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1. Mon 3/24: Motivation for Homology

The fundamental group is great for studying cell complexes of dimension 2.
However, it isn’t useful for higher-dimensional spaces (as we have proved).

One solution is to consider higher homotopy groups. Just as m(X) is the
group of homotopy classes of maps S' — X, one can define m,(X) to be
the group of homotopy classes of maps S¥ — X. The problem is that these
groups are very hard to compute. For example, there is no analogue of Van
Kampen’s theorem or deck transformations. Even the homotopy groups of
spheres have surprises (see table on p.339 of Hatcher):

0 if £ <n,
T(S") =< Z if k=n,

very complicated if k > n.

The basic idea of homology theory is to abelianize. Instead of regarding
the boundary of the triangle below as the composition of paths a-b- ¢, we
regard it as a formal sum of paths: a + b+ ¢. We are going to lose some
information this way (for example, we will no longer to be able to distinguish
(St VSY) = Z % Z from 7, (S* x St) = Z x Z) but we obtain invariants that
can actually be calculated, both by brute-force computation for explicit cell
complexes and by theoretical tools like the Mayer-Vietoris sequence (which
is to homology what Van Kampen’s theorem is for the fundamental group,
only better).

Example (taken from Hatcher): Start with the graph X with two vertices
xo, r1 and four edges a, b, c. The fundamental group is free on two generators.
If we write them as ab~! and ac™!, then we see that the fundamental group
m1(X, zp) consists of all words of even length gy - - - go, with g; € {a, b, c} for
i odd and g; € {a™ 1,071, ¢} for i even.

It turns out that the homology group H;(X) is the abelianization of m (X),
which consists of all Z-linear combinations ka+¢b+mc such that k+¢+m = 0.
These things are called 1-cycles. In general, a formal linear combination of
1-cells in a cell complex is called a cellular 1-chain, and the group of all
cellular 1-chains is denoted C1(X). . For now, a l-cycle is a 1-chain that
enters every vertex the same number of times that it leaves it.
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Suppose we attach a 2-cell D along the word ab~! to obtain a cell complex
X'. Back in m-land, we know that this has the effect of killing off ab=!. The
same thing happens to H;. The 1-chain a — b is now a 1-boundary: it is
the boundary of a 2-cell and therefore is zero in Hy(X'). Specifically,

(X)) ={ab"t, ac! | ab™) = (ab”h) 2 Z,
Hi(X"Y=Z{a—b, a—c)/Z{a —b) = Z{a — c) 2 Z.

This is an example of the general definition of homology:
H,(X) = 1-cycles / 1-boundaries.

Note that for this to make sense, we have to check that every boundary is a
cycle. But let’s go on with the example.

Take X' and attach another 2-cell D’ along ab~! to obtain a complex X"
This does not change m(X’) or H1(X’). However, it changes the second
homology group. The 2-chain D — D' is now a 2-cycle. To see this, observe
that each of D and D’ has the 1-chain a — b as its boundary, so if we regard
“boundary” as a linear map 0, then

a(D —D') = 0.

In general, we are going to define 9;(X) as a linear map from i-chains to
(¢ — 1)-chains, and define

Zi(X) = ker 0; (i-cycles),

Bi(X) = im0, 41 (i-boundaries),
Bi(X) € Z;(X) € Ci(X),

H;i(X) = Z;(X)/Bi(X) (i-homology).

Here Hyo(X") = Z; it is generated by the 2-cycle D — D’. Had we attached
D’ to ac™! instead, then Z(X") and Hy(X”) would both remain trivial.

If we form X" by attaching a 3-cell to X" along the sphere D — D’ then
Bo(X™) = Zo(X") and so Ha(X"™) = 0 again.

With this example in mind, here is a general overview of homology. For every
space, we are going to construct a sequence of abelian groups

C s O (X) 2 o x) B o (X)) o -



in which C,,(X) is the group of n-chains in X and 0, maps each n-chain to its
boundary, an (n — 1)-chain. These groups and maps form a chain complex,
which means that im 0,1 C ker 9, for every n; equivalently, 0, o 9,41 = 0.
We can then define

H,(X) =kerd,/im 0,41
and show that the groups H,(X) are topological invariants of X.

There are lots of different ways to construct homology groups. We will start
by developing a homology theory for A-complexes, which are particularly
nice cell complexes. This will have the advantage that the computations are
feasible, but it is not at all clear why the homology groups are topological
invariants, or how to use it to compute homology of more general spaces.

In the general case, we need something called singular homology. This is
great for theory and is easily seen to be a topological invariant; unfortunately,
it leads to enormous chain groups that cannot be handled explicitly. So one
of our goals will to be show that these two homology theories coincide.



2. Wed 3/26: Homology of simplicial complexes

2.1. Simplices, orientations and boundary maps. Definition: Let n €
N> 0 and let ep,...,e, be points in a real vector space that are affinely
independent. This means that no space of dimension n — 1 contains all of
them; equivalently, the vectors {v; —vy, ..., v, —vo} are linearly independent.
The n-simplex [vy, ..., v,] is the convex hull of these points:

T {Zaivi | a; € [0, 1], Zai = 1}.

1
The numbers a; are the barycentric coordinates of the point Z?:o a;€;.
The standard n-simplex A" is [eg,...,e,], where the e; are the standard
basis of R"*!.

The order of the points matters! For instance, you should think of the
I-simplex [vg, v1] as a directed edge from vy to vy, and you should think of
the 2-simplex [a, b, c] as a triangle with a curvy arrow pointing from a to b to
c. Typically we fix an ordering on the points from the get-go, which means
that there is a canonical homeomorphism [vy, . . ., v, — [wo, ..., w,] mapping

Z a;v; Z a;w;.

A facet of A" is the convex hull of any subset of n of the n 4 1 vertices, i.e.,
conv{vg, ..., Vi, ..., U}

Here and forevermore, the hat denotes removal, so that {vg,...,0;,...,v,} =

{vo, ..., v} \ {ui}

The boundary of A" as a topological subspace of R"*! is the union of its
facets. However, this definition does not take orientation into account. In-
stead, we define the boundary of a simplex to be a certain signed sum of its
facets whose orientations are chosen appropriately.

Remember that we want to think of a 1-simplex [vy, v1] as an oriented edge
from vy to v;. Therefore we define

8[7}0,?)1] = [Ul] - [Uo].
(Heuristically, the edge represents a unit of flow that takes one unit of stuff

from vy and transfers it to v;.) If we follow the orientation arrow of the
triangle, we see that the edges [vg, v1] and [v1,vs] are traversed in the right



direction, but the edge [vg, v5] is backwards. Therefore
a[v(]a U1, UQ] — [Ula UQ] - [UOJ UQ] + [/007 Ul]-
For the tetrahedron, we again would like a consistent orientation — this

means that the arrows along all triangles should look consistent (say coun-
terclockwise) when viewed from the outside. This gives

a[U07U17U27U3] — [U17027U3] - [U())UQaU?)] + [U()aUl)Ug] - [U07U17U2]-

-~ +
Yy —————— 1, a[vo,vl] =[v;]- [Uo]

v,

& a[vo, v, Vsl = [V, V5] — [Uo, Vo] + [Uo, v, ]
UO Ul

U3

V2 0[vg, U1, Vg, V3] = [V, Uy, V3] — [V, Uy, V3]

v + [Uovvl’v3]_[vo,vl,vz]
0 v

The general pattern is

Ao, ..., 0] = Z(—ni[vo,...,@...,vn] (2.1)

where the hat denotes removal.

2.2. Simplicial complexes. An abstract simplicial complex on vertex
set [n] is a subset X C 2/ satisfying the following conditions:

o) c X.
elfoc e X and 7 C o, then 7 € X.

The elements of [n] should be regarded as vertices, and each face o represents
the convex hull of its vertices.

The standard geometric realization | X| of an abstract complex X on [n]
is defined as follows. Let eq,..., e, be the standard basis of R"; then

| X| = Uconv(ei ci€0) C R
oceX
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However, it is often possible to construct a geometric realization of X (i.e.,
a space homeomorphic to |X|) in much smaller ambient dimension. The
realization of each o € X will be a geometric simplex of dimension |o| — 1.

More generally, any topological space homeomorphic to | X| could be referred
to as a geometric realization of X. It is usually a good idea to ignore the
distinction between X and | X|.

Some lingo: The elements of X are called its faces or its simplices. The
dimension of a face F' is dim F' = |F| — 1. (In particular, dim() = —1.) A
facet is a face that is maximal with respect to inclusion; note that not all
facets need have the same size. The dimension of X is the largest dimension
of a face(t).

The free abelian group generated by the n-dimensional simplices of X is de-
noted A, (X). Its elements are called (simplicial) n-chains. The boundary
map defined earlier can be extended linearly to chains, so that we have maps

C s A (X)) I AL D ALX) = B ANX) = o

(2.2)
(Note: We are ignoring the empty face () here. More on that later.)

Fact: 9,00,,; = 0 for every n. (For short, 9* = 0.) An equivalent statement
is that ker 0,, D im 0,4 1.

The proof is left as an exercise — everyone should verify this formula at least
once in their life.

This means that the groups and maps and in (2.2)) form an algebraic chain
complex, called the simplicial chain complex of X. The reduced simpli-
cial homology groups of X can now be defined as

H,(X) =kerd,/im d,4.

Note that these are finitely generated Z-modules, and that H,(X) = 0 for
n > dim X. Some computations in a moment.



3. Fri 3/26: A-complexes; examples

Example: Triangulating S?. The simplest triangulation of S? (i.e., simplicial
complex X whose geometric realization |X| is homeomorphic to S?) is the
hollow tetrahedron: X = (123,124,134, 234). It has 4 vertices, 6 edges, and
4 triangles. Its simplicial chain complex is

4 2 g 4
AQIZ >A1:ZG >A0:Z — 0

123 124 134 234 12 13 14 23 24 34

12 1 1 0 0 11 1 1 0 0 0

13 (-1 0o 1 0 21-1 0 o 1 1 0

4]0 -1 -1 0 3]0 -1 0 -1 0 1

2|1 0o o 1 4o 0o -1 0o -1 -1

24 0 1 0 -1
o 0 1

Wouldn’t it be simpler to take two solid triangles T',.S and identify their
boundary S!’s? This would give us a cell complex X with

X% =1{1,2,3}
X'={e=12,f=13,9g=23}
X?={T, S}

and simplicial chain complex

Compute the homology of this chain complex:
HYNX)=kerOy =Zle— f) = Z
HA(X) = ker 0;/ im 0y
= Z([12] — [13] + [23]) /itself = 0
HYX) =77/ im0,
— Z/z1] - [21,11] - 3)) 2 Z.

While this second cell complex is not a simplicial complex, it might as well be
(in the sense that the simplicial boundary formula holds). This brings us to
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the idea of a A-complex, which is a generalization of a simplicial complex
in which repeated faces are allowed, as long as the orientation is determined
by a fixed ordering on the vertices. Specifically:

Definition: A A-complex is a cell complex X that consists of:

(1) A totally ordered vertex set Xj.

(2) For each n > 0, a set X,, = {e!'} of n-dimensional simplices, each with
a specified list V' (e,) = (vg < -+ < v,) of vertices.
(The vertices need not be unique, and different n-simplices can have
the same lists of vertices.)

(3) Boundary maps ZX,, — ZX,,_1 given as follows: for each ¢! € X, as

above, we have
n

Ovo, .. va] = Y (-1)'F;
i=0
where F; € X,,_; has vertices (vg,...,0;...,0,).

The chain complex of a A-complex is constructed in the same way as that
of a simplicial complex, and its homology is defined in the same way. Each
n-simplex will have as its boundary a signed sum of (n — 1)-simplices, which
need not all be different.

3.1. Examples. 1. The circle S! can be realized as a A-complex with
two vertices v, w and two edges a, b, each oriented from v to w. The chain
complex is

0= A =Z{a,b) 5 Ay = Z{v,w) — 0
where da = 0b = w — v. Thus
ker 0y = Z{a — b), im0y = Z{w — v)
and
H,(SY) = Z{a - b) = Z,
Hy(SY) = Z{v,w)/Z{w — v) = Z.
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What if we add another vertex x and another edge ¢ from w to 7 Then the
simplicial chain complex is

0 — Ay = Z{a,b,c) > Ao = Z{v,w,x) — 0.

It turns out that this does not change the homology. The kernel is still
generated by a — b, and the increase in rank of Ay and the increase in rank
of 0y cancel each other out.

2. The disk D? is homeomorphic to the simplex [a, b, ¢], whose chain com-
plex is

0 — Z{abc) N Z{ab, ac, bc) SN Z{a,b,c) — 0.
SR
Algebraists will recognize this as (more or less) the Koszul complez, which is
exact (i.e., the homology groups are zero). Well, almost zero; the last bit of
the Koszul complex has been cut off, so we get Hy = Z. The same thing will
happen for disks of higher dimensions.

2a. The sphere S? can be constructed by identifying two copies N, S of the
disk D? along their boundary circles. Le., as a A-complex, we could take a
triangle and attach two 2-cells N, S with the same oriented boundaries. This
has no effect on Hy or H; (since it does not change the image of d»), but on
the other hand we will now have N — S € ker 0s, and clearly this element
generates the kernel, whence Hy(S?) = Z.

b

A
Yy S
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3. For the torus T,
al 1 -1 a b c
32=b[1 —1} =y 0 0

So
Hy(T) = ker 05/ im 05 = ker 0,
={p.9) €2’ |p=q} =L
Hy(T) = ker 0;/im O,
= 73/7{(1,1, 1)) = Z*
Hy(T) = ker 0y/ im o4
= Ay(T)/0 =Z.
Note that the calculation of H; relies on the fact that the vector (1,1, —1)

can be extended to a Z-module basis of Z?3.

