
Math 821 Problem Set #6
Due date: Friday, April 18

Problem #1 [Hatcher p.131 #11] Show that if A ⊂ X and there is a retraction X → A,
then the map Hn(A)→ Hn(X) induced by the inclusion A ↪→ X is injective.

Solution: Call the inclusion i. A retraction is by definition a function r : X → A with r|A = r ◦ i = 1A. By
functoriality we have a commutative diagram of spaces and continuous maps that induces a commutative
diagram of homology groups and homomorphisms:

A
i //

1A

99
X

r // Hn(A) Hn(A)
i∗ //

1

66
Hn(X)

r∗ // Hn(A)

From this we see that i∗ is injective (and that r∗ is surjective).

Problem #2 (a) [Hatcher p.132 #15] A homological algebra warmup: Prove that if

A
f−→ B

g−→ C
h−→ D

j−→ E

is exact with f surjective and j injective, then C = 0.

Solution: We have im f = B = ker g, so g is the zero map. Similarly, ker j = imh = 0, so h is also the zero
map. It follows that im g = 0 = kerh = C, so c = 0.

(b) Prove the Snake Lemma: if the commutative diagram

0 // A
d //

f

��

B
e //

g

��

C //

h
��

0

0 // A′
d′
// B′

e′ // C′ // 0

has exact rows, then there is an exact sequence

0 99K ker f
α−→ ker g

β−→ kerh
γ−→ coker f

δ−→ coker g
ε−→ cokerh 99K 0.

(The dashed arrows can be either included or omitted — both versions are often referred
to as the Snake Lemma. In your solution, prove the version without the dashed arrows
and then observe what happens if the arrows are included.)

Solution: First, we construct the maps and check that they are well-defined. Second, we check that the
sequence is exact.

(1) For a ∈ ker f , define α(a) = da. We have gda = d′fa = 0, so α(a) ∈ ker g.

(2) For b ∈ ker g, define β(b) = eb. We have heb = e′gb = 0, so β(b) ∈ kerh.
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(3) For c ∈ kerh, we can write c = e(b + b̃) for some b ∈ B and b̃ ∈ ker e. (All preimages of c can be

obtained in this way by fixing b and letting b̃ vary over ker e.) Since ker e = im d and d is injective,

there is a unique a ∈ A such that b̃ = da. So

c = e(b+ b̃) = e(b+ da) and e′g(b+ da) = he(b+ da) = hc = 0

so g(b+da) ∈ ker e′ = im d′. Since d′ is injective, there is a unique a′ ∈ A′ such that d′a′ = g(b+da).
Since

d′a′ = g(b+ da) = gb+ gda = gb+ d′fa ∴ gb = d′a′ − d′fa = d′(a′ − fa).

That is, a′ is determined by c modulo im f , which means that [a′] ∈ coker f is uniquely determined

by c. Therefore γ(c) = [a′] is a well-defined function kerh→ coker f , and the choice of b̃ was irrelevant

(so we might as well have taken b̃ = 0 and hence a = 0). This lets us rewrite the construction of γ(c)
more conveniently for future use:

find b ∈ B such that c = eb, find a′ ∈ A′ such that d′a′ = gb, and put γ(c) = [a′] ∈ coker f . (0.1)

(4) Let [a′] ∈ coker f , i.e., [a′] = a′ + im f for some a′ ∈ A′. Define

δ[a′] = [d′a′] = d′a′ + im d′f = d′a′ + im gd = d′a′ + g(im d)

which is a well-defined element of coker g = B′/ im g.

(5) Let [b′] ∈ coker g, i.e., [b′] = b′ + im g for some b′ ∈ B′. Define

ε[b′] = [e′b′] = e′b′ + im e′g = e′b′ + imhe = e′b′ + h(im e)

which is a well-defined element of cokerh = C ′/ imh.

Now that we have all the maps defined, we check exactness.

(1) Exactness at ker f (in the dashed-arrow case): If d is injective then so is α.

