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1. Mon 2/10: Paths, Path Homotopies, Fundamental Group

Definition: A path in X is a continuous function f : I — X. If f(0) =
f(1) =p € X, we say that f is a closed path or loop, or a closed path
with basepoint p.

1.1. Paths and Path Homotopies. When we talk about a homotopy of
paths, we want to require that the starting and ending points are independent
of time.

Definition: Let X be a space and p,q € X. A path homotopy from p
to q is a family of paths {f; : ¢t € I} such that

(1) f1(0) =pand fi(1) =qforallt € I.
(2) The function F': I x I — X defined by F(s,t) = fi(s) is continuous.

We might refer to F, rather than the family {f;}, as the path homotopy —
they contain equivalent data.

Remark 1.1. Path-homotopy is a stronger condition than simply a homo-
topy of functions I — X. For example, if X = S!, the function F': I xI — X
defined by F(t,s) = fi(s)e*™* is continuous, and fy and f; are both closed
paths (fo is constant and f; wraps once around the circle). But F' is not a
path homotopy, because f;(1) depends on ¢.

The condition that the endpoints stay fixed is very important. In fact, any
two paths whose images lie in the same path-connected space are homotopic
as maps, so that old notion of homotopy is not very useful for paths. Ac-
cordingly, whenever we are talking about paths, you can safely assume that
“homotopy” means “path-homotopy”. We adopt the notation f ~ g for path
homotopy.

Path homotopy is an equivalence relation (the proof is straightforward). Ac-
cordingly we denote by [f] the equivalence class of a path f up to path
homotopy.

Lemma 1.2 (Reparameterization). Let ¢ : [ — [ is any continuous function
with $(0) =0 and ¢(1) = 1. Then [f o ¢| = [f] for any path f € 7 (X, p).



4

Proof. The path-homotopy between the paths f and f o ¢ is
ge(s) = f((1L = t)s +1o(s))
which satisfies
go(s) = f(s), 9:(0) = f(0)
g9:(1) = f(1), g1(s) = f(&(s)). H

1.2. The Fundamental Group. Let f: I — X be a path from p to ¢ and
let g : I — X be a path from ¢ to r. The concatenation f - g is the path
from p to r obtained by following first f and then g¢:

~fre ifo<t<i
(1.1) f‘g(t){g(%_l) if%gtﬁi

This operation is well-defined on homotopy equivalence classes: if f ~ f" are
p, g-paths and g ~ ¢’ are ¢, r-paths, then f-g ~ f’- ¢’ (this is straightforward
to check). Therefore the symbol [f] - [g] is well-defined.

Theorem 1.3. Let p € X and let m(X,p) denote the set of all homotopy
equivalence classes of closed paths with basepoint p. Then the operation of
concatenation makes m(X,p) into a group. The identity element is [k,
where ky(t) = p is the stationary path at p. The inverse is [f]~' = [f], where

F(t) = F(1—1).

Proof of Thm. [1.5. Let f € m1(X,p). Then f-ky(t) = f(¢(t)) and k, - f(t) =
f(¥(t)), where

20if 0 <t <4 0if0<t<1i
t) = - 2 t) = - =2
) {lﬁ%<t<1, vl {%1ﬁ%<t<1.

By the reparameterization lemma, it follows that [f] = [f - kp][kp - f].
Let g(t) = f(1 —t). Then f - g is given by
f(2t) if0<t<3 f(2t) if 0 <
fﬂ@){m%—l) ﬁ%gtﬁl{f@—2ﬂ itl <
This map is homotopic to &, via the homotopy

ha(t) = f(min(2t, s)) if0<t< %,
T fmin(2 - 2t,5))  if 1<t <1



which has hy = f - g and hg = k).

Associativity of multiplication is another irritating reparameterization argu-
ment. By the way, concatenation is associative up to homotopy even for
non-closed paths — this fact will be useful soon. [

Definition: A space X is simply-connected if it is path-connected and
m(X,p) = 0. (Does this depend on the choice of basepoint? Hold that
thought.)

Example: Any convex subspace of R" is simply-connected, for the following
reason. Let v be a path and define G : I x I — R" by G(t,s) = ty(s). Then
G1 = v and G| is the constant path at the origin. By suitably modifying this
argument, one can show that every star-shaped space is simply-connected —
provided the basepoint is a star point. But wait! There’s more!

Proposition 1.4 (Change of Basepoint). Let X be path-connected and p,q €
X. Then m(X,p) = m(X,q).

Proof. Let h be any p, ¢-path. Then the map S, : m (X, q¢) — 7m1(X, p) defined
by
Sl [h- -]

is a homomorphism because
[f gl = (0] [f] - o] - (B = ([R] - [f] - [B]) - ([R) - [g] - [R]) = [f] - lg]

(thanks to associativity). It is invertible (swap p,q and h,h), hence an iso-
morphism. ]

For this reason, we can talk about “the fundamental group m(X)”; this is
the isomorphism class of any (hence every) group 71 (X, p) for p € X. (It is
understood that X must be path-connected for this to make sense.)

How do you calculate m1(X)?

It’s not easy. We could prove at this point that the fundamental group of
a convex subset of R" is trivial. In fact, every contractible space is simply-
connected; this is remarkably tricky to prove and will require a bit more
machinery. How would one prove that some space is not simply-connected?
The most important case is the circle S, which we will tackle explicitly.



2. Wednesday 2/12: Simply-Connected Spaces

Review from last time:
Let X be a path-connected space.
P, g-path: map f: I — X with f(0) =p, f(1) =g¢q

p, g-path homotopy: map F': [ x [ — X with

ft(s) = F(t73)7 ft(o) =D, ft(l) =q Vi
Notation: fy ~ fi.

[f] = path-homotopy equivalence class of f (“path class” for short)

Reparameterization lemma: if ¢ : [ — [ is continuous with ¢(0) = 0,

»(1) =1, then fogp ~ f.

Concatenation/composition: if f is a p, ¢-path and ¢ is a ¢, r-path, let

) f(2s) if s € [0, 1],
frols) = {9(23— 1) ifseli 1]

Then f - g is a q,r-path.
Concatenation is well-defined and associative on path-homotopy classes.

Fundamental group (X, p): set of all p, p-path classes.

e Group operation: Concatenation.
e Identity: [k,] where k,(s) =p
o Inverse: [f~1] = [f] where f(s) = f(1 —s)

(Explain notation 7;. In general 7, (X) = group of homotopy equivalence
classes of basepointed maps S* — X.)

Change of basepoint lemma: If / is a p, g-path, then
Bh:ﬂ_l(X7Q)_>7T1(Xap)7 [f]H[th]

is an isomorphism.
(So m1(X) = isomorphism class of m1(X, p) for any p € X.)
X is simply-connected if m(X) = 0. (E.g., convex, star-shaped.)
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Proposition 2.1. Let X be a path-connected space. Then X 1is simply-
connected if, for every two p,q-paths f, g, we have f ~ g.

Proof. Suppose X is simply-connected. Then in particular f - g ~ k;, so
f=f-9-9=k-g9=9

Suppose the other condition holds. Then there is only one homotopy class of
p, p-paths. [

Fact: X contractible = X simply-connected. But this is surprisingly
hard to prove — we will need some more machinery. Contracting a space to
a point will contract any closed loop to a point; the problem is that this last
contraction need not be a path homotopy. (We could prove that any space
that can be deformation-retracted to a point is simply-connected — but that
is a stronger assumption than contractibility; see Exercise 6(b) on p.18.)

Proposition 1.14: For n > 2, S™ is simply-connected. (Note that it is not
contractible — at least, we don’t think so.)

Proof. Let p € S™ and f € m(S™, p). Suppose f is not onto, say f(I) C
S™\ {q} for some g € S™. Since S™ \ {q} = R" is simply-connected, we can
path-homotope f to k.

But what if f is a space-filling curve? In that case we need to homotope f
to a non-space-filling curve. The key to doing this is compactness

Let ¢ # p and let B be a small neighborhood around ¢q. Then f~1(B) is
open in I, hence is the union of (possibly infinitely many) open intervals.
Meanwhile, the set f~1(z) is closed in I, hence compact. Therefore finitely
many of those intervals Ji,...,.J, C I cover f~!(z). We may as well assume
these are disjoint (if two overlap, merge them). Then if, say, J1 = [aq, b1],
we have f(ay), f(b1) € OB; in particular f(ay, f(b1) # ¢. Homotope each
section f|;, to an arc on 0B. maintaining continuity and staying in the same
homotopy class (since B = D? is convex, hence simply-connected). We wind
up with a non-surjective closed path f' ~ f. ]



3. Friday 2/14: Fundamental Group of S!

Theorem: For any p € St, we have m(S!,p) = Z.

