) = 2(f(z',v) + f(2”,v)) for each v, we see from (11) and (12) that z; satisfies:
(14) flxy,m1) =dy, f(x1,81) = —dy, f(x1,v) = 0 for all other v.

So x1 gives a half-integer r; — s; flow in G of value dy. Similarly, xo satisfies:

(15) f(xa,m2) = da, f(xa,82) = —da, f(x2,v) = 0 for all other v.
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Figure 9.4

So x2 gives a half-integer ro — so flow in G of value ds.
Moreover, 1 and zo together satisfy the capacity constraint, since for each edge a of D:

(16) |z1(a)] + |22(a)| = 512'(a) +2"(a)| + 5]2'(a) — 2" (a)]
= max{[z’(a)|, [¢"(a)[} < c(a).

(Note that 3|o+ 8] + 3| — 8| = max{|al, |3} for all reals o, 3.)
So we have a half-integer solution to the two-commodity flow problem. |

This proof also directly gives a polynomial-time algorithm for finding a half-integer flow.
The cut condition is not enough to derive an integer solution, as is shown by Figure 9.5 (taking
all capacities and demands equal to 1).

S t,

Figure 9.5

Moreover, as mentioned, the undirected integer two-commodity flow problem is NP-complete (Even,
Itai, and Shamir [1976]).

However, Rothschild and Whinston [1966] showed that an integer solution exists if the cut con-
dition holds, provided that the following Fuler condition is satisfied:

(17) Decswycle) =0 (mod2) ifv#ry, sy, s,
=d; (mod?2) ifv=rq, s,
=dy (mod2) ifv=rg,ss.
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(Equivalently, the graph obtained from G by replacing each edge e by c(e) parallel edges and by
adding d; parallel edges connecting r; and s; (i = 1,2), should be an Eulerian graph.)

Theorem 9.2. If all capacities and demands are integer and the cut condition and the Euler
condition are satisfied, then the undirected two-commodity flow problem has an integer solution.

Proof. If the Euler condition holds, we can take z’ in the proof of Theorem 9.1 so that the following
further condition is satisfied:

(18) 2'(a) =c(a) (mod 2) for each a € A.
To see this, let 2’ satisfy (11) and let
(19) A":={a€ Al 2 (a) % c(a) (mod 2)}.
Then each vertex v is incident with an even number 0 of arcs in A’, since
(20) 0= f(a',v) = fle,v) =0 (mod 2),

by (11) and (17). So if A’ # () then A’ contains an (undirected) circuit. Increasing and decreasing x’

by 1 on the arcs along this circuit (depending on whether the arc is forward or backward), we obtain

a function again satisfying (11). Repeating this, we finally obtain a function z’ satisfying (18).
Similarly, we can take z” so that

(21) 2"(a) = c(a)  (mod 2) for each a € A.
Conditions (18) and (21) imply that 2’(a) = 2”(a) (mod 2) for each a € A. Hence 1 = 1 (2'+2")
and x5 = (2’ — 2”) are integer vectors. |

This proof directly yields a polynomial-time algorithm for finding the integer solution.

Exercises

9.6. Derive from Theorem 9.1 the following maz-biflow min-cut theorem of Hu: Let G = (V, F) be a graph,
let r1, 81,72, 82 be distinct vertices, and let ¢ : E — Q4 be a capacity function. Then the maximum
value of di1 4 d2 so that there exist r; — s; flows x; of value d; (i = 1, 2), together satisfying the capacity
constraint, is equal to the minimum capacity of a cut both separating 1 and s; and separating r2 and
S2.

9.7. Derive from Theorem 9.1 that the cut condition suffices to have a half-integer solution to the undirected
k-commodity flow problem (with all capacities and demands integer), if there exist two vertices u and w
so that each commodity {r;, s;} intersects {u,w}. (Dinits (cf. Adel’son-Vel’skii, Dinits, and Karzanov

[1975]).)
9.8. Derive the following from Theorem 9.2. Let G = (V, E) be a Eulerian graph and let r1, s1,72, s2 be
distinct vertices. Then the maximum number ¢ of pairwise edge-disjoint paths P, ..., P;, where each

P; connects either r1 and s; or r2 and s2, is equal to the minimum cardinality of a cut both separating
r1 and s1 and separating r2 and sa.

9.3. Disjoint paths in acyclic directed graphs

Fortune, Hopcroft, and Wyllie [1980] showed that the vertex-disjoint paths problem is NP-
complete for directed graphs, even when fixing the number of paths to k = 2.

On the other hand they proved that if D is acyclic, then for each fixed k, the k vertex-disjoint
paths problem can be solved in polynomial time. (A directed graph is called acyclic if it does not
contain any directed circuit.)



118 Chapter 9. Multicommodity flows and disjoint paths

The algorithm is contained in the proof of the following theorem:

Theorem 9.3. For each fized k there exists a polynomial-time algorithm for the k vertex-disjoint
paths problem for acyclic directed graphs.

Proof. Let D = (V, A) be an acyclic digraph and let r1, s1,..., 7, Sk be vertices of D, all distinct.
In order to solve the vertex-disjoint paths problem we may assume that each r; is a source and each
s; is a sink.

Make an auxiliary digraph D’ = (V', A’) as follows. The vertex set V' consists of all k-tuples
(v1,...,vg) of distinct vertices of D. In D’ there is an arc from (vy,...,vg) to (wy,...,wy) if and
only if there exists an i € {1,...,k} such that:

(22) (i) v; = w; for all j # 4
(i) (v;, w;) is an arc of D;
(iii) for each j # i there is no directed path in D from v; to v;.

Now the following holds:

(23) D contains k vertex-disjoint directed paths Py, ..., Py such that P; runs from r; to
Si (ZZ 1,...,]{:)
<= D’ contains a directed path P from (ry,...,7) to (s1,...,8k).
To see =, let P; follow the vertices v; 0, v; 1,...,vi¢, fori=1,...,k. Sov;o=7r; and v;¢, = s;

for each . Choose ji, ..., ji such that 0 < j; < t; for each ¢ and such that:

(24) (i) D’ contains a directed path from (ri,...,rg) to (vij,,---, ki),

(ii) j1 + -+ 4 Jjr is as large as possible.

Let I:={i|j; <t;}. If I =0 we are done, so assume I # ). Then by the definition of D’ and
the maximality of j; + - - - + ji there exists for each ¢ € I an i’ # ¢ such that there is a directed path
in D from vy j, to v; . Since sy is a sink we know that vy ;, # s and that hence i’ belongs to I.
So each vertex in {v; ;, | ¢ € I} is end vertex of a directed path in D starting in another vertex in
{vij, | ¢ € I}. This contradicts the fact that D is acyclic.

To see <= in (23), let P be a directed path from (r1,...,7) to (s1,...,sx) in D’. Let P follow
the vertices (v1j,...,v%,;) for j =0,...,t. Sov;o =7 and v,y = s; for ¢ = 1,..., k. For each
i=1,...,klet P; be the path in D following v; ; for j = 0,...,¢, taking repeated vertices only once.
So P; is a directed path from r; to s;.

Moreover, Py, ..., P, are pairwise disjoint. For suppose that P; and P (say) have a vertex in
common. That is vy ; = vy ;» for some j # j'. Without loss of generality, j < j' and v1 ; # v1 jy1.
By definition of D', there is no directed path in D from vy ; to vy ;. However, this contradicts the
facts that v ; = vo ;» and that there exists a directed path in D from vy ; to va ;. |

One can derive from this that for fixed k also the k arc-disjoint paths problem is solvable in
polynomial time for acyclic directed graphs (Exercise 9.9).

Application 9.4: Routing airplanes. This application extends Application 4.1. The data are similar,
except that legal rules now prescribe the exact day of the coming week at which certain airplanes should be
at the home basis for maintenance.

Again at Saturday 18.00h the company determines the exact routing for the next week. One can make
the same directed graph as in Application 4.1. Now however it is prescribed that some of the paths P;
should start at a certain (c,t) (where c is the city where airplane a; will be first after Saturday 18.00h) and
that they should traverse the arc corresponding to maintenance on a prescribed day of the coming week (for
instance Wednesday).
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Now if for each airplane a; which should be home for maintenance next week we can find this path P;
such that it traverses the for that plane required maintenance arc and in such a way that paths found for
different airplanes are arc disjoint, then it is easy to see that these paths can be extended to paths P, ..., P,
such that each arc is traversed exactly once.

As the directed graph D is acyclic, the problem can be solved with the algorithm described in the proof
of Theorem 9.3, provided that the number of airplanes that should be home for maintenance the coming
week is not too large.

Exercises

9.9. Derive from Theorem 9.3 that for each fixed k the k arc-disjoint paths problem is solvable in polynomial
time for acyclic directed graphs.

9.10. Show that for fixed k, the following problem is solvable in polynomial time:

(25) given: an acyclic directed graph D = (V, A), pairs r1, $1,..., 7k, Sk of vertices, and
subsets A1,..., A of A;
find: pairwise arc-disjoint directed paths Pi,..., Py, where P; runs from r; to s;
and traverses only arcs in A; (i =1,...,k).

9.4. Vertex-disjoint paths in planar graphs

Finding disjoint paths in planar graphs is of interest not only for planar communication or
transportation networks, but especially also for the design of VLSI-circuits. The routing of wires
should follow certain channels on layers of the chip. On each layer, these channels form a planar
graph.

Unfortunately, even for planar graphs disjoint paths problems are in general hard. However, for
some special cases, polynomial-time algorithms have been found. Such algorithms can be used, for
example, as subroutines when solving any hard problem by decomposition. In Sections 9.4 and 9.5
we discuss some of these algorithms.

Let G = (V,E) be a planar graph, embedded in the plane R? and let {ry,s1},...,{rx, sx} be
pairwise disjoint pairs of vertices. Robertson and Seymour [1986] observed that there is an easy
greedy-type algorithm for the vertex-disjoint paths problem if all vertices ry, s1, ..., 7%, Sk belong to
the boundary of one face I of G. That is, there exists a polynomial-time algorithm for the following

problem:2°
(26) given: a planar graph G = (V,E) embedded in R? a face I of G, pairs
{r1,s1},-..,{rk, sk} of vertices on bd(I),
find: pairwise vertex-disjoint paths Pi,..., Py in G, where P; connects r; and s;
(i=1,...,k).

In fact, we may assume without loss of generality that I is the unbounded face.

Let us first describe the simple intuitive idea of the method, by explaining the recursive step in
the ‘ideal’ case where G is connected and where bd([) is a simple circuit.

We say that {r,s} and {r’, s’} cross (around I) if r,r’, s, s’ are distinct and occur in this order
cyclically around bd([), clockwise or anti-clockwise (see Figure 9.6).

If any {r;,s;} and {r;, s;} cross around I (for some i # j), problem (26) clearly has no solution.
So we may assume that no pair of commodities crosses. This implies that there exists an i so that
at least one of the r; — s; paths along bd(I) does not contain any r; or s; for j # i: just choose ¢ so
that the shortest r; — s; path along bd([) is shortest among all i = 1,... k.

Without loss of generality, i = k. Let @ be the shortest r, — si path along bd(I). Delete from G
all vertices in @, together with all edges incident with them. Denote the new graph by G’. Next solve

20bd(I) denotes the boundary of I.
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r r
S r r S
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Figure 9.6
the vertex-disjoint paths problem for input G, {ry,s1},...,{rg—1,8x—1}. If this gives a solution

Py,...,Px_1, then Py,..., P;_1, @ forms a solution to the original problem (trivially).

