Math 821 Problem Set #6
Due date: Friday, April 18

Problem #1 [Hatcher p.131 #11] Show that if A C X and there is a retraction X — A,
then the map H,,(A) — H,(X) induced by the inclusion A — X is injective.

Solution: Call the inclusion i. A retraction is by definition a function r : X — A with 7|4 =roi =14. By
functoriality we have a commutative diagram of spaces and continuous maps that induces a commutative
diagram of homology groups and homomorphisms:

% r

A—ts X T H,(A) H,(A) —> H,(X) ——> H,(A)
\ﬂ/ \T/

From this we see that i, is injective (and that r, is surjective).

Problem #2 (a) [Hatcher p.132 #15] A homological algebra warmup: Prove that if
ALBLch DL E

is exact with f surjective and j injective, then C' = 0.

Solution: We have im f = B = ker g, so g is the zero map. Similarly, ker j =imh = 0, so h is also the zero
map. It follows that img =0=kerh = C, so ¢ = 0.

(b) Prove the Snake Lemma: if the commutative diagram
0-->A—2-B-*°->C 0
4o
0 Y QRN (L o A

has exact rows, then there is an exact sequence

0 --»ker f = kerg E) ker h X coker f i) coker g > coker h --» 0.

(The dashed arrows can be either included or omitted — both versions are often referred
to as the Snake Lemma. In your solution, prove the version without the dashed arrows
and then observe what happens if the arrows are included.)

Solution: First, we construct the maps and check that they are well-defined. Second, we check that the
sequence is exact.

(1) For a € ker f, define a(a) = da. We have gda = d’'fa = 0, so a(a) € kerg.

(2) For b € ker g, define 3(b) = eb. We have heb = e’gb = 0, so 8(b) € ker h.



(3) For ¢ € ker h, we can write ¢ = e(b+ 5) for some b € B and b € kere. (All preimages of ¢ can be
obtained in this way by fixing b ar}d letting b vary over kere.) Since kere = imd and d is injective,
there is a unique a € A such that b = da. So

c=-e(b+b)=e(b+da) and  €'g(b+da) = he(b+da) =hc=0

so g(b+da) € kere’ = imd'. Since d’ is injective, there is a unique a’ € A’ such that d'a’ = g(b+da).
Since

da =gb+da)=gb+gda=gb+d fa .. gb=dd —d fa=d(a — fa).
That is, o’ is determined by ¢ modulo im f, which means that [a'] € coker f is uniqu§ly determined
by ¢. Therefore y(c) = [a'] is a well-defined function ker h — coker f, and the choice of b was irrelevant

(so we might as well have taken b = 0 and hence a = 0). This lets us rewrite the construction of y(c)
more conveniently for future use:

find b € B such that ¢ = eb, find a’ € A’ such that d'a’ = gb, and put y(c) = [a’] € coker f. (0.1)

(4) Let [a'] € coker f, i.e., [a'] =a’ +1im f for some o’ € A’. Define
Sla']=[d'd|=dd +imd f=dda +imgd =da + g(imd)
which is a well-defined element of coker g = B’/img.
(5) Let [b] € cokerg, i.e., [b/] = +img for some b’ € B’. Define
elt] = [€V] = €'V +ime'g = €'b + im he = ¢'b' + h(ime)

which is a well-defined element of coker h = C’/im h.
Now that we have all the maps defined, we check exactness.
(1) Exactness at ker f (in the dashed-arrow case): If d is injective then so is a.

(2) Exactness at ker g:
ima = a(ker f) = d(ker f) = {da | fa =0}

= {da | d'fa =0} by injectivity of d’
= {da | gda = 0} by commutativity
= kergNimd = kergNkere by exactness of the top row
= kerg.
(3) Exactness at ker h: observe that
impB = Blkerg) = e(kerg) = {eb: gb=0} (0.2)

and
kery = {c€kerh|3IbeB: c=ebda’ € A': da' =gb, Ja€ A:d = fa}
= {cekerh|IEB: c=eb,dac A: d fa=gb}
= {eb|be B, heb=0, Ja € A: gda = gb}. (0.3)

Comparing (0.2) with (0.3) shows that im 8 C ker-y, because if ¢ = eb € im B, then gb = 0 and we
may take a = 0 in (0.3). On the other hand, if ¢ = eb € ker~, then let b = b — da. Then ¢ = eb

(since ed = 0) and b € ker g by (0.3)), which by (0.2) says that ¢ € im 3.



(4) Exactness at coker f: Let ¢ € ker h. Adopting the notation of the construction of v (0.1), we have
5v(c) = da’ = [d'a’] = [gb] = 0 € coker g

so im~ C ker . On the other hand, if [a’] € ker § then d'a’ € im g, i.e., there exists b € B such that
d'a’ = gb. But then y(eb) = [@], so [a'] € im~.