Before we go any further, let’s describe the points of S!. Identify S with the
unit circle in C, and define

E(s) = ¥ for s € R.
Then E : R — S, and the preimage of any point in S' is a coset of Z in R.

Lemma 3.1. Every path [ : I — St has a lLift to R, i.e., a function
f I — R such that the diagram

R

18 commutative.

In other words, every way f of wrapping I around a circle can be described
by first mapping I to a line (that’s f), then wrapping the line around the
circle (that’s E).

Proof. In order to lift f, we need to able to invert E. So, suppose that
J C I such that f|; is not surjective. Then there is a branch of the complex
logarithm whose domain includes J, and so the function

Fls) = 5 log(/(s)

is a lift of f|;.

If f:1— S!is surjective, the idea is to cover I with intervals on which f is
not surjective, lift f on each one, then splice all the lifts together.

Specifically, let
L =8"\{1}, L~ =5"\{-1}
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(L stands for “lacks”). I claim that we can cover the domain of f (namely
I) with finitely many pieces:

I = [CLO = O,bo) U (Cbl,bl) y---u (an_l,bn_l) U (an,bn = 1]
I I I I
0 1 n—1 n
with
O=ay<a<bp<ar<b<az<---<a,<b,1<b,=1
such that each f(I;) lies inside either L™ or L.

o f7(1)

° f7(-1)
a, a; by a, b, az; b, a, by Dby

Given such a cover, we can construct an appropriate lift of f on each piece
in succession, then splice all the lifts together. Specifically:

Let

logy : f(lo) = R
be a branch of the complex logarithm. Such a thing exists because f(Iy) € S*.
We can therefore lift f|;, to a function

f() = logo Of‘]o : I() — R.

Now define

log, : f(I;) = R
as the unique branch of the complex log extending log | ¢(z,nz,)- Such a branch
exists and is unique because f(Iy N I1) is nonempty and f([;) is a connected
proper subset of S1. We can therefore lift f|;, to a function

fi = logyof|r, : 1 = R
that agrees with fg on IpN 1.

Pasting fo and fl together gives a lift fm of flrur-

Now define
logy : f(Is) - R
as the unique branch of the complex log extending log; |¢(7,nr,), and lift f|z,

fg = 10g2 Of‘]2 : ]2 — R.
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Pasting f» and fo; together gives a lift fo12 of f] IoULUIL-

Continuing in this way, we eventually get a lift of f. Note also that the only
choice we made was of log,.

Why can we do all this? Because of continuity and compactness. Continuity
(in its metric € — § formulation) says that for every s € I, there is a open
interval J containing s such that either f(J) C L™ (if f(s) # 1) or f(J) C L~
(if f(s) # —1). Compactness guarantees that finitely many of these intervals
cover [. [

We now return to the regularly scheduled proof of the theorem.

Define a map

wim(Shp) = Z,  w(f)=f(1)— f(0).

The number w( f) is called the winding number of f. We will prove that w is
a group isomorphism.

We first have to prove that w is uniquely determined, because f can have (in
fact, does have) many lifts. Specifically, if f: I — R is a lift of f: [ — S,
then so are the functions g defined by

gt) = f(t) +n
for n € Z. In fact, we’ll show that these are all the lifts, for which it suffices
to show that the hft f is determined uniquely by the choice of f(0).

Indeed, let f and f’ be two lifts such that f(0) = f'(0). Define h(s) =
f(s) = f'(s), and let
J={sel]f(s)

f'(s)} = h'(0).
Then

e0cJ.
e J is closed because it is the continuous preimage of the closed set {0}.
e J is open, for the following reason. By continuity, every s € J has some

neighborhood U C I such that h(U) C (— 1,1). On the other hand,

E(f(u)) = f(u) = E(f'(v)) for every u € U says that f(u) — f'(u) €
Z N (—3,4) = {0}. Therefore f(u) = f'(u) and U C J.
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We’ve now shown that J is nonempty and clopen. Since I is connected, we
have J = I, which says that f = f’.

Note that f'(1) — f/(0) = f(1) — f(0), so we now know that the winding
number of a path f is well-defined, and does not depend on a choice of lift.

Moreover, if f: I — S!is a closed path, then E(f(1)) = E(f(0)), so w(f)
must be an integer.

We next need to show that w(fy) = w(f1) whenever fy >~ fi.

Suppose we have a path homotopy F : I x I — S, fi(s) = F(t,s). We need
to show that it lifts to a path homotopy F : I x I — R that is determined
by the choice of a basepoint F (0,0). So, cover I x I with small open sets
on which the image of F' is contained in either L™ or L~. Choose a finite
subcover {U,...,U,}, and assemble F piece by piece, one U; at a time, as
before.

(We will need to reorder the U,’s so that (0,0) € U;, and for j > 1, every
U; has a point (hence an open subset) in common with a previous U. (If we
can’t do this, then we’d have a clopen decomposition of I x I, which would

violate connectedness. Note that it is important to have the number of U’s
be finite!)

When we lift F to F in this way, the property that F' is a path homotopy
(i.e., £;(0) and f,(1) are independent of t) implies that F(0,t) and F(1,t)
are also independent of ¢), by an argument much like that for uniqueness of
lifting a path up to translation. This says exactly that the winding numbers
w(fi) = fi(1) — f1(0) are independent of t. We have now shown that w is a
well-defined function (S, p) — Z.
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Finally, we need to show that w is a group isomorphism.

w is a homomorphism because if f and g are two closed paths at xy, then we
can find lifts f, § such that f(1) = §(0). Then h = f - § is a lift of f - g, and

w(h) = h(1) — h(0) = h(1) — h(3) + h(3) — h(0)
= g(1) — §(0) + f(1) — £(0)
=w(g) +w(f)

w(f) is surjective because for any n, the path f(s) = e?™*" lifts to f(s) = ns,
with winding number f(1) — f(0) =n — 0 = n.

w(f) is injective for the following reason. If f is a path with winding number

0, then it it lifts to a closed path f : I — R. We know that R is contractible,
so we have a homotopy F between f and a constant map. Then F o F is a
homotopy between f and a constant map. It follows that a homotopy class
is in the kernel of w if and only if it is the identity in m;(S?).

L]
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4. Monday 2/17: Applications of m(S!) =Z

4.1. Products.

Proposition 4.1. Let X,Y be path-connected spaces, and let p € X, g € Y.
Then
m (X x Y, (p,q)) = m(X,p) x m(Y, q).

This is quite easy to prove. If you try to fill in the details of the following
sketchy proof on your own, you will find that you have to do little more than
write down definitions. (This is a good sign — it means that 7, is a “natural”
construction. )

Proof. A 'loop f in X x Y with basepoint (p, q) is precisely a function f(s) =
(fx(s), fy(s)) such that fx and fy are loops at p and ¢ respectively. More-
over, f ~ ¢ if and only if fx ~ gx and fy ~ gy. So we have a bijection
m (X XY, (p,q)) = m(X,p) xm (Y, q), and it is again easy to check that it re-
spects concatenation, hence is a homomorphism, hence an isomorphism. [

Corollary 4.2. The torus has fundamental group 7 X 7Z.
More generally, the “n-dimensional torus” (S!)" has fundamental group Z".

This can be viewed as the space — in fact, the cell complex — obtained from
the n-dimensional unit cube [0, 1]" by identifying opposite faces.
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4.2. The Fundamental Theorem of Algebra.

Theorem 4.3. Fvery nonconstant complex-valued polynomial has at least one
complex root.

Proof. Let p(z) = 2" + a,2" ' + -+ + a1z + ag be a polynomial that has no
root.

For any real number r € R and polynomial ¢(z) such that ¢(r) # 0, we can
define a path ¢(q,r) : I — St by

q(re’™)/q(r)
la(re*™)/q(r)|

Note that ¢(q,0) = ky. Also, if we restrict r to an interval on which ¢ is
nonzero, then ¢(q,r) is a homotopy.

(4.1) ¢(q,7)(s) =

Now consider the polynomials
pi(2) = 2" +t(an_12" M+ -+ a1z + ag)
for t € [0,1]. Thus po(z) = 2" and p1(2) = p(z).

Choose r large enough that r" clobbers all the other terms in p(r). (For
example, |r| > max(1, Z?;& |a;]) is sufficient.) Then p(r) # 0 for ¢t € [0, 1],
and (4.1)) gives a homotopy from ¢(po,r) to ¢(p1, 7).

We have shown that
¢(po,;7) = ¢(p1,7) = o(p,7) = ¢(p,0) = k.

On the other hand,
d(po,7)(s) = T”GQM'STL)/TTL _ 2misn

which has winding number n.