If the reduced problem turns out to have no solution, then the original problem also has no
solution. This follows from the fact that if Pi,..., Px_1, P, would be a solution to the original
problem, we may assume without loss of generality that P, = @, since we can ‘push’ P} ‘against’
the border bd(I). Hence Py, ..., P;—1 would form a solution to the reduced problem.

Although this might give a suggestive sketch of the algorithm, it is not completely accurate,
since the ideal situation need not be preserved throughout the iteration process. Even if we start
with a highly connected graph, after some iterations the reduced graph might have cut vertices or
be disconnected. So one should be more precise.

Let us call a sequence (vq,...,v,) of vertices of a connected planar graph G a border sequence if
it is the sequence of vertices traversed when following the boundary of G clockwise. Thus the graph
in Figure 9.7 has border sequence (a,b,c,d, e, c, f,c, g,b).

a

f

Figure 9.7

In fact, each cyclic permutation of a border sequence is again a border sequence.
Note that no border sequence will contain ...r...s...7r...s... for any two distinct vertices.
Hence for any two vertices r and s on the boundary of G there is a unique sequence

(27) P(T,S):(T,U}l,...,wt,s)
with the properties that P(r, s) is part of a border sequence of G and that wy, ..., w; all are distinct
from r and s. Trivially, the vertices in P(r, s) contain a simple r — s path.

We say that two disjoint pairs {r,s} and {r’,s'} cross (around G) if ...7...7"...s...s ... or

..r...8 ...s...r" ... occur in some border sequence of G. So the following cross-freeness condition
is a necessary condition for (26) to have a solution:

(28) No two disjoint commodities {r;, s;},{r;,s;} cross (around the same component of

G).
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Now the algorithm can be described more precisely as follows. First check the cross-freeness condi-
tion. If it is violated, (26) has no solution. If it is satisfied, apply the following iterative step:

(29) Check for each i = 1,...,k if ; and s; belong to the same component of G. If not,
the problem has no solution.
If so, choose i € {1, ..., k} for which the shortest among P(r;, s;) and P(s;,r;) is as
short as possible. Without loss of generality, ¢ = k and P(r, sx) is shortest. Take
for Py any 7, — s path using the vertices in P(ry, si) only.
If k = 1, stop. If & > 1, let G’ be the graph obtained from G by delet-
ing all vertices occurring in P(rg,s;). Repeat this iterative step for G’ and
{T1781},...,{Tk,178k,1}.
If it gives a solution P, ..., Px_1, then Py, ..., Py_1, Py is a solution to the original
problem. If it gives no solution, the original problem has no solution.

We leave it as a (technical) exercise to show the correctness of this algorithm. (The correctness
can be derived also from the proof of Theorem 9.4 below.) It clearly is a polynomial-time method.
Recently, Ripphausen-Lipa, Wagner, and Weihe [1997] found a linear-time algorithm.

Moreover, the method implies a characterization by means of a cut condition for the existence of
a solution to (26). A simple closed curve C in R? is by definition a one-to-one continuous function
from the unit circle to R?. We will identify the function C with its image.

We say that C' separates the pair {r, s} if each curve connecting r and s intersects C. Now the
following cut condition clearly is necessary for the existence of a solution to the vertex-disjoint paths
problem in planar graphs:

(30) each simple closed curve in R? intersects G at least as often as it separates pairs
{T1781},...,{Tk78k}.

Robertson and Seymour [1986] showed with this method:

Theorem 9.4. Let G = (V,E) be a planar graph embedded in R? and let {r1,s1},...,{rk, sk} be
pairs of vertices on the boundary of G. Then there exist pairwise vertex-disjoint paths Pi,..., Py

where P; connects r; and s; (i =1,...,k) if and only if the cross-freeness condition (28) and the cut
condition (30) hold.

Proof. Necessity of the conditions is trivial. We show sufficiency by induction on k, the case k =0
being trivial. Let & > 1 and let (28) and (30) be satisfied. Suppose paths Py, ..., Py as required do
not exist. Trivially, {r1,s1},...,{rk, s} are pairwise disjoint (otherwise there would exist a simple
closed curve C with |CNG| = 1 and intersecting two commodities, thus violating the cut condition).

The induction is based on the iterative step (29). To simplify the argument, we first show that
we may assume that G is 2-connected.

First, we may assume that G is connected, as we can decompose G into its components. (If some
r; and s; would belong to different components, there trivially exists a closed curve C violating the
cut condition.)

Knowing that G is connected, the case k = 1 is trivial. So we may assume that & > 2. Suppose G
contains a cut vertex v. We may assume that each component of G — v intersects {r1, s1,...,7k, Sk}
(otherwise we could delete it from G without violating the cut condition). This implies that we
can extend G planarly by an edge e connecting some vertices u’ and " in different components of

G —wv, in such a way that v’ € {ry,s;} and u” € {r;»,s;} for some i’ # 7" and that 71, s1,...,7%, Sk
are still on the boundary of G U e. The cut condition holds for G U e (a fortiori), but pairwise
vertex-disjoint r; — s; paths (i = 1,...,k) do not exist in G U e (since we cannot make use of edge

e, as i’ #1"). Repeating this we end up with a 2-connected graph.
If G is 2-connected, the boundary of G is a simple circuit. Now we apply the iterative step (29).
That is, we find, without loss of generality, that the simple path P(ry, sg) from 7 to s clockwise



122 Chapter 9. Multicommodity flows and disjoint paths

along the boundary of G does not contain any r1,$1,...,7k—1,Sk—1. Let P be the corresponding
r — Sk path.

Again, let G’ be the graph obtained from G by deleting all vertices in Py, together with all edges
incident with them. Let I and I’ denote the unbounded faces of G and G’, respectively (we take I
and I’ as open regions). So [ C I'.

Now G’ does not contain pairwise vertex-disjoint r; — s; paths (i = 1,...,k — 1), since by
assumption G does not contain pairwise vertex-disjoint r; — s; paths (i = 1,...,k). Hence, by the
induction hypothesis, there exists a simple closed curve C' with |C' N G’| smaller than the number
of pairs {r1,s1},...,{rk—1,Sk—1} separated by C. We may assume that C traverses each of the

connected regions I’, I and I’ \ I at most once. That is, each of C NI, CNI and CN(I'\I) is
connected (possibly empty).

If CN(I'"\I) is empty, then C NG = C NG’ and hence C violates the cut condition also for G.
If C' N1 is empty, then C' does not separate any {r;, s;} except for those intersected by C. Then C
cannot violate the cut condition for G’.

If both C NI and C N (I'\ I) are nonempty, we may assume that |[C NG| = |CNG'|+1 and
that C separates {rg, si} (since each face of G contained in I’ is incident with at least one vertex
on Py). Tt follows that C violates the cut condition for G. |

Application 9.5: VLSI-routing. The VLSI-routing problem asks for the routes that wires should make
on a chip so as to connect certain pairs of pins and so that wires connecting different pairs of pins are
disjoint.

P 2 3 5 6
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7 L 15 2
1 14 12
Figure 9.8

Since the routes that the wires potentially can make form a graph, the problem to be solved can be
modeled as a disjoint paths problem. Consider an example of such a problem as in Figure 9.8 — relatively
simple, since generally the number of pins to be connected is of the order of several thousands. The grey
areas are ‘modules’ on which the pins are located. Points with the same label should be connected.

In the example, the graph is a ‘grid graph’, which is typical in VLSI-design since it facilitates the
manufacturing of the chip and it ensures a certain minimum distance between disjoint wires. But even for
such graphs the disjoint paths problem is NP-complete.

Now the following two-step approach was proposed by Pinter [1983]. First choose the ‘homotopies’ of
the wires; for instance like in Figure 9.9. That is, for each i one chooses a curve C; in the plane connecting
the two vertices 4, in such a way that they are pairwise disjoint, and such that the modules are not traversed
(Figure 9.9).

Second, try to find disjoint paths P, ..., Py in the graph such that P; is homotopic to C;, in the space
obtained from the plane by taking out the rectangles forming the modules; that is, the paths P; should be
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obtained from the curves C; by shifting C; over the surface, but not over any module, fixing the end points
of the curve. In Figure 9.10 such a solution is given.
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It was shown by Leiserson and Maley [1985] that this second step can be performed in polynomial time.
So the hard part of the problem is the first step: finding the right topology of the layout.

Cole and Siegel [1984] proved a Menger-type cut theorem characterizing the existence of a solution in
the second step. That is, if there is no solution for the disjoint paths problem given the homotopies, there
is an ‘oversaturated’ cut: a curve D connecting two holes in the plane and intersecting the graph less than
the number of times D necessarily crosses the curves C.

This can be used in a heuristic practical algorithm for the VLSI-routing problem: first guess the ho-
motopies of the solution; second try to find disjoint paths of the guessed homotopies; if you find them you
can stop; if you don’t find them, the oversaturated cut will indicate a bottleneck in the chosen homotopies;
amend the bottleneck and repeat.

Similar results hold if one wants to pack trees instead of paths (which is generally the case at VLSI-
design), and the result can be extended to any planar graph (Schrijver [1991]). As a theoretical consequence
one has that for each fixed number of modules, the planar VLSI-routing problem can be solved in polynomial
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time.

Exercises
9.11. Extend the algorithm and Theorem 9.4 to the directed case.
9.12. Extend the algorithm and Theorem 9.4 to the following vertez-disjoint trees problem:

(31) given: a planar graph G = (V, E), sets R, ..., Ry of vertices on the boundary of G,
find: pairwise vertex-disjoint subtrees T1,...,T; of G so that T; covers R; (i =
1,...,k).
9.13. Extend the algorithm and Theorem 9.4 to the following problem:
(32) given: a planar graph G = (V,E), pairs {r1,s1},...,{rk, sk} of vertices on the
boundary of G, subgraphs G1,...,Gy of G,
find: pairwise vertex-disjoint paths Pi,..., P, where P; connects r; and s; and

where P; isin G; (i=1,...,k).

9.14. (i) Reduce the edge-disjoint paths problem where all commodities are on the boundary of a planar
graph so that the cross-freeness condition is satisfied, to the vertex-disjoint paths problem(26).

(ii) Show that the cut condition (7) is sufficient in this case of the edge-disjoint paths problem.

9.5. Edge-disjoint paths in planar graphs

The trivially necessary cross-freeness condition for the commodities if they are on the boundary
of a planar graph, turned out to be of great help in handling the vertea-disjoint paths problem: it
gives an ordering of the commodities, allowing us to handling them one by one.

As we saw in Exercise 9.14, the edge-disjoint analogue can be handled in the same way if the
cross-freeness condition holds. In that case, the cut condition (7) is again sufficient. However, Figure
9.5 shows that without cross-freeness, the cut condition is not sufficient. That simple example shows
that we may not hope for many other interesting cases where the cut condition is sufficient.

In fact, the complexity of the edge-disjoint paths problem for planar graphs with all commodities
on the boundary, is open. Therefore, we put:

Research problem. Is the undirected edge-disjoint paths problem polynomially solvable for
planar graphs with all commodities on the boundary? Is it NP-complete?

Okamura and Seymour [1981] showed that the problem is polynomially solvable if we pose the
following Euler condition:

(33) the graph (V,EU {{r1,s1},...,{rk, sx}}) is Eulerian.

