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1. Mon 2/10: Paths, Path Homotopies, Fundamental Group

Definition: A path in X is a continuous function f : I → X. If f(0) =
f(1) = p ∈ X, we say that f is a closed path or loop, or a closed path
with basepoint p.

1.1. Paths and Path Homotopies. When we talk about a homotopy of
paths, we want to require that the starting and ending points are independent
of time.

Definition: Let X be a space and p, q ∈ X. A path homotopy from p
to q is a family of paths {ft : t ∈ I} such that

(1) ft(0) = p and ft(1) = q for all t ∈ I.
(2) The function F : I × I → X defined by F (s, t) = ft(s) is continuous.

We might refer to F , rather than the family {ft}, as the path homotopy —
they contain equivalent data.

Remark 1.1. Path-homotopy is a stronger condition than simply a homo-
topy of functions I → X. For example, if X = S1, the function F : I×I → X
defined by F (t, s) = ft(s)e

2πits is continuous, and f0 and f1 are both closed
paths (f0 is constant and f1 wraps once around the circle). But F is not a
path homotopy, because ft(1) depends on t.

The condition that the endpoints stay fixed is very important. In fact, any
two paths whose images lie in the same path-connected space are homotopic
as maps, so that old notion of homotopy is not very useful for paths. Ac-
cordingly, whenever we are talking about paths, you can safely assume that
“homotopy” means “path-homotopy”. We adopt the notation f ' g for path
homotopy.

Path homotopy is an equivalence relation (the proof is straightforward). Ac-
cordingly we denote by [f ] the equivalence class of a path f up to path
homotopy.

Lemma 1.2 (Reparameterization). Let φ : I → I is any continuous function
with φ(0) = 0 and φ(1) = 1. Then [f ◦ φ] = [f ] for any path f ∈ π1(X, p).
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Proof. The path-homotopy between the paths f and f ◦ φ is

gt(s) = f((1− t)s+ tφ(s))

which satisfies

g0(s) = f(s), gt(0) = f(0)

gt(1) = f(1), g1(s) = f(φ(s)). �

1.2. The Fundamental Group. Let f : I → X be a path from p to q and
let g : I → X be a path from q to r. The concatenation f · g is the path
from p to r obtained by following first f and then g:

(1.1) f · g(t) =

{
f(2t) if 0 ≤ t ≤ 1

2 ,

g(2t− 1) if 1
2 ≤ t ≤ 1.

This operation is well-defined on homotopy equivalence classes: if f ' f ′ are
p, q-paths and g ' g′ are q, r-paths, then f · g ' f ′ · g′ (this is straightforward
to check). Therefore the symbol [f ] · [g] is well-defined.

Theorem 1.3. Let p ∈ X and let π1(X, p) denote the set of all homotopy
equivalence classes of closed paths with basepoint p. Then the operation of
concatenation makes π1(X, p) into a group. The identity element is [kp],
where kp(t) = p is the stationary path at p. The inverse is [f ]−1 = [f ], where
f(t) = f(1− t).

Proof of Thm. 1.3. Let f ∈ π1(X, p). Then f · kp(t) = f(φ(t)) and kp · f(t) =
f(ψ(t)), where

φ(t) =

{
2t if 0 ≤ t ≤ 1

2 ,

1 if 1
2 ≤ t ≤ 1,

ψ(t) =

{
0 if 0 ≤ t ≤ 1

2 ,

2t− 1 if 1
2 ≤ t ≤ 1.

By the reparameterization lemma, it follows that [f ] = [f · kp][kp · f ].

Let g(t) = f(1− t). Then f · g is given by

f · g(t) =

{
f(2t) if 0 ≤ t ≤ 1

2

g(2t− 1) if 1
2 ≤ t ≤ 1

=

{
f(2t) if 0 ≤ t ≤ 1

2

f(2− 2t) if 1
2 ≤ t ≤ 1.

This map is homotopic to kp via the homotopy

hs(t) =

{
f(min(2t, s)) if 0 ≤ t ≤ 1

2 ,

f(min(2− 2t, s)) if 1
2 ≤ t ≤ 1
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which has h1 = f · g and h0 = kp.

Associativity of multiplication is another irritating reparameterization argu-
ment. By the way, concatenation is associative up to homotopy even for
non-closed paths — this fact will be useful soon. �

Definition: A space X is simply-connected if it is path-connected and
π1(X, p) = 0. (Does this depend on the choice of basepoint? Hold that
thought.)

Example: Any convex subspace of Rn is simply-connected, for the following
reason. Let γ be a path and define G : I × I → Rn by G(t, s) = tγ(s). Then
G1 = γ and G0 is the constant path at the origin. By suitably modifying this
argument, one can show that every star-shaped space is simply-connected —
provided the basepoint is a star point. But wait! There’s more!

Proposition 1.4 (Change of Basepoint). Let X be path-connected and p, q ∈
X. Then π1(X, p) ∼= π1(X, q).

Proof. Let h be any p, q-path. Then the map βh : π1(X, q)→ π1(X, p) defined
by

[f ] 7→ [h · f · h]

is a homomorphism because

[f · g] 7→ [h] · [f ] · [g] · [h] =
(
[h] · [f ] · [h]

)
·
(
[h] · [g] · [h]

)
= [f ] · [g]

(thanks to associativity). It is invertible (swap p, q and h, h), hence an iso-
morphism. �

For this reason, we can talk about “the fundamental group π1(X)”; this is
the isomorphism class of any (hence every) group π1(X, p) for p ∈ X. (It is
understood that X must be path-connected for this to make sense.)

How do you calculate π1(X)?

It’s not easy. We could prove at this point that the fundamental group of
a convex subset of Rn is trivial. In fact, every contractible space is simply-
connected; this is remarkably tricky to prove and will require a bit more
machinery. How would one prove that some space is not simply-connected?
The most important case is the circle S1, which we will tackle explicitly.
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2. Wednesday 2/12: Simply-Connected Spaces

Review from last time:

Let X be a path-connected space.

p, q-path: map f : I → X with f(0) = p, f(1) = q

p, q-path homotopy: map F : I × I → X with

ft(s) = F (t, s), ft(0) = p, ft(1) = q ∀t
Notation: f0 ' f1.

[f ] = path-homotopy equivalence class of f (“path class” for short)

Reparameterization lemma: if φ : I → I is continuous with φ(0) = 0,
φ(1) = 1, then f ◦ φ ' f .

Concatenation/composition: if f is a p, q-path and g is a q, r-path, let

f · g(s) =

{
f(2s) if s ∈ [0, 1

2 ],

g(2s− 1) if s ∈ [1
2 , 1].

Then f · g is a q, r-path.

Concatenation is well-defined and associative on path-homotopy classes.

Fundamental group π1(X, p): set of all p, p-path classes.

• Group operation: Concatenation.
• Identity: [kp] where kp(s) = p
• Inverse: [f−1] = [f̄ ] where f̄(s) = f(1− s)

(Explain notation π1. In general πk(X) = group of homotopy equivalence
classes of basepointed maps Sk → X.)

Change of basepoint lemma: If h is a p, q-path, then

βh : π1(X, q)→ π1(X, p), [f ] 7→ [h · f · h̄]

is an isomorphism.

(So π1(X) = isomorphism class of π1(X, p) for any p ∈ X.)

X is simply-connected if π1(X) = 0. (E.g., convex, star-shaped.)
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Proposition 2.1. Let X be a path-connected space. Then X is simply-
connected if, for every two p, q-paths f, g, we have f ' g.

Proof. Suppose X is simply-connected. Then in particular f · ḡ ' kq, so
f ' f · ḡ · g ' kq · g = g.

Suppose the other condition holds. Then there is only one homotopy class of
p, p-paths. �

Fact: X contractible =⇒ X simply-connected. But this is surprisingly
hard to prove — we will need some more machinery. Contracting a space to
a point will contract any closed loop to a point; the problem is that this last
contraction need not be a path homotopy. (We could prove that any space
that can be deformation-retracted to a point is simply-connected — but that
is a stronger assumption than contractibility; see Exercise 6(b) on p.18.)

Proposition 1.14: For n ≥ 2, Sn is simply-connected. (Note that it is not
contractible — at least, we don’t think so.)

Proof. Let p ∈ Sn and f ∈ π1(S
n, p). Suppose f is not onto, say f(I) ⊂

Sn \ {q} for some q ∈ Sn. Since Sn \ {q} ∼= Rn is simply-connected, we can
path-homotope f to kp.

But what if f is a space-filling curve? In that case we need to homotope f
to a non-space-filling curve. The key to doing this is compactness

Let q 6= p and let B be a small neighborhood around q. Then f−1(B) is
open in I, hence is the union of (possibly infinitely many) open intervals.
Meanwhile, the set f−1(x) is closed in I, hence compact. Therefore finitely
many of those intervals J1, . . . , Jn ⊂ I cover f−1(x). We may as well assume
these are disjoint (if two overlap, merge them). Then if, say, J1 = [a1, b1],
we have f(a1), f(b1) ∈ ∂B; in particular f(a1, f(b1) 6= q. Homotope each
section f |Ji to an arc on ∂B. maintaining continuity and staying in the same
homotopy class (since ∂B ∼= D2 is convex, hence simply-connected). We wind
up with a non-surjective closed path f ′ ' f . �
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3. Friday 2/14: Fundamental Group of S1

Theorem: For any p ∈ S1, we have π1(S
1, p) ∼= Z.

Before we go any further, let’s describe the points of S1. Identify S1 with the
unit circle in C, and define

E(s) = e2πis for s ∈ R.
Then E : R� S1, and the preimage of any point in S1 is a coset of Z in R.

Lemma 3.1. Every path f : I → S1 has a lift to R, i.e., a function
f̃ : I → R such that the diagram

R

E

��

I

f̃
88

f &&
S1

is commutative.

In other words, every way f of wrapping I around a circle can be described
by first mapping I to a line (that’s f̃), then wrapping the line around the
circle (that’s E).

Proof. In order to lift f , we need to able to invert E. So, suppose that
J ⊆ I such that f |J is not surjective. Then there is a branch of the complex
logarithm whose domain includes J , and so the function

f̃(s) 7→ 1

2πi
log(f(s))

is a lift of f |J .

If f : I → S1 is surjective, the idea is to cover I with intervals on which f is
not surjective, lift f on each one, then splice all the lifts together.

Specifically, let
L+ = S1 \ {1}, L− = S1 \ {−1}
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(L stands for “lacks”). I claim that we can cover the domain of f (namely
I) with finitely many pieces:

I = [a0 = 0, b0)︸ ︷︷ ︸
I0

∪ (a1, b1)︸ ︷︷ ︸
I1

∪ · · · ∪ (an−1, bn−1)︸ ︷︷ ︸
In−1

∪ (an, bn = 1]︸ ︷︷ ︸
In

with

0 = a0 < a1 < b0 < a2 < b1 < a3 < · · · < an < bn−1 < bn = 1

such that each f(Ij) lies inside either L+ or L−.