4. For the projective plane RP?:

U L
11 a b ¢
a
v{—-1 -1 0
) R )
c\—-1 1

Hy(RP?) = ker 0»/im 03 = ker 9y = {(p,q) €Z* | p=1¢q, p= —q}
=0

Hi(RP?) = ker 0;/im 0,
={(p.a.7) € Zlp = —¢}/Z{(1. -1, -1),(1,-1,1))
(hold that thought)

Hy(RP?) = ker 9y/ im 0, = Z{v,w)/Z{v — w)
= 7.

What about that H; term? Given any (p,q,7) € Z3 with p = —q, we want
to solve the equation

s(1,—1,—-1) +t(1,-1,1) = (p,q,7)



13
for s and t. There are lots of choices such that s +¢t =a = —b = —s — t,
but then » = s — t must have the same parity as p for the equation to have
a solution. What we are seeing is that im 0, is a Z-submodule of index 2 in
ker 9y, and so | Hy(RP?) = Zs.

Note: The calculation of Hy would be different if the ground ring we were
working with was Zs instead of Z. Then the conditions p = ¢ and p = —q
would be identical and we’d end up with Z,. Often it is useful to do homology
over a ring other than Z — but we’ll get to that later.

5. For the Klein bottle K (a problem from HW #15),

U L
al 1 1 a b c
J= b 1 —11, (91:?)(0 0 0).
c\—1 1

We now have Hy(K) = 0 for the same reason that Ho(RP?) = 0, and yet
again Hy(K) = 0.
To calculate Hq(K), observe that

{v1 =(1,1,-1), vo = (1,0,0), v3 =(0,1,0)}
generates Z> as a Z-module, and that
imd, = Z{(1,1,-1), (1,-1,1)) = Z{(1,1,-1), (1,-1,1)+(1,1,-1)) = Z{(1,1,
Therefore

H\(K)=17%im0y = 7 Zs.

This is an example of a Smith normal form calculation, about which more
later.

To summarize:

Space H2 H1 H()
St 0 7 7
D? |0 0 Z
S? | Z 0 7
T 7 72 7

RP% | 0 Lo Z
K 0 Z&®Zy Z

It looks like Hy is always Z — is that in general true?

_1)7 (
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The simplest space X for which Hy(X) # Z is X = S". Here the simplicial
chain complex has only one nontrivial group, namely A, and all the boundary
maps are zero so Hy(X) = A¢(X) = Z%. More generally, if X is a discrete
space with k points then Hy(X) = ZF.
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4. Mon 3/31: Lab Day!

Learn how to use Macaulay2. See the handout.

5. Wed 4/2: Calculating simplicial homology

5.1. Calculating homology of f.g. Z-modules. Every subgroup A C Z"
is free abelian. (But that doesn’t mean that the quotient Z"/A is free!)
Therefore, it is isomorphic to Z* for some p < n. The number p is the rank
of A, and is an isomorphism invariant. A set of elements {ay,...,a,} that
generate A as an abelian group is called a Z-basis of A. (Or “Z-module
basis,” “integral basis,” “lattice basis”, etc.) If the vectors a; are made into
the columns of a n X p matrix, then they form an integral basis if and only
if the ged of all p X p minors is 1. (So this is stronger than being linearly
independent over QQ, for which we would just need that at least one minor is

nonzero. )

Let B C A be f.g. abelian groups with rank(A) = p and rank(B) = ¢. Then
p > q. Moreover, there always exists a Z-basis {a1,...,a,} of A and scalars
Ay ...y Ag € Zsg such that {A\aq, ..., A\a,} is a Z-basis for B. Once we have
this data, we can see that

q
G=A/B=1""e @7, (5.1)

1=1

In the case A = Z" and B = im M for some n x m matrix M of rank
q¢ < min(m,n), this is expressed by the matrix equation

A= 8T

nxm nXxXn nxXm mxm
where X represents a change of basis between the standard basis and the
basis {a1,...,a,}; and Y converts between the generating set of B given by
the columns of M, and the basis {\ia1, ..., A\,a,}. Both of these matrices are
invertible over Z — i.e., their determinants are +1. Meanwhile, the matrix
S will be diagonal:

S =diag(A1, ..., ).


http://www.math.ku.edu/~jmartin/math821/Macaulay2.pdf
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Since X and Y represent isomorphisms, it follows that A/B = Z"/im S =
Z"~1® P, Zy;. Note that some of the \;’s can be zero (if ¢ < m), in which
case we get additional Z summands.

Recall that every f.g. abelian group G has a unique representation (up to
isomorphism) of the form such that \; divides A\; whenever ¢|j. In this
case, the numbers )\; are the invariant factors of G and the matrix S is
called the Smith normal form.

Useful Fact 1: Let M € Z™™. The " invariant factor of M equals the gcd
of all the ¢ x ¢ minors of M.

Useful Fact 2: For any homomorphism f : Z™ — 7Z", there is a basis of
ker d that extends to a basis of Z™. Equivalently, the group Z™/kerd is free
(all its invariant factors are 1).

Now consider the simplicial chain complex associated with a A-complex X:

C s A (X) 2 AL B AL(X)

By Useful Fact 2, the invariant factors of H2(X) = kerd,/im d,,, are the
same as those of A, (X)/im d,41. Therefore, to compute H2(X) up to iso-
morphism, one calculates the invariant factors (either by inspection, or by
using Useful Fact 1) and observes that the free rank (the number of copies of
Z) is rank ker 0,, — rankim 0,,,1 = rank A,, — rank 9,, — rank 9,,1.

This can all be automated: computer algebra systems such as Sage and
Macaulay2 can compute the homology of chain complexes of f.g. Z-modules
in a jiffy. Here is the Macaulay2 computation of the simplicial homology of
the A-complex structure on RP?:

D2 = matrix{{1,1},{-1,-1},{-1,13}};
D1 = matrix{{-1,-1,0},{1,1,0}};
RP2 = chainComplex( D1, D2 )
-- notice the order of the differential maps!
prune HH RP2

5.2. Reduced and unreduced homology. Consider the simplicial com-
plex X = (v1v9v3, vov4, v3v4). If you construct the simplicial chain complex
the way Hatcher tells you to, it will look like (5.2)). However, if you tell
Macaulay2 something like
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R=ZZ[a,b,c,d]; chainComplex simplicialComplex {a*b*c, b*d, c*d}

you will get something bulkier, namely ((5.3). What is going on?

T N Ry S Wy, WA Ny p—| (5.2)
= :Z5 :Z4 :Z
o)) o1
¢ Ny 2N DAy —0 (5.3)
=7, =75 —74

Let HA(X) be the i homology of the chain complex ¢, and let HA(X) be
the i'" homology of the chain complex €.

First of all, it is clear that H(X) = H2(X) for all i > 0. The only difference

occurs in dimension 0, where

H(X) = Ay/im 0y, HYX) = ker 9/ im 9.

The boundary of each vertex is the (—1)-cell [@], which is the generator of
A_;. Therefore, the map 9y is given by the matrix [1 1 1 1], and

ker 0y = {Zr:aﬂ)i + a; € Z, ZCLZO} C Ay.

i=1
This is a corank-1 submodule of Ajy. In fact it is a summand (as is any
submodule that is the kernel of some map): we can write Ag = ker 0y @& F
where F'is infinite cyclic (e.g., spanned by the class of any vertex). Therefore

HYMNX)=Ay/im0; = (kerdy ® F)/im 0; = (ker 9y/im ;) @ F
~ AMNX) @ Z.

This relationship holds for all simplicial complexes (and, once we have defined
singular homology, for all spaces). Sometimes reduced homology is more
convenient, sometimes unreduced homology, depending on the context.

5.3. A combinatorial motivation for topology. A partially ordered
set P (or poset) is a set equipped with an relation < that behaves the way
you think it does:
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1) x <z forall x € P;

(

(2) if x <y and y <z, then z = y;
(3)if r <y and y < z, then x < z;

A chain in P is a subset C that is totally ordered: either x < y or y < x
for every x,y € C. Note that every singleton subset of P is a chain, as is
every subset of a chain. Therefore, the set of chains form a simplicial complex
A(P), the order complex of P, whose vertex set is P itself.

Posets are ubiquitous in combinatorics, and the mapping P — A(P) is one
of many connections between combinatorics with algebraic topology. Note
that a simplicial complex can itself be regarded as a poset — it is a subposet
of the power set of its vertices.

As an example, let P = 2B/ = {(),1,2,3,12,13,23,123}. The complex A(P) is
called the barycentric subdivision of the 2-simplex: it is obtained from
A? by drawing a new vertex in the center of each simplex, then connecting
two vertices with an edge (or three vertices with a triangle, etc.) if they come
from simplices that form a chain.

Y A

L

/
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6. Fri 4/4: Singular homology

In order to extend homology theory to general spaces we need the notions of
singular chains, cycles, boundaries and homology groups.

Definition: Let X be a topological space. A singular n-simplex is a
continuous map o : A" — X.

There’s no requirement that o be one-to-one, so many singular simplices look
very unlike “honest” simplices (hence the name).

The nth singular chain group of X is the free abelian group C,(X) of
linear combinations of singular n-simplices. This is an enormous group —
where Ag(X) is generated by the (often finite) set of vertices of a complex,
by contrast Cy(X) is the free abelian group on the points of X.

The singular boundary map 0, : C,,(X) — C,_1(X) is defined by

n

8n0- - Z(_l)io-|[vo,...,{)},...,vn]- (61)

=0

Convention: In general, any p-simplex [wy, ..., w,] can be identified with
the standard p-simplex by the map that preserves the ordering of vertices.
Such maps are implicit in a formula such as (6.1)): each of the summands is
to be treated as a map A""! — X). The notation is going to get crowded
enough without specifying these maps explicitly!

This map satisfies 9* = 0 for the same reason as does the simplicial boundary
map: the terms in 9%c are, up to sign, of the form

A [N
for + < j. The term that comes from removing j first and then ¢ carries
sign (—1)7(—1)!, while the term that comes from removing i first and then j
carries sign (—1)"(—1)7"1, so everything cancels. Therefore, the modules and
maps

an_l an—l

CoX): 0 = Cuy(X) 25 Opn(X) 25 0 2 0y(X) & cp(X) = 0

form a chain complex, the (unreduced) singular chain complex of X.



Definition: The n'® (unreduced) singular homology group of X is
H,(X)=kerd,/im0, 1.

As in the simplicial case, we can define the reduced singular chain complex
C.(X) by appending a map C_;(X) = Z. The resulting reduced singular
homology groups are denoted ﬁn(X ). The relation between reduced and
unreduced homology is the same as in the simplicial setting:

H(X) H,(X) if n >0,
UV H(X)@eZ ifn=0.

Everything we have defined so far, including the groups H,(X), are clearly
homeomorphism invariants of X. However, we can’t calculate singular homol-
ogy directly, except in some extreme cases. What is nice about the singular
theory is that it allows us to work combinatorially and algebraically with
simplices and boundary maps without worrying about the structure of X.

Proposition: Let {X,} be the (path-)connected components of X. Then

=Pc.x
=P H.(X.) o

and consequently

Proof. Simplices are (path-)connected, so the image of every singular simplex
is in some (path-)component of X. Therefore Cq(X) breaks up as a direct
sum. [

Proposition: If X is path-connected, then Hy(X) = Z.

Proof. For every singular 1-simplex o, we have dj0 = [z] — [y] for some
z,y € X (namely o(vg) and o(v;) respectively). Moreover, every such 0-
chain is the boundary of a singular 1-simplex, namely a path in X from v to

w. Therefore
im@lzG:{Z | € Cy(X |Zcx—0}

and Hy(X) = Cp(X)/im 0, = Z. (The quotient map Cy(X) — Hy(X) is
given by adding up the coordinates in a chain.) ]
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Corollary 6.1. If X has c¢ connected components then Ho(X) = Z° and
Hy(X) =271

Proposition: If X consists of a single point, then H,(X) = 0 for all n > 0.

Proof. There is only one singular n-simplex, namely the constant map k,
A" — X, so C,(X) = Z for all n > —1. The boundary formula says that

Ok — k-1 ?f n ?s even,
0 if n is odd

so the reduced singular chain complex is:

~

S0 S S0 S0 S0, 5
The homology at the even positions is 0/0 = 0, and at the odd positions is
C,/C,=0. ]

6.1. Induced Maps. Suppose we have two topological spaces X,Y and a
map f: X =Y.

If 0 : A" — X is a singular d-simplex in X, then the composition
An % x Ly
is a singular d-simplex in Y. Therefore we have a map
oo Cu(X) = Cu(Y)
given by fi(o) = foo.
Lemma 6.2. The map f; is a homomorphism of chain complexes; that

18, it commutes with the boundary maps.

Proof. The key fact is that restricting a function’s domain commutes with
precomposing it with another function.

f:(80) = f; (Z(l)ia[%...@...vn]>

1=0

— E f o O- UO""U’L“'/UTL]

—3(f00) = 0(fi0). O
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From this it follows that f; maps cycles to cycles (if 0z = 0 then O(fyz) =
f:(0z) = 0) and boundaries to boundaries (if b = da € imdx, then fy(b) =
f:(0a) = O(f4(a)) € im Oy). Therefore:

Proposition 2.9: A continuous map f : X — Y induces homomorphisms
fe: He(X) — Hp(Y) for every k.