Therefore n = 0, i.e., p(2) is a constant polynomial. O
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4.3. Brouwer Fixed Point Theorem for D2.

Theorem 4.4. Every continuous function f : D> — D? has a fived point.

Proof. Suppose b is a fixed-point-free function D? — D?. For each z € D?,
let 7(x) be the point on S = dD? obtained by drawing a ray from b(z) to x
and extending it until it hits the boundary.

Note that 7(x) = z for z € S, so r is a retraction D* — S'.

Now let f : I — S! be any path. Considered as a path in D?, certainly f
is nullhomotopic; let F' : D? x I — D? be a nullhomotopy. But then r o
is a nullhomotopy of f. We have just shown that S! is simply-connected, a
contradiction. O

In fact the Brouwer Fixed Point Theorem holds for any D". For n = 1 it
is easy (a consequence of the Intermediate Value Theorem). For n > 3, the
argument above doesn’t work because m(S"™1) = 0, so we cannot use it to
rule out the possibility of a retraction D" — S"~!. However, one can use
either higher homotopy groups or higher homology groups in place of m; we
will eventually do the latter.
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4.4. Borsuk-Ulam Theorem for S2.

Theorem 4.5. Let f : S? — R? be any continuous function. Then there exist
two antipodal points x,—x € S? such that f(x) = f(—x).

Proof. Suppose not. Then we can define g : S — St C R? by
flx)— f(—=x
sy~ L@ = F=0)
If (@) = f(=2)]
Let  be a path around the equator of S? C R3, i.e., n(s) = (cos 2ms, sin 27s, 0)
for s € I. Then h = gonis aloop in S, which we can lift to R. The diagram:
) R
/ lE
Sl

2
I == 5"—5~

h
Note that
g(z) = —g(x) Vi
h(s+ 1) = —h(s) Vs € [0, 4]
h(s + 3) = h(s)+ q/2 Vs € [0, 3]

where ¢ is some odd integer. In fact ¢ is independent of s because it depends
continuously on s, but must be an integer. Therefore

w(h) = h(1) — h(0) = h(1) — h(}) + A(}) — h(0) = ¢ # 0.
But on the other hand 7 is certainly nullhomotopic in S? (push the equator

up to the North Pole), and composing with ¢ gives a nullhomotopy for h.
This is a contradiction. ]

Remark 4.6. The general Borsuk-Ulam theorem says that for any continuous
function f: S" — R, there are points z, —x with f(x) = f(—z).

Corollary 4.7. If S? is the union of three closed sets A; U Ay U As, then one
of the A; must contain a pair of antipodal points.

Sketch of proof: Let di(x) = inf{|lx —y|| : y € A;}. Apply Borsuk-Ulam
to the function f(x) = (di(z),ds(z)). The same argument works in higher
dimension for a cover of S by n + 1 closed sets.
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5. Wednesday 2/19: Induced Homomorphisms

Theorem 5.1. If two path-connected spaces X and Y are homotopy-
equivalent, then m(X) = m(Y).

The main technical tool we need is induced homomorphisms.

Let ¢ : X — Y be a continuous function. Then for any path f: I — X, the
composition ¢4(f) = ¢ o fis apathin Y.

Proposition 5.2. Let f,g : I — X. If [f] = [g], then [¢p o f] = [¢p o g].
Therefore, for every p € X, there is an induced map

¢ m(X,p) = m(X,0(p),  &ulfl =I[oof].

This map s a group homomorphism. Moreover,

Proof. It F' : I x I — X is a path-homotopy from f to g, then ¢ o F' is a
path-homotopy from ¢ o f to ¢ o g — this can be verified directly (and we’ve
probably already used it). Therefore the map ¢, is well-defined. It is a group
homomorphism because

Oulf] - dulgl = [fod-god] =I[(f-9)od] = ou(lf]-g])-

The other verifications are also straightforward. ]

The proposition says that m; is a functor from topological spaces to groups.
In other words, it not only transforms spaces into groups; it also transforms
morphisms of spaces (continuous functions) into morphisms of groups (ho-
momorphisms).

Technically, the domain of 7 is the category of basepointed spaces. A base-
pointed space (X, p) is a space X with a distinguished point p; a morphism
of basepointed spaces is a continuous function f : (X,p) — (X',p') with

f(p) =7
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Proposition 5.3. If A is a deformation retract of X, then (X, p) = w1 (A, p)
for every p € A.

Proof. Let F' : X x I — X be a deformation-retraction. Recall this means
that

fi(z) = F(x,t), fo=1x, fila=14, fi(X)CA

Define a map «a : m(X,p) — m1(A, p) as follows. Given any path g : [ — X
with basepoint p, consider the path homotopy

g:(s) = F(g(s),1) forteI.

Note that
g0(s) = F(g(s),0) = g(s),
g1(s) = F(g(s),1) € A.
Define afg] = [¢1]. The map « respects concatenation, hence is a group

homomorphism. It is surjective because if f is a path in A then a(i.[f]) = [f],
and it is injective because any nullhomotopy in Y is a nullhomotopy in A. [

Corollary 5.4. If two spaces are homotopy-equivalent then their fundamental
groups are isomorphic.

Proof. Remember that if X ~ Y, then there is a space containing both X
and Y as deformation retracts (namely, the mapping cylinder of a homotopy
equivalence). O

This is fine as far as it goes, but you should not be satisfied with this! What
we are really after is the following basepointed version of the theorem.

Theorem 5.5. Let ¢ : X — Y be a homotopy equivalence. Then for every
p € X, the induced map ¢, : (X, p) = m (Y, ¢(p)) is an isomorphism of
groups.
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Lemma 5.6 (Sliding Lemma). Let ¢; : X — Y be a homotopy and p € X.
For short, write ¢t = ¢¢(p). Let h be the path from qq to q1 given by h(t) = ¢;.
Then the following diagram commutes:

1 (YJ ql)

.~

(X, p) =\ B, where B[f] = [h- f - Al

(¢0)«
1 (Y7 QO)
Proof. Let h; be the part of h from ¢y to ¢; and let [f] € 71 (X, p). Then
{hi-(¢rof)-hy: tel}
is a path-homotopy with basepoint gy. Moreover,
[ho - (go o f) - hol = do o f = (ho)Lf],
[+ (@10 f) - hal = Bu((d1)s[f])- =

Proof of Theorem [5.5. Consider the maps

w

/—\
(X, p) — 2= 1 (Y, ¢(p)) —2 m (X, ¢b(p) 2 m1 (X, dbop(p))
W

where w, o are just the indicated compositions. By the Sliding Lemma we
have w = 1,0, = [Yo@], = Brol, = By, where h is the path from p to 1 (p(p))
given by the homotopy 1 o ¢ >~ 1. In particular, w is an isomorphism. The
same argument shows that « is an isomorphism.

Therefore, the proposition reduces to the purely algebraic statement that if

A i> BL O D are group homomorphisms such that go f and ho f are
isomorphisms, then all three maps are isomorphisms. Indeed.

e go f isomorphism .. f injective, g surjective.

e 1 o g isomorphism .*. g injective, h surjective.

e Therefore ¢ is an isomorphism.

eSoare f=g to(gof)and h=(hog)og ' O
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Corollary 5.7. If X is contractible then it is simply-connected.

Proof. “Contractible” means “homotopy-equivalent to a point”, and the fun-
damental group of a point is certainly trivial. ]

Corollary 5.8. St ¢ 8™ form > 2, and R*> % R" for n > 3.

Proof. The first statement follows because m1(S1) = Z # 71 (S™) = 0. If there
were a homeomorphism ¢ : R? — R”, it would restrict to a homeomorphism
¢ : R?2\ {0} — R"\ {¢(0)}. But R*\ {0} ~ S™! is simply-connected and
R2\ {0} ~ St isn’t. O
(But could it be possible that R? = R4?)

Corollary 5.9. The annulus and the Mobius strip both have fundamental
group 7.

Proof. Both of them deformation-retract onto their central circles. ]

(What about the projective plane and the Klein bottle? What about the
wedge of two circles?)
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6. Friday 2/21: Van Kampen’s Theorem — Motivation and
Examples

6.1. Motivating examples: The torus and the figure-8. The torus 7' =
S1 x S' has fundamental group Z?. We can see this by expressing 7' as a
quotient R?/Z?, with quotient map ¢, and by talking about paths in 7" in
terms of their lifts to R?/Z?.

The group m1(T, q(0)) is generated by path classes [a], [b], where
a(s) = (s,0),  b(s) = (0,5).

Note that [a - b] = [b - a] for the following reason. Since R x R is simply
connected, we can find a homotopy F': I — R x R between a - band b - q,
and then g o F'is a homotopy between a - b and b - a. Equivalently, the path

a-b-a-bis nullhomotopic, because it is the boundary of the unit square,
which can be path-homotoped to ky by shrinking the square.