1 b1a0 b0 b2a2 a4a 3a3 b4b

(1)−1

f (−1)−1

f

Given such a cover, we can construct an appropriate lift of f on each piece
in succession, then splice all the lifts together. Specifically:

Let
log0 : f(I0)→ R

be a branch of the complex logarithm. Such a thing exists because f(I0) ( S1.
We can therefore lift f |I0 to a function

f̃0 = log0 ◦f |I0 : I0 → R.

Now define
log1 : f(I1)→ R

as the unique branch of the complex log extending log0 |f(I0∩I1). Such a branch
exists and is unique because f(I0 ∩ I1) is nonempty and f(I1) is a connected
proper subset of S1. We can therefore lift f |I1 to a function

f̃1 = log1 ◦f |I1 : I1 → R
that agrees with f̃0 on I0 ∩ I1.

Pasting f̃0 and f̃1 together gives a lift f̃01 of f |I0∪I1.

Now define
log2 : f(I2)→ R

as the unique branch of the complex log extending log1 |f(I1∩I2), and lift f |I2
f̃2 = log2 ◦f |I2 : I2 → R.
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Pasting f̃2 and f̃01 together gives a lift f012 of f |I0∪I1∪I2.

Continuing in this way, we eventually get a lift of f . Note also that the only
choice we made was of log0.

Why can we do all this? Because of continuity and compactness. Continuity
(in its metric ε − δ formulation) says that for every s ∈ I, there is a open
interval J containing s such that either f(J) ⊆ L+ (if f(s) 6= 1) or f(J) ⊆ L−

(if f(s) 6= −1). Compactness guarantees that finitely many of these intervals
cover I. �

We now return to the regularly scheduled proof of the theorem.

Define a map

w : π1(S
1, p)→ Z, w(f) = f̃(1)− f̃(0).

The number w(f) is called the winding number of f . We will prove that w is
a group isomorphism.

We first have to prove that w is uniquely determined, because f can have (in
fact, does have) many lifts. Specifically, if f̃ : I → R is a lift of f : I → S1,
then so are the functions g̃ defined by

g̃(t) = f̃(t) + n

for n ∈ Z. In fact, we’ll show that these are all the lifts, for which it suffices
to show that the lift f̃ is determined uniquely by the choice of f̃(0).

Indeed, let f̃ and f̃ ′ be two lifts such that f̃(0) = f̃ ′(0). Define h̃(s) =
f̃(s)− f̃ ′(s), and let

J = {s ∈ I | f̃(s) = f̃ ′(s)} = h̃−1(0).

Then

• 0 ∈ J .
• J is closed because it is the continuous preimage of the closed set {0}.
• J is open, for the following reason. By continuity, every s ∈ J has some

neighborhood U ⊆ I such that h̃(U) ⊆ (−1
2 ,

1
2). On the other hand,

E(f̃(u)) = f(u) = E(f̃ ′(u)) for every u ∈ U says that f̃(u) − f̃ ′(u) ∈
Z ∩ (−1

2 ,
1
2) = {0}. Therefore f̃(u) = f̃ ′(u) and U ⊆ J .
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We’ve now shown that J is nonempty and clopen. Since I is connected, we
have J = I, which says that f̃ = f̃ ′.

Note that f̃ ′(1) − f̃ ′(0) = f̃(1) − f̃(0), so we now know that the winding
number of a path f is well-defined, and does not depend on a choice of lift.
Moreover, if f : I → S1 is a closed path, then E(f̃(1)) = E(f̃(0)), so w(f)
must be an integer.

We next need to show that w(f0) = w(f1) whenever f0 ' f1.

Suppose we have a path homotopy F : I × I → S1, ft(s) = F (t, s). We need
to show that it lifts to a path homotopy F̃ : I × I → R that is determined
by the choice of a basepoint F̃ (0, 0). So, cover I × I with small open sets
on which the image of F is contained in either L+ or L−. Choose a finite
subcover {U1, . . . , Un}, and assemble F̃ piece by piece, one Ui at a time, as
before.

(We will need to reorder the Uj’s so that (0, 0) ∈ U1, and for j > 1, every
Uj has a point (hence an open subset) in common with a previous U . (If we
can’t do this, then we’d have a clopen decomposition of I × I, which would
violate connectedness. Note that it is important to have the number of U ’s
be finite!)

When we lift F to F̃ in this way, the property that F is a path homotopy
(i.e., ft(0) and ft(1) are independent of t) implies that F̃ (0, t) and F̃ (1, t)
are also independent of t), by an argument much like that for uniqueness of
lifting a path up to translation. This says exactly that the winding numbers
w(ft) = ft(1) − ft(0) are independent of t. We have now shown that w is a
well-defined function π1(S

1, p)→ Z.
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Finally, we need to show that w is a group isomorphism.

w is a homomorphism because if f and g are two closed paths at x0, then we

can find lifts f̃ , g̃ such that f̃(1) = g̃(0). Then h̃ = f̃ · g̃ is a lift of f · g, and

w(h̃) = h̃(1)− h̃(0) = h̃(1)− h̃(1
2) + h̃(1

2)− h̃(0)

= g̃(1)− g̃(0) + f̃(1)− f̃(0)

= w(g) + w(f).

w(f) is surjective because for any n, the path f(s) = e2πisn lifts to f̃(s) = ns,

with winding number f̃(1)− f̃(0) = n− 0 = n.

w(f) is injective for the following reason. If f is a path with winding number

0, then it it lifts to a closed path f̃ : I → R. We know that R is contractible,
so we have a homotopy F̃ between f̃ and a constant map. Then E ◦ F̃ is a
homotopy between f and a constant map. It follows that a homotopy class
is in the kernel of w if and only if it is the identity in π1(S

1).

�
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4. Monday 2/17: Applications of π1(S
1) = Z

4.1. Products.

Proposition 4.1. Let X, Y be path-connected spaces, and let p ∈ X, q ∈ Y .
Then

π1(X × Y, (p, q)) ∼= π1(X, p)× π1(Y, q).

This is quite easy to prove. If you try to fill in the details of the following
sketchy proof on your own, you will find that you have to do little more than
write down definitions. (This is a good sign — it means that π1 is a “natural”
construction.)

Proof. A loop f in X ×Y with basepoint (p, q) is precisely a function f(s) =
(fX(s), fY (s)) such that fX and fY are loops at p and q respectively. More-
over, f ' g if and only if fX ' gX and fY ' gY . So we have a bijection
π1(X×Y, (p, q))→ π1(X, p)×π1(Y, q), and it is again easy to check that it re-
spects concatenation, hence is a homomorphism, hence an isomorphism. �

Corollary 4.2. The torus has fundamental group Z× Z.

More generally, the “n-dimensional torus” (S1)n has fundamental group Zn.
This can be viewed as the space — in fact, the cell complex — obtained from
the n-dimensional unit cube [0, 1]n by identifying opposite faces.
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4.2. The Fundamental Theorem of Algebra.

Theorem 4.3. Every nonconstant complex-valued polynomial has at least one
complex root.

Proof. Let p(z) = zn + anz
n−1 + · · · + a1z + a0 be a polynomial that has no

root.

For any real number r ∈ R and polynomial q(z) such that q(r) 6= 0, we can
define a path φ(q, r) : I → S1 by

(4.1) φ(q, r)(s) =
q(re2πis)/q(r)

|q(re2πis)/q(r)|
.

Note that φ(q, 0) = k1. Also, if we restrict r to an interval on which q is
nonzero, then φ(q, r) is a homotopy.

Now consider the polynomials

pt(z) = zn + t(an−1z
n−1 + · · ·+ a1z + a0)

for t ∈ [0, 1]. Thus p0(z) = zn and p1(z) = p(z).

Choose r large enough that rn clobbers all the other terms in p(r). (For
example, |r| > max(1,

∑n−1
j=0 |aj|) is sufficient.) Then pt(r) 6= 0 for t ∈ [0, 1],

and (4.1) gives a homotopy from φ(p0, r) to φ(p1, r).

We have shown that

φ(p0, r) ' φ(p1, r) = φ(p, r) ' φ(p, 0) = k1.

On the other hand,

φ(p0, r)(s) = rne2πisn)/rn = e2πisn

which has winding number n.

Therefore n = 0, i.e., p(z) is a constant polynomial. �
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4.3. Brouwer Fixed Point Theorem for D2.

Theorem 4.4. Every continuous function f : D2 → D2 has a fixed point.

Proof. Suppose b is a fixed-point-free function D2 → D2. For each x ∈ D2,
let r(x) be the point on S1 = ∂D2 obtained by drawing a ray from b(x) to x
and extending it until it hits the boundary.

x

b(x)

r(x)

Note that r(x) = x for x ∈ S1, so r is a retraction D2 → S1.

Now let f : I → S1 be any path. Considered as a path in D2, certainly f
is nullhomotopic; let F : D2 × I → D2 be a nullhomotopy. But then r ◦ F
is a nullhomotopy of f . We have just shown that S1 is simply-connected, a
contradiction. �

In fact the Brouwer Fixed Point Theorem holds for any Dn. For n = 1 it
is easy (a consequence of the Intermediate Value Theorem). For n ≥ 3, the
argument above doesn’t work because π1(S

n−1) = 0, so we cannot use it to
rule out the possibility of a retraction Dn → Sn−1. However, one can use
either higher homotopy groups or higher homology groups in place of π1; we
will eventually do the latter.
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4.4. Borsuk-Ulam Theorem for S2.

Theorem 4.5. Let f : S2 → R2 be any continuous function. Then there exist
two antipodal points x,−x ∈ S2 such that f(x) = f(−x).

Proof. Suppose not. Then we can define g : S2 → S1 ⊆ R2 by

g(x) =
f(x)− f(−x)

‖f(x)− f(−x)‖
.

Let η be a path around the equator of S2 ⊆ R3, i.e., η(s) = (cos 2πs, sin 2πs, 0)
for s ∈ I. Then h = g◦η is a loop in S1, which we can lift to R. The diagram:

R
E
��

I

h̃

77

η
//

h

::S2
g
// S1

Note that

g(x) = −g(x) ∀x
∴ h(s+ 1

2) = −h(s) ∀s ∈ [0, 1
2 ]

∴ h̃(s+ 1
2) = h̃(s) + q/2 ∀s ∈ [0, 1

2 ]

where q is some odd integer. In fact q is independent of s because it depends
continuously on s, but must be an integer. Therefore

w(h) = h̃(1)− h̃(0) = h̃(1)− h̃(1
2) + h̃(1

2)− h̃(0) = q 6= 0.

But on the other hand η is certainly nullhomotopic in S2 (push the equator
up to the North Pole), and composing with g gives a nullhomotopy for h.
This is a contradiction. �

Remark 4.6. The general Borsuk-Ulam theorem says that for any continuous
function f : Sn → Rn, there are points x,−x with f(x) = f(−x).

