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1. Wed 1/22/14

1.1. Quotient Spaces and Attaching. Let X be a topological space, let
Z be any set, and let f : X → Z be an onto function. Then we can define a
topology on Z by declaring U ⊂ Z to be open iff f−1(U) is open in X. (The
proof is pretty much immediate from the definition of a topology.)

Definition:
X = topological space
∼ = equivalence relation on points of X
X/ ∼ = set of equivalence classes f : X → X/ ∼ = map taking each point
to its equivalence class

The quotient topology is the finest1 topology on X/ ∼ that makes f
continuous. I.e., U is open iff f−1(U) is open in X.

Variant: Gluing. Suppose we have two spaces X, Y and we want to glue
them together by identifying some points of X with points of Y . Given a
map f : A → Y , where A ⊂ X, we can glue X to Y along A via f to
obtain the space

(X ·∪Y )/(a ∼ f(a) ∀a ∈ A)

or (X ·∪Y )/f for short.

Example: Let X and Y be the line segments ab and cd. Let A = {a, b} ⊆ X
and define f by f(a) = c, f(b) = d. The space X ·∪Y/f is a circle. There’s
nothing to prevent us from mapping a and b to other points on Y , in which
case we would get different-looking spaces.
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Example: Graphs. A graph consists of a bunch of vertices connected by
edges; each edge is attached to two vertices called its endpoints (which need
not be distinct). Such a space can be constructed as a union of line segments,
one for each edge, quotiented out by attaching maps which glue vertices
together. The only restriction on the attaching maps is that endpoints must
be mapped to endpoints (so in the last figure, the first two are graphs but
the third isn’t).

Example: Let D2 = {v ∈ R2 | ‖v‖ ≤ 1}, the closed unit disk, and let
S1 = {v ∈ R2 | ‖v‖ = 1}, its boundary circle. Take two copies of D2 and glue
them together along S1. (To be precise, the gluing map is a homeomorphism
between the two copies of S1 — we may as well consider the gluing map to be
the identity.) The result is a 2-sphere. More generally, gluing together two
copies of the closed unit ball Dn ⊆ Rn along their boundary (n− 1)-spheres
gives a n-sphere.

Example: Here is a weirder space. Take a copy of D2 and a copy of S1, and
map the boundary of the disc to the S1 by the attaching map

f(cos θ, sin θ) = (cos 2θ, sin 2θ).

In other words, wrap the disc twice around the circle. This is a perfectly
well-defined (and extremely important) topological space, although it’s not
so easy to draw!

Example: A cylinder can be obtained by starting with a closed square and
identifying its left and right sides L,R. We have to be careful about how
we do this, however: if we first give the square a twist, we will get a Möbius
strip instead of a cylinder. To put it another way, the kind of space we get
depends on the choice of homeomorphism L→ R.

RL

Square Cylinder Mobius strip
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Rather than trying to write down these kinds of quotient spaces in some
algebraic way, it’s clearer and more convenient to draw them pictorially. We
distinguish the two different possibilities by the directions of the arrows in L
and R — the gluing map should make the arrows line up.

Question for future thought: How can we intrinsically distinguish
the cylinder from the Möbius strip?

Example: We could identify the top and bottom edges of the square as well.
Again, the gluing direction matters. There are three possibilities, depending
on whether 2, 1 or 0 pairs of opposite edges “line up correctly”.

Projective planeKlein bottleTorus

The torus is the easy one — it looks like a donut. You can make it from
a cylinder by gluing the two boundary circles together. The Klein bottle is
weirder. You could make it by starting with a cylinder and gluing the two
boundary circles together — but somehow reversing the orientation of one of
them, which you can’t do in R3.

The projective plane is possibly the weirdest of all. You have started with
a disk and identified every pair of opposite points on the boundary circle.
(We’ve already seen this construction!) It turns out that this is the same
thing as starting with a 2-sphere, and identifying every pair of antipodally
opposite points on it.

All of these spaces are 2-manifolds. A (topological) n-manifold is a space
in which every point has a neighborhood homeomorphic to Rn. (This basic
definition can be souped up to define differentiable, smooth, holomorphic,
and algebraic manifolds, depending on your category of choice.)