This is an example of a universal covering space. The idea is that to under—
stand the fundamental group of an arbitrary space X (in this case X =T'), wi

can find a simply connected space X which covers it (whatever that means;
in this case X = R x R), so that we can lift every loop in X to a loop in X,
then hope to extract algebraic information about m1(X) from the behavior of
the covering map q.

Here is another space whose fundamental group has two generators: the
figure-eight oo = S' Vv S'. Take the middle point p to be the basepoint.

The group 71(00, p) has two “obvious” generators: the paths a,b that wrap
once clockwise around the top and bottom circles.

Difference from torus: a and b do not commute. E.g., aba~1b~! is not nullho-
motopic. In fact, a and b are about as non-commuting as you can get.

In fact, m1(0c0) = Z * Z, where * (pronounced “smash”) is the free product
of groups. That is, the elements of 7 (c0) include all words of the form

a"b"™a™p"? - -
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of finite length, where n;, m; € Z for all <. Multiplication of these elements is
given by concatenation. We are allowed to make the simplifications a"a™ =
a™™ and b"0™ = b"*™, but no others.

This is a much bigger group than Z x Z. Not in the set-theoretic sense (they’re
both countably infinite), but in a group-theoretic sense: Z x Z is in fact the
abelianization of Z x Z, its largest abelian quotient. Details to come.

We’d like to know that m1(0c0) is in fact this group for sure that the group we
have just described is indeed 7 (00). That’s where Van Kampen’s Theorem
is going to come in, but first we need to understand the operation .

6.2. Free Products of Groups. Let {G,}.ca be a family of groups.

Definition: The free product x,G, is the group whose elements are the
words of finite length

9192 Ggm
where each letter g; belongs to one of the (¢, and the relations are given by
the individual groups themselves. I.e., if g;, g;+1 both belong to G, for some
a, then the two-letter subword g;, g;11 can be replaced with the single letter
gi * gi+1, where - means multiplication in G,.

o The identity element is the empty word, and inversion is given by (g1« -+ gp) ™ =

g-t-- gt T will skip the verification of associativity.

o If|A| =n < oo, particularly if n = 2, then we’ll often write Gy - - - x G,,.

e If G, H are groups and you want to make a group that has G and H sitting
inside it, then the direct product is the “most commutative” /“smallest” way
to do so and the free product is the “least commutative” / “biggest” way.

e Universal properties: There is a natural inclusion G < G * H (or more
generally into any free product involving ). For any group X, any pair of
homomorphisms g : G — X, h : H — X factor through G % H in the sense
that there is a unique homomorphism given by the dotted line in the diagram
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on the left:

G . H G H
N N
ngHh gG>A<Hh

¥ X

This is precisely what you get by reversing the arrows for the universal prop-
erty of the direct product G x H, where ms and my are projection maps
(shown on the right).

e Modding out by all the commutators, i.e., by all elements of *,G,, of the
form

lg,h] = ghg™'n"
where g, h belong to different G,’s, gives the direct sum &,G,.

In the case that the GG, were abelian to begin with, these elements generate
the commutator subgroup of *,G,, and so the direct sum is the abelianization
of the free product.

6.3. Van Kampen’s Theorem. Now suppose we have a basepointed space
(X,p) and an open cover X = |, A,, with p € A, for every a.

We have inclusions of spaces A, N Ag — A, and A, — X which induce
group homomorphisms
lag 771(«404 N Aﬂap) — 7-‘_1(flomp)7 Ja 7Tl(AAaap) — 7Tl(‘Xvap)-
By the universal property of free product, we have a group homomorphism
P i ko7 (An, p) — m(X, D).
This just says if you concatenate a series of loops at p in individual A,’s —

that is, if you write down something in *,m1(A,,p) — then what you have
written down can be regarded as a loop at p in X.

We can summarize all this in a commutative diagram which is easiest to write
in the case that the open cover has just two subspaces A,, As:
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(6.1)

For a path class [f] € m1(As N Ag, p), note that
Jataslf] = Jsigalf]

which says that B
iaplf] *igalf] € ker @.

Van Kampen’s Theorem — General Case

Let p € X, and let {A, : a € A} be a cover of X by path-connected open
sets such that p € A, for every a.

1. If every pairwise intersection A, N Ag is path-connected, then the map
® is surjective.

2. If in addition every triple intersection A, N Ag N A, is path-connected,
then

ker & = <<iag<w> * iﬂa<@>>> ca,fEeA we 7T1(Aa N Aﬂ)

The notation in Case 2 means the smallest normal subgroup containing these
elements, or equivalently the subgroup generated by these elements and their
conjugates. This is in general larger than the subgroup (ing|f] * isa[f])-
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Case 2 gives an explicit description of m1 (X, p) as a quotient of a free product.
Note that the triple-intersection condition is vacuously true for covers of X
by two open path-connected sets — a very common case.

Corollary 6.1. If X = J, An such that every A, is simply-connected and
every A, N Ag is connected, then X is simply-connected.

Proof. Van Kampen’s theorem says that there is a surjection
*aﬂ-l(Aa;p) :*QOZO_»Wl(Xap)- O

Corollary 6.2. Suppose X = AUB with B simply-connected, then m(B) =0
and m(A) = m(A) x m(B). We are in the second case of Van Kampen’s
Theorem, and the map ig, s zero, so ker ® is simply the image of i = i4p.
Therefore the diagram (6.1) simplifies to a short exact sequence of groups

0 — m(ANB,p) - m(Ap) — m(X,p) — 0.

Example: Let A;, Ay be the closed north and south hemispheres of S™ with
n > 2. Each one is contractible, hence simply-connected. Their intersection
is the “equator,” which looks like S"~! and is connected. Therefore S™ is
simply-connected. We already knew that but it’s nice to have it confirmed!
Note that this argument theorem fails for n = 1 because S is not connected.

Example: Let X = RP?, which has a cell decomposition e? U e! U e’. Let
B = ¢? and let A be an open mapping cylinder neighborhood of the circle
etUe’. Then {A, B} is a path-connected open cover of RP?, and AN B is open
(if we think of B as the Euclidean plane, then A N B is the complement of
a closed disc). By Corollary (6.2)), since A is simply-connected, the diagram
simplifies to a short exact sequence of groups
0 = m(ANB,p) = m(B) S m(X) =0

where i is inclusion. The first two groups are Z (because AN B ~ S!). But
the map 7, sends a generator of m(A N B) to twice a generator of m(B),
because the attaching map is two-to-one. Therefore

m(RP?) = Z/2Z.|

More generally, if X}, is the cell complex obtained by attaching a 2-cell to S*
by wrapping its boundary & times around the circle, then m(Xy) = Z/kZ.
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7. Monday 2/24: Van Kampen’s Theorem — The Proof

Recall the statement of Van Kampen’s Theorem.

Let p € X, and let {A, : @ € &} be a cover of X by path-connected open
sets such that p € A, for every a. We have a commutative diagram of
groups, which looks in part like this (where the i’s and j’s are the group
homomorphisms induced by inclusions of spaces).

(7.1) T ( Ay N Ay)

m1(Aq) . m1(Ap)
\

F = *q 71 (Aa)

Ja Jp

m(X) m1(=) = m(—,p)

Van Kampen’s Theorem:

(1) If every pairwise intersection A, N Ap is path-connected, then the
map & is surjective.

(2) If in addition every triple intersection A, N AzN A, is path-connected,
then

ker® = N = <<z'a5(w) * iﬂa(@)>> o, fEeEA we 7T1(Aa M Aﬁ)

and so
m(X) = F/N.
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Proof of (1). Let f : I — X be a loop based at p. Every s € [ has a
neighborhood mapped by f into some U,. By compactness of I, there exist
numbers 0 = sg < 51 < -+ < 8, = 1 and indices oy, ..., a,, such that

f([si-1,si]) € Aa, Vi€ [m].

Let fi = flsi1,5:]> S0 that f = fi-fo--- f,. For each i € [m], the set A;NA;
is path-connected, hence contains a path g; from p to f(s;). Therefore
f=h-fofm
=(fi-q) (g1 fa-92)  (Gm—2" fn-1 " Gm—1) - (gm * fm)
€ m (A1, p) * m1(Ag, p) * -+ % w1 (A, p)
€ im .
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Proof of (2). Let [f] € m(X). Say that a factorization of [f] is an ex-
pression [fi] * [fo] * - -+ % [f,] that maps to [f] via ®. Here I am using * to
denote concatenation of letters to make a word in *,m(A,). That is, each

[fi] belongs to some m(A,), and f =~ f1- fo--- fo.