(5) Exactness at coker g: First, observe that
imd = {d[d] |d € A’} = {[dd]]|d €A’}

= {[p] |V €imd’}

= {[t'] | b € kere'} C eqkere.
On the other hand, if ¢[b'] = 0 then €'b’ = he for some ¢ € C. Since e is surjective, there exists
b € B such that eb = ¢, whence €'b’ = heb = €/gb, i.e., b/ — gb € kere’ = imd'. That is, there is some
a’ € A’ such that

b —gb=dd]

whence 0[a’] = [d'a’] = [/ — gb] = [b] € coker g. So we have shown that kere C im 6.

(6) Exactness at coker i (in the dashed-arrow case): Assume €’ is onto. For every [¢] € coker i, we can
find ¥ € B’ such that ¢'b’ = ¢/, and then e[V/] = [¢/b'] = [¢/]. So ¢ is onto as well.

Problem #3 Recall that the torsion subgroup T(G) of an abelian group is the subgroup

consisting of all elements of finite order. Let 0 — A 2, B % 77 — 0 be a short exact
sequence of finitely generated Z-modules. Show that T'(A) = T(B). In particular, if A is
free abelian then so is B.

Let0 —» A L) B <y C — 0 be a short exact sequence of finitely generated Z-modules. Show
that if C is free abelian, then T'(A) = T'(B), but that A free abelian does not necessarily
imply that T'(B) = T(C).

Solution: Suppose C is free. If z € A, k € Z, and kx = 0, then kf(xz) = f(kxz) = 0, so f(x) is torsion.
Therefore, f restricts to a one-to-one map T'(A) — T'(B). On the other hand, if b € B is torsion then it
is certainly in the kernel of g (because its image is torsion in C, hence zero), hence in the image of f by
exactness. So the map T'(A) — T'(B) is an isomorphism.

For the other direction, the short exact sequence 0 — Z N/ Zs — 0 is a counterexample.



Problem #4 [Hatcher p.132 #17] (a) Compute the homology groups H,, (X, A) when X
is S? or S! x S! and A is a set of k points in X with k < co. You may use the computation
of the homology groups of X from §2.1.

(b) Compute the groups H,, (X, A) and H, (X, B), where X is a closed orientable surface
of genus two with A and B the circles shown. (What are X/A and X/B?)

(=15

Solution: (a) Recall that

Hy(S*) =17, Hy(S* xSY) =17, Hy(A) =0,
H\(S8%) =0, Hy (St x 8t) =22, H,(4) =0,
Hy(S?) =12, Hy(St x sty =1z, Hy(A) = 7*

with everything vanishing in dimension > 3. So the long exact sequence for relative homology
0— Ho(A) = Hy(X) = Hy(X,A) —» Hi(A) - Hi(X) = Hi(X,A) = Hy(A) —» Ho(X) = Hp(X,A) =0
becomes
0—=7Z— Hy(X,A) - 0 — H(X) = Hi(X,A) - ZF - Z = Hy(X) — Ho(X,A) =0
Split up the sequence at the 0. The first piece tells us that Ha (X, A) = Z.

Now focus on the second piece, which is

0= Hi(X) 25 Hi(X,A) 25 28 5 7 = Hy(X) 2 Ho(X, A) — 0.

The map ¢ is surjective (it maps the class of any point in A to the class of a point in X). Therefore
imi = Ho(X) = kerj’, so j' is the zero map. It follows that Ho(X, A) = 0.

Since i is surjective, its kernel must be a copy of Z*¥~!. Replacing the target of @ with im 9 = keri gives a
short exact sequence

0— Hi(X) -1 Hy (X, A) L 281 0.
If X =S? then j = 0 and so 0 is an isomorphism, and we get H;(S?, A) = Zk—1,

If X =S' x S! then the exact sequence is
0— 7% L5 Hi(X,A) L5781 50
which by the result of a previous problem says that Hy(S?, A) = Zk+1.

By the way, note that S?/A is R? with k points removed, which is homotopy-equivalent to the wedge of k — 1
circles. In summary,

Hi(X, A)
E>2 k=2 k=1 k=0
X =8 0 Z 7ZFY 0
X=8S'x8'"1] o0 y///a 0
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Solution: (b) These pairs are good, so H,(X,A) = H,(X/A) and H,(X,B) = H,(X/B). Contracting
A gives X/A =2 (St x S') A (St x S) (with the contracted point as the wedge point). Meanwhile, X/B is
homotopy-equivalent to (S* x S') A S! by the following figure.

//% ///’B
/><3//
77!

Therefore

Hy(X, A) =77, H(X,A) =17 H,(X,A) =0 (n#1,2),
Hy(X,A)=Z, Hl(XvA):ZS7 H,(X,A)=0 (n#1,2).




Problem #5 [Hatcher p.132 #20] The suspension SX of a space X is obtained by taking

two copies of the cone CX = X X [0,1]/X X {1} and attaching them along their bases.

Equivalently, take a prism over X and contract each of the top and bottom faces to points:
SX =X x[0,1] / X x {0} / X x {1}.

For example, the suspension of S™ is S?*1.

Prove that ﬁn(SX) = ﬁn_l(X) for all n > 0. More generally, for any integer k, compute

the reduced homology groups of the union of k copies of CX with their bases identified.
(The suspension is the case k = 2.)