Again, food for thought: How do you distinguish between manifolds of a
given dimension? Is there some set of numerical or algebraic invariants that
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classify manifolds? If so, how do you calculate those invariants for a given
manifold?

For example, a 2-sphere and a torus are both clearly 2-manifolds. However,
it would be surprising if they were homeomorphic. How do we measure the
”holeyness” that a torus has but a sphere lacks?

2. Fri 1/24/14

2.1. Cell Complexes. A more careful definition of a cell complex.

A cell complex X is a topological space of the form
⋃∞
n=0X

n, where the Xn

are spaces called the skeletons of X and are defined as follows:

• X0 has the discrete topology.
• Xn = Xn−1 ·∪

⋃
αD

n
α/ϕ, where:

– Each Dn
α is (a homeomorphic copy of) the closed n-ball Bn, so that

it has a subspace ∂Dn
α corresponding to the (n− 1)-sphere Sn−1. It

comes with a continuous attaching map ϕα : ∂Dn
α → Xd−1.

– ϕ =
⋃
α ϕα.

If X = Xn for some n then X is finite-dimensional and its topology is
determined by attaching. If not, then we have to do some additional work to
say what the topology is (see the appendix in Hatcher).

2.2. Homotopy equivalence vs. homeomorphism. The “obvious” ques-
tion of topology is this: when are two topological spaces the same? I.e., when
are they homeomorphic? This turns out to often be the wrong question to
ask. For example, no two of the letters H, I, T, X are homeomorphic, but
they are all topologically trivial in a sense that we’ll make clear soon. A more
useful notion of topological sameness is homotopy equivalence.

Intuitively, we want to describe how a function X → Y might continuously
evolve over time from a starting function F0 to a final function F1. We can
describe this as a family of maps {Ft} for all t ∈ I = [0, 1]. To say that
the evolution is continuous is just to say that the map F : X × I → Y is
continuous, where F (x, t) = Ft(x). To make this precise:
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Definition: Two maps f : X → Y and g : X → Y are homotopic
(written f ' g) if there is a map F : X × I → Y such that F (x, 0) = f(x)
and F (x, 1) = g(x) for all x. (I.e., f = F0 and g = F1).

Fact: ' is an equivalence relation (proof left to the reader; not hard).

Definition: Two spaces X, Y are homotopy-equivalent if there are
maps f : X → Y and g : Y → X such that f ◦ g ' 1Y and g ◦ f ' 1X .

Example: Let Y be the unit circle and let X = Y ×I be the annulus. Define
f, g by f(x) = (x, 0), g(x, s) = x. Then g ◦ f = 1Y (no problem there) and
f ◦g is the map sending (x, s) 7→ (x, 0) for every x, s. Consider the homotopy
F : X × I → X defined by

F ((x, s), t) = (x, st).

Then F is continuous, with

F0(x, s) = F ((x, s), 0) = (x, 0), F1(x, s) = F ((x, s), 1) = (x, s)

i.e.
F0 = f ' F1 = 1X .

Note that Ft(x, 0) = (x, 0) for every t. That is, the subspace Y is remaining
fixed as X gradually contracts onto Y . This is an example of a very com-
mon kind of homotopy equivalence, a deformation retract (or deformation
retraction).
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Definition: Let X be a space and A ⊆ X a subspace. A deformation
retract from X to A is a homotopy F : X × I → X such that F0 = 1X ;
F1(X) = A; and Ft|A = 1A for all times t.

Definition: A space X is contractible if it is homotopy-equivalent to a
point.

Example: A subspace X ⊂ Rn is called star-shaped if there exists some
x0 ∈ X such that for every y ∈ X, the line segment from x0 to y is contained
in X. It’s not hard to show that every star-shaped set (such as a line segment
and the letters T and X) are contractible. In particular, all convex sets are
star-shaped, hence contractible.

Contractibility turns out to be an excellent notion of topological triviality.
Note that all contractible spaces are homotopy-equivalent (because homotopy-
equivalence is an equivalence relation).

So, how do you prove that a space is not contractible (or more generally, de-
termine when two spaces are not homotopy-equivalent)? Hold that thought.
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3. Mon 1/27/14

Definition: Two maps f : X → Y and g : X → Y are homotopic
(written f ' g) if there is a map F : X × I → Y such that F (x, 0) = f(x)
and F (x, 1) = g(x) for all x. (I.e., f = F0 and g = F1).