(2) Exactness at ker g:

imα = α(ker f) = d(ker f) = {da | fa = 0}
= {da | d′fa = 0} by injectivity of d′

= {da | gda = 0} by commutativity

= ker g ∩ im d = ker g ∩ ker e by exactness of the top row

= kerβ.

(3) Exactness at kerh: observe that

imβ = β(ker g) = e(ker g) = {eb : gb = 0} (0.2)

and

ker γ = {c ∈ kerh | ∃b ∈ B : c = eb,∃a′ ∈ A′ : d′a′ = gb, ∃a ∈ A : a′ = fa}
= {c ∈ kerh | ∃b ∈ B : c = eb,∃a ∈ A : d′fa = gb}
= {eb | b ∈ B, heb = 0, ∃a ∈ A : gda = gb}. (0.3)

Comparing (0.2) with (0.3) shows that imβ ⊂ ker γ, because if c = eb ∈ imβ, then gb = 0 and we

may take a = 0 in (0.3). On the other hand, if c = eb ∈ ker γ, then let b̃ = b − da. Then c = eb̃

(since ed = 0) and b̃ ∈ ker g by (0.3), which by (0.2) says that c ∈ imβ.
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(4) Exactness at coker f : Let c ∈ kerh. Adopting the notation of the construction of γ (0.1), we have

δγ(c) = δa′ = [d′a′] = [gb] = 0 ∈ coker g

so im γ ⊆ ker δ. On the other hand, if [a′] ∈ ker δ then d′a′ ∈ im g, i.e., there exists b ∈ B such that
d′a′ = gb. But then γ(eb) = [a′], so [a′] ∈ im γ.

(5) Exactness at coker g: First, observe that

im δ = {δ[a′] | a′ ∈ A′} = {[d′a′] | a′ ∈ A′}
= {[b′] | b′ ∈ im d′}
= {[b′] | b′ ∈ ker e′} ⊂ eq ker ε.

On the other hand, if ε[b′] = 0 then e′b′ = hc for some c ∈ C. Since e is surjective, there exists
b ∈ B such that eb = c, whence e′b′ = heb = e′gb, i.e., b′ − gb ∈ ker e′ = im d′. That is, there is some
a′ ∈ A′ such that

b′ − gb = d′a′]

whence δ[a′] = [d′a′] = [b′ − gb] = [b′] ∈ coker g. So we have shown that ker ε ⊆ im δ.

(6) Exactness at cokerh (in the dashed-arrow case): Assume e′ is onto. For every [c′] ∈ cokerh, we can
find b′ ∈ B′ such that e′b′ = c′, and then ε[b′] = [e′b′] = [c′]. So ε is onto as well.

Problem #3 Recall that the torsion subgroup T (G) of an abelian group is the subgroup

consisting of all elements of finite order. Let 0 → A
f−→ B

g−→ Zn → 0 be a short exact
sequence of finitely generated Z-modules. Show that T (A) ∼= T (B). In particular, if A is
free abelian then so is B.

Let 0→ A
f−→ B

g−→ C → 0 be a short exact sequence of finitely generated Z-modules. Show
that if C is free abelian, then T (A) ∼= T (B), but that A free abelian does not necessarily
imply that T (B) = T (C).

Solution: Suppose C is free. If x ∈ A, k ∈ Z, and kx = 0, then kf(x) = f(kx) = 0, so f(x) is torsion.
Therefore, f restricts to a one-to-one map T (A) → T (B). On the other hand, if b ∈ B is torsion then it
is certainly in the kernel of g (because its image is torsion in C, hence zero), hence in the image of f by
exactness. So the map T (A)→ T (B) is an isomorphism.

For the other direction, the short exact sequence 0→ Z 2−→ Z→ Z2 → 0 is a counterexample.
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Problem #4 [Hatcher p.132 #17] (a) Compute the homology groups Hn(X,A) when X
is S2 or S1× S1 and A is a set of k points in X with k <∞. You may use the computation
of the homology groups of X from §2.1.