If g : Y — Z is another continuous function, then (fg), = f.g.. Also,
(Ix)« = Lp,(x) for every k.
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7. Mon 4/7: Homotopy Invariance of Homology Groups

Recall that a continuous function f : X — Y induces maps on singular chain
groups

fﬂ : Cn(X) — Cﬂ(Y)> fti(a) = foo.

This is in fact a chain map (i.e., dfy = f;0) hence induces homomorphisms
fe: Hoy(X) = Hy(Y).

These induced maps are functorial:
(Ix)s =1g,x) and (fg)« = figs

The punchline of this section is:

Theorem 2.10: If f,g: X — Y are homotopic maps, then f, = g..

In particular, suppose that f : X — Y is a homotopy equivalence; recall that
this means there is a map g : Y — X such that fg ~ 1y and gf ~ 1x. Then
fg« = 1 and ¢g.f, = 1, so both f, and g, are isomorphisms. So an extremely
useful corollary of Theorem 2.10 is:

Corollary 2.11: If two spaces are homotopy equivalent, they have the
same singular homology groups in all dimensions.

In particular, if a space is contractible then its homology groups are all zero.
(The converse is not true!)

Proof of Theorem 2.10. Consider the prism A" x [ = [vg,...,v,] x I. T will
label its vertices in an unorthodox way:

Oi = (Ui,O), 11 = (Ui, 1)
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The prism decomposes into the (n + 1)-simplices
Ko = [00, 10,11, ..., 11, 1]
Kl — [007 017 117 SR 1n—17 1n]

K; =1[00,01,...,0;,1;, ..., 1,]

K, =[00,01,...,0,-1,04, 1,]

These simplices triangulate A™ x I because each one is the region of the prism
between the graphs of two functions of the form ¢; + --- +t,, ;i1 + -+ + ty,
where the t;’s are barycentric coordinates.)

Let F: X x I — Y be the homotopy between f and g, i.e., F(x,0) = f(x)
and F(z,1) = g(x).
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Consider the map G = Fo(o x1): Ax I — Y. The decomposition of A x [
into (n+1)-simplices enables us to regard G as a singular (n+ 1)-chain. That
is, we consider the linear prism operator

Py Co(X) = Cun(Y)
o — Y (1)l
=0

As usual, we identify each (n + 1)-simplex in the sum with A" preserving
the order of vertices. Also, I'll often drop the subscript on P.

Here is a picture of the maps. Note that the diagonal edges do NOT commute
with the others!

"*>On+1(X)i>Cn(X)i> n—..l(X)"'H (7.1)

feloe P fle Pun filo
b £

=G (V) = Co(Y) 5= Cra(Y) - —

Claim: 0P = gy — f; — PO.
Proof: Let 0 € C,,(X). We first calculate 0P,0. We have:

n

0Po =Y (-1Y0 (Glx,)

For each k, the ¢+ = j = k summand in B cancels the ¢ = 7 = £+ 1 summand
in A. So we can rescue the i = j = 0 summand in A and the i = j = n
summand in B, giving
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..........
>4 \ .

9:(0) /(o)
+ ( 1)j+Z <Z G|[00 ..... 050,05, 150000 10] Z G‘[OO ..... 75 IS PR 1,,])
7=0 1<J i>]
(7.2)
Now we calculate P,_100. We start with another abuse of notation:
Pos = 3 (=1)'P (0oluiind) = 2 (=D'P (0l ) -
1=0 i=0
The list [wy, ..., w,—1] depends on i — remember this. Set
T, = (wi,O), S; = (’LUZ', 1) € AT
Applying the definition of P, we get
n n—1
Pio = Z( 1)12(_1)]617 o (O-‘[wo ..... Wp_1] X ]l)|[r0,...,rk,sk,...,sn,1]
i=0 k=0
n n—1
— (_1)Z Z(_l)kG|[ro,...,rk,sk,...,sn,l]
=0 k=0
= (_1)J - Z(_l)ZG‘[OO ..... 0y,05,15,00,10]
7=0 1<J
+ Z(_l)iG’[OO ..... 0,1y Lipersy 1n]> (7-3)
i>j

To explain the bookkeeping in this last equation, j indicates the index of the
vertex of A,,_; that appears twice (once as (v;,0) and once as (v, 1)) in the
indicated n-simplex. Meanwhile, k + 1 is the number of 7’s (or y’s) in that
simplex. If : < k then j =k +1 >, while if ¢ > k then j =k < 1.

A miracle has occurred: the garbage that shows up in ([7.3)) is the same as
the garbage in (7.2)) (with a minus sign). This proves the claim, which we
repeat here:

OP =gy — fy — PO or equivalently g4 — fr = OP — PO. (7.4)
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To convince yourself that this computation is correct, you may want to work-

ing out the explicit expressions for small cases such as n = 2 and n = 3 by
hand.

Now, suppose that a € C},(X) is a cycle, i.e., da = 0. Then
gi(a) — fy(a) = (OP — PO)a = OP(«).
That is, g;(«v) and f;(«) differ by a boundary, which is precisely the statement

that g.|a] = fila], where [a] denotes the class of a in H,,(X). So we have
proved the theorem. ]

Note: The maps P are collectively called a chain homotopy. Specifically,
suppose that A and B are chain complexes with chain maps f,g : A — B.
Then a chain homotopy is a collection of maps P : A, — A, satisfying

(7.4). (For the picture, see (7.1)).)
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8. Wed 4/9: Exact Sequences; Relative Homology

The next step is to understand the relationship between the homology groups
of a space X, a subspace A, and the quotient space X/A. This relationship
is expressed algebraically by a long exact sequence.

Recall that a chain complex is a sequence of abelian groups and maps

On, On
A: "'%An_’_l%lAn%An_l%"'

such that ker 9, O im0d,,1 for all n. It is called exact at A, if ker0d, =
im 0,11, and exact if it is exact at every group between two maps. (So, e.g.,
to say that A — B — C'is exact is to say that it is exact at B.)

Observe that for groups P, Q, R,

0P —=0exact < P =0
0o-prPL Q exact <= f is injective
JJEN @ — 0 exact <= f is surjective
0P @ — 0 exact <= f is an isomorphism
O—>Pi>Qi>R—>Oexact <— RZ=Q/P

(or more precisely R = Q/f(P), but this is frequently used when f is an
inclusion map). An exact sequence of this last form is called a short exact
sequence. (You have seen this before, in one of the special cases of Van
Kampen’s Theorem.)

One more note: the cokernel of amap f : A — B is by definition coker feqdefB/im f.
So a map is surjective iff its cokernel is 0.

Definition: Let A, B be chain complexes of abelian groups. A homomor-
phism or chain map f : A — B is a family of group homomorphisms
fn A, — B, such that the following diagram commutes:

A — Ay — A —

J/fn+1 \Lfn J/fn—l

..—Bhny—B,— By — -



29

That is, f,1100 = 0o f, for every n. More concisely, we can write f0 = J0f.
For example, we have already seen that a continuous function f : X — Y
gives rise to a homomorphism of chain complexes f; : C(X) = C(Y).

A chain map f : A — B has a well-defined kernel and cokernel, which are
also chain complexes. The modules comprising ker f and coker f are what
you wuold expect:

(ker f),, = ker(f,), (coker f), = coker(f,),

and the maps between them are given by f as well. If you’ve never seen this
before, confirm it for yourself. Like many proofs in homological algebra, it’s
hard to go wrong.

To say that chain maps have well-defined kernels and cokernels is to say that
the category of chain complexes with chain maps is an abelian category.

We can also speak of complexes of complexes, and of exact sequences of

complexes. So a short exact sequence of complexes 0 —+ A — B %

C — 0 is a commutative diagram
0 0 0

o A —— Ay Ay
in+1 in Z.nfl

..—=Bny—=B,—B, 1 — -

jn+1 ]n jn—l
0 0 0

Theorem 8.1. A short exact sequence of chain complexes as above induces
a long exact sequence of their homology groups:

s Hy(A) 5 Hy(B) 25 H,(C) S Hy 1 (A) 25 Hy o (B) — -+ (8.1)

Sketch of proof: If you have not seen this before, you should verify it on your
own. The maps 7, and j, are induced by the chain maps ¢ and j respec-
tively (as before), while the map 0 : H,(C) — H,_1(A) (which is called a
connecting homomorphism) is defined as follows.
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Every element of H,(C) is the image of a cycle ¢ € C,,. Since j is onto, there
exists b € B,, such that jb = c. Thus b € B,,_;. We have jOb = 0jb = 0c =
0, so b € ker 7 = im ¢ and there exists a unique a € A,,_; such that ia = 0b.
Note that i0a = dia = 00b = 0, so da = 0 (since it is mapped to zero by
the injective map ). Therefore, a is a cycle, and we can define 9[c| to be the
homology class [a] of a in H,,_1(a).

(This construction justifies the name 0 for the connecting homomorphism:
we regard ¢ as equivalent to b and a as equivalent to ia.)

Does the choice of b matter? Suppose we have another b’ with jb' = ¢. Then
b—1U € kerj =imi, say b— b = ixz. Choosing a’ such that ia’ = 9b', we have
i(la—a)=0b—0b =9(b—10)=dix =idz
Since ¢ is injective this says a — a’ = dx. Therefore a,a’ represent the same

homology class in H,,_1(a).

Does the choice of ¢ matter? Suppose we have another cycle ¢ with c—¢ = Jy
for some y € C),+1. Choose z € B, 41 such that jz = y; then

d=c—0y=jb—0jz=jb— joz=j(b— 02)
so changing ¢ to ¢ has the effect of changing b to b — 0z. But since 9* = 0,
this does not change the element 0b.

This is the kind of “diagram-chasing” argument you have to make to verify
that the sequence (8.1)) is exact. I omit the rest of the details. O]

Now, back to topology. An inclusion of spaces 7 : A — X induces monomor-
phisms i, : C,,(A) — C,,(X) for every n, given simply by regarding a chain in
A as a chain in X. Therefore we have a monomorphism of chain complexes
ix 1 Co(A) — Co(X). The relative chain complex C,(X, A) is defined to
be the cokernel of this map, and its homology groups are called the relative
homology groups of the pair (X, A). By the algebra we have just done,
there is a long exact sequence for relative homology, which is not easy
to typeset:
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The relative complex (X, A) is in fact an algebraic stand-in for the quotient
space X /A, as we will prove.

Example: Suppose that A = pt consists of a single point in X. Then the
exact sequence of chain complexes 0 — Co(A) — Co(X) = Co(X, A) = 0 is
T

—— Cy(X) —

X

C1(X, A) —=Co(X, A) —0

We have ima Nimd = 0 (since, as we know, the 0-boundaries are 0-chains
whose sum of coefficients is 0). So both maps marked 0 have the same kernel.
We have proved something important:

H, (X, pt) = H,(X). (8.3)

Example: Let X = D? and A = S'. The (unreduced) chain complexes of
these spaces are as follows:

dimension 3 2 1 0
Ce(A) : 0 Z Z 0
Co(X) 0 Z, 7, 7, 0
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All the vertical maps Z — Z are isomorphisms. All the maps in Co(X, A)
are zero, so Hyo(X,A) = Z and H1(X,A) = Hy(X,A) = 0. Note that this
coincides with the reduced simplicial homology of the 2-sphere, which is the
space X/A.

On the other hand, if A were contractible, hence acyclic, then the long exact
sequence (8.2) would give isomorphisms H,(X) — H,(X,A) for every n.
(Remember that if 0 - P — @ — 0 is exact, then P = ).) On the other
hand, contracting a contractible subspace of X gives a homotopy equivalence
X ~ X/A.

This is not very strong evidence yet, but we could provide more examples.
At all events, the next part of the game is to identify the relative homology
groups H,(X, A) with the absolute reduced homology groups H, (X/A) of
the quotient space. For this we will need the inclusion A — X to be “nice”
(or a good pair); fortunately, CW-pairs are good.

These relative objects need some more study. If f : X — Y is a continu-
ous map with A C X, B C Y, and f(A) C B, then f defines a relative
map (X, A) — (Y, B). Relative maps induce homomorphisms on chains and
homology: since

A—'-X gives rise to Cn(A) i W (X)
fl ‘ fl fni ‘ fnl
B—=Y Cu(B) = Cu(Y)
we get an induced map
Ji 2 Cu(X)/Cu(A) = Cn(X, A) = Cu(Y)/Cn(B) = Cu(Y, B)

and since 0 fy = f40 by the same calculation as for absolute chains (Lemma,
we also get an induced map

fe: Hy(X, A) — H,(Y, B).

It is also true that a triple of spaces X D A D B gives rise to a long exact
sequence of relative homology:

.o — Hy(A,B) = Hy(X,B) — Hy(X,A) % H, 1(A,B) — H,_1(X,B) — -

(8.4)
In the case that B is a point, this is just the “ordinary” long exact sequence
for the pair (X, A).
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9. Fri 4/11: Excision and the LES for Quotient Spaces

The technical tool that enables us to make the key observation H, (X, A) =

H,(X/A) is called excision.

Theorem 9.1 (Excision I). Let X D A D Z be spaces such that the closure
of Z is contained in the interior of A. Then the inclusion (X \ Z, A\ Z) —
(X, A) induces isomorphisms of relative homology

H,(X\Z, A\ Z) — H,(X, A)

for every n.