Solution: First we handle the suspension SX. Observe that SX = CX/X x {0}, so the long exact sequence
for the pair (CX,X x {0}) is

o= Hy(CX) = Hy(CX, X x {0}) = H,_1(X x {0}) = H,_1(CX) — ---

but the two outer terms are zero because C'X is contractible (recall that it deformation-retracts onto the
cone point). So the middle arrow is the desired isomorphism.

More generally, let X* denote the union of k copies of CX with their bases identified (so in particular
XM = CX and X® = SX). For k > 1, we can form X from X1 by a two-step process: first attach a
cylinder X x I to the base of X[*~1 along X x {0} to get a space Y, then contract X x {1} to a point. This
identifies X[* with Y/X x {1}, and meanwhile Y deformation-retracts to X[*~1 by shrinking X x [0,1] to
X x {0}. Therefore, the inclusion and quotient
Xx {1} 5 Y L v/(X x {1})
gives rise to a long exact sequence
e Ha (X x (1)) = Ho(V) 5 Hu(V/(X x {1})) <5 Huoa (X x (1)) = -

The map i, is zero, since any map A™ — X x {1} is homotopic in ¥ to a map to the cone point. Therefore
the LES breaks up into short exact sequences

0= Ho(Y) -2 H (Y/(X x {1}) -2 H,_1(X x {1}) = 0.

Replacing these spaces with their homotopy equivalents, we can rewrite this as

0 — Ho(XW1) 2 g (xy 25 |7, (X)) = 0. (0.4)

Note: There are other way to obtain is to consider the good pair (X[k], X[’“_l]). The quotient space
X[ /X (k=11 can be identified with SX, and the long exact sequence for the pair, together with the isomor-
phism H,,(SX) = H,_,(X), consists of the sequences , spliced together (although one still has to argue
that the connecting homomorphism is zero). One can also use Corollary 2.24, or a Mayer-Vietoris sequence
(which you will learn soon).

Obtaining (0.4) was as far as you had to get to obtain full credit. To complete the problem, we show
that the sequence splits, i.e., that H, (X*) = H,(X¥ 1)@ H,_;(X). By the Splitting Lemma (Hatcher,
p.147), we can do this by constructing a homomorphism

p: Hy (X)) - m1,(XF) = Q

such that po j, = 1g.

Regard X[* as the union of k copies Z1, ..., Z; of the cone C'X, identified along their bases X; x {0}, and
let U; be an open deformation of Z; in X¥: eg., U; = Z; U Uj# X, x [0,1/2). Note that Uy U--- U Uy
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deformation-retracts to X*~U. Let U = {Uy,..., U} and U’ = {Us,...,Ux}. By the Subdivision Lemma
(Hatcher, Prop. 2.21, p.119) we have

CY ~ ¢, (xH) and CY ~ Cy(x*-1),
An element of CY is a chain of the form 7 = Y7 | 0y, where o; € C,,(U;). The obvious homeomorphism
Uy — Us induces an isomorphism ¢ : Cy,(Uy) — C,(Us), so replacing oy with ¢(o) gives a map CY — CY',
which induces a map on homology:
p: Hy(XH) — [, (x =1y,
On the other hand, the image of j. consists of chains of the form 7 with o1 = 0, so it follows that p o j, is
the identity on H, (X [k’”) as desired. This completes the proof that the short exact sequence splits.
Therefore
Hy (XMWY=~ g (xF-1) @ H,_,(X)
and by induction we now know the homology groups of a generalized suspension:

H, (X" )~ [, ,(X)®k-1, (%)

A better solution, submitted by Nick and others: Consider the effect of starting with the space X ¥,
regarded as the union of k copies Z1, ..., Zj of the cone C' X identified along their bases, and then contracting
Zy. This is a deformation retraction since Zj is contractible. On the other hand, each Z; (i < k) turns into
a copy of SX, and the Z;’s are wedged together at the point coming from the base. Therefore

X~ (§x)NE=D),

Using the first part of the problem, together with there fact that wedge sum is additive on reduced homology,
we get the formula (%) much more easily.

Problem #6 Let n < d > 0 and let X = A™? denote the d-skeleton of the n-dimensional
simplex (whose vertices are vg,v1,...,v,). Most of you conjectured last time that the
reduced homology groups of X are given by

H(X) = 7(3) itk =d,
g 0 if k < d.

This conjecture is correct. Prove it without writing down any explicit simplicial boundary
matrices.

Solution: If k& < d, then Hy(X) = Hy(A") = 0 because A" is contractible, hence acyclic. Otherwise,
consider the subcomplex
'=(ceX|0co.
This complex is contractible, because it is the cone with apex vy and base
A={oceX|0&o, cU{vo} € X}.

(The complex T is known as the star of vg, and A is its link.) Since I is contractible, we have X ~ X/T.
But this latter space is a CW-complex with a single vertex and ( dil) cells of dimension d (corresponding to
the simplices supported on d+ 1 of the vertices vy, ..., v,). That is, X/T" is the wedge of (dil) copies of S,

hence has the desired homology.



