
Math 821 Problem Set #4
Problem Set #4
Due date: Friday, March 14

Problem #1 The dunce hat is the space D obtained from a triangle by identifying all three edges with
each other, with the orientations indicated below.

(a) Prove that D is simply-connected using Van Kampen’s theorem.

(b) Find a different, one-line proof that D is simply-connected.

Solution:

(a) Decompose D into two pieces A,B as follows: A is the interior of the 2-cell, and B = D \ {p}, where
p ∈ A.

Then:

• A is an open disk, hence contractible.
• B deformation-retracts onto, hence is homotopy-equivalent to, the boundary triangle, which is just

a circle (the edge a becomes one loop around the circle).
• A∩B is an (open) annulus, whose fundamental group is generated by a path γ winding once around
p. Note that γ ' aaa−1 in B.

Now, since A is contractible, Van Kampen’s Theorem says that

π1(D) = π1(B)/i∗π1(A ∩B)

and
i∗γ = aaa−1 = a

so this quotient is in fact trivial.

(b) By our theorems on 2-dimensional cell complexes, π1(D) = 〈g | ggg−1〉 = 〈g|g〉 = 0.



2

Problem #2 Consider the standard picture of the torus T = S1 × S1 as a quotient space of the square.
Explain what is wrong with the following “proof” (whose conclusion is certainly false):

Consider the open cover Aα∪Aβ∪Aγ shown below. Each one is path-connected and simply-
connected, and their intersection is path-connected. Therefore, by Van Kampen’s theorem,
the torus is simply-connected.

Solution: It is true that the sets Aα, Aβ , Aγ are all simply-connected. However, the intersection Aα∩Aβ∩Aγ
is not path-connected. The picture is misleading (which was the idea of the problem); it actually must look
something like this, and the two yellow splotches denote different components of Aα ∩Aβ ∩Aγ .
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Problem #3 (Hatcher, p.53, #4, modified) Let n ≥ 1 be an integer, and let X ⊂ R3 be the union of n
distinct rays emanating from the origin. Compute π1(R3 \X).

Solution: The map ft(x) = (1− t)x + t x
‖x‖ gives a deformation retraction from R3 \X to the unit sphere

minus n points. We can regard the deleting the first point as giving a copy of R2, so we now have R2 minus
n− 1 points. This space deformation-retracts to the wedge of n− 1 squares (∼= (S1)∨(n−1)), as shown below.
Therefore π1(X) ∼= π1((S1)∨(n−1)) is free on n− 1 generators.

omitted points
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Problem #4 Let a1, . . . , an be nonzero integers. Construct a cell complex X from S1 as follows: For each
j = 1, . . . , n, attach a 2-cell to S1 by wrapping it around the circle aj times. Compute π1(X).

Solution: The theorem on 2-dimensional cell complexes (from pp.50–52 of Hatcher) implies that

π1(X) = 〈g | ga1 , ga2 , . . . , gan〉 = 〈g | gk〉 = Zk
where k = gcd(a1, . . . , ak).

Problem #5 (Hatcher, p.53, #6, modified) Let X be a path-connected cell complex, and let Y be a cell
complex obtained from X by attaching an n-cell for some n ≥ 3. Show that the inclusion X ↪→ Y induces
an isomorphism π1(X) ∼= π1(Y ).

Solution: The proof of Prop. 1.26 goes through, changing e2α to enα. At the very end, we have that Aα
deformation-retracts onto a circle in enα \ {yα}, i.e., an n-ball minus a point. But such a thing is simply-
connected (as we know, it is homotopy-equivalent to Sn−1) and therefore π1(Aα) = 0, and the group N in
the statement of the proposition is trivial.

Another argument uses Van Kampen’s theorem. Let e be the n-cell that gets attached (so e ∼= Dn) and let
f : ∂e = Sn−1 → X be the attaching map. Write Y = X ∪ Z where Z is obtained by fattening ∂e slightly
into an open set that contains, and deformation-retracts onto, it. (This is a mapping cylinder neighborhood
in the sense of Example 0.15.) Then Z is contractible, hence simply-connected (since it deformation-retracts
onto an n-ball) and X ∩ Z is simply-connected (because it deformation-retracts onto the simply-connected
(n−1)-sphere ∂e). Now applying Van Kampen’s theorem to the decomposition Y = X∪Z gives a surjection
π1(X)→ π1(Y ) whose kernel is zero.