The conclusion is also true for reduced homology. Setting B = X \ Z (so
Z =X\Band A\ Z = AN B) gives the following equivalent formulation:

Theorem 9.2 (Excision II). Let A, B C X be sets whose interiors cover X.
Then the inclusion (B, AN B) — (X, A) induces isomorphisms of relative
homology

H,(B, AnB) = H,(X, A)
for every n.

Let’s hold off on the proof for the moment — this is one of the most technical
parts of Chapter 2. Here is one way excision is useful.

Definition 9.3. A good pair is a pair of spaces (X, A) such that A is closed
in X and is a deformation retract of some open set in X.

For example, CW-pairs are good — you can enlarge any cell closure e? by
adding a little bit of each other cell whose closure meets del.. Doing this for

each cell in A gives the desired open set in X that deformation-retracts back
to A.

Theorem 9.4. If (X, A) is a good pair then H,(X,A) = H,(X/A).
Proof. The quotient map g : X — X/A gives rise to a relative map (X, A) —

(X/A, A/A) that we will also denote ¢q. Let V be a neighborhood of A that
deformation-retracts to A. Then:

(1) In the relative long exact sequence ({8.4)) for the triple A C V' C X, all the
terms H,(V, A) vanish because the deformation-retraction gives a homotopy



equivalence (V, A) ~ (A, A) and H, (A, A) = 0. So we have an isomorphism
a: Hy(X, A) = Hy(X, V).

(2) Applying the same logic to the triple A/A C V/A C X/A, we get an
isomorphism

B: Hy(X/A, AJA) — H,(X/A, V/A).

We therefore have a diagram]
H,(X,A) = H,(X,V) -~ H, (X —-AV-A)

exc

Hy(X/A, AJA) —= Hy(X/A,V/A) <5 Hy(X/A— AJAV/A - AJA)

exc

in which the maps marked “exc” are isomorphisms by excision. The right-
hand map is an isomorphism because the relative spaces in question are
actually identical, and q restricts to the identity map. So the left-hand vertical
arrow is also an isomorphism, and H,(X/A, A/A) = H,(X/A). O

Excision can be proved from the following proposition:

Lemma 9.5 (Subdivision). Let U = {U,} be an open cover of X (or more
generally a family of sets whose interiors are a cover) and let CY(X) be
the subgroup of X consisting of chains > a;0; such that each o; lies entirely
inside some U,. Then the CY(X) form a chain complex, and the inclusion
CU(X) — Cy(X) is a chain homotopy equivalence.

Sketch of proof: The details are long and technical [Hatcher, pp.119-124].
The key idea is barycentric subdivision: take the standard simplex A", put a
point p, in the middle of each nonempty face, and chop A up into (n + 1)!
subsimplices whose facets consist of the points

{Pors Poss -5 Ponin}
for every maximal chain of faces {¢7 C --- C 0,41} with |o;] = i. More
concretely, each open simplex in the subdivision corresponds to a total order-
ing on the barycentric coordinates (e.g., the simplex coming from the faces
P2, P23, P123 consists of the points in A? whose barycentric coordinates satisfy
to > t3 > 1.

1Ordinarily I prefer \ for set difference, but I’'m using — in the right-hand column of this diagram, since the bookkeeping is
challenging enough without having to parse (or parenthesize) something like H, (X/A\ A/A,V/A\ A/A).
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1 12 2

One can extend this operation linearly to chains, show that it induces a
chain homotopy, and iterate it. Eventually, the simplices get small enough
that each one lies inside some U (using the Lebesgue number lemma), which
means that every singular chain in X is equivalent (in a suitable algebraic
sense) to the image of a U-chain.

Proof of Excision II. Let A, B C X be sets whose interiors cover X and let

U = {A, B}. The chain homotopy i : C¥(X) — C(X) gives rise to maps
CH(X) [ Cu(A) = Cu(X)/ Cu(4) (9-1)

that also induces an isomorphism on homology. (This requires the fact that

both 7 and its homotopy inverse send chains in A to chains in A; this comes
from the omitted proof of the Subdivision Lemma.)

On the other hand, the natural map
Co(B)/Cy(ANB) — CY%(X)/C,(A) (9.2)

is an isomorphism because each one has its basis the singular n-simplices not
contained in A. Composing (9.1) and (9.2)), we see that the inclusion map

Cn(B) [ Cu(ANB) — Cn(X)/Cu(A) (9-3)

induces an isomorphism on homology, as desired. ]

Review of the logical flow of all this:

Subdivision lemma = Excision = H,(X/A) = H,(X, A) for good
pairs.

We can now finally write down the long exact sequence for reduced homology
of a good pair (X, A) and the quotient space:
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o Hy(A) = Hy(X) = Hy(X/A) = Hy 1(A) = - = Hy(X/A) — 0.
(9.4)

Example: Even for nongood pairs, we can use excision to interpret relative
homology topologically: it is the homology of the mapping cone of the inclu-
sion A < X. Recall that the cone over A is the space CA = A x I /A x {1},
which is contractible (it deformation-retracts to the cone point p). Identifying
A x () with A C X gives the mapping cone:
XUCA=XU(AxI/Ax{1}).
The long exact sequence for the inclusion CA C X UCA is
— - H,(CA) - H,(XUCA) - H,(XUCA,CA) - H, 1(CA) — ---

but C'A is contractible, hence acyclic, and we get isomorphisms

H,(XUCA) = H,(XUCA,CA). (9.5)
Meanwhile, excision gives isomorphisms
H,(XUCA,CA) = H,(XUCA\ {p},CA\ {p}). (9.6)
But CA\ {p} deformation-retracts to A, so becomes
H,(XUCA,CA) = H,(X, A). (9.7)
and combining with gives
Hy(X UCA) = H,(X, A) (9.8)

which is the desired interpretation of relative homology.
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10. Mon 4/14: Applications; simplicial /singular equivalence

Homology groups of the sphere. The long exact sequence for reduced
homology lets us compute Hy(S™) for all £ and n. Consider the inclusion
S* — 9D c D", Then D" /S™ is the one-point compactification of
R namely S"*!. The LES for reduced homology is
oo = Hy(D™) = Hy(S™) — Hpy(S") — Hy (D™ — oo — H (S™) — Hy(S") -
But D"*! is contractible, so in fact we get isomorphisms
ﬁk(8n+1) — ]j[k_l(Sn)
for all £ and n. Since the only nonvanishing homology of SV = {ee} is
Hy(S%) = Z, it follows by induction that

7. if k=n,
0  otherwise.

H,(S") = {

Wedges. Let X,Y be two spaces. There is a natural inclusion X — X AY,
and clearly (X AY)/X =Y. Provided that the points chosen for the wedge
sum are good in each summand We get a long exact sequence
i Hy(X) = Hy(XVY) = Hy(Y) =~ xH,_(X) — ---

The maps marked * are all zero, so this in fact splits up into a bunch of short
exact sequence

0— H,(X) = H,(XVY)—= H,(Y) = 0.
The roles of X and Y are symmetric, so we have in general

H,(XVY)=H,(X)® H,(Y).

More generally, it is true that
H,(\/ X.) = P Hu(X,)

again provided that the wedge points are good in each summand. We'll see
another way to prove this later.

10.1. Equivalence of Singular and Simplicial Homology. If X is a A-
complex and Y C X is a subcomplex, we can define the relative simplicial
chain complex A(X,Y) as the cokernel of the inclusion map A(Y) —
A(X) (which by definition maps simplices to simplices). The homology
groups of this chain complex are the relative simplicial homology groups
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H2(X,Y). We then have a long exact sequence for relative simplicial homol-
ogy (remember, this was just a matter of algebra — all we need is a short
exact sequence of chain complexes).

In addition, there are canonical homomorphisms A,,(X) — C,,(X) that sends
every n-simplex in X to its characteristic map. Accordingly, we get induced

homorphisms
HXX) — Hu(X).

Theorem 10.1. Let X be a A-complex and A C X a subcomplex. The
canonical maps just defined induce isomorphisms

HMX) = Ho(X),  HA(X,A) = H,(X, A).

Proof. First consider the case that A is empty. The desired isomorphism
certainly holds when n = 0 (since we know that both Hy(X) and H{(X) are
free abelian on the path-components of X).

Now assume k& > 0 and consider the pair (X* X*1) (the k- and (k — 1)-
skeletons of X'). We get a map of long exact sequences:

HA

n+1

(X5, X — H} (XM — H}(XP) — HH(XP, X — H R (X

| | ¥ ] )

Hn—i—l(Xk,inl) HHn(inl) HHn(Xk) HHn(Xk, kal) . n—l(inl)

Claim: The maps a and 0 are isomorphisms. The relative chain complex
A(X* X*1) is nonzero only in the k" position, where it is spanned by
the k-simplices of A (say there are p of them). Therefore H (X%, X*-1) =
7P for n = k and 0 otherwise. OTOH, H,(X* X*1) = H,(X*F/ X" 1) =
H,((S¥)"?) = 7P as well, and the characteristic maps of the k-faces form
a basis. So « and 0 take bases of relative simplicial homology to bases of
relative singular homology, proving the claim.

By induction on k£ we may assume that S and ¢ are isomorphisms as well.
(It is certainly true for the base case k = 1, where the spaces in question are
discrete point sets.)

The proof now follows from the Five Lemma of homological algebra, which is
as follows (proof omitted; it’s in Hatcher; check the diagram chase yourself):
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Five Lemma: Consider the diagram with exact rows
A B C D E

S (R

A/ B/ C/ D/ El/

Then:
3,0 surjective, ¢ injective = - surjective.

8,0 injective, « surjective —> v injective.
. a, 3,0, isomorphisms =~ isomorphism.

We have (finally!) shown that H2(X) = H,(X) for all n and all finite-
dimensional A-complexes X.

For the relative case, write down the long exact sequences in simplicial and
singular homology for the pair (X, A):

H}(A) —= H}NX) —= H}NX, A)—=Hp (A) — H2, (X)

n

| | | | |

Hn(A) HHn(X) HHn(Xa A) - n—l(A) - n—l(X)
Now apply the Five Lemma again. The 1st, 2nd, 4th and 5th vertical ar-

rows are isomorphisms by the first part of the proof, so the 3rd map is an
isomorphism as well. ]

The theorem holds for infinite complexes as well, though one has to do a little
more work (I won’t).
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11. Wed 4/16: Invariance of dimension; cellular homology

11.1. Invariance of Dimension. Here is an application of all these tools to
make a purely topological (as opposed to algebraic-topological) statement:

Theorem: Let n > 0. The number n is a topological invariant of R".
That is, if R” =2 R™ then n = m. Even more generally, if U C R" and
V' C R™ are homeomorphic open sets, then n = m.

Proof. Suppose there is a homeomorphism ¢ : R” — R™. Let p € R" and
q = ¢(p) € R™, so that ¢ restricts to a homeomorphism R"\ {p} — R™\ {q}.
But these spaces are homotopy-equivalent to S"~! and S™ ! respectively,
which do not have the same homology groups. So no such ¢ can exist.

For the stronger statement, the tool we need is excision. Fix u € U and apply
Excision II with X =R", A =R"\ {u}, B =U to get isomorphisms

AU, U\ {u}) = (R, R\ {u}) (1L.1)

for all n. Meanwhile, since R™ \ {u} ~ S"7!, the long exact sequence for the
pair (R",R™\ {u}) is

oo — Hy(R™) — Hy(R",R" — Hpy (SN — Hy (R — - -
k(o ) i ( \ {u}) p-1(8"7) kt( )

which breaks up into isomorphisms Hy(R", R\ {u}) = H;_1(S*"). Com-
bining this with (11.1]) gives

Z. if k=n,
0  otherwise,

H(U, U\ {u}) = Hpa(S") = {

which says that n is a topological invariant of U. [J

Question: Is there a proof of this fact that does not use tools from algebraic
topology?
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11.2. Cellular homology. We finally know that we can compute the ho-
mology groups of any space we can triangulate as a simplicial or A-complex.
But even that turns out to be unnecessary — even a cell complex structure
is enough. This is terribly convenient, since lots of interesting spaces can be
expressed nicely as cell complexes but are a hassle to triangulate.

Let X be a cell complex, and let E,, = {e} denote the set of n-dimensional
cells in X. The n'* cellular chain group of X is ZE,. We will show that
there is a cellular chain complex

o LB % 7B, ™ ZE,, — - — ZEy — 0 (11.2)
that computes the homology of X; that is, H,(X) = kerd,,/im d, .

Recall that X" means the n-skeleton of X, that is, the union of all cells of
dimension < n.

Lemma 11.1 (Lemma 2.34). (1) H, (X", X" 1) is free abelian, with basis
elements in bijection with E,,.
(2) Hp (X", X" 1) =0 for k #n.
(3) H(X™) =0 for k > n.
(4) The inclusion i : X" — X induces an isomorphism i, : Hp(X") —
Hi(X™) =0 for k <n.

Proof. (1,2) We know that H,(X", X" ) = H,(X"/X"1), and this space is
a wedge of n-spheres, one for each n-cell in X.
(3) The LES of this pair is

C o Hen (X' XY = Hy (X' S Hy(X7") — Hp(X' XY — -

If £ ¢ {n—1,n} then the two outer groups are zero and so i, is an isomor-
phism. In particular, if £ > n then the result of (1,2) gives

Hy(X") 2 H(X"H ... 2H(X)=20

(4) I will just prove this in the case that dim X = d < oco. The LES says that
In this case the result of (1,2)) gives isomorphisms

Hi(X") 2 Hy(X") = - 2 Hy(XY) = Hy(X)

where each map is i, for some inclusion ¢ of successive skeletons.

