
Math 821 Problem Set #7
Due date: Friday, May 2

Problem #1 [Hatcher p.156 #9abc] Compute the homology groups of the following
spaces:

(a) The quotient of S2 obtained by identifying the north and south poles to a point.

(b) S1 × (S1 ∨ S1).

(c) The space obtained from D2 by first deleting the interiors of two disjoint subdisks,
and then identifying all three resulting circles together via homomorphisms preserving
clockwise orientations of these circles.

Solution: (a) Let A consist of the north and south poles in S2 and let X = S2/A. The pair (S2, A) is good

(because A is a subcomplex in the standard cell structure on S2), so H̃(X = H(S2, A). The interesting part
of the LES is

H̃2(A)︸ ︷︷ ︸
0

→ H̃2(S2)︸ ︷︷ ︸
Z

→ H̃2(X)→ H̃1(A)︸ ︷︷ ︸
0

→ H̃1(S2)︸ ︷︷ ︸
0

→ H̃1(X)→ H̃0(A)︸ ︷︷ ︸
Z

→ H̃0(S2)︸ ︷︷ ︸
0

from which we get
H̃2(X) = Z, H̃1(X) = Z, H̃0(X) = 0

(the last because X is path-connected).

(b) Let’s use cellular homology. The space Y = S1× (S1 ∨ S1) can be regarded as two tori joined along their
meridional circles, so the cell structure looks like this:
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All the cellular chain maps are zero, so the unreduced homology groups are free of order equal to the number
of cells of that dimension. Therefore

H̃2(Y ) = Z2, H̃1(Y ) = Z2, H̃0(X) = 0.

(c) Again let’s use cellular homology. Call this space W . It can be endowed with the cell structure below,
with E2 = {P}, E1 = {a, b, c, d}, E0 = {x, y} and orientations as indicated:
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Starting at the right-hand vertex and moving down, we see that ∂P = b−c−b−d−b−a+d−a+c+a = −b−a.
Thus ∂P = a+ e− a+ d− a+ c = −a+ c+ d+ e and ∂Q = e+ b+ d+ b+ c− b = e+ d+ c+ b, so the full
cellular chain complex E•(W ) is

ZE2 d2−−−−−−−−→
P

a −1
b −1
c 0
d 0


ZE1 d1−−−−−−−−−−−−−−−−−−→( a b c d

x −1 1 0 −1
y 1 −1 0 1

) ZE0 → 0

We can then compute homology in Macaulay2, e.g.:

d2 = matrix {{-1}, {-1}, {0}, {0}};

d1 = matrix {{-1,1,0,-1}, {1,-1,0,1}};

C = chainComplex(d1,d2);

prune HH C

The end result:
H̃2(W ) = Z, H̃1(W ) = Z2, H̃0(W ) = 0.

Problem #2 [Hatcher p.157 #19] Compute Hi(RPn/RPm) for m < n by cellular homol-
ogy, using the standard CW structure on RPn with RPm as its m-skeleton.

Solution: The relative cellular chain complex E•(RPn,RPm) is the cokernel of the injection E•(RPm) ↪→
E•(RPn). Thus its groups are

Ek(RPn,RPm) =

{
Z if m+ 1 ≤ k ≤ n,
0 otherwise.
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and its maps are the same as for RPn: i.e., the map dk : Ek → Ek−1 is multiplication by 2 if k is even, or
zero if k is odd. Therefore,

Hk(RPn,RPm) =


Z if k = n and n is odd,

Z2 if m+ 1 ≤ k < n and k is odd,

0 otherwise.

Problem #3 [Hatcher p.156 #11] Let K be the 3-dimensional cell complex obtained from
the cube I3 by identifying each pair of opposite faces via a one-quarter twist. (See exercise

#14 on p.54.) Compute the homology groups H̃n(K;Z) and H̃n(K;Z2) for n > 0.

Solution: Call this complex K. We start with the oriented labeled cube as shown.
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Identifying opposite faces with the twist brings us down to two vertices x, y (indicated by their colors in the
diagram) and forces the edge identifications

(b,−a,−d, c) ∼ (k, j,−i,−`), (e,−a,−f, i) ∼ (−c,−h, k, g), (`, f,−d,−h) ∼ (e,−b,−g, j).
Calling the top, left and front 2-faces respectively A,B,C and the solid cube Q., we get the cellular chain
complex

ZE3 d3−−−−−−−→
Q

A 0
B 0
C 0


ZE2 d2−−−−−−−−−−−−−−−→

A B C

a −1 1 1
b 1 −1 1
c 1 1 1
d −1 −1 1


ZE1 d1−−−−−−−−−−−−−−−−−−−→( a b c d

x −1 −1 1 1
y 1 1 −1 −1

) ZE0 → 0.