Problem #6 (Hatcher p.79, #2) Show that if p1 : X̃1 → X1 and p2 : X̃2 → X2 are covering spaces, then

so is their product p1 × p2 : X̃1 × X̃2 → X1 ×X2.

Solution: For i = 1, 2, let {U iα} be an open cover of Xi that is “good”, i.e., every component of p−1i (U iα) is
mapped homeomorphically to U iα by pi. The components V of (p1 × p2)−1(U1

α × U2
α) are just the products

V1 × V2, where Vi is a component of p−1i (U iα), and since pi|Ui
are homeomorphisms, so is (p1 × p2)|V . So

{U1
α × U2

α} is a good cover of X1 ×X2. By the way, this argument implies that the number of sheets of a
covering space is multiplicative under direct product.

Problem #7 (Hatcher p.80, #12) Let a and b be the generators of π1(S1∨S1, x0) corresponding to the two

copies of S1, with x0 their common point. Draw a picture of the covering space X̃ of S1 ∨ S1 corresponding
to the normal subgroup of π1(S1 ∨ S1) generated by a2, b2, and (ab)4, and prove that this covering space is

indeed the correct one. (I.e., this group should be p∗π1(X̃, x̃0).)

Solution: The space X̃ is a necklace of eight circles:
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The number of sheets of the covering is 8 (the cardinality of the preimage of any point in X, for example

x0). If we take Take x̃0 ∈ X̃0 to be the highlighted point. Then the colored loops in X̃0 given by

(1) the blue circle containing x̃0,
(2) the red circle containing x̃0, and
(3) walking all the way around the “outer arcs” of the necklace

map via p∗ to the loops a2, b2 and (ab)4 in G = π1(X).

Claim 1: p∗π1(X̃) is normal in π1(X). This is true by Prop. 1.39 in Hatcher, but we didn’t get to this

theorem until Friday 3/14, so here’s a more elementary proof. By the symmetry of X̃, the same colored

loops are available at every basepoint, so the group p∗π1(X̃) is independent of the choice of basepoint. Given

g ∈ π1(X) and h ∈ p∗π1(X̃), lift g to a path g̃ in X̃ from x̃0 to x̃1 and lift h to a loop h̃ at x̃1. Then g̃ · h̃ · h̃
is a loop at x̃0 that maps via p∗ to ghḡ. It follows that p∗π1(X̃) is closed under conjugation in G, proving
Claim 1. Moreover,

H :=
〈〈
a2, b2, (ab)4

〉〉
⊆ p∗π1(X̃) E G

(recall that the notation
〈〈
. . .

〉〉
means “normal subgroup generated by”) and therefore

G/H = 〈a, b | a2, b2, (ab)4〉.

Claim 2: The set
C := {e, a, b, ab, ba, aba, bab, abab} ⊂ G

contains a set of coset representatives for G/H. Indeed, any word with two consecutive instances of the
same letter can be replaced with a shorter word that is equivalent modulo H (i.e., in the same coset of
H), so we can pick a set of coset representatives consisting of words alternating between a’s and b’s (cf. the
discussion of Z2 ∗Z2 on p.42 of Hatcher). The defining relations of G/H say that abab is its own inverse; on
the other hand (abab)(baba) reduces to the empty word, so (abab)−1 = abab = baba. The relations also say
that ababa = bab and babab = aba, so any alternating word of length 5 or more can be reduced modulo H
to an element of C. This proves Claim 2.

We have shown that

[G : p∗π1(X̃)] ≤ [G : H] (because H ⊆ p∗π1(X̃))

≤ 8 (by the construction of coset representatives)

= [G : p∗π1(X̃)] (since X̃ is an 8-sheeted covering).

Therefore, equality must hold throughout, and it follows that p∗(π1X̃) = H as desired, By the way, G/H is
isomorphic to the dihedral group D4 — which is easily seen to be the set of deck transformations, i.e., the
symmetries of the colored octagon.