For the proof of (4) when dim X = oo, see Hatcher, pp. 138-139. O
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This is a strong hint that the cellular chain groups ZFE,, of should be
identified with the relative homology groups of successive skeletons. What
should the maps between them be? The answer is to splice together pieces
of the long exact sequences in relative homology for consecutive skeletons:

"'HHn—i-l XnJrl Xn 41>Hn Xn Xn— 1) dnp,

X"

/\

XnJrl Hn(X)

T

H, (X", X)) =0

Definition 11.2. The cellular chain complex of a CW-complex X is
o Hy (X7 XN Sy (X0 XY

where d,, = j,_1 00, is the map as indicated above. The cellular homology
groups are
HY(X) = kerd,/imd, ;.

Proposition 11.3. HYW(X) = H,(X).

Proof. First note that
H,(X)=H,(X"™) =~ H,(X")/keri, = H,(X")/im O, ,.

The map 7, is injective, so it maps im J,, .1 isomorphically onto its image,
namely imd, 1, and it maps H,(X")/im d,4; onto im j,/imd, ;. On the
other hand

im j,/imd, 1 = ker 0,/ imd,
= ker(j,—10,)/im d, 41 (since j,—1 is injective)
= kerd,,/imd, 1
= S (X). O
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12. Fri 4/18: Degrees of endomorphisms on spheres

Recall from last time:

X = CW-complex
X" = n-skeleton of X
E, = {n-cells €}

nth cellular chain group: ZE,, identified with H, (X", X" 1)

Cellular chain complex:

Hn—l (anl)
6n jnfl

dn

7.E, ZE, | —- -

where the maps 7, 1 and 0,, come from the appropriate long exact sequences
for relative homology.

Proposition: ker 0, O imd,,1 and H,(X) = ker 0,/ im 0,,41.

Corollary 12.1. For any cell complex X :

o If X has a cell structure with k n-cells, then H,(X) is generated by at
most k elements.

e In particular, if X has no n-cells then H,(X) = 0.

e If X has no two cells in adjacent dimensions, then H,(X) is free abelian
of rank equal to the number of n-cells. (The cellular boundary maps
must all be zero.)

Example 12.2. Complex projective space CP" has a cell structure with one
cell in each even dimension 0, 2, ..., 2n. Therefore,

Hy(CP") = Z ifke{0,2,...,2n},
g 10 otherwise.

More generally, the complex Grassmannian (remember the complex Grass-
mannian?) has a cell decomposition into Schubert cells, all of which are
complex vector spaces, hence even-dimensional cells. So the cell structure in-
stantly tells you the homology groups. Note that things are more complicated
over R.



44

This is an excellent start. But if we have an explicit CW-complex, how do we
calculate the cellular boundary maps? This brings us to the notion of degree.

A continuous function f : S" — S" induces a map f, : H,(S") — H,(S").
Since this group is Z, the map f, sends x — dx for some integer d, which is
called the degree of the map, written deg(f). (Note that we are identifying
the domain and range of both f and f,, so we can distinguish positive-degree
from negative-degree maps.)

For a map S! — S!, degree equals winding number. In general, deg(f) counts
the points in f~1(y) for any y € S?, taking into account orientations. We will
make this explicit in the local degree formula below.

(1) If f is a homeomorphism then deg(f) = 1.
(2) If f is not onto, then deg(f) = 0. Say p € im f; then f can be factored

as S L s \ {p} — S", so f, factors as Z — 0 — Z.

(3) If f ~ g then f, = g. so deg(f) = deg(g).

(4) deg(fg) = deg(f) deg(g) since (fg). = figs.

(5) deg(f) = —1if f is a reflection. Consider the cell structure on S” with
two cells of each dimension 0, ...,n. Let P, () be the n-dimensional cells
and let r, s be the (n — 1)-cells, and let f be the reflection across the

“equator” r U s, so that f interchanges p and ¢. Orient everything so
that OP = 0(Q) = r + s. Then the induced map of f is

i

0—2ZE, 5

ZE, | —>---

| Al

0——=7ZFE, [131] ZE, | —>---
We therefore have H,(S") = HSW(S") = kerd = Z{(1,—1)). On the
other hand f; switches the entries of its argument, hence maps the
generator of H,(S") to its negative.
(6) Consider the antipodal map A : S" — S" on the sphere. If we em-
bed S" «— R"! as usual, then the antipodal map is a composition of
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n + 1 reflections (namely, across each coordinate hyperplane). There-

fore deg(A) = (—1)""!. This is one of those times that the parity of
dimension makes a difference.

Just for fun, here is a quick application of degree.

Theorem 12.3 (Hairy Bowling Ball Theorem). If n is even, then S" has no
nonzero continuous tangent vector field.

Sketch of proof: A tangent vector field can be used to construct a homotopy
between the antipodal map and the identity. (Supply the details yourself,
or consult Hatcher, p.135.) Since homotopic maps have the same degree, we

must have (—1)""! =1, so n is odd.
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13. Mon 4/21: Degrees and Cellular Homology

Recall from last time that a map f : S" — S" (n > 1) induces a homomor-
phism
fe: Hy(S") =7Z — H,(S"), fe(1) = deg(f).

We want to know how to calculate degree in practice.

If we are lucky, some point y € S™ has finite preimage Z = {z1,..., 2z}
(Many maps that arise in real life will have this property.) Let V be a
neighborhood of Y such that f~1(V) is a disjoint union U; U --- U U,, with
z; € U;. Then we have a big diagram (p.136 of Hatcher):

H, (U, Uy = 2) 2 H,(V,V = y)

exc

~

k; &~ | exc

Ho(S",S" — 2) <2 H,(S",S" — Z) L~ H,(S",S" — y)

1%

rel

.
1

rel

H,(S™) L— ()
where:

e The isomorphisms marked “exc” come from excision (version I).

e The isomorphisms marked “rel” come from LES’s in relative homology.
If x is either z; or y, then part of the LES is

H,(S" —z) — H,(S") —» H,(S",S" —x) - H, 1(S" — z)
but the two outer terms vanish since " — x = R" is contractible.
e The map j comes from an SES that is part of an LES:
Hy(S" — Z) — Hp(S") L Hy(S",S" — Z) — Hy1(Z) — Hpy(S").
———— ——

0 0

e The maps k; and p; are induced homomorphisms of inclusions. (We're
dropping the subscript stars.)
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Since H,(S") = Z, every group but the one in the middle is a copy of Z. The
local degree of f at z; is defined as

deg(fzi)eqdef deg(f.i).
Proposition 13.1. deg(f) = >_, deg(f|2).

Proof. Let U = U™ U;. The pair (U,S" — Z) covers S", so Version II of
excision gives an isomorphism

H,(S".S" - Z) = H,(U,UN(S" — 2)) = P Ha(U;, U; — ;) = Z".
i=1

(The second equality is just because homology is additive on components.)
We can rewrite the previous diagram as

1%

Il
.

The maps k; send e; — ¢;, and the map j sends e — > e; because p;(j(1)) =
1. By commutativity of the diagram, we have therefore

deg(f) = f(1) = g(i(1)) (bottom square)
=49 (Z €i> = g (Z kiei)
= Z fri€i (top square)

= Zdeg(ﬂzi)- o

Again, this formula says that you can figure out the degree of a map by
finding a point with finite preimage (any point will do) and counting the
preimage points, keeping track of orientations. The nice thing about degrees
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is that they give the coefficients of the boundary maps in cellular homology.
Specifically:

Theorem 13.2 (Cellular Boundary Formula). Let X be a cell complex
with cellular chain complex

= LE, d—”>—>ZEn,1—>
where E, denotes the set of n-cells. Then for every pair of cells e and
n—1

ey, the corresponding coefficient dg of dy is the degree of the map
St — S"1 given by the composition

(&%

S = 9l L X L X /(Xaa \ e ) = 8

where ¢,, is the attaching map of el and q is the quotient map that collapses
everything outside eg_l to a point (so that we wind up with a one-point

compactification of eg_l).

The number dg, is called the degree with which e is attached to eg_l.

I omit the proof (more diagram-chasing; see p.141 of Hatcher).

Example: Real projective space. Recall that RP™ has a cell structure
e U---Ue" Every attaching map is 2-1 (it identifies antipodal points on
0de™). To find its degree, we can use the local degree formula.

Let A be the antipode on de” = S"~! and let 21, 22 be two antipodal points,
with disjoint antipodal neighborhoods Uy, Uy, that map to a point y in a
neighborhood V' C e"~!. The attaching map of de” is a local homeomorphism,
so the maps f1, fo in the diagram

H, (U, Uy — z1) ELE. n1(V,V =)

A

Hn_l(UQ, U2 — 22) fT> n—l(‘/; V- y)

each have degree +£1. But recall that the degree of the antipode alternates:
we have

deg(f1) = deg(f2) deg(A") = (=1)".
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Therefore
+2 if n is even,

0 if n is odd.

Note that this sign is just a conventional choice and doesn’t affect the kernel
or image of the map. Therefore, the cellular chain complex E,(RP") is

d:l?l—>ﬁﬁl{

{O%Z$ZAZ%~%AZ$ZW if n is odd, 15,1

05723532%7 5... 532 72%7 50 ifniseven

from which it follows that
0 if k£ is even or k > n,
H.(RP") ={Z, ifkisoddandk < n,
Z it k=nis odd.
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14. Wed 4/23: More cellular homology; homology with
coefficients; Euler characteristic

Example: 2-Manifolds. Consider the orientable surface M, of genus g,
with the cell structure from p.5 of Hatcher. The cellular chain complex is

Ey=7 -2 pi=7% " B =7
but the attaching maps are both zero (d; because each 1-cell is a loop, ds be-
cause each pair of sides of the polygon with the same labels point in opposite
directions). Therefore
Hy(M,) =7,  Hy(M,) =17, Hy(M,) = Z. (14.1)

That was easy!

Similarly, the nonorientable surface N, has a cell structure consisting of a
2-cell attached to the wedge of g circles by the wod af - - - ag (Hatcher, p.51).
Therefore its cellular chain complex is

B=7 2% B=720"% B =7
where ds is a ¢ X 1 column vector with all entries 2, and d; = 0. Therefore
Hy(N,) =0, Hi(N,) =79 @ Zs, Hy(N,) = Z. (14.2)

In fact, orientable surfaces have top homology class Z and nonorientable ones
have top homology class zero. This is characteristic of all manifolds (not just
surfaces).

14.1. Homology with Coefficients. At the beginning of all this, we defined
a (singular, simplicial, cellular) chain to be an integer linear combination
of simplices. All the machinery would work the same way if we considered
linear combinations of simplices over an arbitrary abelian group G (called the
coefficient group in this context). For example, the n'" singular chain group
of a space X opver GG consists of formal G-linear combinations of singular
n-simplices, i.e.,

k
Ch(X;5G) =Ch(X)®z G = {Zgiai c 0t A" = X, g € G}
i=1
The singular boundary map 0, : C,,(X;G) — C,_1(X;G) is defined by the

same formula. giving a chain complex Co(X; G). Again, the homology groups
H,(X; Q) of this complex are topological invariants of X.
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One important case is that G is a field of characteristic 0, say R (Q, C, etc.
behave the same way). The rank of a matrix over R is the same as it is
over Z, but modules over R are just vector spaces — there is no possibility
of torsion. So passing from Z to R has the effect of keeping the free part of
homology and throwing away torsion:

H,(X;R)=H,(X;Z) 2z, R=H,(X;2)/T(H,(X;Z)). (14.3)
In principle this loses information, but there are many spaces for which the
integer homology is torsion-free, so one may as well work over @@, which

can simplify computation (no more Smith normal forms!) For finite cell
complexes, homology over R is easily encoded by the Poincaré polynomial

Poin(X, q) = Z dim H,,(X;R)q"
n>0
which has nice properties; for example, it can be interpreted combinatorially
for certain nice spaces (like Grassmannians and flag manifolds).

Another important case is G = Zsy. Many attaching maps of cell complexes
have degree 2, which become 0 over Zsy. For example, in the cellular chain
complex for RP", all attaching maps become zero, from which it follows
immediately that

Zo for 0 <k <n,

H,(RP": Zs) =
Kl 22) {0 otherwise,

a much simpler answer than over Z. This is an illustration of the principle
that fails in positive characteristic — more on this in a moment.
In general, Z,-homology is useful for studying manifolds that might or might
not be orientable.

It is not hard to come up with spaces that are acyclic with respect to one
coefficient group but not another. (On the other hand, statements like “If X
is contractible, then it is acyclic” holds over any coefficient group.)

In general, the relationship between H,(X;Z) and H,(X;G) is expressed
by the universal coefficient theorem for homology (Hatcher, Theorem
3A.3, p.264), whose proof requires much more machinery from both topology
(cohomology) and algebra (Tor). Here is the statement: for any space X and
any coefficient group G, there is a split short exact sequence

0 = Hy(X)®G — Hy(X;G)®Tor(Ho1(X);G) — 0.  (14.4)
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Here “split” means that the middle term is the direct sum of the other two
(this is the nicest kind of short exact sequence). What Tor means is a longer
story, but it can be calculated explicitly for particular cases (see Hatcher,
Prop. 3A.5, p.265); for instance, if A has no torsion then Tor(A, B) = 0, so

that ((14.3) is a special case of ([14.4)).