We want to show that any two factorizations of [f] are related by operations
of the following forms:

o “Type A”: If f; : I — A, N Ag, then we can regard the letter [f;] as
coming either from m;(A,) or from m;(Ag). This amounts to inserting
an element of N into f, namely

iaslfi] * igalfi].
e “Type B”: If two consecutive letters in the factorization come from the

same A,, we can multiply them. This, of course, doesn’t change the
element of I’ we're talking about.

So, suppose we have two factorizations

[f] = @([filx---=[fil]) = @([fi]*---*[fi]).
In particular, there is a path-homotopy of p-loops H : I x I — X, hi(s) =
H(s,t), such that

:flfk: and hlzf{fé
Schematically, here’s what this looks like:

b b b
f1 f2 ...... fg
/// ///;;f;/ /// ///

///// ///// SIS ///

|

///

///// 1A I9S ///

AP ISS ///

////

A A

The dots on the top and bottom lines are the breakpoints between successive

fi's or fI’s.
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Now, we do something clever. Partition I x I into a finite grid of finitely
many little rectangles R; such that

(By continuity of H, we can put such a rectangle around each point in I x I,
then choose a finite subcover, then subdivide if necessary.) Subdivide more

by adding vertical lines at all the breakpoints, and at least two horizontal
lines.

T f)

fo fy f

Now, we do something exceedingly clever. For all of the vertical lines not
in the first or last row, give them a little nudge to one side so they don’t
match up. We can do this while still retaining the condition (7.2)). Number
the rectangles Ry, ..., R, as shown, where m is the number of columns and
n is the number of rows.
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Let 7% be the path from (0,0) to (1,1) along the cell walls that separates
rectangles Ry, ..., Ry from Ryi1,..., Ry,. (For example, the thick red path
shown in the figure above is R,,.1.) Thus H o, is a closed path in X with
basepoint p, and all the paths H o ~y; are path-homotopic.

Each ~; can be written as

Yk = €1 €2 " EN
where each e; is the path in X given by part of a side of one rectangle, say
from Vi—-1 to V;.

For each v;, choose some path g; in X from p to F(v;). Each v; belongs to at
most three rectangles, so we can require g; to stay in the intersection of the
corresponding three A’s. (Wasn’t that clever of us?)

Then each ~; can be factored as

Ve = €1 €N
= P(eg x - xey)

=0 (fer-gu)# [g1ea o)+ [Gv 3 en1 g i) [G5 - en])

Recall that * means concatenation of letters in the free product F', while -
means concatenation within one of its free factors.

To pass from the factorization for v; to that of v;.1, we have to trade the
south and west sides of Ry, for the north and east sides. We can do this by

e regarding the letters in the south and west sides as now coming from
m1(Aky1) instead of wherever they came from in the factorization of 7y
(this is a type-A move);

e using the group structure of m(Ax.1) to trade the letters in the south
and west sides for the north and east ones (this is a type-B move).
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k+1

Now let’s look at the path vy, which consists of the bottom and right edges
of I x I. The right edge is a stationary path, so forget about it. For each
vertex v; on the bottom edge of I x I, we have so far only required g; to lie in
two of the A’s. Let’s also require it to lie in the same one whose fundamental
group contains the letter f; (which came from the factorization of f given in
advance). That says that

For example, if f3 = e; - e5 - e3, then the factorization begins
le1-gi] % [g1- €2 go] * [G2 - €3~ g3] % -+

where ¢; is a path in Ay N Ay and ¢y is a path in Ay N A3. But in fact we
can require ¢g; and ¢gs to be paths in Ay N Ay N A, and Ay, N A3 N A,, where
m1(A,) is the group containing the letter f3. We also may as well assume
that g3 is the stationary path. So the partial factorization shown above can
be replaced (with type-A moves) with one in 71(A,), and then simplified to
the single letter [e; - eq - €3] = [f1] € m1(Aq).

More generally, if v; is a breakpoint then we take g; to be the constant path,
and if v; is not a breakpoint then we require g; to lie in A, for whichever
71 (A,) contains the letter f; to which the edges at v; contribute. Then paren-
thesizing the factorization of f at the breakpoints shows that it is equivalent

to [fu - [l

Playing the same game at the top of the square shows that the factorization
of Vnm 1s equivalent to [fi] *--- = [f/]. ]

]
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8. Wed 2/26: Applications of Van Kampen’s Theorem

The following is the most useful case of Van Kampen’s Theorem.

Let X be a path-connected space. Let AU B be an open cover of X with
AN B path-connected. Then

m(X) = m(A) * m1(B) /(i) f](iB): /] [f] € m(AN B)

where all fundamental groups are taken with a common basepoint.

Example 8.1 (The fundamental group of the genus-2 torus). Let X
be the genus-2 torus, and let A and B be the open subsets of X shown. Then
AUB =X and ANB = S' x (0,1) ~ S. So we can hope to calculate 71 (X)
using Van Kampen’s Theorem. The key step is to calculate (i4).[f], where

f is a generator of the fundamental group of AN B and ¢4 is the inclusion
ANB — A.

The space A is homotopy-equivalent to a punctured torus, which deformation-
retracts to STV S1. So m(A) is the free group (a,b) on two generators a, b as
shown. The path f wraps once around the puncture; homotoping it to the
boundary of the square shows that (i4).[f] = aba™'b~! = [a,b]. Similarly,
m1(A) = {c, d) is the free group on two generators ¢, d and (ig).[f] = [d~ !, c¢71].
Why this choice of orientation? Van Kampen’s Theorem says that

m(X) = m(A) x m(B)/((ia):[f](iB):[f])
= {(a,b, c,d|[a,b][d” ", T = (a, b, c,d|[a,b][c,d]).
We'll have a more efficient way of calculating this group soon.

Example 8.2 (A stack of donuts). The space St x (S v S) looks like
two tori 11, T5 identified along longitudinal circles aq, as:
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The map @ : m(71) x m1(12) — m1(X) identifies the corresponding elements
of m(11) and 7 (T3), so

m(TyNTy) = {a)
m(Th) = (a1, b1 | a1, i)
m1(T2) = (ag, b2 | |az, bs))
m(X) = {a,by, by | [a,b1], [a,bs]) =Z x (Z % Z)
This is #8 on p.53 of Hatcher.

8.1. Detecting Linking of Circles. Suppose A and B are two disjoint
circles in R3. We can tell if they are linked by computing the fundamental
group of X =R3\ (AU B).

First, let’s calculate 7 (R3\ A). I claim that this space is homotopy-equivalent
to S'V .52, Draw a sphere S? containing A in its interior. Everything outside

this sphere deformation-retracts onto it by shrinking, so we just need consider
Y = 5%\ A

Inside the sphere, let L be the diameter along the z-axis. Every cross-section
of a plane containing L looks like this, where the two “eyes” are points on A:
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Putting together all the cross-sections, the red arrows give a deformation-
retraction of Y onto S? U L, which is homotopy-equivalent to S? V S' by
sliding the two points of S? N L together.

In particular, 7 (R?\ S1) = Z. If A and B are two unlinked circles, then
X ~ (R*\ A) Vv (R*\ B)
and so w1 (X) =Z *Z by VKT,

Now suppose A and B are linked. Draw a torus 1" around A. In the picture
on Hatcher, p.47 (reproduced below), A is the left-hand boldface circle and
B is the one on the right; T is the torus around A.

()
="

The interior of 7" deformation-retracts to T' (pull it away from A), while the
stuff between T' and S? deformation-retracts to T'U S? (because as far as
this stuff is concerned, we might as well replace T with a solid torus T, and
S? U T is homotopy-equivalent to S? U L from the previous example, and
the deformation-retraction we are looking for is just like the deformation-
retraction Y — S2U L). Therefore X ~ TV S? and 7 (X) = Z x Z rather
than Z x 7Z.
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Now suppose we have three Borromean rings A, B,C C R?® (image from
Wikipedia; marked as public domain)

We have already shown that the fundamental group of the complement of
two unlinked circles is Z*Z. If a, b are the generators of G = m(R*\ (AU B))
corresponding respectively to path classes going through A, B, then the path
around the circle C' corresponds to the path class [a, b], which is nontrivial
in GG. Therefore the three rings cannot be pulled apart, even though any two
are unlinked.

9. Friday 2/28: More Van Kampen Examples

9.1. The Hawaiian earring. In this example, let N denote the positive
integers. For n € N, let A,, denote the circle in R? of radius 1/n and center
(1/n,0). The Hawaiian earring is the space

H:UAn

neN
with the subspace topology inherited from R2. It looks like a countably infi-
nite wedge of circles (whose fundamental group is free on countably infinitely
many generators), but in fact the fundamental group of H is much larger.