(We have parallel edges if some {r;, s;} coincide or form an edge of G.) Moreover, they showed that
with the Euler condition, the cut condition is a sufficient condition. (Thus we have an analogue to
Rothschild and Whinston’s theorem (Theorem 9.2).)

Theorem 9.5 (Okamura-Seymour theorem). Let G = (V, E) be a planar graph and let {r1,s1},...,{rk, sk}
be pairs of vertices on the boundary of G such that the Euler condition (33) holds. Then the edge-
disjoint paths problem has a solution if and only if the cut condition holds.

Proof. Necessity of the cut condition is trivial. Sufficiency is shown by induction on |V|+ |E|, the
case |V| + |E| = 0 being trivial. Let the cut condition be satisfied. We first show that we may
assume that G is 2-connected.

If G is disconnected, we can deal with the components separately. If G is not 2-connected,
consider a cut vertex v. We may assume that for no ¢ the vertices r; and s; belong to different



Section 9.5. Edge-disjoint paths in planar graphs 125

components of G — v, since otherwise we can replace the commodity {r;, s;} by the two commodities
{ri,v} and {v,s;} without violating the Euler or cut condition. For any component K of G — v
consider the graph induced by K Uv. Again, the Euler and cut conditions are satisfied (with respect
to those commodities fully contained in K Uv). So by the induction hypothesis we know that paths
as required exist in K Uv. As this is the case for each component of G — v, we have paths as required
in G.

So we may assume that G is 2-connected. For each X C V| let p(X) be the set of all indices i
for which X contains exactly one of r; and s;. Call a cut §(X) tight if |6(X)| = |p(X)|. Choose an
edge e on the boundary of G, say e = {u,w} and let F' be the bounded face incident with e.

Case 1. Edge e is not contained in any tight cut. Delete from G all edges incident with F, yielding
graph G’, say. Then G’ with {r{,s1},...,{rs, sx} again satisfies the Euler condition and the cut
condition. A solution in G’ gives directly a solution in G.

Case 2. Edge e is contained in some tight cut. Then there exists a tight cut §(X) containing e so
that both < X > and < V'\ X > are connected (as follows from Exercise 9.4 by deleting e). Choose
such a cut §(X), with the additional properties that w € X and that X has smallest intersection
with the boundary of G.

Since [p(X)| = [6(X)| > 2, we know p(X) # . Without loss of generality, if i € p(X) then
r; € X, s; € X. Choose i € p(X) so that r; is as close as possible to u when following the part of
the boundary of G outside X. We may assume that ¢ = 1.

Now delete e from G and replace the commodity {ri,s;} by the two commodities {ry,u} and
{w, s1}. The new graph and commodities trivially satisfy the Euler condition. To see that they also
satisfy the cut condition, suppose to the contrary that Y C V is such that

(34) 6" (V)] < 1" (V)]

(where ¢’ and p’ are the parameters for the converted structure) and so that both < Y > and
< V\Y > are connected (in G — e). Without loss of generality, 1 ¢ Y. By the Euler condition,
(34) implies [0'(Y)] < |p(Y)| — 2. Since

(35) P =) +22 6V +1 =] (V) -1,

we know |p/(Y)| > |p(Y)| and [6(Y)| = |p(Y)] (using the Euler condition).
As |p/(Y)] > |p(Y)], we know s; ¢ Y, and at least one of u and w belongs to Y. By the choice
of i =1, there is no pair {r;, s;} intersecting both X \ Y and Y\ X. This implies:

(36) (X NY)|[+[p(XUY)| = [p(X)| + [p(Y)].
Moreover,
(37) [BXNY)|+ (X UY)[ < [6(X)]+[5(Y)].

Since |0(X)] = [p(X)], [6(Y)] = [0(X NY)| > [p(X NY)], and [6(X UY)| > |p(X UY)|, we know
that |[p(X NY)| = [6(X NY)| should hold. This implies equality in (37). Hence there is no edge
connecting X \'Y and Y \ X. Therefore, w € Y, and hence §(X NY) is a tight cut containing e.
However, s; ¢ X NY, contradicting the minimality of the intersection of X with the boundary of G.

So the converted structure satisfies the cut condition. Hence, by induction, there exist pairwise
edge-disjoint paths P[, P/', P,,..., Py where P| connects r1 and w, P{’ connects w and s, and P;
connects r; and s; (j =2,...,k). Taking P, := P{eP]’ gives a solution to the original edge-disjoint
paths problem.

Clearly, this method gives a polynomial-time algorithm for finding the paths, since we can deter-
mine a minimum-cardinality cut containing e’ and €”, for any pair of edges €', €¢” on the boundary

of G (cf. Exercise 9.16).
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Becker and Mehlhorn [1986] and Matsumoto, Nishizeki, and Saito [1985] gave implementations
with running time of order O(|E|?). Recently, Wagner and Weihe [1995] found a linear-time algo-
rithm.

Exercises
9.15. Let G = (V, E) be a finite subgraph of the rectangular grid graph in R?, such that each bounded face
of G is a square of area 1. Let {r1,s1},...,{rk, sk} be pairs of vertices on the boundary of G such

that each vertex of (V,E N {{r1,s1},...,{rk,sx}}) has degree even and at most 4. A cut is called a
1-bend cut if it is the set of edges crossed by the union of some horizontal and some vertical half-line
with one common end vertex.

Show that the cut condition holds whenever it holds for all 1-bend cuts.

9.16. Let G be a planar graph and let ¢’ and €’ be edges on the boundary of G. Reduce the problem of
finding a minimum-cardinality cut containing e’ and €’ to a shortest path problem.

9.6. A column generation technique for multicommodity flows

The fractional multicommodity flow problem (1) asks for flows x1, ...,z of given values dy, . . ., di
such that the total amount of flow through any arc e does not exceed the capacity of e. So it
amounts to finding a solution to the following system of linear inequalities in the k|E| variables
zi(e) (i=1,...,k; e€ E):

(38) (i) Z x;(e) — Z x;(e) =0 (t=1,....k; veVo#r,s;),

e€dout(v) e€din(v)
e€§out(r;) e€din(r;)
k
(i) > xi(e) < cle) (e € E),
i=1
(iv) xi(e) >0 (t=1,...,k; e€ E).

Thus any linear programming method can solve the multicommodity flow problem. In particular,
the problem is solvable in polynomial time.

Since for each fixed i = 1,...,k, a solution z; to (38) is an r; — s; flow, we can decompose z;
as a nonnegative combination of r; — s; paths. That is, there exist r; — s; paths Pi1,..., Py, and
nonnegative reals z;1,. .., 2in, satisfying:

n;
(39) D) D zxP(e) =xi(e) (e € E),
j=1
n;
j=1

Here X* denotes the incidence vector of P in QF, that is, X¥(e) = 1 if P traverses e, and = 0
otherwise.

Hence the multicommodity flow problem amounts to finding paths P;; and nonnegative reals z;;,
where P;; is an r; — s; path, such that:

(40) (i) Zzij:di (i=1,...,k),
=1
k n;

(ii) Z zi; X9 (e) < cle) (e€ E).

i=1 =
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This formulation applies to both the directed and the undirected problems.

Solving (40) again amounts to solving a system of linear inequalities, albeit with an enormous
number of variables: one variable for each ¢ = 1,...,k and each r; — s; path.

Ford and Fulkerson [1958] showed that this large number of variables can be avoided when solving
the problem with the simplex method. The variables can be handled implicitly by using a column
generation technique as follows.

First convert the problem to a maximization problem. To this end, add, for each ¢ =1,...k, a
vertex 7} and an arc rjr;, with capacity equal to d;. Then we can delete the constraint (40)(i), and
maximize ), ; z;; over the remaining constraints (replacing r; by r{). If the maximum value is equal
to >, d; we have a solution to (40). If the maximum value is less, then (40) has no nonnegative
solution z;;.

Having this reduction, we see that the problem is equivalent to the following LP-problem. Let
‘P be the collection of all r; — s; paths for all i =1,... k. Then:

(41) maximize: Z zp
PcP
subject to: (1) Z zpXF(e) <cle) (e€E),
PeP

When solving (41) with the simplex method we first should add a slack variable z, for each e € E.
Thus if A denotes the E' x P matrix with the incidence vectors of all paths in P as its columns (in
some order) and w is the vector in R” x R with wp =1 (P € P) and w, =0 (e € E), we solve:

maximize: w*z
(42) subject to: [A I]z =¢,

Now each simplex tableau is completely determined by the set of variables in the current basis.
So knowing subsets P’ of P and E’ of E, giving the indices of variables in the basis, is enough to know
implicitly the whole tableau. Note that |P’| + |E’'| = E. So although the tableau is exponentially
large, it can be represented in a concise way.

Let B be the matrix consisting of those columns of [A I] corresponding to P’ and E’. So the
rows of B are indexed by F and the columns by P’ U E’. The basic solution corresponding to B is
easily computed: the vector B~'c gives the values for zp if P € P’ and for z. if e € E’, while we
set zp:=0if P ¢ P and 2z, := 0 if e ¢ E’. (Initially, B = I, that is P’ =) and E' = E, so that
zp=0for all P € P and z. = c(e) for all e € E.)

Now we should describe pivoting (that is, finding variables leaving and entering the basis) and
checking optimality. Interestingly, it turns out that this can be done by solving a set of shortest
path problems.

First consider the dual variable corresponding to an edge e. It has value (in the current tableau):

(43) wpB e, — w, = wp(B™!),

where as usual wp denotes the part of vector w corresponding to B (that is, corresponding to P’ and
E’) and where ¢, denotes the e-th unit basis vector in R¥ (which is the column corresponding to e
in [A I]). Note that the columns of B~! are indexed by F; then (B~1), is the column corresponding
to e. Note also that w, = 0 by definition.

Similarly, the dual variable corresponding to a path P in P has value:

(44) wpB™' XY —wp =Y wp(B™")] - 1.
ecP

(Note that X is the column in [A I] corresponding to P.)
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In order to pivot, we should identify a negative dual variable. To this end, we first check if (43)
is negative for some edge e. If so, we choose such an edge e and take z. as the variable entering the
basis. Selecting the variable leaving the basis now belongs to the standard simplex routine. We only
have to consider that part of the tableau corresponding to P’, E’ and e. We select an element f
in P/ U E’ for which the quotient z¢/(B~!) . has positive denominator and is as small as possible.
Then z; is the variable leaving the basis.

Suppose next that (43) is nonnegative for each edge e. We consider wg(B™!). as the length I(e)
of e. Then for any path P,

(45) S wp(BY).

ecP
is equal to the length > _.I(e) of P. Hence, finding a dual variable (44) of negative value is the
same as finding a path in P of length less than 1.

Such a path can be found by applying any shortest path algorithm: for each i = 1,...,k, we
find a shortest r; — s; path (with respect to [). If each of these shortest paths has length at least
1, we know that all dual variables have nonnegative value, and hence the current basic solution is
optimum.

If we find some r; — s; path P of length less than 1, we choose zp as variable entering the basis.
Again selecting a variable leaving the basis is standard: we select an element f in P’ U E’ for which
the quotient z;/(B~1X"); has positive denominator and is as small as possible.