Corollary 4.7. If S2 is the union of three closed sets A1∪A2∪A3, then one
of the Ai must contain a pair of antipodal points.

Sketch of proof: Let di(x) = inf{‖x − y‖ : y ∈ Ai}. Apply Borsuk-Ulam
to the function f(x) = (d1(x), d2(x)). The same argument works in higher
dimension for a cover of Sn by n+ 1 closed sets.
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5. Wednesday 2/19: Induced Homomorphisms

Theorem 5.1. If two path-connected spaces X and Y are homotopy-
equivalent, then π1(X) = π1(Y ).

The main technical tool we need is induced homomorphisms.

Let φ : X → Y be a continuous function. Then for any path f : I → X, the
composition φ](f) = φ ◦ f is a path in Y .

Proposition 5.2. Let f, g : I → X. If [f ] = [g], then [φ ◦ f ] = [φ ◦ g].
Therefore, for every p ∈ X, there is an induced map

φ∗ : π1(X, p)→ π1(X,φ(p)), φ∗[f ] = [φ ◦ f ].

This map is a group homomorphism. Moreover,

(φ ◦ ψ)∗ = φ∗ ◦ ψ∗ and (1X)∗ = 1.

Proof. If F : I × I → X is a path-homotopy from f to g, then φ ◦ F is a
path-homotopy from φ ◦ f to φ ◦ g — this can be verified directly (and we’ve
probably already used it). Therefore the map φ∗ is well-defined. It is a group
homomorphism because

φ∗[f ] · φ∗[g] = [f ◦ φ · g ◦ φ] = [(f · g) ◦ φ] = φ∗([f ] · [g]).

The other verifications are also straightforward. �

The proposition says that π1 is a functor from topological spaces to groups.
In other words, it not only transforms spaces into groups; it also transforms
morphisms of spaces (continuous functions) into morphisms of groups (ho-
momorphisms).

Technically, the domain of π1 is the category of basepointed spaces. A base-
pointed space (X, p) is a space X with a distinguished point p; a morphism
of basepointed spaces is a continuous function f : (X, p) → (X ′, p′) with
f(p) = p′.
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Proposition 5.3. If A is a deformation retract of X, then π1(X, p) ∼= π1(A, p)
for every p ∈ A.

Proof. Let F : X × I → X be a deformation-retraction. Recall this means
that

ft(x) = F (x, t), f0 = 1X , ft|A = 1A, f1(X) ⊆ A.

Define a map α : π1(X, p) → π1(A, p) as follows. Given any path g : I → X
with basepoint p, consider the path homotopy

gt(s) = F (g(s), t) for t ∈ I.
Note that

g0(s) = F (g(s), 0) = g(s),

g1(s) = F (g(s), 1) ∈ A.
Define α[g] = [g1]. The map α respects concatenation, hence is a group
homomorphism. It is surjective because if f is a path in A then α(i∗[f ]) = [f ],
and it is injective because any nullhomotopy in Y is a nullhomotopy in A. �

Corollary 5.4. If two spaces are homotopy-equivalent then their fundamental
groups are isomorphic.

Proof. Remember that if X ' Y , then there is a space containing both X
and Y as deformation retracts (namely, the mapping cylinder of a homotopy
equivalence). �

This is fine as far as it goes, but you should not be satisfied with this! What
we are really after is the following basepointed version of the theorem.

Theorem 5.5. Let φ : X → Y be a homotopy equivalence. Then for every
p ∈ X, the induced map φ∗ : π1(X, p)→ π1(Y, φ(p)) is an isomorphism of
groups.
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Lemma 5.6 (Sliding Lemma). Let φt : X → Y be a homotopy and p ∈ X.
For short, write qt = φt(p). Let h be the path from q0 to q1 given by h(t) = qt.
Then the following diagram commutes:

π1(Y, q1)

βh∼=

��

π1(X, p)

(φ1)∗
88

(φ0)∗ &&

where βh[f ] = [h · f · h].

π1(Y, q0)

Proof. Let ht be the part of h from q0 to qt and let [f ] ∈ π1(X, p). Then

{ht · (φt ◦ f) · ht : t ∈ I}
is a path-homotopy with basepoint q0. Moreover,

[h0 · (φ0 ◦ f) · h0] = φ0 ◦ f = (φ0)∗[f ],

[h1 · (φ1 ◦ f) · h1] = βh((φ1)∗[f ]). �

Proof of Theorem 5.5. Consider the maps

π1(X, p)
φ∗ //

ω

))

π1(Y, φ(p))
ψ∗ //

α
44

π1(X,φψ(p))
φ∗ // π1(X,φψφ(p))

where ω, α are just the indicated compositions. By the Sliding Lemma we
have ω = ψ∗φ∗ = [ψ◦φ]∗ = βh◦1∗ = βh, where h is the path from p to ψ(φ(p))
given by the homotopy ψ ◦ φ ' 1X . In particular, ω is an isomorphism. The
same argument shows that α is an isomorphism.

Therefore, the proposition reduces to the purely algebraic statement that if

A
f−→ B

g−→ C
h−→ D are group homomorphisms such that g ◦ f and h ◦ f are

isomorphisms, then all three maps are isomorphisms. Indeed.

• g ◦ f isomorphism ∴ f injective, g surjective.
• h ◦ g isomorphism ∴ g injective, h surjective.
• Therefore g is an isomorphism.
• So are f = g−1 ◦ (g ◦ f) and h = (h ◦ g) ◦ g−1. �
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Corollary 5.7. If X is contractible then it is simply-connected.

Proof. “Contractible” means “homotopy-equivalent to a point”, and the fun-
damental group of a point is certainly trivial. �

Corollary 5.8. S1 6' Sm for m ≥ 2, and R2 6∼= Rn for n ≥ 3.

Proof. The first statement follows because π1(S
1) = Z 6= π1(S

m) = 0. If there
were a homeomorphism φ : R2 → Rn, it would restrict to a homeomorphism
φ : R2 \ {0} → Rn \ {φ(0)}. But Rn \ {0} ' Sn−1 is simply-connected and
R2 \ {0} ' S1 isn’t. �

(But could it be possible that R3 ∼= R4?)

Corollary 5.9. The annulus and the Möbius strip both have fundamental
group Z.

Proof. Both of them deformation-retract onto their central circles. �

(What about the projective plane and the Klein bottle? What about the
wedge of two circles?)
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6. Friday 2/21: Van Kampen’s Theorem — Motivation and
Examples

6.1. Motivating examples: The torus and the figure-8. The torus T =
S1 × S1 has fundamental group Z2. We can see this by expressing T as a
quotient R2/Z2, with quotient map q, and by talking about paths in T in
terms of their lifts to R2/Z2.

The group π1(T, q(0)) is generated by path classes [a], [b], where

ã(s) = (s, 0), b̃(s) = (0, s).

Note that [a · b] = [b · a] for the following reason. Since R × R is simply
connected, we can find a homotopy F : I → R × R between ã · b̃ and b̃ · ã,
and then q ◦ F is a homotopy between a · b and b · a. Equivalently, the path

ã · b̃ · ã · b̃ is nullhomotopic, because it is the boundary of the unit square,
which can be path-homotoped to k0 by shrinking the square.

This is an example of a universal covering space. The idea is that to under-
stand the fundamental group of an arbitrary space X (in this case X = T ), we
can find a simply connected space X̃ which covers it (whatever that means;
in this case X̃ = R× R), so that we can lift every loop in X to a loop in X̃,
then hope to extract algebraic information about π1(X) from the behavior of
the covering map q.

Here is another space whose fundamental group has two generators: the
figure-eight ∞ = S1 ∨ S1. Take the middle point p to be the basepoint.

The group π1(∞, p) has two “obvious” generators: the paths a, b that wrap
once clockwise around the top and bottom circles.

Difference from torus: a and b do not commute. E.g., aba−1b−1 is not nullho-
motopic. In fact, a and b are about as non-commuting as you can get.

In fact, π1(∞) = Z ∗ Z, where ∗ (pronounced “smash”) is the free product
of groups. That is, the elements of π1(∞) include all words of the form

an1bm1an2bm2 · · ·
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of finite length, where ni,mi ∈ Z for all i. Multiplication of these elements is
given by concatenation. We are allowed to make the simplifications anam =
an+m and bnbm = bn+m, but no others.

This is a much bigger group than Z×Z. Not in the set-theoretic sense (they’re
both countably infinite), but in a group-theoretic sense: Z× Z is in fact the
abelianization of Z ∗ Z, its largest abelian quotient. Details to come.

We’d like to know that π1(∞) is in fact this group for sure that the group we
have just described is indeed π1(∞). That’s where Van Kampen’s Theorem
is going to come in, but first we need to understand the operation ∗.

6.2. Free Products of Groups. Let {Gα}α∈A be a family of groups.

Definition: The free product ∗αGα is the group whose elements are the
words of finite length

g1g2 · · · gm
where each letter gi belongs to one of the Gα, and the relations are given by
the individual groups themselves. I.e., if gi, gi+1 both belong to Gα for some
α, then the two-letter subword gi, gi+1 can be replaced with the single letter
gi · gi+1, where · means multiplication in Gα.

• The identity element is the empty word, and inversion is given by (g1 · · · gm)−1 =
g−1
m · · · g−1

1 . I will skip the verification of associativity.

• If |A| = n <∞, particularly if n = 2, then we’ll often write G1 ∗ · · · ∗Gn.

• If G,H are groups and you want to make a group that has G and H sitting
inside it, then the direct product is the “most commutative”/“smallest” way
to do so and the free product is the “least commutative”/“biggest” way.

• Universal properties: There is a natural inclusion G ↪→ G ∗ H (or more
generally into any free product involving G). For any group X, any pair of
homomorphisms g : G → X, h : H → X factor through G ∗H in the sense
that there is a unique homomorphism given by the dotted line in the diagram



23

on the left:

G
iG

##

g

��

H
iH

{{

h

��

G ∗H

��
X

G H

G×H

πG
dd

πH
::

X

OOg

ZZ

h

DD

This is precisely what you get by reversing the arrows for the universal prop-
erty of the direct product G × H, where πG and πH are projection maps
(shown on the right).

• Modding out by all the commutators, i.e., by all elements of ∗αGα of the
form

[g, h] = ghg−1h−1

where g, h belong to different Gα’s, gives the direct sum ⊕αGα.

In the case that the Gα were abelian to begin with, these elements generate
the commutator subgroup of ∗αGα, and so the direct sum is the abelianization
of the free product.

6.3. Van Kampen’s Theorem. Now suppose we have a basepointed space
(X, p) and an open cover X =

⋃
αAα, with p ∈ Aα for every α.