For every function w : N — Z, there is a closed loop f,, : I — H that starts at
the origin O and winds w(n) times clockwise around A,, in the time interval
(2=, 5] (Of course, f,(1) = O.) This function is continuous with respect
to the subspace topology, and varying w gives uncountably many different
elements of m(H) = m(H,O). We can think of w as the “vector of winding

numbers” of the loop f,.
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More explicitly, I think that the fundamental group 71 (H, O) consists of words
of infinite length in countably infinitely many letters (and their inverses), with
the property that any particular letter occurs only finitely many times. In
particular, every loop f has a finite winding number around any single circle,
hence a well-defined vector of winding numbers w(f) € ZN. If we declare two
loops to be equivalent if they have the same vectors of winding numbers, we
obtain a quotient of m (H, O) that is isomorphic to the direct product (not the
direct sum!) of countably infinitely many copies of Z. This quotient is called
the strong abelianization and is a proper quotient of the usual abelianization
(which would declare two loops f, g equivalent if they can be related by a
finite sequence of interchanging adjacent letters — for which it is necessary,
but not sufficient, that w(f) = w(g)).

9.2. Fundamental groups of 2-dimensional cell complexes. X = path-
connected space

Y = space formed from X by attaching 2-cells {e,} via maps {¢,}

v = inclusion X — Y

If I — e, wraps once around the circle Oe,, then the composition I — e, LN

X is a loop in X which we’ll also call ¢,. Let p, be its basepoint.

Now fix a basepoint p and a path v, in X from p to p, for each a. Observe
that

(91) [704 ) ¢CM ’ %] € keri, : ﬂ-l(X?p) — 7T1(Y7p)
because ¢, becomes nullhomotopic once e, is attached.

Proposition: The map 7, is surjective, and its kernel N is generated by
loops of the form (9.1]).

Proof. Surjectivity is easy. Given any loop f : I — Y and a cell e, with
a point in im(f), first homotope f to a path whose image omits at least
one point from e,, then push it onto the boundary circle by deformation-
retracting away from the omitted point. (This is just like the argument that

S? is simply-connected.) Doing this simultaneously for all 2-cells produces a
path f': I — X with [f] = [f] = i.[f'].

Consider the space Z shown below (figure taken from Hatcher, p.50)
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e The point labeled z( is what I am calling p.

e The gumdrop-shaped things are the 2-cells e,, attached along their
boundaries in X.

e The ribbon-shaped thin S, is a copy of I x I, with the bottom edge
attached to 7, in X, the right edge attached to a little arc in the
gumdrop e,, and all the left edges identified together.

Thus Z deformation-retracts to Y by simultaneously squashing each S,’s
onto its bottom and right edges.

Now we will use Van Kampen. For each «, pick a point g, that is not in the
arc along which S, is attached. Let

A=7\A{y.}, B=7\X.
Then Z7 = AU B. Moreover, A deformation-retracts onto X, and B is

contractible (push the disks onto the arcs and then push everything to p). So
Corollary gives us a short exact sequence

OHWI(AmBap)gﬂ-l(Avp)gﬂ-l Z7p>4>0

gi gl

m(X,p) —=m(Y,p)

As for AN B, it looks like a bunch of punctured open disks held together
by a wedge of strips. It deformation-retracts to a wedge of S'’s at p, and
by the easy case of Van Kampen’s Theorem the fundamental group of that

wedge is the free group generated by the loops ¢, which come from the loops
Yo * Pa - Ya in AN B. Therefore ker ® = N. O
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10. Mon 3/3: Fundamental groups of 2-D cell complexes

Last time, we proved:

Proposition: Let X be path-connected and p € X. Form Y from X by
attaching 2-cells {e, }.

Fix points p, € de, and paths 7, from p to p,.

Let ¢, generate (e, D).

Then the inclusion ¢ : X < Y induces a surjection i, : m(X,p) - 7 (Y, p),
and keri, = <<fya oM -%>>, where v, is a path from p to p,. ]

A corollary is that we can write down the fundamental group of any 2-
dimensional cell complex:

Theorem 10.1. Let X be a 2-dimensional cell complex with a single ver-
tex p and loops {e}, so that m (X1, p) is the free group *oZg, with one
generator ¢, for each loop. (Note that we have to fix the orientation of

Go-) Then every 2-cell has its attaching map given by a sequence
GELYEL . g

a1 7T (o790

Then m (X, p) is the quotient of the free group %,Z, by these words.

More generally, if X has finitely many vertices (and maybe even if it doesn’t),
we can contract a maximal tree in X to produce a complex with one vertex.
Therefore, the corollary is sufficient to describe the fundamental groups of all
2-dimensional cell complexes with finitely many vertices (and possibly even
all 2-dimensional cell complexes). In fact we can get any group this way:

Corollary 10.2. For every group G, there exists a space X with m(X) = G.
Proof. Fix a presentation of G via generators and relations. Construct a 2-

dimensional cell complex with one vertex; one loop for each generator, and
one 2-cycle attached along the loop corresponding to each relation. [

Example: To get m(X) = Z/nZ, wrap a disk n times around a circle. To
get the Klein four-group, start with a torus and wrap one disk twice around a
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meridional circle, then wrap another disk twice around a longitudinal circle.
(Another space with the same fundamental group is RP? x RP?%)

Recall that a topological n-manifold is a space that is locally homeomorphic
to R", that is, every point has an open neighborhood U with U = R". In a
2-dimensional cell complex X, this condition is certainly true for any point
in the interior of a 2-cell. For points in the interior of a 1-cell, we can ensure
a local homeomorphism to R? by making sure that the attaching maps hit
the interior exactly twice. For example, if X has one vertex, then we want to
attach a 2-cell via a word using each loop (or its inverse) twice. (Although
I'm not sure what a neighborhood of the vertex looks like in general.)

Example 10.3 (The fundamental group of the torus). Let T}, be the g-
holed torus (also known as the orientable surface of genus n). As you proved
last week (and as in the picture on p.5 of Hatcher), this surface has a cell

structure with one vertex, 2g loops ay, b1, ..., a4, by, and one 2-cell, attached
along the loop [ay,b1] - - - [ag, by]. Therefore

Wl(Tg) = <CL1, bl, cen ,CLg, bg ‘ [al, bl] s [CLg, bg]> .
In the special case g = 1, the relation [aj,b;] generates the commutator

subgroup and the quotient is Z x Z. In general, the abelianization of m(7}) is
729, which shows that tori with different numbers of holes are not homotopy-
equivalent, hence not homeomorphic.

Example 10.4 (The Klein bottle and other nonorientable surfaces).
The standard construction of the Klein bottle K says immediately that its
fundamental group is

m(K) = {a,b | aba~'b).
In the abelianization of this group, we have aba='b = aba~'b~! = e, which
implies b = b~'. Also, ba = ab™! = ab, so a and b commute. So in fact

Ab(m(K)) =7Z X 7./27Z.
It follows that K is not homotopy-equivalent to any torus 7,.

More generally, let N, be the nonorientable surface of genus g, which is ob-
tained by attaching a 2-cell to the wedge of g circles by the word a?a3 - - - ag.
So N; = RP? and N, is the Klein bottle, although with a different presenta-
tion. Draw a diagonal across the usual square-with-sides-identified, cut along
it, and reassemble the triangles along b, as shown on the right. This gives rise

to the same space, and we can read off the fundamental group as (a, ¢ | a®c?).
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The equation abc = e (from the green triangle) means that any two of the
three loops a, b, ¢ generate m(K). Algebraically we have b = ac (looking at
the boundary of the red triangle), so

{(a,b | aba™'b) = (a,c | a(ac)a™"(ac)) = (a,c | a’c*).

Returning to arbitrary genus, we have
m(Ny) = (a1,...,a, | a% : --az),
Ab(mi(Ny) =7°/(2,2,...,2) =77 x Z/2Z.

So the surfaces N, are not homotopy-equivalent to each other or to the sur-
faces M,,.

This appearance of torsion (finite-order elements) is characteristic of nonori-
entable things. We'll see it again in the section on homology.

Example 10.5 (The “Mébius tube”). Let Y = S'v S, with p the wedge
point. Let ¢ : Y — Y be the map that swaps the two circles (preserving
orientations), and let

X =Y x1/(x,0)~ (¢(x),1).
What is 71 (X, p)?

X

N
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Let Z = {p} x I C X, so Z is a copy of S*. We can put a cell structure on
X with X! = Y U Z. Let a,b be the generators of m1(Y) and let ¢ be the
generator of m(Z). Then X is formed from X! by attaching two 2-cells along
the words acbc™! and bcac™'. We have just computed

(X, p) = (a,b,c | acbc™!, beac™).
Notice that abelianizing this group would give
Z{a,b,c}/{a+b) = 72

If instead ¢ swapped the two circles but reversed the orientation of one of
them, we would get a space with fundamental group

{a,b,c | acbe, beac™ )
whose abelianization is

Z{a,b,c}/{a+b+2¢c, a+b) =7Z{a,b,c}/(2¢c, a+b) =7 D Zo.

