

Math 821 Problem Set #4
Due date: Friday, April 4

Problem #1 Verify that the simplicial boundary map defined by

$$\partial_n[v_0, \dots, v_n] = \sum_{i=0}^n (-1)^i [v_0, \dots, \hat{v}_i, \dots, v_n]$$

satisfies the equation $\partial_{n-1} \circ \partial_n = 0$ for all n . (Yes, this calculation is done explicitly in Hatcher. But it is so important that everyone should do it for themselves at least once.)

Solution: The summands in $\partial_{n-1} \partial_n[v_0, \dots, v_n]$ all have the form $\pm[v_0, \dots, \hat{v}_i, \dots, \hat{v}_j, \dots, v_n]$ for $i < j$. Each such summand arises twice; we need to check that the signs are opposite. If v_j is removed first, then the sign contribution is $(-1)^j (-1)^i$, because i is the i^{th} leftmost element of the list $[v_0, \dots, v_i, \dots, \hat{v}_j, \dots, v_n]$. On the other hand, if v_i is removed first, then the sign contribution is $(-1)^i (-1)^{j-1}$, because j is the $(j-1)^{\text{th}}$ leftmost element of the list $[v_0, \dots, \hat{v}_i, \dots, v_j, \dots, v_n]$. Therefore all summands cancel.

Problem #2 Let X be an abstract simplicial complex on vertex set $[n]$ and let $|X|$ be a geometric realization of X (not necessarily the standard one — it doesn't matter). What invariant of $|X|$ corresponds to the dimension of $H_0^\Delta(X)$?

Solution: We have $H_0^\Delta(X) = \Delta^0(X)/\text{im } \partial_1$. The group $\Delta_1(X)$ is free abelian on the 0-simplices, i.e., the vertices. The image of ∂_1 is generated by 0-chains $[v] - [w]$ whenever vw is an edge. If two vertices v_0, v_n are in the same component of X , then there is a path v_0, v_1, \dots, v_n in the 1-skeleton, so

$$[v_0] - [v_n] = ([v_0] - [v_1]) + ([v_1] - [v_2]) + \dots + ([v_{n-1}] - [v_n]) \in \text{im } \partial_1.$$

In other words, any two 0-chains representing vertices in the same component are equal modulo $\text{im } \partial_1$. On the other hand, the chain $\partial[v, w] = [v] - [w]$ has the property that the sum of coefficients of vertices in any given component is even (because v, w are certainly in the same component by virtue of the existence of the 1-simplex $[v, w]$), and this property extends \mathbb{Z} -linearly to all of $\text{im } \partial_1$. Therefore no two vertices in different components are equal modulo $\text{im } \partial_1$. We conclude that $H_0^\Delta(X) \cong \mathbb{Z}^c$, where c is the number of components, and any selection of one vertex from each component gives a natural basis for $H_0^\Delta(X)$.

Problem #3 Consider the matrix

$$M = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}.$$

Describe $\text{coker } M$ (i) if M is regarded as a linear transformation over \mathbb{Q} ; (ii) if M is regarded as a linear transformation over \mathbb{Z} ; (iii) if M is regarded as a linear transformation over \mathbb{F}_q (the finite field with q elements).

Solution: (i) Over \mathbb{Q} , the matrix is nonsingular, hence represents an isomorphism $\mathbb{Q}^3 \rightarrow \mathbb{Q}^3$. Therefore $\text{coker } M = \mathbb{Q}^3 / \text{im } M = 0$.

(ii) Over \mathbb{Z} , the matrix is still nonsingular, but is not invertible. Since $\det M = 2$, the cokerel must be an abelian group of order 2, so must be \mathbb{Z}_2 . More explicitly, performing \mathbb{Z} -invertible column operations

(replacing the first column with the sum of all three) gives the matrix

$$\underbrace{\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}}_M \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}}_B = \begin{bmatrix} 2 & 1 & 0 \\ 2 & 0 & 1 \\ 2 & 1 & 1 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}}_A \underbrace{\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_S$$

with A also \mathbb{Z} -invertible. The matrix S is the Smith normal form of M , from which we can read off $\text{coker } M \cong \mathbb{Z}_2$.

(iii) Let $q = p^a$. If $p \neq 2$, then $\det M = 2$ is a unit in \mathbb{F}_q , so the transformation is invertible and $\text{coker } M = 0$ just as in (i).