We have inclusions of spaces Aα ∩ Aβ ↪→ Aα and Aα ↪→ X which induce
group homomorphisms

iαβ : π1(Aα ∩ Aβ, p)→ π1(Aα, p), jα : π1(Aα, p)→ π1(X, p).

By the universal property of free product, we have a group homomorphism

Φ : ∗απ1(Aα, p)→ π1(X, p).

This just says if you concatenate a series of loops at p in individual Aα’s —
that is, if you write down something in ∗απ1(Aα, p) — then what you have
written down can be regarded as a loop at p in X.

We can summarize all this in a commutative diagram which is easiest to write
in the case that the open cover has just two subspaces Aα, Aβ:
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(6.1) π1(Aα ∩ Aβ)
iαβ

vv

iβα

((

π1(Aα)
⊆

((

jα

��

π1(Aβ)
⊆

vv

jβ

��

π1(Aα) ∗ π1(Aβ)

Φ

��

π1(X) π1(−) = π1(−, p)

For a path class [f ] ∈ π1(Aα ∩ Aβ, p), note that

jαiαβ[f ] = jβiβα[f ]

which says that
iαβ[f ] ∗ iβα[f̄ ] ∈ ker Φ.

Van Kampen’s Theorem — General Case

Let p ∈ X, and let {Aα : α ∈ A} be a cover of X by path-connected open
sets such that p ∈ Aα for every α.

1. If every pairwise intersection Aα ∩Aβ is path-connected, then the map
Φ is surjective.

2. If in addition every triple intersection Aα ∩Aβ ∩Aγ is path-connected,
then

ker Φ =
〈〈
iαβ(ω) ∗ iβα(ω̄)

〉〉
: α, β ∈ A, ω ∈ π1(Aα ∩ Aβ).

The notation in Case 2 means the smallest normal subgroup containing these
elements, or equivalently the subgroup generated by these elements and their
conjugates. This is in general larger than the subgroup 〈iαβ[f ] ∗ iβα[f̄ ]〉.
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Case 2 gives an explicit description of π1(X, p) as a quotient of a free product.
Note that the triple-intersection condition is vacuously true for covers of X
by two open path-connected sets — a very common case.

Corollary 6.1. If X =
⋃
αAα such that every Aα is simply-connected and

every Aα ∩ Aβ is connected, then X is simply-connected.

Proof. Van Kampen’s theorem says that there is a surjection

∗απ1(Aα, p) = ∗α0 = 0� π1(X, p). �

Corollary 6.2. Suppose X = A∪B with B simply-connected, then π1(B) = 0
and π1(A) = π1(A) ∗ π1(B). We are in the second case of Van Kampen’s
Theorem, and the map iβα is zero, so ker Φ is simply the image of i = iαβ.
Therefore the diagram (6.1) simplifies to a short exact sequence of groups

0 → π1(A ∩B, p)
i∗−−→ π1(A, p)

Φ−−→ π1(X, p) → 0.

Example: Let A1, A2 be the closed north and south hemispheres of Sn with
n ≥ 2. Each one is contractible, hence simply-connected. Their intersection
is the “equator,” which looks like Sn−1 and is connected. Therefore Sn is
simply-connected. We already knew that but it’s nice to have it confirmed!
Note that this argument theorem fails for n = 1 because S0 is not connected.

Example: Let X = RP 2, which has a cell decomposition e2 ∪ e1 ∪ e0. Let
B = e2 and let A be an open mapping cylinder neighborhood of the circle
e1∪e0. Then {A,B} is a path-connected open cover of RP 2, and A∩B is open
(if we think of B as the Euclidean plane, then A ∩ B is the complement of
a closed disc). By Corollary (6.2), since A is simply-connected, the diagram
(6.1) simplifies to a short exact sequence of groups

0 → π1(A ∩B, p)
i∗−→ π1(B)

Φ−→ π1(X) → 0

where i is inclusion. The first two groups are Z (because A ∩ B ' S1). But
the map i∗ sends a generator of π1(A ∩ B) to twice a generator of π1(B),
because the attaching map is two-to-one. Therefore

π1(RP 2) = Z/2Z.
More generally, if Xk is the cell complex obtained by attaching a 2-cell to S1

by wrapping its boundary k times around the circle, then π1(Xk) = Z/kZ.
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7. Monday 2/24: Van Kampen’s Theorem — The Proof

Recall the statement of Van Kampen’s Theorem.

Let p ∈ X, and let {Aα : α ∈ A } be a cover of X by path-connected open
sets such that p ∈ Aα for every α. We have a commutative diagram of
groups, which looks in part like this (where the i’s and j’s are the group
homomorphisms induced by inclusions of spaces).

(7.1) π1(Aα ∩ Aβ)
iαβ

ww

iβα

''

π1(Aα)
⊆

''

jα

��

π1(Aβ)
⊆

ww

jβ

��

F = ∗απ1(Aα)

Φ

��

π1(X) π1(−) = π1(−, p)

Van Kampen’s Theorem:

(1) If every pairwise intersection Aα ∩ Aβ is path-connected, then the
map Φ is surjective.

(2) If in addition every triple intersection Aα∩Aβ ∩Aγ is path-connected,
then

ker Φ = N :=
〈〈
iαβ(ω) ∗ iβα(ω̄)

〉〉
: α, β ∈ A, ω ∈ π1(Aα ∩ Aβ)

and so
π1(X) = F/N.
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Proof of (1). Let f : I → X be a loop based at p. Every s ∈ I has a
neighborhood mapped by f into some Uα. By compactness of I, there exist
numbers 0 = s0 < s1 < · · · < sm = 1 and indices α1, . . . , αm such that

f([si−1, si]) ⊆ Aαi ∀i ∈ [m].

Let fi = f |[si−1,si], so that f = f1 ·f2 · · · fm. For each i ∈ [m], the set Ai∩Ai+1

is path-connected, hence contains a path gi from p to f(si). Therefore

f = f1 · f2 · · · fm
= (f1 · g1) · (g1 · f2 · g2) · · · (gm−2 · fm−1 · gm−1) · (gm · fm)

∈ π1(A1, p) ∗ π1(A2, p) ∗ · · · ∗ π1(Am, p)

∈ im Φ.

�

2

2

g
1

g
2

A1

A3

f1

f

A

p
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Proof of (2). Let [f ] ∈ π1(X). Say that a factorization of [f ] is an ex-
pression [f1] ∗ [f2] ∗ · · · ∗ [fn] that maps to [f ] via Φ. Here I am using ∗ to
denote concatenation of letters to make a word in ∗απ1(Aα). That is, each
[fi] belongs to some π1(Aα), and f ' f1 · f2 · · · fn.

We want to show that any two factorizations of [f ] are related by operations
of the following forms:

• “Type A”: If fi : I → Aα ∩ Aβ, then we can regard the letter [fi] as
coming either from π1(Aα) or from π1(Aβ). This amounts to inserting
an element of N into f , namely

iαβ[fi] ∗ iβα[fi].

• “Type B”: If two consecutive letters in the factorization come from the
same Aα, we can multiply them. This, of course, doesn’t change the
element of F we’re talking about.

So, suppose we have two factorizations

[f ] = Φ ([f1] ∗ · · · ∗ [fk]) = Φ ([f ′1] ∗ · · · ∗ [f ′`]) .

In particular, there is a path-homotopy of p-loops H : I × I → X, ht(s) =
H(s, t), such that

h0 = f1 · · · fk and h1 = f ′1 · · · f ′`.
Schematically, here’s what this looks like:

f’2 f’

t

1

f ......

......f’

f fk21

I  x  I

The dots on the top and bottom lines are the breakpoints between successive
fi’s or f ′i ’s.
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Now, we do something clever. Partition I × I into a finite grid of finitely
many little rectangles Ri such that

(7.2) ∀Ri : ∃i ∈ A : H(Ri) ⊂ Ai.

(By continuity of H, we can put such a rectangle around each point in I × I,
then choose a finite subcover, then subdivide if necessary.) Subdivide more
by adding vertical lines at all the breakpoints, and at least two horizontal
lines.

......f’ f’1 2 f’

t

......f f fk21

Now, we do something exceedingly clever. For all of the vertical lines not
in the first or last row, give them a little nudge to one side so they don’t
match up. We can do this while still retaining the condition (7.2). Number
the rectangles R1, . . . , Rmn as shown, where m is the number of columns and
n is the number of rows.

......f’ f’1 2 f’

1 2 kfff ......

......

......

1 2

m+1

m

2m

nm
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Let γk be the path from (0, 0) to (1, 1) along the cell walls that separates
rectangles R1, . . . , Rk from Rk+1, . . . , Rmn. (For example, the thick red path
shown in the figure above is Rm+1.) Thus H ◦ γk is a closed path in X with
basepoint p, and all the paths H ◦ γk are path-homotopic.

Each γk can be written as

γk = e1 · e2 · · · eN
where each ei is the path in X given by part of a side of one rectangle, say
from vi−1 to vi.

For each vi, choose some path gi in X from p to F (vi). Each vi belongs to at
most three rectangles, so we can require gi to stay in the intersection of the
corresponding three A’s. (Wasn’t that clever of us?)

Then each γk can be factored as

γk = e1 · · · eN
= Φ(e1 ∗ · · · ∗ eN)

= Φ
(

[e1 · g1] ∗ [g1 · e2 · g2] ∗ · · · ∗ [gN−2 · eN−1 · gN−1] ∗ [gN−1 · eN ]
)

Recall that ∗ means concatenation of letters in the free product F , while ·
means concatenation within one of its free factors.

To pass from the factorization for γk to that of γk+1, we have to trade the
south and west sides of Rk+1 for the north and east sides. We can do this by

• regarding the letters in the south and west sides as now coming from
π1(Ak+1) instead of wherever they came from in the factorization of γk
(this is a type-A move);
• using the group structure of π1(Ak+1) to trade the letters in the south

and west sides for the north and east ones (this is a type-B move).
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k+1
R

Now let’s look at the path γ0, which consists of the bottom and right edges
of I × I. The right edge is a stationary path, so forget about it. For each
vertex vi on the bottom edge of I× I, we have so far only required gi to lie in
two of the A’s. Let’s also require it to lie in the same one whose fundamental
group contains the letter fi (which came from the factorization of f given in
advance). That says that

For example, if f3 = e1 · e2 · e3, then the factorization begins

[e1 · g1] ∗ [g1 · e2 · g2] ∗ [g2 · e3 · g3] ∗ · · ·

where g1 is a path in A1 ∩ A2 and g2 is a path in A2 ∩ A3. But in fact we
can require g1 and g2 to be paths in A1 ∩ A2 ∩ Aα and A2 ∩ A3 ∩ Aα, where
π1(Aα) is the group containing the letter f3. We also may as well assume
that g3 is the stationary path. So the partial factorization shown above can
be replaced (with type-A moves) with one in π1(Aα), and then simplified to
the single letter [e1 · e2 · e3] = [f1] ∈ π1(Aα).