3.1. More on homotopy equivalence. One of the most important cases
is when X = S1. A map S1 → Y is then a closed path in Y — think of it
as a rubber band in Y . A homotopy is something that continuously deforms
the rubber band through a family of closed curves.

Definition: Two spaces X, Y are homotopy-equivalent if there are
maps f : X → Y and g : Y → X such that f ◦ g ' 1Y and g ◦ f ' 1X .

Definition: Let X be a space and A ⊆ X a subspace. A deformation
retract from X to A is a homotopy F : X × I → X such that F0 = 1X ;
F1(X) = A; and Ft|A = 1A for all times t.

Example: For every X, the cylinder over X is X × I. We can identify X
homeomorphically with any slice X × {t} of the cylinder. Consider the map
F : (X×I)×I → X×I given by F ((x, s), t) = (x, s(1−t)). Then F0 = 1X×I
and F1 is projection X × I → X. Moreover, the slice X × {0} is fixed by
every Ft¿ Therefore F is a deformation retraction of X × I onto X.

Proposition: If F : X × I → X is a deformation retraction of X onto A,
then X ' A.

Proof: Define f : X → A and g : A→ X by f = F1 and g = 1A (regarded as
the inclusion A ↪→ X). Then f ◦ g = 1A and g ◦ f = f = F1 ' F0 = 1X .

Definition: A space X is contractible if it is homotopy-equivalent to a
point.

Example: X = I × I. Pick any point p ∈ X. For x ∈ X and t ∈ I,
define F (x, t) to be the point you get by constructing the line segment xp
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and walking t of the way along it from x. In linear coordinates, F (x, t) =
(1 − t)x + tp. This is a deformation retraction from X onto {p}, so X is
contractible.

Example: A subspace X ⊂ Rn is called starlike if there exists some x0 ∈ X
such that for every y ∈ X, the line segment from x0 to y is contained in X.
It’s not hard to show that every starlike set (such as a line segment and the
letters T and X) is contractible. In particular, all convex sets are starlike,
hence contractible.

Example: Contractible implies path-connected (and therefore connected).
Suppose that F : X × I → X is a homotopy with F (x, 0) = x and F (x, 1) =
x0. For every point z ∈ X, the function γ(t) = F (z, t) is a path from z to x0.

Example: The cone over X is the space CX = X × I/(x, 0) ∼ (y, 0) ∀x, y.
In other words, take a cylinder over X and squash all points at time 0 to a
point, called the cone point. Every cone is contractible, because the map

F : CX × I → CX, ((x, s), t) 7→ (x, s(1− t))
is a deformation retraction of CX onto the cone point.

Example: The circle S1 is not contractible, although this will take some
proving. Therefore, neither is the cylinder or the Möbius strip. Neither is
S2, although this will take even more proving.

Proposition: Two spaces X, Y are homotopy-equivalent if and only if
there exists a third space that deformation-retracts onto both X and Y .

The ⇐= direction is obvious, since deformation retraction induces a homo-
topy equivalence. For the forward direction, we need a new construction.

Definition: The mapping cylinder of the map f : X → Y is

Mf = (X × I) ·∪Y / (x, 1) ∼ f(x).

That is, we attach the cylinder X × I to Y by gluing along the time-1 slice,
using f as the gluing map. The mapping cylinder deformation-retracts to Y
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by the homotopy H : Mf × I → Y defined by

H(p, t) =

{
(x, st) if p = (x, s) ∈ X × I,
p if p ∈ Y.

Notice that the two cases agree when s = 0, so H is well-defined. Also, note
that Mf ' Y for any continuous map f .

We want to show that if f is a homotopy equivalence, then also Mf ' X.;
that is, there is a function g : Y → X such that f ◦ g ' 1Y , say via a
homotopy G.

The map f ◦ g can be viewed as mapping Y to X × {0} (identifying f(g(y))
with (f(g(y)), 0) ∼ g(y)). We know we can homotope f ◦ g to 1Y . How can
we extend this homotopy to the whole mapping cylinder so as to fix X? (One
problem is that we don’t know that this homotopy fixes X ×{0} pointwise).

Some of you may have heard of a thing called a mapping cone. This is
defined as

Cf = CX ·∪Y/(x, 1) ∼ f(x) = Mf/(x, 0) ∼ (y, 0).