This describes pivoting. In order to avoid “cycling”, we apply a lexicographic rule for selecting
the variable leaving the basis. We order the edges of G arbitrarily. Now in case there is a tie in
selecting the f € P’ U E’ for which the corresponding quotient is as small as possible, we choose the
f € P'UFE’ for which the vector

(46) (Bil)f/(Bfl)fe (if e enters the basis),
(B™Y;/(B7'Xx"); (if P enters the basis),

is lexicographically as small as possible. In Exercise 9.17 we will see that this avoids cycling.

Exercises

9.17. (i) Apply the lexicographic rule above, and consider a simplex tableau, corresponding to P’ and E’
say. Show that for each f € P’ U E’: if z; = 0 then the first nonzero entry in the vector (B~ ')
is positive. (Use induction on the number of pivot steps performed.)

(ii) Derive from (i) that, when applying the lexicographic rule, at each pivot iteration, if the objective
value of the solution does not increase, then the vector wpB™! increases lexicographically.

(iii) Derive that the lexicographic rule leads to termination of the method.

9.18. Modify the column generation technique to solve the following problem: given a directed graph G =

(V, E), a capacity function ¢ : E — Q4, commodities (r1,1),..., (Tk, sx) and ‘profits’ p1,...,pr € Q4+,
find vectors 1, ...,z in QF and rationals di, ..., dx so that:
(47) (i) x; is an r; — s; flow of value d; (1 =1,...,k),
k
(i) > wie) <cle) (e € B),
i=1

k
(iii) Zpidi is as large as possible.
i=1
9.19. Let P;; and z;; > 0 form a solution to the undirected form of (40) and let W C V be so that the
capacity of dg(W) is equal to the demand of dgr(W). Show that each P;; intersects dg (W) at most
once.
9.20. Show that if the multicommodity flow problem has no solution, then Ford and Fulkerson’s column
generation technique yields a length function [ violating (9).
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10. Matroids

10.1. Matroids and the greedy algorithm

Let G = (V,E) be a connected undirected graph and let w : E — Z be a ‘weight’ function
on the edges. In Section 1.4 we saw that a minimum-weight spanning tree can be found quite
straightforwardly with Kruskal’s so-called greedy algorithm.

The algorithm consists of selecting successively edges ey, es, ..., e,.. If edges eq, ..., e, have been
selected, we select an edge e € E so that:

(1) (i) e {e1,...,ex} and {eq,...,ex, e} is a forest,

(ii) w(e) is as small as possible among all edges e satisfying (i).
We take ep+1 := e. If no e satisfying (1)(i) exists, that is, if {e;,...,er} forms a spanning tree, we
stop, setting r := k. Then {ey,...,e,} is a spanning tree of minimum weight.

By replacing ‘as small as possible’ in (1)(ii) by ‘as large as possible’, one obtains a spanning tree
of mazimum weight.

It is obviously not true that such a greedy approach would lead to an optimal solution for
any combinatorial optimization problem. We could think of such an approach to find a matching of
maximum weight. Then in (1)(i) we replace ‘forest’ by ‘matching’ and ‘small’ by ‘large’. Application
to the weighted graph in Figure 10.1 would give e; = cd, e5 = ab.

a 1 b

3 3

d 4 c
Figure 10.1

However, ab and cd do not form a matching of maximum weight.

It turns out that the structures for which the greedy algorithm does lead to an optimal solution,
are the matroids. It is worth studying them, not only because it enables us to recognize when
the greedy algorithm applies, but also because there exist fast algorithms for ‘intersections’ of two
different matroids.

The concept of matroid is defined as follows. Let X be a finite set and let Z be a collection of
subsets of X. Then the pair (X,Z) is called a matroid if it satisfies the following conditions:
(2) (i) 0 et
(ii) if Y € Z and Z C Y then Z € T,
(i) if Y, Z € Z and |Y| < |Z] then YU {x} € T for some x € Z\ Y.
For any matroid M = (X,Z), a subset Y of X is called independent if Y belongs to Z, and
dependent otherwise.
Let Y C X. A subset B of Y is called a basis of Y if B is an inclusionwise maximal independent

subset of B. That is, for any set Z € 7 with B C Z C Y one has Z = B.
It is not difficult to see that condition (2)(iii) is equivalent to:

(3) for any subset Y of X, any two bases of Y have the same cardinality.
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(Exercise 10.1.) The common cardinality of the bases of a subset Y of X is called the rank of Y,
denoted by 7, (Y).

We now show that if G = (V, E) is a graph and Z is the collection of forests in G, then (F,T)
indeed is a matroid. Conditions (2)(i) and (ii) are trivial. To see that condition (3) holds, let E’ C E.
Then, by definition, each basis Y of E’ is an inclusionwise maximal forest contained in E’. Hence
Y forms a spanning tree in each component of the graph (V, E’). So Y has |V| — k elements, where
k is the number of components of (V, E’). So each basis of E’ has |V| — k elements, proving (3).

A set is called simply a basis if it is a basis of X. The common cardinality of all bases is called
the rank of the matroid. If 7 is the collection of forests in a connected graph G = (V| E), then the
bases of the matroid (E,Z) are exactly the spanning trees in G.

We next show that the matroids indeed are those structures for which the greedy algorithm leads
to an optimal solution. Let X be some finite set and let Z be a collection of subsets of X satisfying

(2)(i) and (ii).

For any weight function w : X — R we want to find a set Y in Z maximizing

(4) w(Y) =Y w(y).

yey
The greedy algorithm consists of selecting y1, ..., y, successively as follows. If y1, ..., yx have been
selected, choose y € X so that:
(5) () y &{yr,-. . ue} and {yr, .., yk, 9} €7,

(ii) w(y) is as large as possible among all y satisfying (i).

We stop if no y satisfying (5)(i) exist, that is, if {y1,...,yx} is a basis.
Now:

Theorem 10.1. The pair (X,I) satisfying (2)(i) and (ii) is a matroid, if and only if the greedy
algorithm leads to a setY in I of maximum weight w(Y'), for each weight function w : X — R .

Proof. Sufficiency. Suppose the greedy algorithm leads to an independent set of maximum weight
for each weight function w. We show that (X,7) is a matroid.

Conditions (2)(i) and (ii) are satisfied by assumption. To see condition (2)(iii), let Y, Z € 7 with
Y| < |Z|. Suppose that Y U {z} ¢ T for each z € Z\ Y.

Consider the following weight function w on X. Let k := |Y'|. Define:

(6) w(z):=k+2 ifzeY,
w(x)=k+1 fzeZ\Y,
w(z) =0 ifze X\ (YUZ).

Now in the first k iterations of the greedy algorithm we find the k elements in Y. By assumption,
at any further iteration, we cannot choose any element in Z \ Y. Hence any further element chosen,
has weight 0. So the greedy algorithm will yield a basis of weight k(k + 2).

However, any basis containing Z will have weight at least |[Z NY|(k+2)+ |Z\Y|[(k+1) >
|Z|(k+1) > (k+1)(k+1) > k(k+2). Hence the greedy algorithm does not give a maximum-weight
independent set.

Necessity. Now let (X,Z) be a matroid. Let w : X — R4 be any weight function on X. Call an
independent set Y greedy if it is contained in a maximum-weight basis. It suffices to show that if
Y is greedy, and z is an element in X \ Y such that Y U {z} € Z and such that w(z) is as large as
possible, then Y U {z} is greedy.

As Y is greedy, there exists a maximum-weight basis B D Y. If © € B then Y U {z} is greedy
again. If z ¢ B, then there exists a basis B’ containing Y U {z} and contained in B U {z}. So
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B' = (B\ {z'}) U {z} for some 2’ € B\'Y. As w(z) is chosen maximum, w(z) > w(a’). Hence
w(B’) > w(B), and therefore B’ is a maximum-weight basis. So Y U {z} is greedy. |

Note that by replacing “as large as possible” in (5) by “as small as possible”, one obtains an
algorithm for finding a minimum-weight basis in a matroid. Moreover, by ignoring elements of
negative weight, the algorithm can be adapted to yield an independent set of maximum weight, for
any weight function w : X — R.

Exercises
10.1. Show that condition (3) is equivalent to condition (2)(iii) (assuming (2)(i) and (ii)).

10.2. Let M = (X,Z) be a matroid. Two elements z,y of X are called parallel if {x,y} is a circuit. Show
that if  and y are parallel and Y is an independent set with z € Y, then also (Y \ {z}) U {y} is

independent.
10.3. Let M = (X,TZ) be a matroid, with X = {z1,..., @ }. Define
(7) Y = {337, ‘ TM({Il, cee 71‘2}) > T[V[({xl, e ,x,',l})}.

Prove that Y belongs to Z.

10.2. Equivalent axioms for matroids

The definition of the notion of matroid given in the previous section is given by ‘axioms’ in terms
of the independent sets. There are several other axioms that characterize matroids. In this section
we give a number of them.

Let X be a finite set, and let Z be a nonempty down-monotone collection of subsets of X; that
is, if F € Z and F/ C F, then F’ € Z. Let B be the collection of inclusionwise maximal sets in Z,
and let C be the collection of inclusionwise minimimal sets that are not in Z. Finally, for any subset
Y of X, define

(8) r(Y):=max{|Z]| | ZCY,Z €1}.

Obviously, knowing one of the objects Z, B, C, r, we know all the other. Moreover, any nonempty
antichain?! B arises in this way from some nonempty down-monotone collection Z of subsets. Simi-
larly, any antichain C consisting of nonempty sets arises in this way. Finally, r arises in this way if
and only if

(9) (i) r(®) =0,
(ii) if Z CY C X then r(Z) < r(Y).

We can now characterize when such objects arise from a matroid (X,Z). That is, we obtain the
following equivalent characterizations of matroids.

Theorem 10.2. Let Z, B, C, and r be as above. Then the following are equivalent:

(i) if F,F' €T and |F'| > |F|, then FU{z} € T for some xz € F'\ F;
ii) if B,B' € B and x € B'\ B, then (B’ \ {z})U{y} € B for some y € B\ B’;
)

)

—~

(iii) iof B,B' € B and © € B’ \ B, then (B\ {y}) U{z} € B for somey € B\ B’;
(iv) if C,C" € C with C #C" and x € CNC’, then (CUC')\ {x} contains a set in C;

(v) ifC,C"eC,xeCNC’, andy € C\C’, then (CUC")\ {z} contains a set in C containing y;

21 An antichain is a collection of sets no two of which are contained in each other.
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(vi) for allY,Z C X one has

(10) rYNZ)+r(YUZ)<rY)+r(Z).

Proof. (i)=(ii): (i) directly implies that all sets in B have the same size. Now let B, B’ € B and
x € B'\ B. Since B\ {z} € Z, by (i) there exists a y € B\ B such that B” := (B’ \ {z}) U{y} € Z.
Since |B”| = |B’|, we know B” € B.

(iii)=-(i): Let F, F’ form a counterexample to (i) with |F'N F”| as large as possible. Consider sets
B,B’ in Bwith F C B and F' C B’.

As F, F' is a counterexample, we know F' & B’. Choose z € F'\ B’. Then by (iii), (B"\{y})U{z}
for some y € B’ \ B. Hence replacing F' by (F'\ {y}) U{z} we would keep a counterexample but
increase |F' N F’|, a contradiction.

(ii)=-(iii): By the foregoing we know that (iii) implies (ii). Now axioms (ii) and (iii) interchange
if we replace B by the collection of complements of sets in 3. Hence also the implication (ii)=-(iii)
holds.