If $p = 2$ then the matrix is singular. The rank is still 2 (since any two columns are linearly independent) so $\text{coker } M = \mathbb{F}_q$. (Note that the cokernel must be a vector space, so the only invariant we need is its rank.)

Problem #4 [Hatcher p.131 #4] Compute by hand the simplicial homology groups of the “triangular parachute” obtained from Δ^2 by identifying its vertices to a single point.

Call the complex P (for “parachute”). Call the triangle T and the edges a, b, c . It doesn’t matter how we orient them — say $\partial T = a + b + c$. There is only one vertex v , so all edges are loops. So the simplicial chain complex is

$$\Delta_2 = \mathbb{Z}\{T\} \xrightarrow{\partial_2} \Delta_1 = \mathbb{Z}\{a, b, c\} \xrightarrow{\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}} \Delta_0 = \mathbb{Z}\{v\}$$

and

$$\begin{aligned} H_2^\Delta(P) &= \ker \partial_2 &= 0, \\ H_1^\Delta(P) &= \ker \partial_1 / \text{im } \partial_2 = \mathbb{Z}\{a, b, c\} / \mathbb{Z}\{a + b + c\} &\cong \mathbb{Z}^2, \\ H_0^\Delta(P) &= \Delta_0 / \text{im } \partial_1 &\cong \mathbb{Z} \quad (\text{or cite Problem 2}). \end{aligned}$$

Problem #5 [Hatcher p.131 #5] Compute by hand the simplicial homology groups of the Klein bottle using the Δ -complex structure on p.102 (with two triangles).

Using Hatcher’s labeling of the simplices, the simplicial chain complex is

$$\Delta_2 = \mathbb{Z}\{U, L\} \xrightarrow{\begin{bmatrix} 1 & 1 \\ 1 & -1 \\ -1 & 1 \end{bmatrix}} \Delta_1 = \mathbb{Z}\{a, b, c\} \xrightarrow{\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}} \Delta_0 = \mathbb{Z}\{v\}$$

The columns of ∂_2 are linearly independent, so $H_2^\Delta(K) = 0$, and yet again $H_0^\Delta(K) = \mathbb{Z}$. To calculate $H_1^\Delta(K)$, observe that

$$\{v_1 = (1, 1, -1), v_2 = (1, 0, 0), v_3 = (0, 1, 0)\}$$

generates \mathbb{Z}^3 as a \mathbb{Z} -module, and that

$$\text{im } \partial_2 = \mathbb{Z}\{(1, 1, -1), (1, -1, 1)\} = \mathbb{Z}\{(1, 1, -1), (1, -1, 1) + (1, 1, -1)\} = \mathbb{Z}\{(1, 1, -1), (2, 0, 0)\} = \mathbb{Z}\{v_1, 2v_2\}.$$

Therefore $H_1^\Delta(K) = \mathbb{Z}^3 / \text{im } \partial_2 = \mathbb{Z} \oplus \mathbb{Z}_2$.

Problem #6 Check your answers on the last two problems using Macaulay2 or your favorite computer algebra system.

Here is one efficient way of doing it:

```
D2 = matrix{{1},{1},{1}}; D1 = matrix{{0,0,0}};
Parachute = chainComplex (D1,D2);
prune HH Parachute

D2 = matrix{{1,1},{1,-1},{-1,1}}; D1 = matrix{{0,0,0}};
Klein = chainComplex (D1,D2);
prune HH Klein
```

Problem #7 Let $\Delta^{n,d}$ denote the d -skeleton of the n -simplex. As an abstract simplicial complex, Δ is generated by all $(d+1)$ -element subsets of $\{0, \dots, n\}$. Use Macaulay2 (or another computer algebra system) to compute the homology groups of $\Delta^{n,d}$ for various values of n and d . Conjecture a general formula for $H_k(\Delta^{n,d})$ in terms of n , d and k . (Prove it, if you want.)

The answer is

$$\tilde{H}_k(\Delta^{n,d}) = \begin{cases} \mathbb{Z}^{\binom{n}{d+1}} & \text{if } k = d, \\ 0 & \text{if } k < d. \end{cases}$$

I gave full credit for making the correct conjecture. With the tools we have available, one probably needs an induction argument (e.g., using the fact that the chain complexes of $\Delta^{n,d}$ and $\Delta^{n,d+1}$ are identical except in dimension $d+1$). This problem will appear at a later date.