More generally, if vi is a breakpoint then we take gi to be the constant path,
and if vi is not a breakpoint then we require gi to lie in Aα for whichever
π1(Aα) contains the letter fj to which the edges at vi contribute. Then paren-
thesizing the factorization of f at the breakpoints shows that it is equivalent
to [f1] ∗ · · · ∗ [fk].

Playing the same game at the top of the square shows that the factorization
of γnm is equivalent to [f ′1] ∗ · · · ∗ [f ′`]. �

�
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8. Wed 2/26: Applications of Van Kampen’s Theorem

The following is the most useful case of Van Kampen’s Theorem.

Let X be a path-connected space. Let A∪B be an open cover of X with
A ∩B path-connected. Then

π1(X) = π1(A) ∗ π1(B)/〈(iA)∗[f ](iB)∗[f ]−1 : [f ] ∈ π1(A ∩B)

where all fundamental groups are taken with a common basepoint.

Example 8.1 (The fundamental group of the genus-2 torus). Let X
be the genus-2 torus, and let A and B be the open subsets of X shown. Then
A∪B = X and A∩B ∼= S1× (0, 1) ' S1. So we can hope to calculate π1(X)
using Van Kampen’s Theorem. The key step is to calculate (iA)∗[f ], where
f is a generator of the fundamental group of A ∩ B and iA is the inclusion
A ∩B ↪→ A.

B

A

The space A is homotopy-equivalent to a punctured torus, which deformation-
retracts to S1∨S1. So π1(A) is the free group 〈a, b〉 on two generators a, b as
shown. The path f wraps once around the puncture; homotoping it to the
boundary of the square shows that (iA)∗[f ] = aba−1b−1 = [a, b]. Similarly,
π1(A) = 〈c, d〉 is the free group on two generators c, d and (iB)∗[f ] = [d−1, c−1].
Why this choice of orientation? Van Kampen’s Theorem says that

π1(X) = π1(A) ∗ π1(B)/〈(iA)∗[f ](iB)∗[f̄ ]〉
= 〈a, b, c, d|[a, b][d−1, c−1]−1〉 = 〈a, b, c, d|[a, b][c, d]〉.

We’ll have a more efficient way of calculating this group soon.

Example 8.2 (A stack of donuts). The space S1 × (S1 ∨ S1) looks like
two tori T1, T2 identified along longitudinal circles a1, a2:
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1T

T

=

2

X

The map Φ : π1(T1)× π1(T2)→ π1(X) identifies the corresponding elements
of π1(T1) and π1(T2), so

π1(T1 ∩ T2) = 〈a〉
π1(T1) = 〈a1, b1 | [a1, b1]〉
π1(T2) = 〈a2, b2 | [a2, b2]〉
π1(X) = 〈a, b1, b2 | [a, b1], [a, b2]〉 = Z× (Z ∗ Z)

This is #8 on p.53 of Hatcher.

8.1. Detecting Linking of Circles. Suppose A and B are two disjoint
circles in R3. We can tell if they are linked by computing the fundamental
group of X = R3 \ (A ∪B).

First, let’s calculate π1(R3\A). I claim that this space is homotopy-equivalent
to S1∨S2. Draw a sphere S2 containing A in its interior. Everything outside
this sphere deformation-retracts onto it by shrinking, so we just need consider
Y = S2 \ A.

Inside the sphere, let L be the diameter along the z-axis. Every cross-section
of a plane containing L looks like this, where the two “eyes” are points on A:
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L

Putting together all the cross-sections, the red arrows give a deformation-
retraction of Y onto S2 ∪ L, which is homotopy-equivalent to S2 ∨ S1 by
sliding the two points of S2 ∩ L together.

In particular, π1(R3 \ S1) = Z. If A and B are two unlinked circles, then

X ' (R3 \ A) ∨ (R3 \B)

and so π1(X) = Z ∗ Z by VKT.

Now suppose A and B are linked. Draw a torus T around A. In the picture
on Hatcher, p.47 (reproduced below), A is the left-hand boldface circle and
B is the one on the right; T is the torus around A.

Van Kampen’s Theorem Section 1.2 47

retraction of R3 − A onto S1 ∨ S2 is to note first that an open ε neighborhood of

S1 ∨ S2 obviously deformation retracts onto S1 ∨ S2 if ε is sufficiently small. Then

observe that this neighborhood is homeomorphic to R3 − A by a homeomorphism

that is the identity on S1 ∨ S2 . In fact, the neighborhood can be gradually enlarged

by homeomorphisms until it becomes all of R3 −A .

In any event, once we see that R3 − A deformation retracts to S1 ∨ S2 , then we

immediately obtain isomorphisms π1(R
3 −A) ≈ π1(S

1 ∨ S2) ≈ Z since π1(S
2) = 0.

In similar fashion, the complement R3 − (A ∪ B)
of two unlinked circles A and B deformation retracts

onto S1∨S1∨S2∨S2 , as in the figure to the right. From A B
this we get π1

(
R3 − (A ∪ B)

)
≈

Z ∗ Z . On the other hand, if A
and B are linked, then R3 − (A ∪ B) deformation retracts onto

the wedge sum of S2 and a torus S1×S1 separating A and B ,

as shown in the figure to the left, hence π1
(
R3 − (A ∪ B)

)
≈

π1(S
1×S1) ≈ Z×Z .

Example 1.24: Torus Knots. For relatively prime positive integers m and n , the

torus knot K = Km,n ⊂ R3 is the image of the embedding f :S1→S1×S1 ⊂ R3 ,

f(z) = (zm, zn) , where the torus S1×S1 is embedded in R3 in the standard way.

The knot K winds around the torus a total of m
times in the longitudinal direction and n times in

the meridional direction, as shown in the figure for

the cases (m,n) = (2,3) and (3,4) . One needs to

assume that m and n are relatively prime in order

for the map f to be injective. Without this assumption f would be d–to–1 where

d is the greatest common divisor of m and n , and the image of f would be the

knot Km/d,n/d . One could also allow negative values for m or n , but this would only

change K to a mirror-image knot.

Let us compute π1(R
3 −K) . It is slightly easier to do the calculation with R3 re-

placed by its one-point compactification S3 . An application of van Kampen’s theorem

shows that this does not affect π1 . Namely, write S3 −K as the union of R3 −K and

an open ball B formed by the compactification point together with the complement of

a large closed ball in R3 containing K . Both B and B∩(R3−K) are simply-connected,

the latter space being homeomorphic to S2×R . Hence van Kampen’s theorem implies

that the inclusion R3 −K↩ S3 −K induces an isomorphism on π1 .

We compute π1(S
3−K) by showing that it deformation retracts onto a 2 dimen-

sional complex X = Xm,n homeomorphic to the quotient space of a cylinder S1×I
under the identifications (z,0) ∼ (e2πi/mz,0) and (z,1) ∼ (e2πi/nz,1) . If we let Xm
and Xn be the two halves of X formed by the quotients of S1×[0, 1/2] and S1×[1/2,1],
then Xm and Xn are the mapping cylinders of z"zm and z"zn . The intersection

The interior of T deformation-retracts to T (pull it away from A), while the
stuff between T and S2 deformation-retracts to T ∪ S2 (because as far as
this stuff is concerned, we might as well replace T with a solid torus T, and
S2 ∪ T is homotopy-equivalent to S2 ∪ L from the previous example, and
the deformation-retraction we are looking for is just like the deformation-
retraction Y → S2 ∪ L). Therefore X ' T ∨ S2 and π1(X) = Z × Z rather
than Z ∗ Z.



35

Now suppose we have three Borromean rings A,B,C ⊂ R3 (image from
Wikipedia; marked as public domain)

We have already shown that the fundamental group of the complement of
two unlinked circles is Z∗Z. If a, b are the generators of G = π1(R3\(A∪B))
corresponding respectively to path classes going through A,B, then the path
around the circle C corresponds to the path class [a, b], which is nontrivial
in G. Therefore the three rings cannot be pulled apart, even though any two
are unlinked.

9. Friday 2/28: More Van Kampen Examples

9.1. The Hawaiian earring. In this example, let N denote the positive
integers. For n ∈ N, let An denote the circle in R2 of radius 1/n and center
(1/n, 0). The Hawaiian earring is the space

H =
⋃
n∈N

An

with the subspace topology inherited from R2. It looks like a countably infi-
nite wedge of circles (whose fundamental group is free on countably infinitely
many generators), but in fact the fundamental group of H is much larger.

For every function w : N→ Z, there is a closed loop fw : I → H that starts at
the origin O and winds w(n) times clockwise around An in the time interval
[n−1
n , n

n+1 ]. (Of course, fw(1) = O.) This function is continuous with respect
to the subspace topology, and varying w gives uncountably many different
elements of π1(H) = π1(H,O). We can think of w as the “vector of winding
numbers” of the loop fw.
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More explicitly, I think that the fundamental group π1(H,O) consists of words
of infinite length in countably infinitely many letters (and their inverses), with
the property that any particular letter occurs only finitely many times. In
particular, every loop f has a finite winding number around any single circle,
hence a well-defined vector of winding numbers w(f) ∈ ZN. If we declare two
loops to be equivalent if they have the same vectors of winding numbers, we
obtain a quotient of π1(H,O) that is isomorphic to the direct product (not the
direct sum!) of countably infinitely many copies of Z. This quotient is called
the strong abelianization and is a proper quotient of the usual abelianization
(which would declare two loops f, g equivalent if they can be related by a
finite sequence of interchanging adjacent letters — for which it is necessary,
but not sufficient, that w(f) = w(g)).

9.2. Fundamental groups of 2-dimensional cell complexes. X = path-
connected space
Y = space formed from X by attaching 2-cells {eα} via maps {φα}
i = inclusion X ↪→ Y

If I → ēα wraps once around the circle ∂eα, then the composition I → ∂eα
φα−→

X is a loop in X which we’ll also call φα. Let pα be its basepoint.

Now fix a basepoint p and a path γα in X from p to pα for each α. Observe
that

(9.1) [γα · φα · γα] ∈ ker i∗ : π1(X, p)→ π1(Y, p)

because φα becomes nullhomotopic once eα is attached.

Proposition: The map i∗ is surjective, and its kernel N is generated by
loops of the form (9.1).

Proof. Surjectivity is easy. Given any loop f : I → Y and a cell eα with
a point in im(f), first homotope f to a path whose image omits at least
one point from eα, then push it onto the boundary circle by deformation-
retracting away from the omitted point. (This is just like the argument that
S2 is simply-connected.) Doing this simultaneously for all 2-cells produces a
path f ′ : I → X with [f ] = [f ′] = i∗[f

′].

Consider the space Z shown below (figure taken from Hatcher, p.50)
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50 Chapter 1 The Fundamental Group

On the other hand, the fundamental group of a wedge sum of countably many circles

is countably generated, hence countable.