(i)=(v): If (i) holds, then by the foregoing, also (ii) holds. Let C,C’ € C and z € C' N C’,
y € C'\ C'. We can assume that X = CUC’. Let B,B’ € B with B2 C\ {y} and B’ 2 C’"\ {z}.
Then y ¢ B and x ¢ B’ (since C € B and C' € B).

We can assume that y ¢ B’. Otherwise, y € B’ \ B, and hence by (ii), there exists a z € B\ B’
with B” := (B’ \ {y}) U{z} € B. Then z # z, since otherwise C’ C B”. Hence, replacing B’ by B”
gives y € B'.

As y &€ B’, we know B’ U {y} € Z, and hence there exists a C” € C contained in B’ U {y}. As
C" ¢ B’, we know y € C". Moreover, as © € B’ we know x ¢ C”.

(v)=(iv): is trivial.

(iv)=-(i): Let F, F’ form a counterexample to (i) with |F'N F’| maximal. Then F ¢ F’, and so
we can choose y € F'\ F’'. By the maximality of |F N F’|, we know F' U {z} ¢ Z. So there is a
C € C contained in F' U{z}. As C € F’" we know x € C. Then C is the unique set in C contained
in F/ U {a}. For suppose there is another, C’ say. Again, € C’, and hence by (iv) there exists a
C" € C contained in (CUC")\ {z}. But then C” C F’, a contradiction.

As C ¢ F, C intersects F'\ F. Choose y € CN(F'\ F). Then F" := (F' U {x})\ {y} does not
contain any set in C (as C' is the only set in C contained in F’ U {x}). Then replacing F’ by F”, we
would keep a counterexample while increasing |F’ N F|, contradicting our assumption.

(i)=(vi): Choose Y, Z C X. Let F be an inclusionwise maximal set in Z with ' C YN Z, and let
F’ be an inclusionwise maximal set in Z with F C F C Y U Z. By (i) we know that (Y N Z) = |F|
and r(Y U Z) = |F'|. Then

(11) [F'NY|+ [ F'nZ=|F'n(YnZ)|+|F'n(YUZ)|>|F|+|F'|,

and hence we have (10).

(vi)=(i): Let F, F' € T with |F| < |F’|. Let U be the largest subset of F/\ F with r(FUU) = |F]|.
Then U # F'\ F, since r(F U F’) > |F'| > |F|. So there exists an x € F/\ FUU. f FU{z} €T
we are done, so we can assume that F'U{z} € Z; equivalently, r(FU{xz}) = |F|. Let U’ := U U {z}.
Then by (10),

(12) r(FUU") <r(FUU)+r(FU{z})—r(F)=|F|,

contradicting the maximality of U. |
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Given a matroid M = (X,7), any in B is called a basis and any set in C a circuit of M. The
function r is called rank function of M (often denoted by 7as), and 7(Y) the rank of Y.
The symmetry of (ii) and (iii) in Theorem 10.2 immediately implies the following. Define

(13) B*:={X\B|Be B}
Then

Corollary 10.2a. If B is the collection of bases of some matroid M, then B* also is the collection
of bases of some matroid on X, denoted by M*.

Proof. Directly from the equivalence of (ii) and (iii) in Theorem 10.2. |

The matroid M* is called the dual matroid of M. Since (B*)* = B, we know (M*)* = M.

Theorem 10.3. The rank function ry« of the dual matroid M* satisfies:

(14) s (V) = Y] 4+ (X \Y) = ra(X).
Proof.
(15) ry-(Y)=max{|ANY||AeB*} =
=|Y|-min{|BNY||BeB}=|Y|—ryu(X)+max{|B\Y||BeB} =
Y] =7ra(X) +rau(X\Y). 1

Another way of constructing matroids from matroids is by ‘deletion’ and ‘contraction’. Let
M = (X,7) be a matroid and let Y C X. Define

(16) T :={Z|ZCY,ZecT}

Then M’ = (Y,Z’) is a matroid again, as one easily checks. M’ is called the restriction of M to Y.
IfY =X\ Z with Z C X, we say that M’ arises by deleting Z, and denote M' by M \ Z.

Contracting Z means replacing M by (M*\ Z)*. This matroid is denoted by M/Z. One may
check that if G is a graph and e is an edge of G, then contracting edge {e} in the cycle matroid
M(G) of G corresponds to contracting e in the graph. That is, M(G)/{e} = M(G/{e}), where
G/{e} denotes the graph obtained from G by contracting e.

If matroid M’ arises from M by a series of deletions and contractions, M’ is called a minor of
M.

Exercises

10.4. (i) Let X be a finite set and let k be a natural number. Let 7 := {Y C X | |Y| < k}. Show that
(X,7) is a matroid. Such matroids are called k-uniform matroids.

(ii) Show that k-uniform matroids are transversal matroids. Give an example of a k-uniform matroid
that is neither graphic nor cographic.

10.5. Let M = (X,Z) be a matroid and let k be a natural number. Define Z' := {Y € Z | |Y| < k}. Show
that (X,Z") is again a matroid (called the k-truncation of M).

10.6. Let M = (X,Z) be a matroid, let U be a set disjoint from X, and let £ > 0. Define
(17) ' ={UuY |U CUY €I |U UY| <k}
Show that (U U X,Z') is again a matroid.

10.7. Let M = (X,Z) be a matroid and let = € X.
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(i) Show that if = is not a loop, then a subset Y of X \ {z} is independent in the contracted matroid
M /{z} if and only if Y U {z} is independent in M.
(ii) Show that if z is a loop, then M/{z} = M \ {z}.
(iii) Show that for each Y C X : 7y (Y) = rv (Y U {z}) — rar({2}).
10.8. Let M = (X,Z) be a matroid and let Y C X.

(ii) Let B be a basis of Y. Show that a subset U of X \ Y is independent in the contracted matroid
MY, if and only if U U B is independent in M.

(ii) Show that for each U C X \'Y
(18) rayy (U) = r(UUY) —rar(Y).

10.9. Let M = (X,Z) be a matroid and let Y,Z C X. Show that (M \Y)/Z = (M/Z)\Y. (That is,
deletion and contraction commute.)

10.10. Let M = (X,Z) be a matroid, and suppose that we can test in polynomial time if any subset Y of X
belongs to Z. Show that then the same holds for the dual matroid M ™.

10.3. Examples of matroids

In this section we describe some classes of examples of matroids.

I. Graphic matroids. As a first example we consider the matroids described in Section 10.1.

Let G = (V, E) be a graph. Let Z be the collection of all forests in G. Then M = (E,Z) is a
matroid, as we saw in Section 10.1.

The matroid M is called the cycle matroid of G, denoted by M(G). Any matroid obtained in
this way, or isomorphic to such a matroid, is called a graphic matroid.

Note that the bases of M (G) are exactly those forests F' of G for which the graph (V, F)) has the
same number of components as G. So if G is connected, the bases are the spanning trees.

Note also that the circuits of M(G), in the matroid sense, are exactly the circuits of G, in the
graph sense.

II. Cographic matroids. There is an alternative way of obtaining a matroid from a graph G =
(V, E). Tt is in fact the matroid dual of the graphic matroid.

Let B be the set of subsets J of E such that F \ J is an inclusionwise maximal forest. By
Corollary 10.2a, B forms the collection of bases of a matroid. Its collection Z of independent sets
consists of those subsets J of E for which

(19) K(V,E\ J) = h(V, E).

where, for any graph H, let k(H) denote the number of components of H.

The matroid (F,Z) is called the cocycle matroid of G, denoted by M*(G). Any matroid obtained
in this way, or isomorphic to such a matroid, is called a cographic matroid.

By definition, a subset C of E is a circuit of M*(G) if it is an inclusionwise minimal set with the
property that (V, E'\ C') has more components than G. Hence C' is a circuit of M*(G) if and only
if C is an inclusionwise minimal nonempty cutset in G.

IIT. Linear matroids. Let A be an m x n matrix. Let X = {1,...,n} and let Z be the collection
of all those subsets Y of X so that the columns with index in Y are linearly independent. That is,
so that the submatrix of A consisting of the columns with index in Y has rank [Y].

Now:
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Theorem 10.4. (X,7) is a matroid.

Proof. Again, conditions (2)(i) and (ii) are easy to check. To see condition (2)(iii), let Y and Z be
subsets of X so that the columns with index in Y are linearly independent, and similarly for Z, and
so that Y] < |Z].

Suppose that Y U{z} € T for each € Z\ Y. This means that each column with index in Z\'Y
is spanned by the columns with index in Y. Trivially, each column with index in Z NY is spanned
by the columns with index in Y. Hence each column with index in Z is spanned by the columns
with index in Y. This contradicts the fact that the columns indexed by Y span an |Y|-dimensional
space, while the columns indexed by Z span an |Z|-dimensional space, with |Z] > |Y. |

Any matroid obtained in this way, or isomorphic to such a matroid, is called a linear matroid.
Note that the rank r3;(Y) of any subset Y of X is equal to the rank of the matrix formed by
the columns indexed by Y.

IV. Transversal matroids. Let X1, ..., X,, be subsets of the finite set X. Aset Y = {y1,...,yn}
is called a partial transversal (of X1, ..., Xy, ), if there exist distinct indices i1, ..., 4, so that y; € X;,
for j =1,...,n. A partial transversal of cardinality m is called a transversal (or a system of distinct
representatives, or an SDR).

Another way of representing partial transversals is as follows. Let G be the bipartite graph with
vertex set V := {1,...,m}UX and with edges all pairs {i,z} with i € {1,...,m} and z € X;. (We
assume here that {1,...,m} N X =0.)

For any matching M in G, let p(M) denote the set of those elements in X that belong to some
edge in M. Then it is not difficult to see that:

(20) Y C X is a partial transversal, if and only if Y = p(M) for some matching M in G.

Now let Z be the collection of all partial transversals for Xq,..., X,,. Then:

Theorem 10.5. (X,Z) is a matroid.

Proof. Again, conditions (2)(i) and (ii) are trivial. To see (2)(iii), let Y and Z be partial transversals
with |Y| < |Z|. Consider the graph G constructed above. By (20) there exist matchings M and M’
in G so that Y = p(M) and Z = p(M’). So |[M| = Y| < |Z| = |M'|.

Consider the union M U M’ of M and M’. Each component of the graph (V, M U M) is either
a path, or a circuit, or a singleton vertex. Since |M’| > |M]|, at least one of these components is a
path P with more edges in M’ than in M. The path consists of edges alternatingly in M’ and in
M, with end edges in M.

Let N and N’ denote the edges in P occurring in M and M’, respectively. So [N'| = |N| + 1.
Since P has odd length, exactly one of its end vertices belongs to X; call this end vertex z. Then
x€pM)=2Zand x & p(M) =Y. Define M" := (M \ N)UN'. Clearly, M" is a matching with
p(M") =Y U{z}. So Y U{x} belongs to Z. |

Any matroid obtained in this way, or isomorphic to such a matroid, is called a transversal matroid.
If the sets X1, ..., X,, form a partition of X, one speaks of a partition matroid.

These four classes of examples show that the greedy algorithm has a wider applicability than
just for finding minimum-weight spanning trees. There are more classes of matroids (like ‘algebraic
matroids’, ‘gammoids’), for which we refer to Welsh [1976].
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Exercises
10.11. Show that a partition matroid is graphic, cographic, and linear.