(It is perhaps not clear geometrically whether the coefficients of ∂Q should be 0, 2 or −2, but it is clear from
the algebra — the condition d2d1 = 0 says that d2 must be orthogonal to every row of d1, and d1 has full row
rank so the only possibility for d2 is the zero vector.) We can compute the homology groups in Macaulay:
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d3 = matrix {{0}, {0}, {0}};

d2 = matrix {{-1,1,1}, {1,-1,1}, {1,1,1}, {-1,-1,1}};

d1 = matrix {{-1,-1,1,1},{1,1,-1,-1}};

C = chainComplex(d1,d2,d3);

prune HH C

The result is

H̃3(K) = Z, H̃2(K) = 0, H̃1(K) = Z2
2.

Now for homology with Z2-coefficients. Note that it is not sufficient simply to tensor these groups with Z2.
Instead, we have to tensor the chain complex with Z2 and then recompute homology. The Macaulay symbol
for tensor product is ∗∗, so all you need to do is this:

C2 = C ** ZZ/2

prune HH C2

The result is

H̃3(K;Z2) = Z2, H̃2(K;Z2) = Z2
2, H̃1(K) = Z2

2.

Indeed, note that H̃2(K;Z2) 6= H̃2(K;Z)⊗ Z.

It is also possible to use the Universal Coefficient Theorem for Homology [Hatcher, p.264], which says that
there are split short exact sequences 0 → Hn(K) ⊗Z Z2 → Hn(K;Z2) → Tor(Hn−1(K),Z2) → 0. Using
general facts about tensor product — in particular, tensoring a module with itself or the ground ring does
nothing to it, and tensor is distributive over direct sum — we get

0→ Z2 → H3(K;Z2)→ Tor(0,Z2)→ 0,

0→ H2(K;Z2)→ Tor(Z2
2,Z2)→ 0,

0→ Z2
2 → H1(K;Z2)→ Tor(Z,Z2)→ 0.

Using standard properties of Tor [Hatcher, Prop. 3A.5, p.265], we can rewrite these short exact sequences:

0→ Z2 → H3(K;Z2)→ 0,

0→ H2(K;Z2)→ Z2
2 → 0,

0→ Z2
2 → H1(K;Z2)→ 0

so the middle maps are all isomorphisms.

Problem #4 [Hatcher p.157 #20,22] In this problem χ denotes Euler characteristic.

(a) Let X,Y be finite CW-complexes. Show that χ(X × Y ) = χ(X) · χ(Y ).

(b) Let X be a finite CW complex and let X̃
p−→ X be an n-sheeted covering space. Show

that χ(X̃) = n · χ(X).

Note: Part (a) is easy, but part (b) is much harder and relies on facts about Lebesgue numbers of coverings,
which I pushed under the rug when I talked about subdivision. So I awarded full credit for doing (a) correctly
and saying something intelligent about (b).
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Solution: (a) Define the f -polynomial of X to be f(X, q) =
∑
eα∈X q

dim eα . Then χ(X) = f(X,−1) and

f(X × Y, q) = f(X, q) · f(Y, q) (because the product of a k-cell and an `-cell is a (k + `)-cell), so

χ(X × Y ) = f(X × Y,−1) = f(X,−1)f(Y,−1) = χ(X) · χ(Y ).

(b) Let U = {Ui}i∈I be an open cover of X such that each p−1(Ui) is a disjoint union of n homeomorphic

copies of Ui; we may assume that I is finite, say {1, . . . ,m}, since X is compact. Also, abbreviate Ũi =
p−1(Ui).

Repeatedly barycentrically subdivide the cells of X until every cell is contained in some Ui. (This is possible
by a Lebesgue number argument; see p.123 of Hatcher.) Call the resulting ∆-complex ∆. We can now

endow X̃ with the structure of a ∆-complex ∆̃ whose simplices are the components of the preimages of the
simplices in ∆. We then have f(X̃, q) = n · f(X, q) and so

χ(X̃) = χ(∆̃) = f(∆̃,−1) = n · f(∆, q) = n · χ(X).