The group π1(X) is actually far more complicated than
∏
∞Z . For one thing,

it is nonabelian, since the retraction X→C1 ∪ ··· ∪ Cn that collapses all the circles

smaller than Cn to the basepoint induces a surjection from π1(X) to a free group on

n generators. For a complete description of π1(X) see [Cannon & Conner 2000].

It is a theorem of [Shelah 1988] that for a path-connected, locally path-connected

compact metric space X , π1(X) is either finitely generated or uncountable.

Applications to Cell Complexes

For the remainder of this section we shall be interested in 2 dimensional cell

complexes, analyzing how the fundamental group is affected by attaching 2 cells.

According to an exercise at the end of this section, attaching cells of higher dimension

has no effect on π1 , so all the interest lies in how the 2 cells are attached.

Suppose we attach a collection of 2 cells e2
α to a path-connected space X via maps

ϕα :S1→X , producing a space Y . If s0 is a basepoint of S1 then ϕα determines a loop

at ϕα(s0) that we shall call ϕα , even though technically loops are maps I→X rather

than S1→X . For different α ’s the basepoints ϕα(s0) of these loops ϕα may not all

coincide. To remedy this, choose a basepoint x0 ∈ X and a path γα in X from x0 to

ϕα(s0) for each α . Then γαϕαγα is a loop at x0 . This loop may not be nullhomotopic

in X , but it will certainly be nullhomotopic after the cell e2
α is attached. Thus the

normal subgroup N ⊂ π1(X,x0) generated by all the loops γαϕαγα for varying α
lies in the kernel of the map π1(X,x0)→π1(Y ,x0) induced by the inclusion X↩Y .

Proposition 1.26. The inclusion X↩Y induces a surjection π1(X,x0)→π1(Y ,x0)
whose kernel is N . Thus π1(Y) ≈ π1(X)/N .

It follows that N is independent of the choice of the paths γα , but this can also be

seen directly: If we replace γα by another path ηα having the same endpoints, then

γαϕαγα changes to ηαϕαηα = (ηαγα)γαϕαγα(γαηα) , so γαϕαγα and ηαϕαηα
define conjugate elements of π1(X,x0) .

Proof: Let us expand Y to a slightly larger space Z that deformation retracts onto Y
and is more convenient for applying van Kampen’s theorem. The space Z is obtained

from Y by attaching rectangular strips Sα = I×I , with the lower edge I×{0} attached

along γα , the right edge {1}×I attached

along an arc in e2
α , and all the left edges

{0}×I of the different strips identified

together. The top edges of the strips are SX
e

x

y
2

0

α

α

α 

αγnot attached to anything, and this allows

us to deformation retract Z onto Y .

• The point labeled x0 is what I am calling p.
• The gumdrop-shaped things are the 2-cells eα, attached along their

boundaries in X.
• The ribbon-shaped thin Sα is a copy of I × I, with the bottom edge

attached to γα in X, the right edge attached to a little arc in the
gumdrop eα, and all the left edges identified together.

Thus Z deformation-retracts to Y by simultaneously squashing each Sα’s
onto its bottom and right edges.

Now we will use Van Kampen. For each α, pick a point yα that is not in the
arc along which Sα is attached. Let

A = Z \ {yα}, B = Z \X.
Then Z = A ∪ B. Moreover, A deformation-retracts onto X, and B is
contractible (push the disks onto the arcs and then push everything to p). So
Corollary 6.2 gives us a short exact sequence

0 // π1(A ∩B, p)
i∗ // π1(A, p)

∼=
��

Φ // π1(Z, p)

∼=
��

// 0.

π1(X, p)
i∗ // π1(Y, p)

As for A ∩ B, it looks like a bunch of punctured open disks held together
by a wedge of strips. It deformation-retracts to a wedge of S1’s at p, and
by the easy case of Van Kampen’s Theorem the fundamental group of that
wedge is the free group generated by the loops φα, which come from the loops
γα · φα · γα in A ∩B. Therefore ker Φ = N . �
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10. Mon 3/3: Fundamental groups of 2-D cell complexes

Last time, we proved:

Proposition: Let X be path-connected and p ∈ X. Form Y from X by
attaching 2-cells {eα}.
Fix points pα ∈ ∂eα and paths γα from p to pα.
Let φα generate π1(∂eα, pα).

Then the inclusion i : X ↪→ Y induces a surjection i∗ : π1(X, p)� π1(Y, p),
and ker i∗ =

〈〈
γα · φα · γα

〉〉
, where γα is a path from p to pα. �

A corollary is that we can write down the fundamental group of any 2-
dimensional cell complex:

Theorem 10.1. Let X be a 2-dimensional cell complex with a single ver-
tex p and loops {eα1}, so that π1(X

1, p) is the free group ∗αZα, with one
generator φα for each loop. (Note that we have to fix the orientation of
φα.) Then every 2-cell has its attaching map given by a sequence

φ±1
α1
φ±1
α2
· · ·φ±1

αn
.

Then π1(X, p) is the quotient of the free group ∗αZα by these words.

More generally, if X has finitely many vertices (and maybe even if it doesn’t),
we can contract a maximal tree in X to produce a complex with one vertex.
Therefore, the corollary is sufficient to describe the fundamental groups of all
2-dimensional cell complexes with finitely many vertices (and possibly even
all 2-dimensional cell complexes). In fact we can get any group this way:

Corollary 10.2. For every group G, there exists a space X with π1(X) = G.

Proof. Fix a presentation of G via generators and relations. Construct a 2-
dimensional cell complex with one vertex; one loop for each generator, and
one 2-cycle attached along the loop corresponding to each relation. �

Example: To get π1(X) = Z/nZ, wrap a disk n times around a circle. To
get the Klein four-group, start with a torus and wrap one disk twice around a
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meridional circle, then wrap another disk twice around a longitudinal circle.
(Another space with the same fundamental group is RP 2 × RP 2.)

Recall that a topological n-manifold is a space that is locally homeomorphic
to Rn, that is, every point has an open neighborhood U with U ∼= Rn. In a
2-dimensional cell complex X, this condition is certainly true for any point
in the interior of a 2-cell. For points in the interior of a 1-cell, we can ensure
a local homeomorphism to R2 by making sure that the attaching maps hit
the interior exactly twice. For example, if X has one vertex, then we want to
attach a 2-cell via a word using each loop (or its inverse) twice. (Although
I’m not sure what a neighborhood of the vertex looks like in general.)

Example 10.3 (The fundamental group of the torus). Let Tg be the g-
holed torus (also known as the orientable surface of genus n). As you proved
last week (and as in the picture on p.5 of Hatcher), this surface has a cell
structure with one vertex, 2g loops a1, b1, . . . , ag, bg, and one 2-cell, attached
along the loop [a1, b1] · · · [ag, bg]. Therefore

π1(Tg) = 〈a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg]〉 .
In the special case g = 1, the relation [a1, b1] generates the commutator
subgroup and the quotient is Z×Z. In general, the abelianization of π1(Tg) is
Z2g, which shows that tori with different numbers of holes are not homotopy-
equivalent, hence not homeomorphic.

Example 10.4 (The Klein bottle and other nonorientable surfaces).
The standard construction of the Klein bottle K says immediately that its
fundamental group is

π1(K) =
〈
a, b | aba−1b

〉
.

In the abelianization of this group, we have aba−1b = aba−1b−1 = e, which
implies b = b−1. Also, ba = ab−1 = ab, so a and b commute. So in fact

Ab(π1(K)) = Z× Z/2Z.
It follows that K is not homotopy-equivalent to any torus Tn.

More generally, let Ng be the nonorientable surface of genus g, which is ob-
tained by attaching a 2-cell to the wedge of g circles by the word a2

1a
2
2 · · · a2

g.

So N1 = RP 2 and N2 is the Klein bottle, although with a different presenta-
tion. Draw a diagonal across the usual square-with-sides-identified, cut along
it, and reassemble the triangles along b, as shown on the right. This gives rise
to the same space, and we can read off the fundamental group as 〈a, c | a2c2〉.
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c

a a

cbb

c

a

a

c
c

b

a

a

b

The equation abc = e (from the green triangle) means that any two of the
three loops a, b, c generate π1(K). Algebraically we have b = ac (looking at
the boundary of the red triangle), so〈

a, b | aba−1b
〉

=
〈
a, c | a(ac)a−1(ac)

〉
=
〈
a, c | a2c2

〉
.

Returning to arbitrary genus, we have

π1(Ng) = 〈a1, . . . , ag | a2
1 · · · a2

g〉,
Ab(π1(Ng)) = Zg/(2, 2, . . . , 2) = Zg−1 × Z/2Z.

So the surfaces Ng are not homotopy-equivalent to each other or to the sur-
faces Mg.

This appearance of torsion (finite-order elements) is characteristic of nonori-
entable things. We’ll see it again in the section on homology.

Example 10.5 (The “Möbius tube”). Let Y = S1∨S1, with p the wedge
point. Let φ : Y → Y be the map that swaps the two circles (preserving
orientations), and let

X = Y × I/(x, 0) ∼ (φ(x), 1).

What is π1(X, p)?

X Z
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Let Z = {p} × I ⊂ X, so Z is a copy of S1. We can put a cell structure on
X with X1 = Y ∪ Z. Let a, b be the generators of π1(Y ) and let c be the
generator of π1(Z). Then X is formed from X1 by attaching two 2-cells along
the words acbc−1 and bcac−1. We have just computed

π1(X, p) = 〈a, b, c | acbc−1, bcac−1〉.
Notice that abelianizing this group would give

Z{a, b, c}/〈a+ b〉 ∼= Z2.

If instead φ swapped the two circles but reversed the orientation of one of
them, we would get a space with fundamental group

〈a, b, c | acbc, bcac−1〉
whose abelianization is

Z{a, b, c}/〈a+ b+ 2c, a+ b〉 = Z{a, b, c}/〈2c, a+ b〉 ∼= Z⊕ Z2.

And if it swapped the orientation on both circles we would get

〈a, b, c | acbc, bcac〉
whose abelianization is

Z{a, b, c}/〈a+ b+ 2c〉 ∼= Z2

(raising the question of whether these two spaces are homotopy-equivalent).

This is an instance of a mapping torus (see exercise #whatever in Hatcher).
If we have a map φ : X → X, the mapping torus Tφ is defined as

Tφ = X × I/
(

(x, 0) ∼ (φ(x), 1) ∀x ∈ X
)
.

In general, if φ fixes some basepoint p, then π1(Tφ) can be calculated from
π1(X), since it is homotopy-equivalent (I think) to the space formed by first
attaching a circle Z ∼= S1 (with fundamental group generated by z) to X,
then attaching 2-cells to X∨S1 along the words azφ∗(a)z−1 for each generator
a of π1(X).
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11. Wed 3/5 – Fri 3/7: Covering Spaces: Definitions, Examples

Definition: Let X be a space. A covering space of X is a space X̃
together with a map p : X → X̃ such that: X has an open cover {Uα}
such that for every α, the preimage p−1(Uα) is a disjoint union of open
sets, each one of which is mapped homeomorphically to Uα by p.