10.12. Let M = (V,Z) be the transversal matroid derived from subsets X1, ..., X, of X as in Example IV.

(i) Show with Kénig’s matching theorem that:

(21) ru(X) = Jg{r{{;?’m}quﬂ +m — | J]).

(ii) Derive a formula for rp(Y) for any ¥ C X.
10.13. Let G = (V, E) be a graph. Let Z be the collection of those subsets Y of E so that F' has at most one
circuit. Show that (E,Z) is a matroid.

10.14. Let G = (V, E) be a graph. Call a collection C of circuits a circuit basis of G if each circuit of G is a
symmetric difference of circuits in C. (We consider circuits as edge sets.)

Give a polynomial-time algorithm to find a circuit basis C of G' that minimizes }_ . ¢ |C|.
(The running time of the algorithm should be bounded by a polynomial in |V| + |E|.)

10.15. Let G = (V, E) be a connected graph. For each subset E’ of E, let x(V, E’) denote the number of
components of the graph (V, E’). Show that for each E' C E:

(i) raee)(E) = V] = K(V,E');
(ii) TM*(G)(E/) =|E'|-s(V,E\E') +1.

10.16. Let G be a planar graph and let G* be a planar graph dual to G. Show that the cycle matroid M (G*)
of G™ is isomorphic to the cocycle matroid M*(G) of G.

10.17. Show that the dual matroid of a linear matroid is again a linear matroid.

10.18. Let G = (V, E) be a loopless undirected graph. Let A be the matrix obtained from the V x E incidence
matrix of G by replacing in each column, exactly one of the two 1’s by —1.

(i) Show that a subset Y of E is a forest if and only if the columns of A with index in Y are linearly
independent.

(ii) Derive that any graphic matroid is a linear matroid.

(iii) Derive (with the help of Exercise 10.17) that any cographic matroid is a linear matroid.

10.4. Two technical lemmas

In this section we prove two technical lemmas as a preparation to the coming sections on matroid
intersection.

Let M = (X,7) be a matroid. For any Y € T define a bipartite graph H(M,Y) as follows. The
graph H(M,Y") has vertex set X, with colour classes Y and X \ Y. Elements y € Y and z € X \ Y
are adjacent if and only if

(22) Y\ {y}H) u{z} €.

Then we have:

Lemma 10.1. Let M = (X,Z) be a matroid and let Y,Z € T with |Y| = |Z|. Then H(M,Y)
contains a perfect matching on Y \Z .22

Proof. Suppose not. By Kénig’s matching theorem there exist a subset S of Y\ Z and a subset S’
of Z\'Y such that for each edge {y, z} of H(M,Y) satisfying z € S’ one has y € S and such that
1S < |5

22 A perfect matching on a vertex set U is a matching M with |J M = U.
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As|(YNZ)US| < (Y NZ)US'|, there exists an element z € S’ such that T := (Y NZ)USU{z}
belongs to Z. This implies that there exists an U € Z such that T CU C TUY and |U| = |Y|. So
U= (Y \{z})U{z} for some = ¢ S. As {x,z} is an edge of H(M,Y) this contradicts the choice of
S and S i

The following forms a counterpart:

Lemma 10.2. Let M = (X,Z) be a matroid and let Y € I. Let Z C X be such that |Y| = |Z| and
such that H(M,Y') contains a unique perfect matching N on Y AZ. Then Z belongs to T.

Proof. By induction on k := |Z \ Y|, the case k = 0 being trivial. Let k > 1.

By the unicity of N there exists an edge {y,z} € N, withy € Y\ Z and z € Z\ Y, with the
property that there is no 2’ € Z\ Y such that 2’ # z and {y, 2’} is an edge of H(M,Y).

Let Z' .= (Z\ {z}) U{y} and N := N\ {{y, 2}}. Then N’ is the unique matching in H(M,Y)
with union YAZ’. Hence by induction, Z’ belongs to Z.

There exists an S € 7 such that Z'\{y} €S C (Y \{y})UZ and |S| = |Y| (since (Y \{y})UZ =
Y\ {y}) U{z} U Z" and since (Y \ {y}) U {z} belongs to Z). Assuming Z ¢ Z, we know z ¢ S and
hence r((Y U Z’) \ {y}) = |Y|. Hence there exists an z’ € Z’'\'Y such that (Y \ {y}) U {2’} belongs
to Z. This contradicts the choice of y. |

Exercises

10.19. Let M = (X,Z) be a matroid, let B be a basis of M, and let w : X — R be a weight function. Show
that B is a basis of maximum weight, if and only if w(B’) < w(B) for every basis B’ with |B’\ B| = 1.

10.20. Let M = (X,Z) be a matroid and let Y and Z be independent sets with |Y| = |Z|. For any y € Y\ Z
define 6(y) as the set of those z € Z \ Y which are adjacent to y in the graph H(M,Y).

(i) Show that for each y € Y \ Z the set (Z \ 6(y)) U {y} belongs to Z.
(Hint: Apply inequality (10) to X' := (Z\ 6(y)) U {y} and X" := (Z\ 6(y)) U (Y \ {v}).)

(ii) Derive from (i) that for each y € Y \ Z there exists an z € Z \ Y so that {y, z} is an edge both
of H(M,Y) and of H(M, Z).

10.5. Matroid intersection

Edmonds [1970] discovered that the concept of matroid has even more algorithmic power, by
showing that there exist fast algorithms also for intersections of matroids.

Let My = (X,Z;) and Ms = (X, Z3) be two matroids, on the same set X. Consider the collection
71 NIy of common independent sets. The pair (X,7Z7 NZs) is generally not a matroid again (cf.
Exercise 10.21).

What Edmonds showed is that, for any weight function w on X, a maximum-weight common
independent set can be found in polynomial time. In particular, a common independent set of
maximum cardinality can be found in polynomial time.

We consider first some applications.

Example 10.5a. Let G = (V| E) be a bipartite graph, with colour classes V; and Vs, say. Let Z;
be the collection of all subsets F' of F so that no two edges in F' have a vertex in V7 in common.
Similarly, let Zo be the collection of all subsets F' of E so that no two edges in F' have a vertex in
V5 in common. So both (X,Z;) and (X,Z,) are partition matroids.

Now Z7NZ, is the collection of matchings in G. Finding a maximum-weight common independent
set amounts to finding a maximum-weight matching in G.
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Example 10.5b. Let Xi,...,X,, and Y7,...,Y,, be subsets of X. Let M; = (X,Z;) and My =
(X,Z5) be the corresponding transversal matroids.

Then common independent sets correspond to common partial transversals. The collections
(X1,...,Xm) and (Y7,...,Y,,) have a common transversal, if and only if the maximum cardinality
of a common independent set is equal to m.

Example 10.5c. Let D = (V, A) be a directed graph. Let M; = (A,Z7) be the cycle matroid of
the underlying undirected graph. Let Zo be the collection of subsets Y of A so that each vertex of
D is entered by at most one arc in Y. So My := (A, Z5) is a partition matroid.

Now the common independent sets are those subsets Y of A with the property that each compo-
nent of (V,Y) is a rooted tree. Moreover, D has a rooted spanning tree, if and only if the maximum
cardinality of a set in 73 N Z; is equal to |V| — 1.

Example 10.5d. Let G = (V, E) be a connected undirected graph. Then G has two edge-disjoint
spanning trees, if and only if the maximum cardinality of a common independent set in the cycle
matroid M(G) of G and the cocycle matroid M*(G) of G is equal to |V| — 1.

In this section we describe an algorithm for finding a maximum-cardinality common independent
sets in two given matroids. In the next section we consider the more general maximum-weight
problem.

For any two matroids M; = (X,Z;) and Ms = (X,Z5) and any Y € 71 NZ5, we define a directed
graph H(M;, M,Y) as follows. Its vertex set is X, while for any y € Y,z € X \ 'Y,

(23) (y,x) is an arc of H(My, M2,Y) if and only if (Y \ {y}) U {z} € T4,
(z,y) is an arc of H(My, M»,Y) if and only if (Y \ {y}) U{z} € Zs.

These are all arcs of H(My, M>,Y). In fact, this graph can be considered as the union of directed
versions of the graphs H(M;,Y) and H(M>,Y") defined in Section 10.4.

The following is the basis for finding a maximum-cardinality common independent set in two
matroids.

Cardinality common independent set augmenting algorithm

input: matroids My = (X,Z;) and My = (X,Z5) and a set Y € Z1 N Zo;
output: aset Y’ € Ty N7y with |Y’| > |V, if it exists.
description of the algorithm: We assume that M; and M are given in such a way that for any
subset Z of X we can check in polynomial time if Z € 71 and if Z € Z5.
Consider the sets

(24) X1 ={ye X\Y |YU{y} e},
Xo :{y€X\Y‘YU{y}€1—2}

Moreover, consider the directed graph H (M7, M5,Y") defined above. There are two cases.

Case 1. There exists a directed path P in H(My, Ms,Y) from some vertex in X; to some vertex in
Xs. (Possibly of length 0 if X7 N Xo # (.)

We take a shortest such path P (that is, with a minimum number of arcs). Let P traverse
the vertices yo, 21, Y1, - -y Zm, Ym Of H(My, M5,Y), in this order. By construction of the graph
H(My, M3,Y) and the sets X7 and X5, this implies that yo, ..., ym belong to X \Y and z1,..., 2y,
belong to Y.

Now output

(25) Y=Y \{z1,---,2m}) U{vo,-- -, Ym}-
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Case 2. There is no directed path in H(My, M2,Y) from any vertex in X1 to any vertex vertex in
X5. Then Y is a maximum-cardinality common independent set. |

This finishes the description of the algorithm. The correctness of the algorithm is given in the
following two theorems.

Theorem 10.6. If Case 1 applies, then Y' € T1 NZ,.

Proof. Assume that Case 1 applies. By symmetry it suffices to show that Y’ belongs to Z;.

To see that Y\ {yo} belongs to Z1, consider the graph H(M7,Y) defined in Section 10.4. Observe
that the edges {z;, y;} form the only matching in H(M;,Y") with union equal to {z1,..., Zm, Y1, .- -, Um }
(otherwise P would have a shortcut). So by Lemma 10.2, Y'\{yo} = (Y \{z1, .- 2m })U{¥1, - -, Um}
belongs to 7.

To show that Y’ belongs to Z;, observe that rp, (Y UY’) > ran (Y U{yo}) = |Y] + 1, and that,
as (Y \{yo}) N X1 =0, rar, (Y UY")\{wo}) = Y] AsY'\ {0} € Z1, we know Y’ € T;. |

Theorem 10.7. If Case 2 applies, then Y is a maximum-cardinality common independent set.

Proof. As Case 2 applies, there is no directed Xy — Xo path in H(M;, M>,Y). Hence there is a
subset U of X containing X5 such that U N X; = () and such that no arc of H(M;, M>,Y) enters U.
(We can take for U the set of vertices that are not reachable by a directed path from X.)

We show

(26) ran (U) + 7, (X A\ U) =Y.
To this end, we first show
(27) ra, (U) =Y NU|.

Clearly, as Y NU € Iy, we know rpy, (U) > |Y NU|. Suppose rpy, (U) > |Y NU|. Then there exists
an z in U\Y so that (Y NU)U{z} € Z;. Since Y € 7;, this implies that there exists a set Z € 7;
with |Z] > |Y| and (Y NU)U{z} CZ CY U{z}. Then Z =Y U{z} or Z = (Y \ {y}) U {z} for
some y € Y\ U.