(b) Compute the groups Hn(X,A) and Hn(X,B), where X is a closed orientable surface
of genus two with A and B the circles shown. (What are X/A and X/B?)

132 Chapter 2 Homology

11. Show that if A is a retract of X then the map Hn(A)→Hn(X) induced by the

inclusion A ⊂ X is injective.

12. Show that chain homotopy of chain maps is an equivalence relation.

13. Verify that f # g implies f∗ = g∗ for induced homomorphisms of reduced

homology groups.

14. Determine whether there exists a short exact sequence 0→Z4→Z8⊕Z2→Z4→0.

More generally, determine which abelian groups A fit into a short exact sequence

0→Zpm→A→Zpn→0 with p prime. What about the case of short exact sequences

0→Z→A→Zn→0?

15. For an exact sequence A→B→C→D→E show that C = 0 iff the map A→B

is surjective and D→E is injective. Hence for a pair of spaces (X,A) , the inclusion

A↩X induces isomorphisms on all homology groups iff Hn(X,A) = 0 for all n .

16. (a) Show that H0(X,A) = 0 iff A meets each path-component of X .

(b) Show that H1(X,A) = 0 iff H1(A)→H1(X) is surjective and each path-component

of X contains at most one path-component of A .

17. (a) Compute the homology groups Hn(X,A) when X is S2 or S1×S1 and A is a

finite set of points in X .

(b) Compute the groups Hn(X,A) and Hn(X,B) for X

a closed orientable surface of genus two with A and B

the circles shown. [What are X/A and X/B ?]

18. Show that for the subspace Q ⊂ R , the relative homology group H1(R,Q) is free

abelian and find a basis.

19. Compute the homology groups of the subspace of I×I consisting of the four

boundary edges plus all points in the interior whose first coordinate is rational.

20. Show that H̃n(X) ≈ H̃n+1(SX) for all n , where SX is the suspension of X . More

generally, thinking of SX as the union of two cones CX with their bases identified,

compute the reduced homology groups of the union of any finite number of cones

CX with their bases identified.

21. Making the preceding problem more concrete, construct explicit chain maps

s :Cn(X)→Cn+1(SX) inducing isomorphisms H̃n(X)→H̃n+1(SX) .

22. Prove by induction on dimension the following facts about the homology of a

finite-dimensional CW complex X , using the observation that Xn/Xn−1 is a wedge

sum of n spheres:

(a) If X has dimension n then Hi(X) = 0 for i > n and Hn(X) is free.

(b) Hn(X) is free with basis in bijective correspondence with the n cells if there are

no cells of dimension n− 1 or n+ 1.

(c) If X has k n cells, then Hn(X) is generated by at most k elements.

Solution: (a) Recall that

H2(S2) = Z, H2(S1 × S1) = Z, H2(A) = 0,

H1(S2) = 0, H1(S1 × S1) = Z2, H1(A) = 0,

H0(S2) = Z, H0(S1 × S1) = Z, H0(A) = Zk

with everything vanishing in dimension ≥ 3. So the long exact sequence for relative homology

0→ H2(A)→ H2(X)→ H2(X,A)→ H1(A)→ H1(X)→ H1(X,A)→ H0(A)→ H0(X)→ H0(X,A)→ 0

becomes

0→ Z→ H2(X,A)→ 0→ H1(X)→ H1(X,A)→ Zk → Z = H0(X)→ H0(X,A)→ 0

Split up the sequence at the 0. The first piece tells us that H2(X,A) = Z.

Now focus on the second piece, which is

0→ H1(X)
j−−→ H1(X,A)

∂−−→ Zk i−−→ Z = H0(X)
j′−−→ H0(X,A)→ 0.

The map i is surjective (it maps the class of any point in A to the class of a point in X). Therefore
im i = H0(X) = ker j′, so j′ is the zero map. It follows that H0(X,A) = 0.