In other words, take the mapping cylinder and squash the time-0 copy of X
to a point. It is not in general homotopy-equivalent to either X or Y ; it
corresponds to contracting the subspace f(X) of Y .

4. Wed 1/29/14

4.1. Criteria for Homotopy Equivalence. The definition of homotopy
and homotopy equivalence can be a hassle to work with directly. We often
just care that two spaces are homotopy-equivalent and may not want to
construct a homotopy equivalence explicitly.

Homotopy Equivalence Criterion 1: Let A ⊂ X, so that we have a
quotient map q : X → X/A. If A is contractible, then q is a homotopy
equivalence.

Homotopy Equivalence Criterion 2: Let A ⊂ X and f, g : A → Y .
If f ' g, then X ·∪Y/f ' X ·∪Y/g.
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Intuition: (1) If A was topologically trivial to begin with, then squashing it
down to a point shouldn’t change homotopy type.

(2) If f can be morphed into g, then using them as attaching maps should
produce spaces that can be morphed into each other.

Cell complexes have these properties (as we will prove soon); this is one good
reason to work with them. But first some examples.

Example: Graphs. Let G be a finite path-connected graph with v vertices
and e edges.

Let x, y be distinct vertices that share an edge a. The operation of con-
traction shrinks the edge gradually until the two endpoints are identified.
Topologically, we are passing from G to the quotient space G/a. This is
a homotopy equivalence, although it’s not clear what the homotopy inverse
should look like — G/a is not in general a subgraph of G.

This is the tough part of proving HEC2 directly — how do you lift X/A
back to X? But if we assume HEC2, can we classify connected graphs by
homotopy type?

Definition: Let X, Y be two path-connected spaces that are disjoint. The
wedge (sum) X ∨ Y is the space obtained by identifying a point of X with
a point of Y . (Which point? Up to homotopy, it doesn’t matter, by HEC2
— here you need path-connectedness. Check this!)

In particular, if we have a space that is a wedge of spheres, it can be specified
up to homotopy by counting the spheres of each dimension in the wedge.

Theorem: G '
∨e−v+1 S1 (i.e., a wedge, or “bouquet”, of e− v+ 1 circles).

Example: The torus with meridional discs. Figure from Hatcher, p.12.
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12 Chapter 0 Some Underlying Geometric Notions

X/A and X/B are homotopy equivalent to X . The space X/A is the quotient S2/S0 ,

the sphere with two points identified, and X/B is S1 ∨ S2 . Hence S2/S0 and S1 ∨ S2

are homotopy equivalent, a fact which may not be entirely obvious at first glance.

Example 0.9. Let X be the union of a torus with n meridional disks. To obtain

a CW structure on X , choose a longitudinal circle in the torus, intersecting each of

the meridional disks in one point. These intersection points are then the 0 cells, the

1 cells are the rest of the longitudinal circle and the boundary circles of the meridional

disks, and the 2 cells are the remaining regions of the torus and the interiors of

the meridional disks. Collapsing each meridional disk to a point yields a homotopy

X Y Z W 

equivalent space Y consisting of n 2 spheres, each tangent to its two neighbors, a

‘necklace with n beads.’ The third space Z in the figure, a strand of n beads with a

string joining its two ends, collapses to Y by collapsing the string to a point, so this

collapse is a homotopy equivalence. Finally, by collapsing the arc in Z formed by the

front halves of the equators of the n beads, we obtain the fourth space W , a wedge

sum of S1 with n 2 spheres. (One can see why a wedge sum is sometimes called a

‘bouquet’ in the older literature.)

Example 0.10: Reduced Suspension. Let X be a CW complex and x0 ∈ X a 0 cell.

Inside the suspension SX we have the line segment {x0}×I , and collapsing this to a

point yields a space ΣX homotopy equivalent to SX , called the reduced suspension

of X . For example, if we take X to be S1 ∨ S1 with x0 the intersection point of the

two circles, then the ordinary suspension SX is the union of two spheres intersecting

along the arc {x0}×I , so the reduced suspension ΣX is S2 ∨ S2 , a slightly simpler

space. More generally we have Σ(X ∨ Y) = ΣX ∨ ΣY for arbitrary CW complexes X
and Y . Another way in which the reduced suspension ΣX is slightly simpler than SX
is in its CW structure. In SX there are two 0 cells (the two suspension points) and an

(n+1) cell en×(0,1) for each n cell en of X , whereas in ΣX there is a single 0 cell

and an (n+ 1) cell for each n cell of X other than the 0 cell x0 .