14.2. Euler Characteristic.

Definition 14.1. Let X be a topological space such that H,(X;R) = 0 for
n > 0. The Euler characteristic of X is

X(X) =) (-1)"dim H,(X;R) = Poin(X, —1).

n>0

Why work with this rather coarse invariant, which throws away a lot of
information? Here’s why.

Proposition 14.2 (Euler-Poincaré Formula). Let X be a finite cell complex
and let E, be the set of n-cells. Then

X(X) = (1) Bal.

n>0

Proof. Let d,, : RE,, — RE, 1 be the cellular boundary maps over R. We
have

X(X)=> (~1)"dim H,(X;R)
= y (—1)"(dimkerd,, — dimimd,,_)
= (—1)"(dim ker d,, + dimim d,,) (by rearranging terms)
= i(—l)" dimRE,
=SB =

Thus the Euler characteristic is a combinatorial constraint on the possible cell
structures on a given topological space. For example, from the cell structure
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on S" as the one-point compactification of R”, it follows that
2 n even,

XE) =1+ (=1)"= {0 n odd.

which restricts the possible face posets of polytopes (i.e., polyhedral cell com-
plexes homeomorphic to spheres). The case n = 2 is Euler’s famous poly-
hedral formula: for a polyhedron in 3-space with v vertices, e edges and f
faces, we must have v —e + f = 2.

The calculations of homology for orientable surfaces M, (14.1)) and nonori-
entable surfaces N, (14.2)) imply that
X(My) =2 —2g, X(Ng) =2—g.

So Euler characteristic is powerful enough to distinguish between orientable
(resp., nonorientable) surfaces of different genera.
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15. Fri 4/25: Retractions and the Mayer-Vietoris Sequence

15.1. Retractions. Suppose A C X is a subspace and 7 : X — A is a retrac-
tion; recall that this means that r|4 = 1 4. In other words, the composition
A5 X 5 Ais the identity map. From this it follows that (r 04), = r,i, is
the identity on H,(A) for all n. In particular, 7, is 1-1 and r, is onto. This
gives rise to a really easy proof of the Brouwer Fixed Point Theorem:

Theorem 15.1 (Brouwer Fixed Point Theorem). For n > 0, every con-
tinuous map f : B" — B" has a fized point.

Proof. The theorem is trivially true for n = 0. If n > 0, observe that a fixed-
point-free function f : B" — B" gives rise to a retraction r : B" — S"!: for
each © € B", draw the unique ray from f(z) to z and let r(z) be the point
where the ray hits S"~!. However, such a retraction cannot exist, since it
would induce a surjection H,, 1(B") =0 — H, 1(S") = Z. O]

Going back to the general case of a retraction r : X — A, consider the long
exact sequence in homology for the pair (X, A). Since i, : H,(A) — H,(X) is
injective, we have im 0 = ker ¢, = 0 — but this says that all of the connecting
homomorphisms are zero, and so the long exact sequence actually breaks up
into short exact sequences

0 — H,(A) 2 H,(X) L H,(X, A) = 0.

In fact these are actually split short exact sequences. That is,
H,(X)=H,(A) & H,(X,A).
This is an easy piece of algebra (p.147).

If X = Ax B and by € B, then the map f(a,b) = f(a,by) is a retraction
X — A, so

H,(Ax B)=H,(A)® H,(Ax B,Ax {b}). (15.1)
Note, however, that the second thing is certainly not H,(B). For instance,
if B=S"then A x B/A X {by} = A U {e}, and if B = S! then you are
going to have to use your imagination. In fact much more work is needed to
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says that for every k, there is a split short exact sequence

0= @ Hi(X)®H,_1(Y) = Hy(XxY) = @D Tory (H(X), Hy_p-1(Y)) — 0.

15.2. Mayer-Vietoris Sequences. Suppose we have a decomposition X =
AU B. We will assume that A, B are good subspaces of X — i.e., we can
if necessary enlarge A to an open set that deformation-retracts onto it. We
would like to describe the homology of X in terms of the homologies of A,
B, and AN B.

Let C,(A+ B) = C,(A) + C,(B) C C,(X) (i.e., the group of X-chains that
are sums of A-chains and B-chains).

The boundary map 0 : C,(X) — C,_1(X) certainly maps C,,(A + B) —
Cn-1(A+ B), so Co(A + B) is a chain complex.

The Subdivision Lemma (Lemmal9.5]) says that Ce(A+ B) is chain-homotopic
to C,(X), so we can use it to compute homology of X.

For each n there is a short exact sequence
0—= CL(ANB) = Cy(A) @ Cy(B) L CL(A+ B) =0

because ¢ is clearly a surjection, and its kernel consists of ordered pairs
(x,—z), where x € C,,(AN B). We therefore have a short exact sequence of
chain complexes

0= Ce(ANB) = Co(A) & Co(B) = Co(A+B) —» 0

which gives rise to a long exact sequence in homology called the Mayer-
Vietoris sequence:
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H,(ANB)

g
H, (AN B)

.

anQ(A N B) —

H,(A) @ H,(B)

HAX%> (15.2)

Hn—l(A) b Hn—l(B) - n—l(X) >

The homology groups may be taken to be either unreduced or reduced — the
unreduced version shown above is simply the direct sum of the reduced Mayer-
Vietoris sequence with the split short exact sequence 0 — Z — Z? — Z — 0.

Example: Recall that the suspension SX of a space X is obtained by
taking two cones A, B over X and attaching them along their bases. Equiv-
alently, take a prism over X and squash the top and bottom faces to points:

SX =X x [-1,1]/X x {-1} U X x {1}.
For example, the suspension of S" is S"*1. Last week we showed that H,,(SX) =
H, 1(X) for all n > 0, using the LES for relative homology. This is even

easier using Mayer-Vietoris. Observe that AN B = X and AUB = SX.
Meanwhile, A, B are both contractible, so the Mayer-Vietoris sequence for

the pair breaks up into short exact sequences 0 — H,,(SX) N H, 1(X) —0.

Example: Consider the wedge sum X V Y. The intersection is a single
point, so the Mayer-Vietoris sequence again breaks up into isomorphisms
H,(XVY)=H,(X)® H,(Y). Again, we already knew this.

Remark 15.2. If AN B is path-connected, so that HO(A N B) = 0, then the
Mayer-Vietoris sequence implies that Hl(X ) = Hi(A) ® H,(B)/im ®, where
® is the map Hi(ANB) — Hy(A)® Hy(B). This looks an awful lot like Van
Kampen’s Theorem, doesn’t it?

There is also a relative Mayer-Vietoris sequence. Given a good pair (X,Y)
with open covers X = AUB and Y = CUD with C C A and D C B, the
relative Mayer-Vietoris sequence has the form



57

H,(ANB,CN D) H,(A,C)® H,(B, D) H,(X, Y)>
1

H, (AN B,CND) H, 1(A,C)& H,_(B,D)— H, 1(X,Y) Y
1

H, 2(ANB,CND)— ...
(15.3)

Example: [Hatcher, p.158, #36] We want to calculate the homology of
X x S" in terms of that of X. From ([15.1)) we have

Hk(X X Sn) = Hk(X) D Hk(X x S" X x {ZU()}) (154)

so we need to calculate the second direct summand. For this, we can use a
relative Mayer-Vietoris sequence. Replace X with X x S™ in ([15.3)) and set

A = northern hemisphere =R", (C =D =X x {z0}
B = southern hemisphere = R", (xp = some point on equator)

Then Hip(A,C) = Hp(X x R", X x {x9}) = Hp(X, X) = 0, so the relative
MVS gives

Hp(X x S", X x {zo}) & Hp (X x S X x {z0})
2 H o (X xS X x {x0})
Hi (X xS° / X x {z0})
= Hj (X U {o}) = Hyn(X).

112

112

Combining this with (15.4)) gives an interesting formula:
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It takes more work to derive the formula for the homology of a product of
spaces X X Y in terms of the homologies of X and Y. The answer, which
is called the Kiinneth formula, turns out to be the following: For every n,
there is a split short exact sequence

0= @ Hi(X)®H,_1(Y) = Hy(XxY) = @ Tor' (Hp(X), Hy—p—1(Y)) — 0.
k k

Example: Connected sums. Let X,Y be compact real manifolds of di-
mension n. The connected sum X#Y is obtained by choosing open discs
U C X and V C Y, deleting them, and then identifying their boundary
S*=1’s. That is,
X#Y =(X\U)U (Y \V) /oU ~ V.

Note that X#Y is also a compact manifold. The two spaces X \ U, Y \ V
cover X#Y . Now, I think that every compact manifold has a cell structure
with only one top-dimensional cell; if this is true, then deleting an open disc
(which can be taken to be a subset of the big cell) is homotopy-equivalent to
removing the entire cell (shrink the punctured cell onto its boundary). That

1S,
X\U~X"1 Y\Vxy™!

Therefore, the Mayer-Vietoris sequence has the form

cee — ﬁk(gn—l) — f‘]k(Xn_1> @f‘]k(yn_l) — f‘]k(X#Y) — f‘[kfl(Sn_w — .

In particular, we get isomorphisms Hy(X#Y) =2 Hy(X" Y @ H(Y" ) =
Hi(X) @ Hi(Y) for all £ < n — 1. The more exciting part of the LES is

0— H (X#Y) S Ho (" S B, (X" YoH, (Y™ L Hy (X#Y) — 0.
Z

This is where we have to think geometrically (or use the algebra to tell us
about the geometry). For instance, suppose X = M, and Y = M, are ori-
entable surfaces (n = 2). Then XY = M, ;. In fact Hy(M,,;) = Z*9" =
7% @ 7°" = Hi(X') @ Hi(Y!), which is consistent with the statement that
«, 7y are isomorphisms and 8 = 0. But I don’t think this is true if, say, Z = N,
and Y = Nj.



For more on this, see this discussion on math.stackexchange.com.


http://math.stackexchange.com/questions/187413/computing-the-homology-and-cohomology-of-connected-sum
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16. Mon 4/28: Combinatorics and Topology

Shifted complexes. A simplicial complex X on vertex set [n] = {1,...,n}
is shifted if, for every face. o € X, replacing some or all of the vertices in o
with numerically smaller vertices gets you another face of X. For example

Proposition: Every shifted simplicial complex is homotopy-equivalent to a
wedge of spheres, in which the number of copies of S¥ in the wedge is the
number of k-simplices in X not containing vertex 1.

Consequently, calculating the homology of a shifted complex is a purely com-
binatorial (i.e., fun) problem.

Proof. The star and link of vertex 1 are defined as
S=starx(l) ={oc e X | c U{l} € X},
L=linky(1)={ceX |1&0, cU{l} € X}.

The star is the cone over the link. In particular the star is contractible,

so X/S(1) ~ X. (This is true for the star and link of any vertex in any
complex.)

Now, suppose X is shifted and that ¢ € X \ S. In particular o is a facet, be-
cause if cJ{v} € X for any v then shiftedness implies cU{1} € X. Moreover,
shiftedness implies that the sets

{o\{vju{l} [vea} (%)
are all faces as well. Together with o, these faces form a subcomplex Y, of
X homeomorphic to S”. Contracting the link squashes all facets of Y, other
than o itself to a point. We conclude that X/S is a wedge of spheres, with
an n-dimensional sphere for each n-face not containing 1, and the conclusion
follows. [

This result generalizes problem #6 on HW #6. It is easy to see that the
complex A™? (the d-skeleton of the n-simplex) is shifted. Every non-maximal
face belongs to the star, so A™? ~ (S")" where ¢ = (,7,) — the number of
ways to construct a d-simplex from the n vertices {2,3,...,n+ 1}.

Stanley-Reisner rings. Let A be a simplicial complex on vertex set [n],
and let S = k[z1, ..., z,| where k is some field (it doesn’t matter much what).
We can regard faces of A as squarefree monomials in S (i.e., as products of
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distinct variables). The Stanley-Reisner ideal of A is

Ineqdef <H$z | 7 & A>.

1ET
The monomials corresponding to minimal nonfaces 7 give a minimal gener-
ating set for Ia. The Stanley-Reisner ring is

k[AlegdefS/I.

The natural basis for k[A] consists of monomials whose support is a face of
A. (The support of a monomial is the set of variables that appear in it with
nonzero power; again, we are associating this set of variables with the simplex
on the corresponding vertices of A.)

A ring R is graded if R = g0 g and Ry Re € Rgy.. The summand Ry is
called the d* graded piece and its elements are homogeneous of degree
d. The Hilbert series of R is the formal power series

H(R, q)eqdef Z dimy (Ry)q".
d>0

The Stanley-Reisner ring k[A] is graded, with k[A]; equal to the k-linear
span of the monomials of degree k supported on a face of A. Meanwhile, for
each face o with ¢ vertices, we have

d

q
monomials u: q
support(u)=c

(this is a basic example of a generating function). Therefore,

H(k[A];q) = dim(k[A]4)q”

n>0

1+dimo
T
ceEA 1- q
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where fy(A) means the number of d-dimensional faces. Putting the sum-
mands over a common denominator gives a formula

ha(q)
(1-49)”
It turns out that D = dim A + 1 = dimk[A] (where the second dim means

Krull dimension of a ring), and that h(q) is a polynomial with interesting
combinatorial properties.