In the first alternative, x € X;, contradicting the fact that x belongs to U. In the second
alternative, (y,x) is an arc of H(Mj, M5,Y") entering U. This contradicts the definition of U (as
y €U and x € U).

This shows (27). Similarly we have that 7y, (X \ U) = |Y \ U|. Hence we have (26).

Now (26) implies that for any set Z in Z; N Zy one has

(28) 1Z] =1ZNU|+[Z\U| <ram, (U) + 7, (X\U) = [Y].

So Y is a common independent set of maximum cardinality. |

The algorithm clearly has polynomially bounded running time, since we can construct the aux-
iliary directed graph H (M, M>,Y) and find the path P (if it exists), in polynomial time.
It implies the result of Edmonds [1970]:

Theorem 10.8. A mazimum-cardinality common independent set in two matroids can be found in
polynomial time.

Proof. Directly from the above, as we can find a maximum-cardinality common independent set
after applying at most | X| times the common independent set augmenting algorithm. |
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The algorithm also yields a min-max relation for the maximum cardinality of a common inde-
pendent set, as was shown again by Edmonds [1970].

Theorem 10.9 (Edmonds’ matroid intersection theorem). Let My = (X,Z;) and My = (X,Z3) be
matroids. Then

(29) y e V] = min (rar, (U) + rag (XA U))-

Proof. The inequality < follows similarly as in (28). The reverse inequality follows from the fact
that if the algorithm stops with set Y, we obtain a set U for which (26) holds. Therefore, the
maximum in (29) is at least as large as the minimum. |

Exercises

10.21. Give an example of two matroids M1 = (X,Z1) and M> = (X, Z2) so that (X,Z1NZs) is not a matroid.
10.22. Derive Kénig’s matching theorem from Edmonds’ matroid intersection theorem.

10.23. Let (Xi,...,Xm) and (Yi,...,Yn) be subsets of the finite set X. Derive from Edmonds’ matroid

intersection theorem: (Xi,...,X,) and (Yi,...,Y:) have a common transversal, if and only if
(30) (JxonJY)| =1+ I —m
i€l jeJ

for all subsets I and J of {1,...,m}.

10.24. Reduce the problem of finding a Hamiltonian cycle in a directed graph to the problem of finding a
maximum-cardinality common independent set in three matroids.

10.25. Let G = (V, E) be a graph and let the edges of G be coloured with |V| — 1 colours. That is, we have
partitioned F into classes X1, ..., X|y|_1, called colours. Show that there exists a spanning tree with
all edges coloured differently, if and only if (V, E’) has at most |V| — ¢t components, for any union E’
of t colours, for any ¢ > 0.

10.26. Let M = (X,Z) be a matroid and let Xi,...,X,, be subsets of X. Then (X1,...,X,) has an
independent transversal, if and only if the rank of the union of any ¢ sets among Xi,...,X,, is at
least ¢, for any ¢t > 0. (Rado [1942].)

10.27. Let My = (X,Z1) and M> = (X,Z2) be matroids. Define
(31) Ti VI := {Y1UY2|Y1 EII,}/QEIQ}.
(i) Show that the maximum cardinality of a set in Z;1 V Z5 is equal to

(32) [I]ngig(TMl (U) + er(U) + |X \ ).

(Hint: Apply the matroid intersection theorem to M; and M3 .)
(ii) Derive that for each Y C X:
(33) max{|Z| | ZCY,Z € Ty VIT,} =
min (raiy (U) + 7, (0) + ¥\ U))

(iii) Derive that (X,Z; V Z2) is again a matroid.
(Hint: Use axiom (vi) in Theorem 10.2.)
This matroid is called the union of M1 and M>, denoted by M; V M>. (Edmonds and Fulkerson
[1965], Nash-Williams [1967].)
(iv) Let M1 = (X,Z1),..., My = (X,Zx) be matroids and let
(34) V. VL ={1iu...UY | Y1 €T1,..., Y, € I}

Derive from (iii) that M1 V...V My := (X,Z1 V...V Z}) is again a matroid and give a formula
for its rank function.
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10.28.

10.29.

10.30.

10.31.

10.32.

10.33.

10.34.

10.35.

(i) Let M = (X,7Z) be a matroid and let £ > 0. Show that X can be covered by k independent sets,
if and only if |U| < k- ra(U) for each subset U of X.

(Hint: Use Exercise 10.27.) (Edmonds [1965b].)

(ii) Show that the problem of finding a minimum number of independent sets covering X in a given
matroid M = (X,7), is solvable in polynomial time.

Let G = (V, E) be a graph and let kK > 0. Show that F can be partitioned into k forests, if and only
if each nonempty subset W of V' contains at most k(|W| — 1) edges of G.
(Hint: Use Exercise 10.28.) (Nash-Williams [1964].)

Let X1,..., X, be subsets of X and let £ > 0.

(i) Show that X can be partitioned into k partial transversals of (X1, ..., Xm), if and only if

(35) k(m — 1)) > | X\ | X3
iel
for each subset I of {1,...,m}.
(ii) Derive from (i) that {1,...,m} can be partitioned into classes I1, ..., I so that (X; | ¢ € I;) has
a transversal, for each j = 1,...,k, if and only if Y contains at most k|Y| of the X; as a subset,
for each Y C X.
(Hint: Interchange the roles of {1,...,m} and X.) (Edmonds and Fulkerson [1965].)

(i) Let M = (X,Z) be a matroid and let k¥ > 0. Show that there exist k pairwise disjoint bases of
M, if and only if k(rar(X) — ra(U)) > | X \ U] for each subset U of X.

(Hint: Use Exercise 10.27.) (Edmonds [1965b].)

(ii) Show that the problem of finding a maximum number of pairwise disjoint bases in a given
matroid, is solvable in polynomial time.

Let G = (V, E) be a connected graph and let k¥ > 0. Show that there exist k pairwise edge-disjoint
spanning trees, if and only if for each ¢, for each partition (V1,...,V;) of V into t classes, there are at
least k(t — 1) edges connecting different classes of this partition.

(Hint: Use Exercise 10.31.) (Nash-Williams [1961], Tutte [1961].)

Let M; and Ms be matroids so that, for ¢ = 1,2, we can test in polynomial time if a given set is
independent in M;. Show that the same holds for the union M; V M.

Let M = (X,Z) be a matroid and let B and B’ be two disjoint bases. Let B be partitioned into sets
Y] and Ys. Show that there exists a partition of B’ into sets Z; and Z so that both Y3 U Z; U Z3 and
Z1UY5 are bases of M.

(Hint: Assume without loss of generality that X = B U B’. Apply the matroid intersection theorem
to the matroids (M \ Y1)/Y2 and (M*\ Y1)/Y>.)

The following is a special case of a theorem of Nash-Williams [1985]:

Let G = (V,E) be a simple, connected graph and let b : V' — Z.. Call a graph G=(V,E)a
b-detachment of G if there is a function ¢ : V' — V such that |¢~*(v)| = b(v) for each v € V, and such
that there is a one-to-one function ¢ : E — E with 9(e) = {¢(v), p(w)} for each edge e = {v,w} of
G.

Then there exists a connected b-detachment, if and only if for each U C V' the number of components
of the graph induced by V' \ U is at most |Ey| — b(U) + 1.

Here Ey denotes the set of edges intersecting U.

10.6. Weighted matroid intersection

We next consider the problem of finding a maximum-weight common independent set, in two
given matroids, with a given weight function. The algorithm, again due to Edmonds [1970], is an
extension of the algorithm given in Section 10.5. In each iteration, instead of finding a path P with
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a minimum number of arcs in H, we will now require P to have minimum length with respect to
some length function defined on H.

To describe the algorithm, if matroid M; = (5,Z;1) and My = (5,Z2) and a weight function
w: S — R are given, call a set Y € T1 NZy extreme if w(Z) < w(Y) for each Z € T1 NZ5 satisfying
1Z] =Y.

Weighted common independent set augmenting algorithm

input: matroids M; = (S,Z1) and My = (S,Z5), a weight function w : S — Q, and an extreme
common independent set Y;
output: an extreme common independent set Y/ with |Y’| = |Y| + 1, if it exists
description of the algorithm: Consider again the sets X; and X and the directed graph
G(My, M5,Y) on S as in the cardinality case.

For any = € S define the ‘length’ I(z) of x by:

(36) l(z) :=w(zx) ifreY,
l(z):=—w(x) fzxdgY.

The length of a path P, denoted by I(P), is equal to the sum of the lengths of the vertices traversed
by P, counting multiplicities.
We consider two cases.

Case 1. G(My, M,Y) has an X; — X5 path P. We choose P so that {(P) is minimal and so that
it has a minimum number of arcs among all minimum-length X; — X, paths. Set Y’ := YAV P.

Case 2. G(M;y,M>,Y) has no X1 — X5 path. Then Y is a maximum-size common independent set.

This finishes the description of the algorithm. The correctness of the algorithm if Case 2 applies
follows directly from Theorem 10.7. In order to show the correctness if Case 1 applies, we first prove
the following basic property of the length function I.

Theorem 10.10. Let C be a simple directed circuit in G(My, Ms,Y), and let t € VC. Define
Z = YNANVC. If Z & T1 NIy then there exists a directed cycle C' with VC' C VC such that
(C") <0, orI(C") <U(C) and t € V.

Proof. By symmetry we can assume that Z ¢ 7,. Let N; and Ny be the sets of arcs in C' belonging
to G(M,Y) and G(Ms,Y) respectively. If Z ¢ Ty, there is, by Theorem 10.2 a matching N7 in
G(M;,Y) on VC with N # N;. Consider the directed graph D = (VC, A) formed by the arcs in
N1, Ny (taking arcs in N1 N .N{ multiple), and by the arcs in Ny taking each of them twice (parallel).
Now each vertex in VC' is entered and left by exactly two arcs of D. Moreover, since Ni # Ny, D
contains a simple directed circuit C; with VCy C VC. We can extend this to a decomposition of A
into simple directed cycles Cq,...,Ck. Then

(37) XVC1_|__._+XVCk :2'XVC'

Since VCy # VC we know that VC; = VC for at most one j. If, say VCj, = VC, then (37) implies
that either [(VC;) < 0 for some j < k or I(VC;) < (V) for all j < k, implying the proposition.

If VC; # VC for all j, then [(VC;) < 0 for some j < k or [(VC;) < I(VC) for all j <k, again
implying the proposition.

This implies:
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Theorem 10.11. Let Y € T;NZy. ThenY is extreme if and only if G(My, M3,Y") has no directed
cycle of negative length.

Proof. To see necessity, suppose G(M1, M>,Y) has a cycle C' of negative length. Choose C' with
|VC| minimal. Consider Z := YAV C. Since w(Z) = w(Y) = I(C) > w(Y), while |Z| = |Y|, we
know that Z ¢ T1 NZ5. Hence by Proposition 10.10, G(M;, M>,Y) has a negative-length directed
cycle covering fewer than |V C| vertices, contradicting our assumption.

To see sufficiency, consider a Z € 71 NZy with |Z| = |Y|. By Corollary 10.1, both G(M;,Y) and
G(M2,Y) have a perfect matching on YAZ. These two matchings together form a disjoint union of
a number of directed cycles Cq, ..., Cs. Then

(39) w(¥) —w(2) = 3UC) 20,
implying w(Z) < w(Y). So Y is extreme. |

This theorem implies that we can find in the algorithm a shortest path P in polynomial time
(with the Bellman-Ford method).
This also gives:

Theorem 10.12. If Case 1 applies, Y' is an extreme common independent set.