And if it swapped the orientation on both circles we would get
(a,b,c | acbe, beac)
whose abelianization is
Z{a,b,c}/{a+ b+ 2c) = 77

(raising the question of whether these two spaces are homotopy-equivalent).

This is an instance of a mapping torus (see exercise #whatever in Hatcher).
If we have a map ¢ : X — X, the mapping torus T; is defined as

T, = X x 1/((;,;,0) ~ ($(x),1) Vo € X).

In general, if ¢ fixes some basepoint p, then m(7},) can be calculated from
m1(X), since it is homotopy-equivalent (I think) to the space formed by first
attaching a circle Z = S! (with fundamental group generated by z) to X,
then attaching 2-cells to X V.St along the words az¢,(a)z~! for each generator
a of m (X).
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11. Wed 3/5 — Fri 3/7: Covering Spaces: Definitions, Examples

Definition: Let X be a space. A covering space of X is a space X
together with a map p : X — X such that: X has an open cover {U.}
such that for every o, the preimage p~1(U,) is a disjoint union of open
sets, each one of which is mapped homeomorphically to U, by p.

Technically p need not be onto — p~1(U,) could be a disjoint union of zero
open sets — but that’s fairly silly. In practice the interesting case is that p
is onto and that X and X are both path-connected.

Example: What are some covering spaces of the circle X = S1?

e, =X=2X,p=1x. This is trivially a covering space.

o O, = X =R, p(r) = e*™". The preimage of any little open arc U in S’
is the union of countably infinitely many disjoint little open intervals
in R, each of which is mapped homeomorphically to U by p.

e C, =X = 5" p(z) = z". The preimage of an arc U is the disjoint
union of n open intervals, each mapped homeomorphically to U by p.

It turns out that these are all the covering spaces. Note that some of the
covering spaces are covering spaces of each other:

Cnm = Sl Coo =R
\Qn \‘Il—>\62mr/m
z = 2N szsl s e szsl
Z 2™ z 2™
St St

In fact, C, covers Cy iff bla. So the covering spaces of S form a partially
ordered set that is identical to the lattice of subgroups of Z — and of course
Z = m1(S1). This is not an accident: the covering spaces of every space X
form a lattice isomorphic to the lattice of subgroups of m1(X), with the top
element (the universal covering space) corresponding to the unique simply-
connected covering space.
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12. Monday 3/10: Covering Spaces: Lifting Properties

Let p: R — S be the covering map p(r) = ¢*™. In the proof of m(S!) = Z,
we showed that

1. For each path f: I — S' with f(0) = zo, and each &y € p~'(x), there is
a unique lift f: I — R with f(0) =%y and f =po f.

2. For each path homotopy F': I x I — S1, fi(s) = F(t,s), with f;(0) =z
(Vt), and each 7, € p~1(xp), the unique lift fo of fo extends to a unique lift
ft : I — R with ft(O) = .ff() (Vt) and ft =po ft-

Idea of proof: cover I or I x I with open sets U, that are small enough, and
then lift f one U, at a time.

Key observation: For “small enough”, the covering-space condition
suffices—if p~!(f(U)) consists of disjoint homeomorphic copies of f(U),
then the argument goes through.

So the same proof carries over to covering spaces in general, giving the:

Proposition (Homotopy Lifting Property /HLP)

(X,p) = covering space of X
Ji 1Y — X = homotopy
fo:Y—)X = lift Offo.

Then there is a unique homotopy f; extending f, and lifting f;. (See
above.)
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Corollary (Path Lifting Property/PLP)

Take Y = {e} in HLP. Then f; is a path in X and fo represents a choice
of basepoint for the lift f;. That is:

For every path f : I — X with basepoint z and every zy € p1(xg), there
is a unique lift f: I — X with f(0) = Zo.

(I'm abusing notation by writing f(t) = fi(e).)

Corollary: Let (X,p) be a covering space of X. Let zp € X and &, €
p~1(xg). Then the induced homomorphism

pe s (X, F) = m(X, z0)
is injective.
Proof. Suppose [fo] € kerp, C (X, &). Le.,
p*[fO] = [po f()] = [kxg]-
By the HLP, this lifts uniquely to a homotopy f; : I — X.

The map fl is the lift of a constant map, namely k,,. Therefore it is locally
constant, and its domain [ is connected. So in fact f; is constant, and fj is
nullhomotopic. We have shown that ker p, is trivial. [

Problem: Understand the inclusion H C G, where
G:ﬂ'l(X,Io), H:p*(m(f(,i'g))

Definition/Proposition: The function z — |[p~!(z)| is also locally constant
on X. If X is connected then this number is constant; it is called the number
of sheets of X.

Proposition: The number of sheets of X equals the index [G : H].

Proof. Every w € m(X, xg) lifts uniquely to a path class @ with @(0) = .
The subgroup H consists of loops w such that &(1) = ;. Two loop classes
w, 1 are in the same coset of H if and only if w - ¢ € H; lifting this loop to
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X, we see that @(1) = ¢¥(1). So the cosets of H are in bijection with the
possible values of @(1), i.e., the points in p~1(xy). O]

Proposition (Unique Lifting Property /ULP):

(X,p) = covering space of X
Y = connected space
f:Y — X: continuous

£, lifts of f
Then: If f(y) = f'(y) for at least one point y € Y, then f = f'.

Fix (X, z). So far we have described a function

{connected covering spaces (X, %) of X } — {Subgroups of m (X, 1:0)}.

Big Result: This function is a bijection.
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12.1. The Lifting Criterion. In general, when can a map f:Y — X be
lifted to a map Y — X? Consider these two maps f,¢g: S* — RP2.

Z Z
N\ N\

N RP 2 l AN
[a]

AN
7

AN
7

The red loop [f] in RP? will lift to a path between two antipodal points in
S2. If we regard the red loop as a function f : St — RP?, it can’t be lifted
to a function f : S' — S%. On the other hand, the black square lifts to a
closed loop around (say) the equator in S2.

We can detect the problem with the red path algebraically. Recall that
71 (RP?) = Zy. The red loop is the generator of this group; in terms of the
function f, we have

fu(mi(Sh)) = m(RP?).

On the other hand, if p : S — RP? is the covering map, then
p*(7r1(5'2)) = p«(0) = 0.

The obstruction to lifting is that

fo(mi(8Y)) € pi(mi(5%)).
In other words, there’s no appropriate path class in m1(S5?) to project down
to [f].

On the other hand, the blue path ¢ is nullhomotopic in RP?, so that

ge(m(81)) = 0 C p.(m(S?))
and it is possible to lift to a map §: S' — S2.
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13. Wed 3/12: Universal Covering Spaces

Proposition (Lifting Criterion)

,yo) = path-connected, locally path-connected

(X, &, p) = covering space of (X, z)
(Y.
f:(Y,yo) = (X, 20): continuous

Then there exists a lift f : (Y, ) — (X, %) if and only if
Fo(mi(Yy0)) C pe(mi(X, 30)).

X
f///
vy~ p
\
X

Proof. (=) If f exists, then functoriality implies
fem(Y) = p*ﬁﬂﬁ (Y) € p*WI(X)-
( <= ) If the inclusion condition holds, we can construct a lift f as follows.

For each y € Y, let v = 7, be a path in Y from y, to y. (Which path? Hold
that thought.)

Then f o~ is a path in X from zy to f(y). By PLP, it lifts uniquely to a
path f o~ in X such that

fov(0) = o,
f o~(1) = some point in p_l(f(y))-

We now define f:Y — X by

- e~ —

fly) = fov(1).
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I claim that for each y, this definition is independent of the choice of . If
and 7' are two different paths, then v -~ € m(Y, o). Let

ho=fo(yv-7)=(fon) (for)

By hypothesis, [ho] € fimi(Y) C pomi(X). Le., it is path-homotopic to some
h1 =po hl.

Apply the PLP/ULP to lift hy to hy, and then apply the HLP to lift hg to

some hg ~ hy. Thus
ho=(For) - (fo7)

ho(1/2) = (For) (1) = (Fo77) 0) = (For') (1)

which verifies the claim.

is a loop at zy, and

We still have to check that ¢ is continuous — I will skip that part. [

Example: Let m,n be positive integers and consider the m- and n-fold
coverings of S1 C C by itself:

St St
X =491
When does one of these maps lift to the other? In other words, if we think of

f(z) = 2" as an arbitrary map into X and think of p(z) = 2™ as a covering
space map, then when does there exist a map f such that po f = f7

Complex-analytically, this means finding a function f : S — S! such that
(f(2))™ = 2" for all z € S'. If m divides n, then f(z) = 2™/™ does the trick;
if not, no lift exists since we cannot define non-integer powers on S*.