The reduced suspension ΣX is actually the same as the smash product X ∧ S1

since both spaces are the quotient of X×I with X×∂I∪ {x0}×I collapsed to a point.

Attaching Spaces

Another common way to change a space without changing its homotopy type in-

volves the idea of continuously varying how its parts are attached together. A general

definition of ‘attaching one space to another’ that includes the case of attaching cells

X is the torus with n meridional discs attached. (Here n = 4.)

Each of those discs is contractible. Contracting them all to points gives a
quotient space Y that looks like a necklace of spheres. By HEC1, the quotient
map X → Y is a homotopy equivalence.

Draw a circle around all the spheres. “Uncontract” part of the circle to get Z.
In other words, Y → Z is a quotient map obtained by shrinking the outside
curve to a point.

Now slide the spheres around so that they are all attached at the same point.
(This is really an application of HEC1. If X is one of the spheres, A is a
point in X, and Y is another sphere, then we are using the fact that all maps
A→ Y are homotopic, precisely because Y is path-connected.) Alternately,
you could contract the back part of the circle to a point, which would not
mess up any of the spheres by HEC1.

We have now shown that X ' W = S1 ∨
∨4 S2, although we haven’t con-

structed an explicit homotopy equivalence.

What happens if you contract a non-contractible subspace?2 It depends. For
example if A = X = S1 then of course X/A is a point. (here contracting
a circle makes things simpler.) But if X = S2 and A is the equator, then
X/A = S2 ∨ S2 — here the contraction has made things more complicated.

In general, A ⊂ X and A ∼= S1, then X/A is homotopy-equivalent to the
space Y obtained by attaching a 2-cell to X along A. (To see this, let D be
the closure of that disc in Y ; then D is contractible and Y/D = X/A.) So
the answer depends strongly on how A sits inside D — specifically, is the

2Thanks to Leonard Huang for posing this question.
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homeomorphism S1 → A homotopic to a constant map? If so, contracting
A has the effect of attaching a 2-sphere; if not, we are probably removing a
1-sphere. This last sentence is not a formal statement, but we will actually
be able to show, eventually, that X/A is never homotopy-equivalent to X.

5. Friday 2/1/14

A loose end from last time: I asserted that contracting a closed loop in
R3 might depend on whether the loop was knotted. I now think this is false.
Since R3 is contractible, the answer to that question is always “yes”, so we
get S2 ∨ R3 (which is homotopy-equivalent to just S2).

5.1. Back to cell complexes. Notation: enα is going to denote an n-cell —
a homeomorphic copy of Rn. Think of it as the interior of a closed n-disk
Dn
α = enα, so that the boundary ∂Dn

α is an (n− 1)-sphere.

Definition: A cell complex or CW complex is a space X constructed as
follows.

Let X0 be a collection of points e0α (“vertices”), considered as a space endowed
with the discrete topology. This is the 0-skeleton.

Take a collection of closed line segments {D1
α} and identify each endpoint

of each segment with a vertex. In other words, we have attaching maps
ϕα : ∂D1

α → X0. The 1-skeleton is then

X1 = X0 ∪
∐
α

e1α / ∪ ϕα.

Take a collection of closed 2-discs {D2
α} and a collection of attaching maps

ϕα : ∂D2
α → X1. The 2-skeleton is then

X2 = X1 ∪
∐
α

e2α / ∪ ϕα.

Repeat as you like. We then set X =
⋃∞
n=0X

n. X is d-dimensional if the
largest cell attached is of dimension d, or infinite-dimensional if there is no
largest cell. In the latter case one has to be careful about how to define
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the topology; see the Appendix. We’ll mostly consider finite-dimensional cell
complexes.

Definition: A cell complex is proper (my terminology) if the closure of each
eα is a union of cells. This condition is not explicit in Hatcher, but generally
seems to be implicit. For example, this rules out the complex obtained by
identifying the boundary of a 2-cell with a point that is not a vertex. In
general, I will assume that all cell complexes are proper.