Technically p need not be onto — p−1(Uα) could be a disjoint union of zero
open sets — but that’s fairly silly. In practice the interesting case is that p
is onto and that X and X̃ are both path-connected.

Example: What are some covering spaces of the circle X = S1?

• C1 = X̃ = X, p = 1X . This is trivially a covering space.
• C∞ = X̃ = R, p(r) = e2πir. The preimage of any little open arc U in S1

is the union of countably infinitely many disjoint little open intervals
in R, each of which is mapped homeomorphically to U by p.
• Cn = X̃ = S1, p(z) = zn. The preimage of an arc U is the disjoint

union of n open intervals, each mapped homeomorphically to U by p.

It turns out that these are all the covering spaces. Note that some of the
covering spaces are covering spaces of each other:

Cnm = S1

z 7→ zn

''

z 7→ zmn

��

Cm = S1

z 7→ zm
ww

S1

C∞ = R
r 7→ e2πir/m

''

r 7→ e2πir

��

Cm = S1

z 7→ zm
ww

S1

In fact, Ca covers Cb iff b|a. So the covering spaces of S1 form a partially
ordered set that is identical to the lattice of subgroups of Z — and of course
Z = π1(S

1). This is not an accident: the covering spaces of every space X
form a lattice isomorphic to the lattice of subgroups of π1(X), with the top
element (the universal covering space) corresponding to the unique simply-
connected covering space.
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12. Monday 3/10: Covering Spaces: Lifting Properties

Let p : R→ S1 be the covering map p(r) = e2πir. In the proof of π1(S
1) = Z,

we showed that

1. For each path f : I → S1 with f(0) = x0, and each x̃0 ∈ p−1(x0), there is
a unique lift f̃ : I → R with f̃(0) = x̃0 and f = p ◦ f̃ .

2. For each path homotopy F : I × I → S1, ft(s) = F (t, s), with ft(0) = x0

(∀t), and each x̃0 ∈ p−1(x0), the unique lift f̃0 of f0 extends to a unique lift
f̃t : I → R with f̃t(0) = x̃0 (∀t) and ft = p ◦ f̃t.

1 R

p

��

I

f̃
88

f &&
S1

2 R

p

��

I

f̃
88

f &&
S1

3 X

p

��

Y × I

F̃

77

F
''
X

Idea of proof: cover I or I × I with open sets Uα that are small enough, and
then lift f one Uα at a time.

Key observation: For “small enough”, the covering-space condition
suffices—if p−1(f(U)) consists of disjoint homeomorphic copies of f(U),
then the argument goes through.

So the same proof carries over to covering spaces in general, giving the:

Proposition (Homotopy Lifting Property/HLP)

(X̃, p) = covering space of X
ft : Y → X = homotopy
f̃0 : Ỹ → X = lift of f0.

Then there is a unique homotopy f̃t extending f̃0 and lifting ft. (See 3
above.)
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Corollary (Path Lifting Property/PLP)

Take Y = {•} in HLP. Then ft is a path in X and f̃0 represents a choice
of basepoint for the lift f̃t. That is:

For every path f : I → X with basepoint x0 and every x̃0 ∈ p−1(x0), there
is a unique lift f̃ : I → X̃ with f̃(0) = x̃0.

(I’m abusing notation by writing f(t) = ft(•).)

Corollary: Let (X̃, p) be a covering space of X. Let x0 ∈ X and x̃0 ∈
p−1(x0). Then the induced homomorphism

p∗ : π1(X̃, x̃0)→ π1(X, x0)

is injective.

Proof. Suppose [f̃0] ∈ ker p∗ ⊆ π1(X̃, x̃0). I.e.,

p∗[f̃0] = [p ◦ f̃0] ' [kx0].

By the HLP, this lifts uniquely to a homotopy f̃t : I → X̃.

The map f̃1 is the lift of a constant map, namely kx0. Therefore it is locally
constant, and its domain I is connected. So in fact f̃1 is constant, and f̃0 is
nullhomotopic. We have shown that ker p∗ is trivial. �

Problem: Understand the inclusion H ⊆ G, where

G = π1(X, x0), H = p∗
(
π1(X̃, x̃0)

)
.

Definition/Proposition: The function x 7→ |p−1(x)| is also locally constant
on X. If X is connected then this number is constant; it is called the number
of sheets of X̃.

Proposition: The number of sheets of X̃ equals the index [G : H].

Proof. Every ω ∈ π1(X, x0) lifts uniquely to a path class ω̃ with ω̃(0) = x̃0.
The subgroup H consists of loops ω such that ω̃(1) = x̃0. Two loop classes
ω, ψ are in the same coset of H if and only if ω · ψ̄ ∈ H; lifting this loop to
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X̃, we see that ω̃(1) = ψ̃(1). So the cosets of H are in bijection with the
possible values of ω̃(1), i.e., the points in p−1(x0). �

Proposition (Unique Lifting Property/ULP):

(X̃, p) = covering space of X
Y = connected space
f : Y → X: continuous
f̃ , f̃ ′: lifts of f

Then: If f̃(y) = f̃ ′(y) for at least one point y ∈ Y , then f̃ ≡ f̃ ′.

Fix (X, x0). So far we have described a function

{
connected covering spaces (X̃, x̃0) of X

}
→

{
subgroups of π1(X, x0)

}
.

Big Result: This function is a bijection.
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12.1. The Lifting Criterion. In general, when can a map f : Y → X be
lifted to a map Y → X̃? Consider these two maps f, g : S1 → RP 2.

[f] [g]

2RP

The red loop [f ] in RP 2 will lift to a path between two antipodal points in
S2. If we regard the red loop as a function f : S1 → RP 2, it can’t be lifted
to a function f̃ : S1 → S2. On the other hand, the black square lifts to a
closed loop around (say) the equator in S2.

We can detect the problem with the red path algebraically. Recall that
π1(RP 2) = Z2. The red loop is the generator of this group; in terms of the
function f , we have

f∗(π1(S
1)) = π1(RP 2).

On the other hand, if p : S2 → RP 2 is the covering map, then

p∗(π1(S
2)) = p∗(0) = 0.

The obstruction to lifting is that

f∗(π1(S
1)) 6⊆ p∗(π1(S

2)).

In other words, there’s no appropriate path class in π1(S
2) to project down

to [f ].

On the other hand, the blue path g is nullhomotopic in RP 2, so that

g∗(π1(S
1)) = 0 ⊆ p∗(π1(S

2))

and it is possible to lift to a map g̃ : S1 → S2.
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13. Wed 3/12: Universal Covering Spaces

Proposition (Lifting Criterion)

(X̃, x̃0, p) = covering space of (X, x0)
(Y, y0) = path-connected, locally path-connected
f : (Y, y0)→ (X, x0): continuous

Then there exists a lift f̃ : (Y, y0)→ (X̃, x̃0) if and only if

f∗(π1(Y, y0)) ⊆ p∗(π1(X̃, x̃0)).

X

p

��

Y

f̃
88

f &&
X

Proof. ( =⇒ ) If f̃ exists, then functoriality implies

f∗π1(Y ) = p∗f̃∗π1(Y ) ⊆ p∗π1(X̃).

( ⇐= ) If the inclusion condition holds, we can construct a lift f̃ as follows.
For each y ∈ Y , let γ = γy be a path in Y from y0 to y. (Which path? Hold
that thought.)

Then f ◦ γ is a path in X from x0 to f(y). By PLP, it lifts uniquely to a

path f̃ ◦ γ in X̃ such that

f̃ ◦ γ(0) = x̃0,

f̃ ◦ γ(1) = some point in p−1(f(y)).

We now define f̃ : Y → X̃ by

f̃(y) = f̃ ◦ γy(1).
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I claim that for each y, this definition is independent of the choice of γ. If γ
and γ′ are two different paths, then γ · γ′ ∈ π1(Y, y0). Let

h0 = f ◦ (γ · γ′) = (f ◦ γ) · (f ◦ γ′).

By hypothesis, [h0] ∈ f∗π1(Y ) ⊆ p∗π1(X̃). I.e., it is path-homotopic to some
h1 = p ◦ h̃1.

Apply the PLP/ULP to lift h1 to h̃1, and then apply the HLP to lift h0 to
some h̃0 ' h̃1. Thus

h̃0 =
(
f̃ ◦ γ

)
·
(
f̃ ◦ γ′

)
is a loop at x̃0, and

h̃0(1/2) =
(
f̃ ◦ γ

)
(1) =

(
f̃ ◦ γ′

)
(0) =

(
f̃ ◦ γ′

)
(1)

which verifies the claim.

We still have to check that c̃ is continuous — I will skip that part. �

Example: Let m,n be positive integers and consider the m- and n-fold
coverings of S1 ⊂ C by itself:

S1

z 7→zn $$

S1

z 7→zmzz

X = S1

When does one of these maps lift to the other? In other words, if we think of
f(z) = zn as an arbitrary map into X and think of p(z) = zm as a covering
space map, then when does there exist a map f̃ such that p ◦ f̃ = f?

Complex-analytically, this means finding a function f̃ : S1 → S1 such that
(f̃(z))m = zn for all z ∈ S1. If m divides n, then f̃(x) = zn/m does the trick;
if not, no lift exists since we cannot define non-integer powers on S1.

The Lifting Criterion agrees. If we identify π1(X) with Z, then we have

f∗π1(S
1) = nZ, p∗π1(S

1) = mZ
and nZ ⊆ mZ iff m divides n.

More generally, we have the following corollary of the Lifting Criterion:
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Corollary: Let p : (Y, y0) → (X, x0) and q : (Z, z0) → (X, x0) be cov-
ering spaces. Then p lifts to a map p̃ : (Y, y0) → (Z, z0) if and only if
p∗π1(Y, y0) ⊆ q∗π1(Z, z0).

(Y, y0)

p %%

p̃ // (Z, z0)

qyy

(X, x0)

In this case, p̃ itself is a covering space map.

What happens if p∗π1(Y, y0) = q∗π1(Z, z0)? In this case both maps lift:

(Y, y0)

p %%

p̃
// (Z, z0)

qyy

q̃

ww

(X, x0)

In this case p̃ and q̃ are in fact homeomorphisms, determined by the choice
of basepoints y0 and z0. Therefore:

Proposition: For two basepointed covering spaces (Y, y0, p) and (Z, z0, q) of
(X, x0), the following conditions are equivalent:

(1) There is a homeomorphism φ : (Y, y0)→ (Z, z0) such that p = q ◦ φ.
(2) p∗π1(Y, y0) = q∗π1(Z, z0).

In this case we say that Y and Z are isomorphic as (basepointed) covering
spaces.