Since i is surjective, its kernel must be a copy of Zk−1. Replacing the target of ∂ with im ∂ = ker i gives a
short exact sequence

0→ H1(X)
j−−→ H1(X,A)

∂−−→ Zk−1 → 0.

If X = S2 then j = 0 and so ∂ is an isomorphism, and we get H1(S2, A) = Zk−1.

If X = S1 × S1 then the exact sequence is

0→ Z2 j−−→ H1(X,A)
∂−−→ Zk−1 → 0

which by the result of a previous problem says that H1(S2, A) = Zk+1.

By the way, note that S2/A is R2 with k points removed, which is homotopy-equivalent to the wedge of k−1
circles. In summary,

Hk(X,A)

k > 2 k = 2 k = 1 k = 0

X = S2 0 Z Zk−1 0

X = S1 × S1 0 Z Zk+1 0
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Solution: (b) These pairs are good, so Hn(X,A) = H̃n(X/A) and Hn(X,B) = H̃n(X/B). Contracting
A gives X/A ∼= (S1 × S1) ∧ (S1 × S1) (with the contracted point as the wedge point). Meanwhile, X/B is
homotopy-equivalent to (S1 × S1) ∧ S1 by the following figure.

Therefore

H2(X,A) = Z2, H1(X,A) = Z4, Hn(X,A) = 0 (n 6= 1, 2),

H2(X,A) = Z, H1(X,A) = Z3, Hn(X,A) = 0 (n 6= 1, 2).
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Problem #5 [Hatcher p.132 #20] The suspension SX of a space X is obtained by taking
two copies of the cone CX = X × [0, 1]/X × {1} and attaching them along their bases.
Equivalently, take a prism over X and contract each of the top and bottom faces to points:

SX = X × [0, 1] / X × {0} / X × {1}.
For example, the suspension of Sn is Sn+1.

Prove that H̃n(SX) ∼= H̃n−1(X) for all n > 0. More generally, for any integer k, compute
the reduced homology groups of the union of k copies of CX with their bases identified.
(The suspension is the case k = 2.)

Solution: First we handle the suspension SX. Observe that SX = CX/X×{0}, so the long exact sequence
for the pair (CX,X × {0}) is

· · · → H̃n(CX)→ H̃n(CX,X × {0})→ H̃n−1(X × {0})→ H̃n−1(CX)→ · · ·
but the two outer terms are zero because CX is contractible (recall that it deformation-retracts onto the
cone point). So the middle arrow is the desired isomorphism.

More generally, let X [k] denote the union of k copies of CX with their bases identified (so in particular
X(1) = CX and X(2) = SX). For k > 1, we can form X [k] from X [k−1] by a two-step process: first attach a
cylinder X × I to the base of X [k−1] along X ×{0} to get a space Y , then contract X ×{1} to a point. This
identifies X [k] with Y/X × {1}, and meanwhile Y deformation-retracts to X [k−1] by shrinking X × [0, 1] to
X × {0}. Therefore, the inclusion and quotient

X × {1} i−−→ Y
j−−→ Y/(X × {1})

gives rise to a long exact sequence

· · · → Hn(X × {1}) i∗−−→ Hn(Y )
j∗−−→ Hn(Y/(X × {1})) ∂−−→ Hn−1(X × {1})→ · · ·

The map i∗ is zero, since any map ∆n → X × {1} is homotopic in Y to a map to the cone point. Therefore
the LES breaks up into short exact sequences

0→ Hn(Y )
j∗−−→ Hn(Y/(X × {1})) ∂−−→ Hn−1(X × {1})→ 0.

Replacing these spaces with their homotopy equivalents, we can rewrite this as

0→ Hn(X [k−1])
j∗−−→ Hn(X [k])

∂−−→ Hn−1(X)→ 0. (0.4)

Note: There are other way to obtain (0.4) is to consider the good pair (X [k], X [k−1]). The quotient space
X [k]/X [k−1] can be identified with SX, and the long exact sequence for the pair, together with the isomor-

phism H̃n(SX) ∼= H̃n−1(X), consists of the sequences (0.4), spliced together (although one still has to argue
that the connecting homomorphism is zero). One can also use Corollary 2.24, or a Mayer-Vietoris sequence
(which you will learn soon).