Proof. We first show that Y’ € Z; NZ,. To this end, let ¢ be a new element, and extend (for each
i=1,2), M; to a matroid M} = (S + t,Z}), where for each T C S + t:

(39) T €T, if and only if T —t € Z;.

Note that G(Mj, M5, Y + t) arises from G(M7, M2,Y) by extending it with a new vertex ¢ and
adding arcs from each vertex in X; to ¢, and from ¢ to each vertex in Xs.
Let P be the path found in the algorithm. Define

(40) w(t) == 1(t) == —I(P).

As P is a shortest X1 — Xo path, this makes that G(M7, M4,Y +¢) has no negative-length directed
cycle. Hence, by Theorem 10.11, Y + ¢ is an extreme common independent set in M/ and M.

Let P run from z; € X; to 22 € X3. Extend P by the arcs (¢, z1) and (29,t) to a directed cycle
C. So Z = (Y +t)AVC. As P has a minimum number of arcs among all shortest X; — X5 paths,
and as G(Mj, M}, Y +t) has no negative-length directed circuits, by Proposition 10.10 we know that
Z €Iy NIs.

Moreover, Z is extreme, since Y + ¢ is extreme and w(Z) = w(Y +t). |

So the weighted common independent set augmenting algorithm is correct. It obviously has
polynomially bounded running time. Therefore:

Theorem 10.13. A mazimum-weight common independent set in two matroids can be found in
polynomial time.

Proof. Starting with the extreme common independent set Yy := () we can find iteratively extreme
common independent sets Yy, Y1, ..., Y, where |Y;| =i for i = 0,..., k and where Y} is a maximum-
size common independent set. Taking one among Yy, ..., Y, of maximum weight, we have an extreme
common independent set. |
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Exercises
10.36. Give an example of two matroids M1 = (X,Z;) and M = (X,Z3) and a weight function w: X — Z4

so that there is no maximum-weight common independent set which is also a maximum-cardinality
common independent set.

10.37. Reduce the problem of finding a maximum-weight common basis in two matroids to the problem of
finding a maximum-weight common independent set.

10.38. Let D = (V, A) be a directed graph, let » € V, and let [ : A — Z4 be a length function. Reduce the
problem of finding a minimum-length rooted tree with root r, to the problem of finding a maximum-
weight common independent set in two matroids.

10.39. Let B be a common basis of the matroids My = (X,Z1) and M> = (X,Z2) and let w : X — Z be
a weight function. Define length function | : X — Z by I(z) := w(z) if x € B and I(z) := —w(z) if
r ¢ B.
Show that B has maximum-weight among all common bases of M1 and Mo, if and only if H(M:, M2, B)
has no directed circuit of negative length.

10.7. Matroids and polyhedra

The algorithmic results obtained in the previous sections have interesting consequences for poly-
hedra associated with matroids.

Let M = (X,Z) be a matroid. The matroid polytope P(M) of M is, by definition, the convex
hull of the incidence vectors of the independent sets of M. So P(M) is a polytope in R¥X.

Each vector z in P(M) satisfies the following linear inequalities:

(41) 2(x) > 0 for z € X,
zY) < ry(Y) forY CX.
This follows from the fact that the incidence vector x¥ of any independent set Y of M satisfies (41).
Note that if z is an integer vector satisfying (41), then z is the incidence vector of some indepen-
dent set of M.
Edmonds [1970] showed that system (41) in fact fully determines the matroid polytope P(M).
It means that for each weight function w : X — R, the linear programming problem

(42) maximize w7z,

subject to  z(z) > 0 (x € X)
2Y) < ru(y) (Y CX)

has an integer optimum solution z. This optimum solution necessarily is the incidence vector of
some independent set of M. In order to prove this, we also consider the LP-problem dual to (42):

(43) minimize Z yyru(Y),
YCX
subject to yy = 0 C X)
Z yy > w(x) (zeX)
YCX,z€eY
We show:

Theorem 10.14. If w is integer, then (42) and (43) have integer optimum solutions.

Proof. Order the elements of X as y1,..., ¥ in such a way that w(y;) > w(y2) > ... w(ym). Let
n be the largest index for which w(y,) > 0. Define X; := {y1,...,y;} for i =0,...,m and

(44) Y i={y; | i <n;ra(X;) > rau(Xio1)}
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Then Y belongs to Z (cf. Exercise 10.3). So z := x¥ is an integer feasible solution of (42).
Moreover, define a vector y in RP(X) by:

yy = w(y) —w(yi+1) Y =X, forsomei=1,...,n—1,
(45) yy = w(yn) if Y = X,
yy = 0 for all other Y C X

Then y is an integer feasible solution of (43).
We show that z and y have the same objective value, thus proving the theorem:

n

(46) Wz =w(¥) = S wi@) = w(y) - (rar(X0) = rar(Xio))

z€Y i=1
= w(yn) - ra(Xn) + Z(w(yi) —w(yip1)) (X)) = Y yyra(Y).
i=1 YCX
|
So system (41) is totally dual integral. This directly implies:
Corollary 10.14a. The matroid polytope P(M) is determined by (41).
Proof. Immediately from Theorem 10.14. |

An even stronger phenomenon occurs at intersections of matroid polytopes. It turns out that
the intersection of two matroid polytopes gives exactly the convex hull of the common independent
sets, as was shown again by Edmonds [1970].

To see this, we first derive a basic property:

Theorem 10.15. Let My = (X,Z1) and My = (X,Z3) be matroids, let w : X — 7 be a weight
function and let B be a common basis of mazimum weight w(B). Then there exist functions wy,ws :
X — Z so that w = wy + wa, and so that B is both a maximum-weight basis of My with respect to
wy and a mazimum-weight basis of Mo with respect to ws.

Proof. Consider the directed graph H (M, M2, B) with length function ! as defined in Exercise
10.39. Since B is a maximum-weight basis, H(M;, Ms, B) has no directed circuits of negative
length. Hence there exists a function ¢ : X — Z so that ¢(y) — ¢(x) < I(y) for each arc (x,y) of
H (M, Ms, B). Using the definition of H(Mj, M3, B) and [, this implies that for y € B,z € X \ B:

(47) o(x) —d(y) < -—w(x) if(B\{y})U{z}eT,
d(y)—d(z) < w(x) if (B\{y})U{z} e,
Now define

(48) wi(y) = o), wa(y) = w(y)—oly) foryecB
wi(xz) = w(x)+o(z), wo(x) = —¢(x) forx € X \ B.

Then wy (z) < wq(y) whenever (B\ {y}) U {z} € Z;. So by Exercise 10.19, B is a maximum-weight
basis of M; with respect to w;. Similarly, B is a maximum-weight basis of My with respect to ws.

Note that if B is a maximum-weight basis of M7 with respect to some weight function w, then
also after adding a constant function to w this remains the case.
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This observation will be used in showing that a theorem similar to Theorem 10.15 holds for
independent sets instead of bases.

Theorem 10.16. Let My = (X,Z1) and My = (X,Zs) be matroids, let w : X — 7 be a weight
function, and let Y be a maximum-weight common independent set. Then there exist weight functions
wy,ws : X — Z so that w = wy + we and so that Y is both a mazimum-weight independent set of
My with respect to wi and a mazimum-weight independent set of My with respect to wo.

Proof. Let U be a set of cardinality | X |+ 2 disjoint from X. Define

(49) Ji={YUW |Y eL;,W CU,[Y UW| < [X|+1},
Jo={YUW |Y €Zo,W CU,|YUW|<|X|+1}.

Then M{ := (X UU,J1) and My := (X UU, J») are matroids again. Define w : X — Z by

w(z) = wx) ifzelX,
(50) w(x) = 0 ifzel.

Let W be a subset of U of cardinality | X \ Y|+ 1. Then Y UW is a common basis of M7 and Mj.
In fact, Y UW is a maximum-weight common basis with respect to the weight function w. (Any
basis B of larger weight would intersect X in a common independent set of M; and My of larger
weight than Y.)

So by Theorem 10.15, there exist functions wy,ws : X — 7Z so that w; + we = w and so that
Y UW is both a maximum-weight basis of M| with respect to @w; and a maximum-weight basis of
M, with respect to ws.

Now, w; (u") < wy(u') whenever «' € W,u" € U\W. Otherwise we can replace v’ in Y UW by u”
to obtain a basis of M of larger w;-weight. Similarly, wa(u”) < we(u’) whenever v’ € W, v € U\W.

Since w1 (u) + Wa(u) = w(u) = 0 for all w € U, this implies that w;(u”) = w1 (uw') whenever
weW,w eU\W. As ) # W #£ U, it follows that w; and w9 are constant on U. Since we can add
a constant function to w; and subtracting the same function from ws without spoiling the required
properties, we may assume that w; and ws are 0 on U.

Now define wy(z) := wi(x) and ws(x) := wa(x) for each z € X. Then Y is both a maximum-
weight independent set of M; with respect to w; and a maximum-weight independent set of My
with respect to ws. |

Having this theorem, it is quite easy to derive that the intersection of two matroid polytopes has
integer vertices, being incidence vectors of common independent sets.

By Theorem 10.14 the intersection P(M7) N P(Ms) of the matroid polytopes associated with the
matroids My = (X,Z;) and M = (X,Z5) is determined by:

(51) z2(x) > 0 (x e X),
Z(Y) < M, (Y) (Y c X)7
AY) < mn(Y) (YCX),

The corresponding linear programming problem is, for any w : X — R:

(52) maximize w7z,
subject to  z(z) > 0 (x € X),
2Y) < mn(Y) (Y CX),
AY) < mnlY) (Y CX).
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Again we consider the dual linear programming problem:

(53) minimize Z (yQ/TMl (Y) + yi}er (Y))
YCX
subject to vy > 0 (Y € X),
Yo > 0 (Y CX),
Y etw) = wl) (v € X).
YCX,z€Y
Now

Theorem 10.17. If w is integer, then (52) and (53) have integer optimum solutions.

Proof. Let Y be a common independent set of maximum weight w(Y’). By Theorem 10.15, there
exist functions wy, ws : X — Z so that w; +ws = w and so that Y is a maximum-weight independent
set in M; with respect to w; (i = 1,2).

Applying Theorem 10.14 to w; and we, respectively, we know that there exist integer optimum
solutions y' and y"”, respectively, for problem (43) with respect to My, w; and Ma, we, respectively.
One easily checks that y',y” forms a feasible solution of (53). Optimality follows from:

(54) w(Z) =wi(2) +w2(Z) = > vhrar, (V) + Yy (Y)
YCX YCX
=Y Whran (V) +yyran (Y)).
YCX

So system (51) is totally dual integral. Again, this directly implies:

Corollary 10.17a. The convex hull of the common independent sets of two matroids My and My
is determined by (51).

Proof. Directly from Theorem 10.17. |

Exercises

10.40. Give an example of three matroids M;, M2, and M3 on the same set X so that the intersection
P(Mi1) N P(Mz) N P(Ms) is not the convex hull of the common independent sets.

10.41. Derive Edmonds’ matroid intersection theorem (Theorem 10.9) from Theorem 10.17.
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1-factor theorem
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path 4
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Lovéasz’s 94-95,97
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