Definition: A proper cell complex is regular if each attaching map is a
homeomorphism. The “obvious” cell structure on Sn obtained by squashing
∂Bn to a point (equivalently, passing from Rn to its 1-point compactification)
is not regular for n > 1. However, we can construct a regular cell structure
on Sn inductively: start with a regular cell structure on Sn−1, then take two
n-cells and attach their boundaries to Sn−1 by homeomorphisms.

Why is regularity a good condition? It says that we essentially only need to
keep track of the relations between cells of adjacent dimensions.

Every closed cell Dn
α comes with a characteristic map Φα : Dn

α → X,
which extends the attaching map ϕα : ∂Dn

α → Xn−1. The characteristic map
is nothing fancy; we are just writing down a formal way to identify the closure
of a cell. The attaching and characteristic maps often get suppressed: e.g.,
we would call the closure of a cell enα rather than Φ(enα).

5.2. Real and Complex Projective Spaces. Definition: Real projec-
tive space RP n is the space of lines through the origin in Rn+1.

Note that every nonzero vector v = (v0, . . . , vn) ∈ Rn+1 gives rise to a line
Rv = {av : a ∈ R}, and that Rv = Rw if and only if v = λw for some
b ∈ R \ {0}. Therefore, RP n is a topological quotient space:

RP n = (Rn+1 \ {0})/v ∼ λv.

Each line has a canonical direction vector whose last nonzero coefficient is 1.
We can decompose RP n into pieces e0, . . . , en depending on the position of
that coefficient: defined by

ek = {Rv ∈ RP n | vi = 1, vi+1 = · · · = vn = 0}.
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Note that ek ∼= Rk — the coordinates v0, v1, . . . , vk−1 provide a homeomor-
phism. Moreover, the closure of ek is the subspace e0 ∪ e1 ∪ · · · ∪ en. To see
this, consider the first nontrivial example k = 1, n = 1.

In RP 1, the cell e1 is the set of lines spanned by vectors of the form (x, 1)
for x ∈ R. What happens to these lines as v0 tends to infinity (from either
direction)?

lim
x→±∞

R(x, 1) = lim
x→±∞

R(1, 1/x) = R(1, 0).

This is just saying that as the slope of a line increases towards infinity, it
becomes more and more vertical. So e0 is in the closure of e1.

More generally, consider a point v = (v0, . . . , vk−1, 0, . . . , 0) ∈ Rk ⊂ Rn, which
corresponds to the line Rv ∈ ek. Let that point waltz off to infinity in some
direction a ∈ Rk. The limit is in ek, and it is

lim
t→±∞

R(v0 + a0t, v1 + a1t, . . . , vk−1 + ak−1t, vk, 0, . . . , 0)

and the canonical vector of this line will have its final 1 in the jth position,
where j is the last nonzero entry of a — so 0 ≤ j < k. This says that

ek = ek ∪ ek−1 ∪ · · · ∪ e0

and these closures of cells are precisely the CW-subcomplexes of RP n.

So we have a proper cell complex structure on RP n. It is not regular, because
the attaching maps are all 2-1 (that’s the ±). We can now see why this
construction of RP 2 agrees with the one we’ve seen before (take a disk and
identify antipodal points on the boundary). Start with a copy of R2 in which
each point (x, y) ∈ R2 is identified with the line R(x, y, 1) (i.e., with e2 ⊂
RP 2). Then, for example, walking towards infinity in either direction along
the line y = 2x gets us the same line in e1:

lim
y=2x→∞

R(x, y, 1) = lim
x→∞

R(x, 2x, 1) = lim
x→∞

R(1, 2, 1/x) = R(1, 2, 0).

Remark 5.1. More generally, one can put a topological structure on the
Grassmannian G(k,Rn), which is the set of k-dimensional vector subspaces
of Rn. (Thus RP n = G(1,Rn+1.) The Grassmannian can be constructed as a
quotient space: start with the space of full-rank n×k matrices over R (which
is an open subset of Rkn), then identify matrices with the same column spans.
The result is a nice compact space (in fact, a manifold) that has a beautiful
combinatorial structure — which is currently outside the scope of these notes,
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but if you are interested then you should think about how to generalize the
cellulation of RP n.