H(k[A]; q) =

A lot of headway can be made by working back and forth between the com-
binatoria/topological object A and the algebraic object k|A]. For example,
Hochster’s formula says that local cohomology of k[A] (whatever that means)
corresponds to simplicial homology of certain subcomplexes of A. Algebraic
information about the ring can give combinatorial information about the com-
plex (e.g., if k|A] is Cohen-Macaulay, then the coefficients of h are all positive;
if in addition k[A] is Gorenstein, then the coefficients are palindromic) and
vice versa (if A is shellable, which means that it can be assembled by attach-
ing facets one at a time in a “nice” manner, then k|[A] is Cohen-Macaulay).
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17. Wed 4/30: Homology and the Fundamental Group

Here is the Cliffs Notes version: “H; is the abelianization of m.”

Theorem 17.1. Let X be a space and xg € X. Abbreviate m (X, xy) by
7T1(X).

Then there is a canonical homomorphism ¢ : m(X) — Hi1(X) sending
every loop to itself (regarded as a 1-simplex). If X is path-connected, then
Y is surjective and ker i is the commutator subgroup Comm(mi(X)), so
that

H(X) = m(X)/Comm(m (X)) =: Ab(m(X)).

This is §2.A of Hatcher, pp. 166—168.

Proof. Every loop f : I — X can certainly be regarded as a singular 1-
simplex. In fact, f is a singular 1-cycle, since 0f = f(1)— f(0) = [xo] — [x0] =
0e C()(X)

Part 1: Show that path-homotopic loops are equal in homology.
In other words, show that ¢ : m(X) — H;(X) is a well-defined map.

Suppose that f ~ ¢ via a path homotopy F' : I x I — X. It’s been a while,
so recall this means that F'(0,t) = F(1,t) = z¢ for all ¢, and we regard F
as a homotopy between the loops f(s) = F(s,0) and g(s) = F(s,1). Draw
a line segment D from (0,0) to (1,1) and let 01,09 be the restrictions of F
to the indicated triangles, so that o; — 09 is a 2-chain. (Figure taken from
Hatcher, p.166.)
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Abbreviating F'|y by (Y) for an oriented 1-simplex Y, we have

0o+ o) = (gv3) + (0gv1) + (0105) — (V) — (gvs) — (V205)
= (vov1) + (0105) — (vgvh) — (v205)
= [fo] + ko) — [f1] = [Kuo
= [fo] = [f1].

We have just shown that the 1-simplices fy, f; differ by a boundary and thus
are equal in H1(X). So 9 is a well-defined function.

Part 2: Show that v is a group homomorphism.

In other words, we want to show that

O(f-g9) =v(f)+(g)  orequivalently  (f-g)—(f) —p(g) = 0.

Hatcher has a little trick for this. Define o : A? — X by

A —[Uo,vl,vg] ﬂ) [UO,UQ] —f£—> X

where “proj” denotes orthogonal projection. Then
80' - 0-|[U0,’U1] + 0-‘[’1)171)2] o O-‘[’Uo,vg] = [f] + [g] o [f ) g] (17]‘)

and since do is a boundary, this is exactly what we want. Note that this
relation in C1(X) holds for all paths f and g, not just loops.

Part 3: Surjectivity.

It is enough to show that any singular 1-cycle ¢ : Al — X is in the image
of 1. Being a 1-cycle means that 0(0) = o(1) = x; for some point x; € X.
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Let h be a path from zy to 1 — here we are using the hypothesis that X is
path-connected. Then [h - o - h] € 71 (X, z9). By (17.1), both

[h] + [o] = [h - 0] and  [h-o]+[h]—[h-0o-h]
are boundaries. Therefore, so is their sum, which boils down to [o] —[h-o-h].

It follows that B
o] =¢lh-0-h] €im.

Part 4: Figure out ker 1.

Since Hi(X) is an abelian group, it is immediate that ker ¢» O Comm/(m(X)).
So we need to show that the commutator subgroup is in fact the entire kernel.
This is the hardest part.

Suppose that [f] € ker ), so that [f] is the boundary of some 2-chain:

n
=0 E £:0;
i=1

where each ¢; is £1 and (o4, ...,0,) are singular 2-simplices (with possible
repeats). By the usual boundary formula, we can write

E &; 80-7 E €iTio — Ti1 + Ti2)-
=1

The stuff on the right has to boil down to [f]. The only way this can happen
(remember, we are working in a free module!) is if one of the 7;;’s equals [f],
and all the other ones can be matched into pairs that occur with opposite
signs.

Now, build a 2-dimensional A-complex Z by starting with n 2-simplices
o1,...,0, and using this matching to glue them together. I.e., if 7; and
Twe are matched, then identify the j** edge in o; with the ¢*" edge in o;,. We
might as well assume that Z is connected (otherwise the expression for [f]
could be simplified). Note that Z is an orientable surface with boundary 07
consisting of a single loop. The singular simplices o; fit together to define a
continuous function ¢ : Z — X that restricts to f on 07.

Attaching a 2-disk along ¢ would produce an orientable surface. I am now
going to appeal to a theorem we haven’t proved, namely that every orientable
surface is either a 2-sphere or one of the surfaces M. If it is a 2-sphere then
[f] itself is a boundary (just regard f as the map from the equator and the
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equator as a triangle) and we’re done. Otherwise, the standard construction
of M, means that Z can be given the following cell structure (picture taken

from Hatcher, p.168):

Here Z is the grey region. The picture shows the case g = 2; in general we
know that the polygon has 4¢g sides labeled in cyclic order

ai, ag, &_1, a_g, ceey A2g-1, Q2g4, m, CL_Qg
But the path around the loop labeled f is path-homotopic to [ai, ag] - - - [a2g—1, 2]
in Z, and pushing forward to X (i.e., applying o,) gives a path-homotopy
of [f] with something in Comm (7 (X)). O

One can also finish the proof without appealing to the classification of sur-
faces; see p.167 of Hatcher.

17.1. A Taste of Higher Homotopy Theory. The fundamental group
71 (X, xo) measures the different ways to map a circle into X. More generally,
the higher homotopy groups (X, zy) measure the different ways to map a
k-sphere into X.

Let I = [0,1], so that I" is the standard n-dimensional cube. Its bound-
ary OI" is homeomorphic to S"~!. The n!* homotopy group ,(X, z) is
defined to be the set of homotopy classes of maps

(1", 01") — (X, xp)
ie., maps f : [" — X with f(s) = xg for every s € 9I". Here “homotopy”
means “homotopy fixing the boundary.” I.e., a homotopy fy >~ fi comes from

a map
F:I"xI— X, fi(s) = f(s,t)
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with F'(s,t) = x¢ for (s,t) € 01" x I.

For f,g € m,(X, x), we can put two copies of I" side by side and map their
union to X by hitting the left-hand one with f and the right-hand one with
g. This turns out to be a well-defined group operation. In fact it is abelian
for all n > 2.

The bad news is that m, is very hard to calculate. While there are some
exact sequences around, there is no Mayer-Vietoris sequence or Van Kampen
theorem.

One interesting fact is the Hurewicz Theorem (hoo-RAY-vitch). A space
(X, z0) is n-connected if m;(X,z9) = 0 for all ¢ < n. Thus 0-connected
means connected and 1-connected means simply-connected. The Hurewicz

Theorem states that if a space is (n — 1)-connected and n > 2, then m(X) =
Hy(X)for 1<k<n
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18. Fri 5/2: Cohomology

The short story: To define cohomology, you define reverse all the arrows.

Let’s take that slower. Let X be a space. Recall that we started our study
of homology by defining a singular n-simplex to be a function A" — X, and
defining a singular chain to be a Z-linear combination of singular simplices.

Definition: A singular n-cochain is an integer-valued linear function on
singular chains. That is, it is an element of the dual group

C™(X) = Cp(X)* = Homyz(C\(X), Z).

Duality is a contravariant functor. That is, a group homomorphism
¢ : A — B gives rise to a map B* — A*, because if f : B — Z is a
homomorphism then sois fo¢: A — Z.

A% p
foo lf
z

In this context, the map B* — A* sending f — f o ¢ is denoted by ¢*. If we
represent linear functions by matrices, then the matrix representing ¢* is the
transpose of the matrix representing ¢ : A — B.

Note that taking duals is really functorial, in the sense that 1* = 1 and that
(p)* = *¢*. Note also that a finitely generated free abelian group (or
vector space) is isomorphic to its dual: if {e1,...,e,} is a basis for A, then
the linear functions ej, ..., e; defined by e}(e;) = d;; (Kronecker delta) form
a basis for A*. However, this isomorphism is not canonical, in that changing
the basis gives a different isomorphism.

It follows that the singular chain complex Co(X) gives rise to the singular
cochain complex

* a* 1
CUX): o O"YX) 2 om(X) I on Y (X)  e
Functoriality implies that this is an algebraic chain complex, because 0} ,0; =

(0n0n+1)* = 0* = 0. Hatcher writes d,, for 9; I have seen this notation else-
where but don’t think it is universal.
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The maps d,, are the coboundary operators of X. Their kernels are cocy-
cles and their images are coboundaries. The n!* singular cohomology

group of X is

H"(X) o ker 0,41 / imd,,.

Like the homology groups of X, the cohomology groups are topological in-
variants. Much of the basic machinery for cohomology works the way you
would expect:

e Induced homomorphisms (if f : X — Y is continuous then there are
induced maps f*: H"(Y) — H"(X))

e Reduced cohomology

e Homotopy invariance

e Simplicial and cellular cohomology

e Cohomology with coefficients in an arbitrary abelian group G (replace
Hom(C),, Z) with Hom(C,,, G))

e Excision and the long exact sequence for good pairs

e Mayer-Vietoris sequences

What do cohomology groups look like? A lot like homology groups, it turns
out. Say X can be given a cell structure with finitely many cells, say f,, in
each dimension n, so that each 9, can be represented by a f,_1 X f, matrix
D,, and 4, is represented by the transpose DI, If we look at cohomology with
coefficients in a field k, then each cohomology group is a vector space over Kk,
hence determined by its dimension, and

dim H"(X) = dimker d,,,1 — dimim 9,
= (fy — rank D!) — rank D/
= (f, — rank D™ —rank D,
= dim ker 9,, — dimim 9,, = dim H,,(X).
On the other hand, funnier things can happen over a coefficient group that

is not a field.

Example: The real projective plane RP?, with the standard cell structure,
has Cy = () = () = Z and cellular chain complex

C.RPY:  0-0 2o Yoo
and homology groups
Hy(RP?) =0, H(RP?) =7, HyRP?) =7Z.
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To obtain the cochain complex, just reverse all the arrows (and transpose the
1 x 1 matrices):

C*'RPY) . 0t P oo
Again, the cochain groups are all copies of Z. The cohomology groups are
H*(RP?) = ker[0]/im[2] = Z; (compare Hy(RP?) = 0),
H'(RP?) = ker[2]/im[0] = 0 (compare H,(RP?) = Zs),
H°(RP?) = ker[0]/im[0] = Z (compare Hy(RP?) = 0).

In general, the relation between homology and cohomology groups is given by
the Universal Coefficient Theorem, which states the following (Hatcher,
p.195):

Theorem 18.1. If a chain complex C of free abelian groups has homology
groups H,(C), then the cohomology groups H"(C'; G) of the cochain complex
Hom(C, G) are determined by split short exact sequences

0 — Ext(H,-1(C),G) — H"(C) - Hom(H,(C),G) — 0.

Note this is a purely algebraic statement. What Ext means is a long story,
but in the case G = Z it turns out that Ext(A,Z) is isomorphic to the
torsion summand T(A) of A, while Hom(A, Z) is isomorphic to the free part
of A (since any homomorphism A — 7Z must kill every torsion element).
Therefore, the Universal Coefficient Theorem has the following special case:

Corollary: For any topological space X, one has If a chain complex C of
free abelian groups has homology groups H,,(C'), then the cohomology groups
H"(C;G) of the cochain complex Hom(C, G) are determined by split short
exact sequences

H™(X) = (Ho(X)/T(Hn(X))) ® T(Hp1(X)).
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19. Mon 5/4: Why Bother With Cohomology?

19.1. Cup product. If cohomology gives no new information about a space,
then why study it? Actually, cohomology has additional structure that ho-
mology does not. For any commutative ring R, the cohomology groups
H"(X; R) can be glued together into a graded ring

H*(X;R) = P H"(X;R)

n>0

which does contain additional topological information. It is possible for
spaces to have isomorphic homology (hence cohomology) groups in all di-
mensions, yet have non isomorphic cohomology rings. Also, for many spaces
X, the product can be interpreted geometrically — for example, if X is a
suitably nice (e.g., smooth) algebraic variety, then every subvariety gives rise
to a cohomology class, and intersection of subvarieties corresponds to mul-
tiplication of their cohomology classes, so that one can obtain information
about intersections by doing computations in the cohomology ring.

The product on H*(X; R) is called cup product, and it is defined as follows.
Let ¢ € C*(X;R) and ¢ € C*(X; R). Given a singular simplex o : AF¢ =
[vo, - -, Upe] = X, we define

(¢ ~ ,lvb)( ) (0-‘ Uo, U k]) ) w (Ol[vk,...,ka])

where the dot denotes multiplication in R.

(LaTeX note: Despite the name, use \smile for cup product, not \cup which
gives the union symbol U.)

This looks like a silly operation — what is special about the k' vertex that
it gets repeated? What about all the other ways of partitioning the vertex
set of A into a k-set and and an /-set that overlap in one vertex?