The Lifting Criterion agrees. If we identify 71 (X) with Z, then we have
f*wl(Sl) = nZ, p.mi(SY) = mZ
and nZ C mZ iff m divides n.

More generally, we have the following corollary of the Lifting Criterion:
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Corollary: Let p : (Y,y) — (X, x¢) and q : (Z,29) — (X, z9) be cov-
ering spaces. Then p lifts to a map p : (Y,y0) — (Z, 20) if and only if
p«mi(Y,90) € qmi(Z, o).

In this case, p itself is a covering space map.

What happens if p,m1(Y, y0) = ¢.m1(Z, 20)7 In this case both maps lift:

q

T~

)
T
(X, zg

In this case p and ¢ are in fact homeomorphisms, determined by the choice
of basepoints yy and zy. Therefore:

(Y, yo Z, %)

p

(
)

Proposition: For two basepointed covering spaces (Y, 4o, p) and (Z, zg, q) of
(X, ), the following conditions are equivalent:

(1) There is a homeomorphism ¢ : (Y, yy) — (Z, 20) such that p = q o ¢.
(2) pemi (Y, y0) = a:m1(Z, 20).

In this case we say that Y and Z are isomorphic as (basepointed) covering
spaces.

We have proven that every basepointed covering space of X, up to isomor-
phism, is determined by a subgroup of 71 (X, xg).

Definition: A wuniversal cover of X is a covering space Y that is simply-
connected. In this case, the condition of the corollary is always met. There-
fore, Y covers every covering space of X (hence the name).
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Space Universal cover
St R
R P? 52
Sty st The infinite fractal space
Anything simply-connected Itself

Question: Does every subgroup of 7 (X, xy) determine a covering space?

Theorem: Let X be path-connected, locally path-connected, and semi-
locally simply-connected. Then X has a universal covering space that is
unique up to covering space isomorphism.

Proof. We construct a universal cover of (X, zg) as follows. Let
X ={[y] | vis a path I — X with v(0) = z¢}

where as usual [7] denotes the path-homotopy class of 7. As defined, this is
merely a set. Let p: X — X be the surjective map given by

p([v]) = ~(1).

Suppose U C X is simply-connected and path-connected, and let x1 € U.
Consider the set

Uyp=1{lv-al|a:1=U, a0) =2} C X,
Then p restricts to a bijection Ul — U.
Lemma 13.1. If [y'] € Uy then Uy = Upy.

Proof. Say 7] = |7 - al. Then any [3] € Uy is of the form [] = [y - o/] =
[v- (- a’)] € Upy) and any [6] € Uy is of the form [0] = [y-n] = [y - (a-n)] €
U O

If X is semilocally simply-connected, then it has a basis consisting of simply-
connected sets U. We can then define a topology on X by declaring all
the sets U}, to be open; in fact they form a basis for a topology on X (proof
omitted). The map p is continuous. In fact it is a covering space map, because
the Lemma says that X can be partitioned into open connected subsets, each
of which is homeomorphic to U.

More next time. []
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14. Fri 3/12: Deck Transformations

Theorem: Let X be path-connected, locally path-connected, and semi-
locally simply-connected (i.e., it has a basis consisting of simply-connected
open sets). Then X has a universal covering space X that is unique up to
covering space isomorphism.

Proof. Last time we defined
X ={[y] | vis a path I — X with v(0) = z¢}

where [y] denotes the path-homotopy class of v. We put a topology on X
that made the map

p: X=X, p() =~(1)
into a covering space map.

X is path-connected.

If [y] and [7/] are paths in X, then let o be a path in X from ~(0) to v(1),
and let a; be the restriction of « to [0,¢]. Then I'(t) = [y - ay| is a path in X
from [y] to [7].

X is simply-connected.

For the basepoint, use Zg = [ky,].

Loop in X: a function T': I — X such that T'(0) = I'(1) = [k,,].

Note that pol' : I — X is a loop ~y based at xy. Again, let y; be the restriction
of v to [0,¢], i.e., %(s) = y(ts). Then

t = [
is a path in X that lifts v (since p(7) = (1) = 7(¢)) and starts at . By
the ULP, we have I'(t) = [y;]. Therefore
m=7=pol = = ky
which says that p.[['] = 0 in m(X). But p. is injective, so [I'] = 0 in
™ (X) O]

Theorem: Under the same conditions, the isomorphism classes of covering
spaces of X are in bijection with the subgroups of m(X).
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Proof. We need only show that for every subgroup G C m(X), there is a

covering space of m1(X) having G as its fundamental group. Let X be the
universal cover of X and

Xe = X /[~ DTifp(y) =p() and 17 € G.
This is an equivalence relation because G is a group (details omitted), and
the quotient maps X — X factors through Xs. Moreover, closed loops in
X¢ push forward to loops in G — i.e., ¢.m(Xg) = G C m(X). ]

A quick application:
Proposition 14.1. 7 (RP™) = Zy for every n > 2.

Proof. The map p : S™ — RP" that identifies antipodal points is a 2-sheeted
covering space map. Meanwhile, S™ is simply-connected (hence the universal
cover of RP") and so

[T (RP") : pum1 (S™)] = |m (RP")| = 2. O

14.1. Deck Transformations. Throughout, let (X, &, p) be a covering space
of (X, xp), and let

G:’ﬂ'l(X,.%'Q), H:p*m()z,i'o).

Definition: A deck transformation of X is an automorphism as a covering
space. The deck transformations form a group denoted G(X). Since an
automorphism is determined by what it does to a single point, we can regard
G(X) as a subgroup of the group of permutations of p~!(z).

Example: Let X = S'. For X = R and p(r) = ™", the deck transforma-
tions of X are the maps r — r—+n for n € N. These are autohomeomorphisms
of R that restrict to permutations of each fiber of the covering map (namely
the cosets of Z in R). Here we have G = Z.

If X = S' and p(z) = 2", then the deck transformations are the maps
2+ 2e?™/" for j € {0,...,n — 1}. In particular G = Z,.

In both these cases, the deck transformations act transitively on p~1(xg).

Example: Let X = S'V S!, so G = {(a,b), and consider these two covering
spaces.
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b b a
b b a
In the first case, G = Zy — its two elements are the identity and rotation by
180°. Also, we have

H = {(a,b* bab), G/H = (b|b*) = Z,

no matter which point we choose as z.

In the second case, again G = Z,. But this is a three-sheeted covering, and
the points of p~1(z) fall into two orbits — the center vertex and the pair of
non-central ones. Choosing the center point as z( gives

H = (a* b* aba, bab)
while choosing the left-hand point as x( gives
H = (a,b? ba*b, babab).

These are distinct conjugate subgroups in G.

On the other hand, consider the cover of S* v S! by the infinite square grid.
Here the deck transformations are clearly translations by vectors in Z?, and
we have

H={aba b)), G=G/H=AbZ+7Z)=27ZxZ.

What we are seeing is that symmetry in the covering space corresponds to H
being normal. Specifically:

Theorem: For every covering space ()~( ,p) of X we have

G(X)= N(H)/H
where H = p,m(X) and N(H) is its normalizer, i.e., the largest subgroup of
m1(X) in which H is normal. We say that X is normal if N(H) = G, i.e., H

is normal in G. This is equivalent to condition that the action of G on each
fiber of p is transitive.

This machinery can be used to reduce the study of covering space actions to
the study of concrete geometric symmetries. For example, here’s a question:
Which orientable surfaces cover each other?
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Example: Let ¢,r be positive integers. Consider the orientable surface
Mg, 41, drawn as a “starfish” with ¢ arms with r holes each, plus one center
hole. The figure below (taken from Hatcher, p.73) is the case r = 2 and
q=9.

The rotations about the center form a group G of autohomeomorphisms that
is cyclic of order gq. We can view these maps as deck transformations. Quo-
tienting by that group — i.e., identifying each orbit of G with a single point
— produces the orientable surface M, 1, as shown. This means that we have
injective maps

Dx - 771(Mqr+1) — 771(M7“+1)
for every ¢, € N. Note that these are not normal covering spaces!

For a real simple example we can try to write down, take ¢ = 2 and r = 1.
We get a map
7T1(M3) — 7T1(M2).
The presentations for these groups, remember, are
m1(Ms) = {a, b, c,d|[a, b][c,d]), T (Ms3) = (u,v,w, z,y, z|[u, v]]Jw, ][y, 2])
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