Definition: Complex projective space CP n is constructed in the same
way as a quotient space and as a cell complex, replacing R with C. The
difference is that we now obtain cells of even dimensions:

CP n = e0 ∪ e2 ∪ e4 ∪ · · · ∪ e2n, e2k =

j⋃
i=0

e2i.

For example, CP 2 is the Riemann sphere.
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6. Monday 2/3/14

Definitions: Let X be a cell complex.

Subcomplex of X: closed subspace that is a union of cells.
CW-pair: (X,A) such that X is a cell complex and A is a subcomplex.

The Homotopy Extension Property

Goal: Establish criteria for homotopy equivalence to avoid having to use the
definition of homotopy.

1. Collapsing a contractible subspace. If (X,A) is a CW-pair and A
is contractible, then X ' X/A.

2. Homotoping an attaching map. If (X,A) is a CW-pair and we
attach X to Y along A by either of two homotopic maps f : A→ Y and
g : A→ Y , then

Y tf X ' Y tg X.

It turns out that both these properties can be proved by studying the more
general problem:

When can a homotopy have its domain extended?

I.e., suppose we have spaces A ⊆ X, and a homotopy ft : A→ Y . If we can
extend f0 to a function f0 : X → Y , can we “stretch f0 across the homotopy”
to get a homotopy ft : X → Y extending ft?

Definition: A pair (X,A) has the homotopy extension property (HEP) if
every homotopy F : A→ Y can be extended to a homotopy G : X → Y .
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Equivalently, every continuous map

(X × {0}) ∪ (A× I)︸ ︷︷ ︸
Z

F−−→ Y

can be extended to a commutative diagram of continuous maps

X × I
G

''
(X × {0}) ∪ (A× I)︸ ︷︷ ︸

Z

?�

i

OO

F
// Y

Here i means the inclusion map. To say that the diagram commutes is to say
that G ◦ i = F .

So the HEP means that for every F , there exists G with G ◦ i = F in the
above diagram.

Note that Z = X × {0} ∪ A × I → Y is the mapping cylinder Mi of the
inclusion A ↪→ X.

A good example is the case that X is a disc and A is its boundary circle. The
space Z is an empty can with a bottom but no top. The space X × I is the
same can full of soup – a solid cylinder. We want to be able to “fill in the
can” by extending any map with domain Z to a map with domain X × I.

X

I

Lemma: (X,A) has the HEP if and only if Z = X × {0} ∪ A × I → Y is
a retract of X × I — i.e., if there is a continuous map r : X × I → Z that
fixes Z pointwise.
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Proof. ( =⇒ ): Apply the HEP to the identity map F = 1Z . The result is by
definition a retraction.

( ⇐= ): Suppose r is a retraction X × I → Z and ϕ : Z → Y is any map.
Then ϕ ◦ r is a map X × I → Y , and it extends ϕ because (ϕ ◦ r)|Z =
ϕ ◦ (r|Z) = ϕ ◦ 1Z = ϕ. �

Here’s how to see this in the case of the can. Fill the can with something
mushy like clay. Now pull the sides of the can out a little to get a frustum
(in particular, the can should now be the graph of a function R2 → R). Now
push the clay straight down. That’s certainly a continuous function, and
after all the clay has been mashed onto the can we end up with the can itself.
This is the desired retraction X × I → Z. An analogous construction would
work for X = Dn and A = ∂Dn (this is the case n = 2).

Prop 0.16: If (X,A) is a CW pair with inclusion i : A → X, then the
mapping cylinder Z = Mi is a deformation retract of X × I. In particular,
the pair (X,A) has the HEP by the Lemma.

Proof. First consider the case that A is the complement in X of a single
maximal open n-cell en. We already know (by the “frustum argument”) that
there is a deformation retraction

Dn × I → Dn × {0} ∪ ∂Dn × I.
Identifying Dn × I with en × I by the characteristic map and fixing A × I
pointwise gives a deformation retraction

X × I → X × {0} ∪ A× I
which fixes A× I pointwise. So (X,A) has the HEP.

Here we are implicitly using the facts that
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(1) one can sew continuous maps together: we have two continuous maps
on A× I and Dn × I that agree on their intersection ∂Dn × I, so they
together define a continuous map on the union X × I; and

(2) since en is maximal, it is not in the closure of any other cell, so there is
no problem extending the deformation retraction.