We have proven that every basepointed covering space of X, up to isomor-
phism, is determined by a subgroup of π1(X, x0).

Definition: A universal cover of X is a covering space Y that is simply-
connected. In this case, the condition of the corollary is always met. There-
fore, Y covers every covering space of X (hence the name).



55

Space Universal cover

S1 R
RP 2 S2

S1 ∨ S1 The infinite fractal space
Anything simply-connected Itself

Question: Does every subgroup of π1(X, x0) determine a covering space?

Theorem: Let X be path-connected, locally path-connected, and semi-
locally simply-connected. Then X has a universal covering space that is
unique up to covering space isomorphism.

Proof. We construct a universal cover of (X, x0) as follows. Let

X̃ = {[γ] | γ is a path I → X with γ(0) = x0}
where as usual [γ] denotes the path-homotopy class of γ. As defined, this is
merely a set. Let p : X̃ → X be the surjective map given by

p([γ]) = γ(1).

Suppose U ⊆ X is simply-connected and path-connected, and let x1 ∈ U .
Consider the set

U[γ] = {[γ · α] | α : I → U, α(0) = x1} ⊂ X̃.

Then p restricts to a bijection U |[γ] → U .

Lemma 13.1. If [γ′] ∈ U[γ] then U[γ′] = U[γ].

Proof. Say [γ′] = [γ · α]. Then any [β] ∈ U[γ′] is of the form [β] = [γ′ · α′] =
[γ · (α ·α′)] ∈ U[γ] and any [δ] ∈ U[γ] is of the form [δ] = [γ · η] = [γ′ · (ᾱ · η)] ∈
U[γ′]. �

If X is semilocally simply-connected, then it has a basis consisting of simply-
connected sets U . We can then define a topology on X̃ by declaring all
the sets U[γ] to be open; in fact they form a basis for a topology on X̃ (proof
omitted). The map p is continuous. In fact it is a covering space map, because
the Lemma says that X̃ can be partitioned into open connected subsets, each
of which is homeomorphic to U .

More next time. �
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14. Fri 3/12: Deck Transformations

Theorem: Let X be path-connected, locally path-connected, and semi-
locally simply-connected (i.e., it has a basis consisting of simply-connected
open sets). Then X has a universal covering space X̃ that is unique up to
covering space isomorphism.

Proof. Last time we defined

X̃ = {[γ] | γ is a path I → X with γ(0) = x0}
where [γ] denotes the path-homotopy class of γ. We put a topology on X̃
that made the map

p : X̃ → X, p([γ]) = γ(1)

into a covering space map.

X̃ is path-connected.

If [γ] and [γ′] are paths in X̃, then let α be a path in X from γ(0) to γ(1),
and let αt be the restriction of α to [0, t]. Then Γ(t) = [γ · αt] is a path in X̃
from [γ] to [γ′].

X̃ is simply-connected.

For the basepoint, use x̃0 = [kx0].

Loop in X̃: a function Γ : I → X̃ such that Γ(0) = Γ(1) = [kx0].

Note that p◦Γ : I → X is a loop γ based at x0. Again, let γt be the restriction
of γ to [0, t], i.e., γt(s) = γ(ts). Then

t 7→ [γt]

is a path in X̃ that lifts γ (since p(γt) = γt(1) = γ(t)) and starts at x̃0. By
the ULP, we have Γ(t) = [γt]. Therefore

γ1 = γ = p ◦ Γ ' γ0 = kx0
which says that p∗[Γ] = 0 in π1(X). But p∗ is injective, so [Γ] = 0 in
π1(X̃). �

Theorem: Under the same conditions, the isomorphism classes of covering
spaces of X are in bijection with the subgroups of π1(X).
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Proof. We need only show that for every subgroup G ⊆ π1(X), there is a
covering space of π1(X) having G as its fundamental group. Let X̃ be the
universal cover of X and

XG = X̃ / [γ] ∼ [γ′] if p(γ) = p(γ′) and γγ′ ∈ G.
This is an equivalence relation because G is a group (details omitted), and
the quotient maps X̃ → X factors through XG. Moreover, closed loops in
XG push forward to loops in G — i.e., q∗π1(XG) = G ⊆ π1(X). �

A quick application:

Proposition 14.1. π1(RP n) = Z2 for every n ≥ 2.

Proof. The map p : Sn → RP n that identifies antipodal points is a 2-sheeted
covering space map. Meanwhile, Sn is simply-connected (hence the universal
cover of RP n) and so

[π1(RP n) : p∗π1(S
n)] = |π1(RP n)| = 2. �

14.1. Deck Transformations. Throughout, let (X̃, x̃0, p) be a covering space
of (X, x0), and let

G = π1(X, x0), H = p∗π1(X̃, x̃0).

Definition: A deck transformation of X̃ is an automorphism as a covering
space. The deck transformations form a group denoted G(X̃). Since an
automorphism is determined by what it does to a single point, we can regard
G(X̃) as a subgroup of the group of permutations of p−1(x0).

Example: Let X = S1. For X̃ = R and p(r) = e2πir, the deck transforma-
tions of X̃ are the maps r 7→ r+n for n ∈ N. These are autohomeomorphisms
of R that restrict to permutations of each fiber of the covering map (namely
the cosets of Z in R). Here we have G̃ = Z.

If X̃ = S1 and p(z) = zn, then the deck transformations are the maps
z 7→ ze2πij/n for j ∈ {0, . . . , n− 1}. In particular G̃ = Zn.

In both these cases, the deck transformations act transitively on p−1(x0).

Example: Let X = S1 ∨ S1, so G = 〈a, b〉, and consider these two covering
spaces.
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a b

bb

b

a a

a

a

b

In the first case, G̃ = Z2 — its two elements are the identity and rotation by
180◦. Also, we have

H = 〈a, b2, bab〉, G/H = 〈b|b2〉 = Z2

no matter which point we choose as x̃0.

In the second case, again G̃ = Z2. But this is a three-sheeted covering, and
the points of p−1(x0) fall into two orbits — the center vertex and the pair of
non-central ones. Choosing the center point as x̃0 gives

H = 〈a2, b2, aba, bab〉
while choosing the left-hand point as x̃0 gives

H = 〈a, b2, ba2b, babab〉.
These are distinct conjugate subgroups in G.

On the other hand, consider the cover of S1 ∨ S1 by the infinite square grid.
Here the deck transformations are clearly translations by vectors in Z2, and
we have

H = 〈aba−1b−1〉, G̃ ∼= G/H = Ab(Z ∗ Z) = Z× Z.

What we are seeing is that symmetry in the covering space corresponds to H
being normal. Specifically:

Theorem: For every covering space (X̃, p) of X, we have

G(X̃) ∼= N(H)/H

where H = p∗π1(X̃) and N(H) is its normalizer, i.e., the largest subgroup of
π1(X) in which H is normal. We say that X̃ is normal if N(H) = G, i.e., H
is normal in G. This is equivalent to condition that the action of G̃ on each
fiber of p is transitive.

This machinery can be used to reduce the study of covering space actions to
the study of concrete geometric symmetries. For example, here’s a question:
Which orientable surfaces cover each other?



59

Example: Let q, r be positive integers. Consider the orientable surface
Mqr+1, drawn as a “starfish” with q arms with r holes each, plus one center
hole. The figure below (taken from Hatcher, p.73) is the case r = 2 and
q = 5.

Covering Spaces Section 1.3 73

something weaker: Every point x ∈ X has a neighborhood U such that U ∩ g(U)
is nonempty for only finitely many g ∈ G . Many symmetry groups have this proper

discontinuity property without satisfying (∗) , for example the group of symmetries

of the familiar tiling of R2 by regular hexagons. The reason why the action of this

group on R2 fails to satisfy (∗) is that there are fixed points: points y for which

there is a nontrivial element g ∈ G with g(y) = y . For example, the vertices of the

hexagons are fixed by the 120 degree rotations about these points, and the midpoints

of edges are fixed by 180 degree rotations. An action without fixed points is called a

free action. Thus for a free action of G on Y , only the identity element of G fixes any

point of Y . This is equivalent to requiring that all the images g(y) of each y ∈ Y are

distinct, or in other words g1(y) = g2(y) only when g1 = g2 , since g1(y) = g2(y)
is equivalent to g−1

1 g2(y) = y . Though condition (∗) implies freeness, the converse

is not always true. An example is the action of Z on S1 in which a generator of Z acts

by rotation through an angle α that is an irrational multiple of 2π . In this case each

orbit Zy is dense in S1 , so condition (∗) cannot hold since it implies that orbits are

discrete subspaces. An exercise at the end of the section is to show that for actions

on Hausdorff spaces, freeness plus proper discontinuity implies condition (∗) . Note

that proper discontinuity is automatic for actions by a finite group.

Example 1.41. Let Y be the closed orientable surface of genus 11, an ‘11 hole torus’ as

shown in the figure. This has a 5 fold rotational symme-

try, generated by a rotation of angle 2π/5. Thus we have

the cyclic group Z5 acting on Y , and the condition (∗) is

obviously satisfied. The quotient space Y/Z5 is a surface

C2

C1

C 3C4

C5

C

p

of genus 3, obtained from one of the five subsurfaces of

Y cut off by the circles C1, ··· , C5 by identifying its two

boundary circles Ci and Ci+1 to form the circle C as

shown. Thus we have a covering space M11→M3 where

Mg denotes the closed orientable surface of genus g .

In particular, we see that π1(M3) contains the ‘larger’

group π1(M11) as a normal subgroup of index 5, with

quotient Z5 . This example obviously generalizes by re-

placing the two holes in each ‘arm’ of M11 by m holes and the 5 fold symmetry by

n fold symmetry. This gives a covering space Mmn+1→Mm+1 . An exercise in §2.2 is

to show by an Euler characteristic argument that if there is a covering space Mg→Mh
then g =mn+ 1 and h =m+ 1 for some m and n .

As a special case of the final statement of the preceding proposition we see that

for a covering space action of a group G on a simply-connected locally path-connected

space Y , the orbit space Y/G has fundamental group isomorphic to G . Under this

isomorphism an element g ∈ G corresponds to a loop in Y/G that is the projection of

The rotations about the center form a group G of autohomeomorphisms that
is cyclic of order q. We can view these maps as deck transformations. Quo-
tienting by that group — i.e., identifying each orbit of G with a single point
— produces the orientable surface Mr+1, as shown. This means that we have
injective maps

p∗ : π1(Mqr+1) ↪→ π1(Mr+1)

for every q, r ∈ N. Note that these are not normal covering spaces!

For a real simple example we can try to write down, take q = 2 and r = 1.
We get a map

π1(M3) ↪→ π1(M2).

The presentations for these groups, remember, are

π1(M2) = 〈a, b, c, d|[a, b][c, d]〉, π1(M3) = 〈u, v, w, x, y, z|[u, v]]w, x][y, z]〉
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