Note: The reason this subdivision argument is necessary is that there is no guarantee that p−1(σ) is
homeomorphic to n copies of σ for every cell σ. Another possible avenue of attack, which I cannot get to
work, is as follows. The covering map p induces a map of chain complexes

· · · //⊕m
i=1 Ck+1(Ũi)

∂ //

p]

��

⊕m
i=1 Ck(Ũi)

∂ //

p]

��

⊕m
i=1 Ck−1(Ũi)

p]

��

// · · ·

· · · //⊕m
i=1 Ck+1(Ui)

∂ //⊕m
i=1 Ck(Ui)

∂ //⊕m
i=1 Ck−1(Ui) // · · ·

where the horizontal maps are the direct sums of the boundary maps on the summands. Since {Ũi} and {Ui}
are open covers of X̃ and X respectively, the Subdivision Lemma says that the rows compute their homology
groups. Certainly Ck(Ũi) = Ck(Ui)

⊕n and Hk(Ũi) = Hk(Ui)
⊕n. However, while the groups in this diagram

break as direct sums, the chain complexes don’t — if Ui ∩ Uj 6= ∅ then the map ∂ : Ck(Ui) → Ck−1(Uj)

is not zero. Indeed, it is not true that Hk(X̃) ∼= Hk(X) in general; for example, take X = S1 and X̃ to be
its connected n-fold covering space, which is also homeomorphic to S1.

Problem #5 [Hatcher p.155 #2, modified] Given a map f : S2n → S2n, show that there
is some point x ∈ S2n with either f(x) = x or f(x) = −x. Deduce that every map
RP 2n → RP 2n has a fixed point. (Hint: Use the fact that S2n is a covering space of RP 2n.)

Solution: For the first part, suppose that there exists a function f without the given property. Then we
can construct a nonzero tangent vector field T (x) on S2n as follows: let g(x) be the projection of f(x) onto
the tangent hyperplane to S2n at x, and let T (x) be the vector from x to g(x). Note that f(x) 6∈ {x,−x}
implies that g(x) 6= x, so T (x) 6= 0. We have constructed an everywhere-nonzero tangent vector field on S2n,
which is impossible by the Hairy Bowling Ball Theorem.

(An equally good solution is to incorporate the argument of the Hairy Bowling Ball Theorem explicitly.
Consider

F (x, t) =
x cos t+ f(x) sin t

‖x cos t+ f(x) sin t‖
which is well-defined because x and f(x) are linearly independent. Then F (x, 0) = x/‖x‖ = x and F (x, π) =
−x/‖x‖ = −x, so F is a homotopy between the identity and antipodal maps, a contradiction because their
degrees are 1 and −1 respectively. This is essentially the argument for property (g) of degree (Hatcher,
p.134); you could even just cite that property.)
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For the second part, let p : S2n → RP 2n be the usual two-to-one covering space map that identifies antipodal
points of S2n, so that p(x) = p(−x). For any g : RP 2n → RP 2n, we have a commutative diagram

S2n
f //

p

��

g◦p

$$

S2n

p

��
RP 2n g // RP 2n

where f is obtained by lifting g ◦ p (using the Lifting Criterion, Prop. 1.33, p.61 of Hatcher). (Note that
we do not have to construct f explicitly!) By the first part of the problem, there is a point x ∈ S2n with
f(x) = x or −x, so p(x) is a fixed point of g.

Problem #6 [Hatcher p.157 #28(a), modified] (a) Use a Mayer-Vietoris sequence to com-
pute the homology groups of the space X obtained from a torus T = S1 × S1 by attaching
a Möbius band M via a homeomorphism from the boundary circle C of M to the circle
S1 × {x0} in the torus.

(b) How does the answer change if C is attached to a closed loop that wraps k times around
the first circle (i.e., via the path f : I → S1 × S1 given by f(t) = (e2πikt, e2πit))?

Mea culpa! Part (b) is inconsistent. The formula should be f(t) = (e2πkit, 1) (or replace 1 with any
complex number on S1 ⊂ C). This caused some of you to write γ(1) = (k, 1, 2) in part (b), in which case the
value of k is irrelevant — this vector is always part of a Z-basis.

Solution: (a) Certainly H0(X) = Z because X is path-connected. We know the homology groups of
T ∩M = S1, of M ' S1, and of T , so the nonzero part of the reduced Mayer-Vietoris sequence is

0→ Z α−−→ H2(X)
β−−→ H1(T ∩M)︸ ︷︷ ︸

Z

γ−−→ H1(T )⊕H1(M)︸ ︷︷ ︸
Z3

δ−−→ H1(X)→ 0.