More generally, we can compose these deformation retractions to shrink one
cell of X at a time, from the top dimension down, to deformation-retract
X × I onto the mapping cylinder of any subcomplex. When X is finite (or
more generally when X \A has finitely many cells), this is clearly no problem.
A small trick (see Hatcher) is needed to verify that this “infinite composition”
is possible when X is infinite-dimensional. �
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7. Wednesday 2/5/14

From last time:

Definition: A pair (X,A) has the homotopy extension property (HEP) if
every homotopy F : A→ Y can be extended to a homotopy G : X → Y .

Equivalently, every map X × {0} ∪A× I → Y can be extended to a map
X × I → Y .

Every CW-pair (X,A) satisfies the HEP.

Example: Hatcher’s example of a pair that does not satisfy the HEP: X =
I, A = {0, 1, 12 ,

1
3 ,

1
4 , . . . }. Here X × I = I × I is the closed unit square, and

the mapping cylinder Z is the “comb space”:

Here the horizontal line segment is X × {0}, and the teeth of the comb are
A × I. There exists no retraction X × I → Z (despite the fact that Z is
contractible).

Prop 0.17: If (X,A) satisfies the HEP and A is contractible, then X ' X/A
via the quotient map q : X → X/A.

Note that it’s not clear how to construct a homotopy inverse directly. For
example, suppose X is a closed line segment and A is a proper closed subseg-
ment; say X = [0, 3] ⊂ R and A = [1, 2] ⊂ X. We know that A is contractible
and it is pretty clear that X ' X/A (in fact they are homeomorphic). But
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the quotient map will not have a homotopy inverse that fixes all the points
in X \ A, because there would be no way to extend such a map so that is
continuous on A.

Proof. Start with a contraction of A, i.e., a homotopy between 1A and a
constant map sending all of A to some fixed point a ∈ A. Since 1A extends
to 1X , we can extend the contraction to a homotopy ft : X → X, where
f0 = 1X . Note that ft(A) ⊂ A for all A. Therefore there is a homotopy
ft : X/A → X/A such that q ◦ ft = ft ◦ q. (We just define f̄t|X\A = ft|X\A.)
In other words, the following diagram commutes.

X
ft //

q
��

X

q
��

X/A
ft

//X/A

When t = 1, we have f1(A) = {a}. So there is a well-defined map g : X/A→
X such that g ◦ q = f1. Specifically,

g(x) =

{
a if x ∈ A,
f1(x) if x 6∈ A.

Stick that in the commutative diagram:

X
f1 //

q
��

X

q
��

X/A
f1

//

g
;;

X/A

Now g ◦ q = f1 ' f0 = 1X and q ◦ g = f1 ' f0 = 1X/A. Therefore g and q are
homotopy inverses. �

Prop 0.18: Let (X,A) be a CW pair and let f, g : A→ Y such that f ' g.
Then X tf Y ' X tg Y .
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Proof. Let F : A × I → Y be a homotopy of f with g. By what we have
proved about CW pairs, there is a deformation retraction of X × I onto
M = X × {0} ∪ A× I.

A

M = (X x {0})  U  (A x I)X x I

If we attach Y to these spaces via F , we get a deformation retraction of
(X×I)tF Y onto MtF Y = (X×{0})tF (A×I), which in turn deformation-
retracts onto X tf Y by shrinking I down to 0.

Y
f

(X x I) Y
F

X

Switching the roles of f and g, we can do the same thing for X tg Y . �

This actually proves something slightly stronger, namely that X tf Y and
X tg Y are homotopic relative to Y , i.e., via a homotopy ht such that ht|Y =
1Y for all t. Notation:

X tf Y ' X tg Y rel Y.
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Example: : Hatcher p.19 #19. Show that the space obtained by attaching
n 2-cells along any collection of circles in S2 is homotopy-equivalent to the
wedge sum of n+ 1 2-spheres.

Start with one circle.

Lots of disjoint circles.

What if the circles overlap? What if they coincide?

Example: Hatcher p.19 #21. Let X be a connected space that is the union
of a finite number of 2-spheres, any two of which intersect in at most one
point. Show that X is homotopy equivalent to a wedge sum of S1’s and S2’s.

What if any two spheres intersect in at most a finite number of points?
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