Fortunately, a miracle occurs. Cup product plays well with the coboundary
operator J: one can prove that

5o —y) = 86— v + (=1)'¢ — &y (19.1)
(Hatcher, Lemma 3.6, p.206). In particular, it is easy to check that

e If ¢ and 1) are cocycles (0¢p = —d1) = 0) then so is ¢ — ).
e If ¢ and 1) are coboundaries (¢ = da, 1» = §5) then so is ¢ — 1.
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This means that cup product is well-defined on cohomology classes, and ex-
tending it R-linearly makes the group
H*(X;R) = P H"(X; R)
n>0

into a ring, the cohomology ring of X with coefficients in R. The ring is
not quite commutative, but rather skew-commutative or graded-commutative
—if ¢ € H*(X; R) and ¢ € H*(X; R) are homogeneous elements, then
can be used to show that

¢ — = (-1)"y — ¢
[Thm. 3.11, p.210 of Hatcher]. On the other hand, if all the odd cohomology

groups of X vanish — for instance, if X has a cell complex structure with no
cells of odd dimension — then in fact H*(X; R) is a commutative ring.

What is the interpretation of this operation? Note that the k- and ¢-dimensional
subsimplices of A¥ that show up in the cup product formula intersect as
little as possible — namely, in a single vertex. In general, one should think
of the cup product a — [ as the cohomology class of the smallest possible
intersection of two subspaces cohomologous to o and £.

19.2. Poincaré duality. Let X be a cell complex. Let sd(X) be the abstract
simplicial complex whose vertices v, correspond to the cells o, of X, and
whose simplices are chains in X. That is,

sd(X) = {vivg---vg | 01,...,0% distinct , 37 D -+ D Ty }.

Combinatorially, if P(X) is the poset of cells of X, ordered by containment
of closures, then sd(X) is the order complex of that poset. It turns out that
sd(X) (or, if you perform its geometric realization) is in fact homeomorphic
to X.

Example: Let X be the union of a solid square and a solid hexagon, iden-
tified along an edge. Here are X and sd(X).



73

o - 4

For a simplex 7 € sd(X), let min(7) denote the smallest vertex of 7 (i.e., the
vertex corresponding to the smallest cell of X).

Definition: The dual block D(o) of acell ¢ € X is the union of all simplices
7 € sd(X) such that min(7) = . The dual block complex of X is

D(X)= | D(o).

ceX

Example: With X as above, here are dual blocks of 0-, 1- and 2-cells:

Y %

Geometrically, the dual block D(o) ca be thought of as the “orthogonal com-
plement” of 0 — i.e., the set of all directions in which one can leave o.
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Proposition: Let X be a finite regular cell complex that is pure of dimen-
sion n. (Recall that regular means that the attaching maps ¢, : de"a — X,,_1
are homeomorphisms for all cells e. In particular, the matrix entries occur-
ring in the cellular chain complex are all in {0,1,—1}.) Then:

(1) The dual blocks are disjoint and their union is sd(X).
(2) D(o) is a (n — k)-dimensional subcomplex of sd(X).
(3) D(o) D D(7) if and only if 7 C €.

The dual blocks don’t have to be cells. (E.g., in the example above, the
edge marked in green has a dual block that is homeomorphic to a half-open
interval.) However:

(4) If X is a manifold then the dual blocks are in fact cells, so that the dual
block complex D(X) is a cell complex.

In this case we have two different cell structures on X, and condition #2

says that Ep(D(X)) = E,_1(X) for all k. So we have two ways of computing
(co)homology on X; how do they compare?

(5) If X is orientable then condition #3 says that the coboundary operators
of D(X) are just the boundary operators of X (this does take some
proof).

This proves the following theorem:

Theorem 19.1 (Poincaré Duality). If X is a compact orientable n-dimensional
manifold, then H*(X) = H, (X) for all k.

Corollary 19.2. For any field F of characteristic 0, we have Hyp(X) =
H,_1(X). Le., the Poincaré polynomial

Poin(X, q) = Z dim Hy(X;F)q¢"
k=0
18 a palindrome.
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20. Wed 5/6: (Co)homology of Graph Picture Spaces

I can’t resist finishing up the course with a theorem I proved ten years ago.
The details are in my paper “On the topology of graph picture spaces,”
arxiv.org/abs/math.C0/0307405| (hyperlink).

20.1. A generalized Mayer-Vietoris sequence. Suppose we have a space
X and maps f : A — X and g : B — X such that f(A)Ug(B) = X. For
short, write A" = f(A) and B’ = g(B). We want to relate the homology of X
to that of A and B (rather than A’ and B’). The question is what will take
the place of the intersection.

Define h : AUB — X by

flp) ifpeA,
glp) ifpeB.

Now consider the induced map on chains:

hy : Cu(AUB) — Cp(X).

Of course, C,(AUB) = C,(A) ® C,(B). Meanwhile, the image of hy is
Cn(A")+C,(B'). Recall that since A'UB’ = X, the complex Co(A+ B) com-
putes the homology of X by the Subdivision Lemma (Lemmal9.5)). Therefore,
we can regard hy as a map

hy: Cu(A) ® Co(B) = Cu(X),  (a, 8) = fala) — g5(B)

that induces a map on homology

he : Ho(A) @ H,(B) — H,(X).

(Interlude: Why is there a minus sign in the formula for h;? So that there
isn’t one in the kernel, that’s why. We're free to make the sign either + or
— by changing bases on C,,(B).)

What is the kernel of hy? The key observation is that the inclusion ker(hy) —
Cn(A) @ C,(B) is the homomorphism induced by an honest-to-goodness map
of topological spaces. We want to find some space F', together with maps


http://arxiv.org/abs/math.CO/0307405
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i:F— Aandj: F — B, such that f;(i4(v)) = g:(j:(7)) for all v € C,,(F).
The answer to our prayers is the fiber product F' = A x B, which is defined

by

X
X

AxB={(abeAxB| f()=gd)

The maps i, j are just (restrictions of) Cartesian projection to the first and
second factors in A x B. We have a commutative diagram of spaces

B
J

A X
X :
/ \
A B
X /
X
which induces a commutative diagram of chain groups

(A x

C, B)

: Cn X B) .

% ]ﬁ\

(4) Ca(
Cn(X)

from which we can build a short exact sequence

14Dy

0= Cu(4x B) Co(A) @ Cu(B) 5 C(X) =0

which gives rise to a short exact sequence of chain complexes (replace C),
with C,) which in turn yields a long exact sequence of homology groups:

= Hy(A X B) = H,(A) @ H,(B) = H,(X) = H, (A X B) = ---




s

which we can regard as a generalization of the Mayer-Vietoris sequence. (The
“vanilla” Mayer-Vietoris sequence arises when the maps f and g are simply
inclusion of subspaces.)

20.2. Picture spaces of graphs. Let G be a graph (i.e., a 1-dimensional
cell complex) with vertex set V' and edge set E. (Note for combinatorialists:
loops and parallel edges are OK.) A picture of G consists of a set of points

{py: v eV} and lines {{. : e € E} such that
vee = p, €/l (20.1)

The points and lines are taken to lie in some fixed ambient space, typically
CP?. (Thus “line” means “complex line,” i.e., a copy of CP! = S2) Note
that points and lines in CP? are identical with 1- and 2-dimensional vector
subspaces of C™! respectively, so that a picture can be viewed as a point in
the product of Grassmannians

Gr(@) < T Gr(1,c™) x []Gr(2,c™).

veV eckE

The set of pictures is called the picture space of G, denoted X (G). (Note for
algebraists and algebraic geometers: The equations (20.1)) defining a picture
can be written in terms of Pliicker coordinates, so X (G) is in fact an algebraic

subset of Gr(G).)

Question: How does the combinatorics of G control the topology

of X(G)?

Quite a bit, as it turns out. The key is going to be to construct maps between
picture spaces from which we can extract a modified Mayer-Vietoris sequence.
First let’s look at some examples.

1. If G has connected components G1,...,G,, then X(G) =[], X(G)).

2. In particular, if G has no edges then X(G) is the product of CP%s, one
for each vertex.

3. Suppose G = €) consists of one vertex and a loop. Then

X(€©) ={(p,?) € Gr(1,CHY) x Gr(2,CT) | p C ¢}.
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This is an instance of a partial flag manifold; if d = 2 it is the complete flag
manifold. It comes with a natural map

X(€©) = X(e)
(p,0) = p

that just forgets £. Note that 7—1(p) is the space of lines through the point
p € CP?, so it is naturally homeomorphic to CP*!.

That is, X (€)) is a CPY"-bundle over X (o) = CP?. Bundles are a
generalization of products; for example, the cylinder and Mobius band are
both I-bundles over S!. A bundle that is actually a product is called a trivial
bundle in this context. (By the way, a covering space is more or less a bundle
whose fibers are discrete.)

4. Suppose G = e—e consists of two vertices joined by an edge. There is again
a projection map

X(o—0) 5 X(eo o) =CPlxCP?
(p17p27£) = (p17p2)

Unlike the previous case, the fibers are not all the same. If p; # py then
the fiber consists of a single point, since there is only one line through two
distinct points. However, if p; = py (i.e., (p1,p2) lies on the diagonal A of
CP? x CP?) then the fiber is a copy of CP4"! for the same reason as in the
previous case.

Here’s a way to think about this: X (e—e) is the space of pairs of points
approaching each other along a line. If the points are different then the line
is the line connecting them; if the points have already merged then X (e—e)
remembers how they got there. In algebraic geometry lingo, X (e—e) is the
blowup of CP¢ x CP? along A.

The diagonal A is called the center of the blowup, and the space {7 1(p, p)} C
X(e—e) is called the exceptional divisor of the blowup (again, this is
algebraic-geometry jargon). We can think of it as a copy of the space X ().
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Now let’s make this more general. Let G be any graph and let e € E(G).
Then there are maps

Y ——~X(G)
X(G —e)
where 7 is the map that forgets the edge e, and ¢ is inclusion. We can complete
the diagram to a square by adding 7(Y") in the bottom left. Note that 7(Y)

is the center of the blowup, and that = makes Y into a CP? !-bundle over
m(Y).

What are these spaces Y and 7(Y)? They’re also picture spaces. The center
of the blowup can be regarded as X (G — e) — merging the two endpoints of
e and deleting e is exactly the operation of contraction. Meanwhile, Y is the
picture space of G — e with a loop added at the merged vertex; let’s call this
graph G - e. We can redraw the diagram:

X(G-e)——=X(G)

Lemma: This diagram is a fiber product square.

Well, sure. If I have a picture of G and a picture of G/e that map to the
same picture of G — e, then in the picture of G, the two endpoints of e must
be represented by the same point, which means that I have a picture of G - e.

Therefore, we have a Mayer-Vietoris sequence and can calculate the homology
of X(@) inductively. For example, let’s figure out the homology of X (e—e).
Here the diagram is

X(€Q)——=X(e—0) X(Q) ——=X(o—0)
| | | i
X(o)——= X (o o) = CP?——=CP? x CP?

where the map marked 7 makes X (€)) into a CP?"1-bundle over CP?. The
bundle has a cell structure with the same number of cells as a direct product
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— and in this case everything in sight has only even cells, so the Mayer-
Vietoris sequence breaks up into short exact sequences

0— H,(€) — H,(e—e) P H,(e) — H,(e o) — 0
for n even; when n is odd everything is zero.

We already know that everything but H,(e—e) is torsion-free, and exactness
of the sequence implies that H,(e—e) is torsion-free as well (since a torsion
element has to be in the kernel of the second map but can’t be in the image
of the first map). So we might as well sum over all n and work with Poincaré
polynomials. Since CP* has a cell structure in each dimension 0,2, ..., 2k,
its Poincaré polynomial P(CP*) is ¢** + ¢**2 4 --. + ¢*> + 1. Abbreviating
this polynomial by @, the Mayer-Vietoris sequence gives

P(e—e) o Zq”ranan(o—o)

= P(€©) + P(e o) — P(e)

= P(CP"Y)P(CP?) + P(CP"? - P(CP?)

= Qu1Qu+ Q7 —Q°

= (@+ )@+ D)@+ + ).

Induction leads to the following theorem:

Theorem 20.1. For every graph G, the homology groups H,(X(G)) are free
abelian for n even and zero for n odd. Moreover, the Poincaré polynomial

P(G) of X(G) satisfies the following recurrence:

(QZ if G has n vertices
Qi 1P(G —e) if e is a loop,
Q2Qq1P(G/e) if e is a cut-edge,

| P(G —e€) 4+ (Qa—1 — 1)P(G/e) if e is an ordinary edge.

P(G) = ¢

A well-known and extremely important invariant of a graph is its Tutte
polynomial. This is a two-variable polynomial T'(G) = T (x,y) which is
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defined by the deletion-contraction recurrence

T(G) =«

(1 if £(G) =10,
yT'(G —e) if e is a loop,
2T (G/e) if e is a cut-edge,

T(G —e)+T(G/e) if e is an ordinary edge.

\

This is general enough to include all graph invariants satisfying a deletion-
contraction recurrence, including the number of spanning trees, the number
of acyclic orientations, and the chromatic polynomial, among others. (For
more on this, take Math 824!) Comparing these two recurrences says that the
homology groups of X (G) are determined entirely by its Tutte polynomial.

It turns out that X (@) is a manifold exactly when G is an orchard — every
edge is either a loop or a cut-edge. In this case, it is possible to use the
theory of line bundles and Chern classes to write down a presentation for the
cohomology ring, and to do some intersection theory.
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