Obtaining (0.4) was as far as you had to get to obtain full credit. To complete the problem, we show
that the sequence splits, i.e., that Hn(X [k]) ∼= Hn(X [k−1]) ⊕Hn−1(X). By the Splitting Lemma (Hatcher,
p.147), we can do this by constructing a homomorphism

p : Hn(X [k])→ Hn(X [k−1]) =: Q

such that p ◦ j∗ = 1Q.

Regard X [k] as the union of k copies Z1, . . . , Zk of the cone CX, identified along their bases Xi × {0}, and
let Ui be an open deformation of Zi in X [k]: e.g., Ui = Zi ∪

⋃
j 6=iXj × [0, 1/2). Note that U2 ∪ · · · ∪ Uk
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deformation-retracts to X [k−1]. Let U = {U1, . . . , Uk} and U ′ = {U2, . . . , Uk}. By the Subdivision Lemma
(Hatcher, Prop. 2.21, p.119) we have

CU• ' C•(X [k]) and CU
′

• ' C•(X [k−1]).

An element of CUn is a chain of the form τ =
∑n

i=1 σi, where σi ∈ Cn(Ui). The obvious homeomorphism

U1 → U2 induces an isomorphism φ : Cn(U1)→ Cn(U2), so replacing σ1 with φ(σ1) gives a map CUn → CU
′

n ,
which induces a map on homology:

p : Hn(X [k])→ Hn(X [k−1]).

On the other hand, the image of j∗ consists of chains of the form τ with σ1 = 0, so it follows that p ◦ j∗ is
the identity on Hn(X [k−1]) as desired. This completes the proof that the short exact sequence (0.4) splits.
Therefore

Hn(X [k]) ∼= Hn(X [k−1])⊕Hn−1(X)

and by induction we now know the homology groups of a generalized suspension:

Hn(X [k]) ∼= Hn−1(X)⊕(k−1). (∗)

A better solution, submitted by Nick and others: Consider the effect of starting with the space X [k],
regarded as the union of k copies Z1, . . . , Zk of the cone CX identified along their bases, and then contracting
Zk. This is a deformation retraction since Zk is contractible. On the other hand, each Zi (i < k) turns into
a copy of SX, and the Zi’s are wedged together at the point coming from the base. Therefore

X [k] ' (SX)∧(k−1).

Using the first part of the problem, together with there fact that wedge sum is additive on reduced homology,
we get the formula (∗) much more easily.

Problem #6 Let n ≤ d ≥ 0 and let X = ∆n,d denote the d-skeleton of the n-dimensional
simplex (whose vertices are v0, v1, . . . , vn). Most of you conjectured last time that the
reduced homology groups of X are given by

H̃k(X) =

{
Z(n

d) if k = d,

0 if k < d.

This conjecture is correct. Prove it without writing down any explicit simplicial boundary
matrices.

Solution: If k < d, then H̃k(X) = H̃k(∆n) = 0 because ∆n is contractible, hence acyclic. Otherwise,
consider the subcomplex

Γ = 〈σ ∈ X | 0 ∈ σ.
This complex is contractible, because it is the cone with apex v0 and base

Λ = {σ ∈ X | 0 6∈ σ, σ ∪ {v0} ∈ X} .
(The complex Γ is known as the star of v0, and Λ is its link.) Since Γ is contractible, we have X ' X/Γ.
But this latter space is a CW-complex with a single vertex and

(
n

d+1

)
cells of dimension d (corresponding to

the simplices supported on d+ 1 of the vertices v1, . . . , vn). That is, X/Γ is the wedge of
(

n
d+1

)
copies of Sn,

hence has the desired homology.