The map γ is given by γ(1) = (1, 0, 2) (since C is a double cover of the central circle, which generates
H1(M)). Certainly γ is one-to-one, so β = 0, hence α is an isomorphism. That is, H2(X) ∼= Z. The rest of
the diagram is a short exact sequence

0→ H1(T ∩M)︸ ︷︷ ︸
Z

γ−−→ H1(T )⊕H1(M)︸ ︷︷ ︸
Z3

δ−−→ H1(X)→ 0.

Evidently H1(X) has free rank 2. The vector γ(1) is part of a basis for Z3 (say {(1, 0, 2), (0, 1, 0), (0, 0, 1)}.
Therefore H1(X) = coker γ is torsion-free and H1(X) = Z2. In conclusion,

H2(X) = Z, H1(X) = Z2.

(b) In this case we have γ(1) = (k, 0, 2). If k is odd then nothing changes. If k is even, then γ(1) is not part
of a basis but γ(1)/2 is, and we will wind up with H1(X) = Z2 ⊕ Z2. In short,

H2(X) = Z, H1(X) =

{
Z2 if k is odd,

Z2 ⊕ Z2 if k is even.
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Problem #7 [Hatcher p.158 #29] The surface Mg of genus g, embedded in R3 in the
standard way, bounds a compact region R. Two copies of R, glued together by the identity
map between their boundary surfaces Mg, form a compact closed 3-manifold X. Compute
the homology groups of X using a Mayer-Vietoris sequence. Also compute the relative
groups Hi(R,Mg).

Solution: From Example 2.36, we have H̃1(Mg) = Z2g, H̃2(Mg) = Z, and H̃n(Mg) = 0 for n ≥ 3.

H̃2(Mg) = Z{M}, H̃1(Mg) = Z{a1, . . . , ag, b1, . . . , bg}
where the ai are the longitudinal circles and the bi are the meridional circles.

Meanwhile, R is homotopy equivalent to the wedge of the g longitudinal circles, so H̃1(R) = Zg and H̃n(R) =
0 for n ≥ 2.

For n ≥ 3, the Mayer-Vietoris sequence includes the piece

H̃n(R)2 = 0→ H̃n(X)→ H̃n−1(Mg)→ 0 = H̃n−1(R)2

whence H̃n(X) ∼= H̃n−1(Mg); this is zero for n ≥ 4 and Z for n = 3.

That leaves the end of the sequence, which is

H̃2(R)2 = 0→ H̃2(X)→ H̃1(Mg)︸ ︷︷ ︸
Z2g

∂−→ H̃1(R)2︸ ︷︷ ︸
Z2g

→ H̃1(X)→ 0

The map ∂ kills all the meridional circles and maps the longitudinal circles ai to (ai, ai) ∈ H̃1(R)2; in

particular H̃2(X) = ker ∂ ∼= Zg and H̃1(X) = coker ∂ ∼= Zg.

In summary:

H̃3(X) = Z, H̃2(X) = Zg, H̃1(X) = Zg, H̃0(X) = Z

and H̃n(X) = 0 for n > 3.

Now for relative homology. Observe that R deformation-retracts onto the wedge sum of g circles, so H̃1(R) ∼=
Zg and H̃k(R) = 0 for k 6= 1. Also, the inclusion Mg ↪→ R is good (since we can certainly cellulate in such
a way that Mg is a CW-subcomplex of R). So the long exact sequence of reduced relative homology breaks
into pieces

H3(R) = 0→ H3(R,Mg)→ H2(Mg) = Z→ 0

and

H2(R) = 0→ H2(R,Mg)→ H1(Mg) = Z2g ψ−−→ H̃1(R) = Zg → H̃1(R,Mg)→ H̃0(Mg) = 0.

The first of these gives immediately H3(R,Mg) = Z.

For the second sequence, regard Mg as the connected sum of g tori. The longitudinal circles of these tori are
mapped by ψ to the generators of H1(R), while their meridional circles are all mapped to 0. Therefore,

H̃2(R,Mg) ∼= kerψ ∼= Zg

and since ψ is surjective, the arrow following it is the zero map. But then the group H̃1(R,Mg) is pinched
by two zero maps, so it itself must be zero.


