Math 821 Problem Set #4
Problem Set #4
Due date: Friday, March 14

Problem #1 The dunce hat is the space D obtained from a triangle by identifying all three edges with
each other, with the orientations indicated below.

(a) Prove that D is simply-connected using Van Kampen’s theorem.

(b) Find a different, one-line proof that D is simply-connected.
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Solution:

(a) Decompose D into two pieces A, B as follows: A is the interior of the 2-cell, and B = D \ {p}, where
p € A.

Then:

e A is an open disk, hence contractible.

e B deformation-retracts onto, hence is homotopy-equivalent to, the boundary triangle, which is just
a circle (the edge a becomes one loop around the circle).

e AN B is an (open) annulus, whose fundamental group is generated by a path v winding once around
p. Note that v ~ aaa™" in B.

Now, since A is contractible, Van Kampen’s Theorem says that
m1(D) = 7 (B)/ixm1 (AN B)

and

1Y = aga ' =a

so this quotient is in fact trivial.

(b) By our theorems on 2-dimensional cell complexes, m (D) = (g | ggg=*) = (glg) = 0.
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Problem #2 Consider the standard picture of the torus T = S* x S' as a quotient space of the square.
Explain what is wrong with the following “proof” (whose conclusion is certainly false):

Consider the open cover A,UAgUA, shown below. Each one is path-connected and simply-
connected, and their intersection is path-connected. Therefore, by Van Kampen’s theorem,
the torus is simply-connected.

Solution: It is true that the sets A, Ag, A, are all simply-connected. However, the intersection A,NAgNA,
is not path-connected. The picture is misleading (which was the idea of the problem); it actually must look
something like this, and the two yellow splotches denote different components of A, N Ag N A,.
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Problem #3 (Hatcher, p.53, #4, modified) Let n > 1 be an integer, and let X C R? be the union of n
distinct rays emanating from the origin. Compute 71 (R? \ X).

Solution: The map fi(x) = (1 — t)x + = gives a deformation retraction from R3\ X to the unit sphere

Y]
minus n points. We can regard the deleting the first point as giving a copy of R?, so we now have R? minus
n — 1 points. This space deformation-retracts to the wedge of n — 1 squares (2 (S*)V("~1), as shown below.
Therefore m (X) 2 7 ((S1)V(=1) is free on n — 1 generators.

B —
B —
B —
-
B —
B —
B —
B —

e omitted points —

e I
T
e
VAN
e I
T

g ANV
VAN
|




3

Problem #4 Let ai,...,a, be nonzero integers. Construct a cell complex X from S! as follows: For each
j=1,...,n, attach a 2-cell to S* by wrapping it around the circle a; times. Compute 71 (X).

Solution: The theorem on 2-dimensional cell complexes (from pp.50-52 of Hatcher) implies that

m(X) = (g]g".g%,....¢") = (914" = Z
where k = ged(ay, ..., ax).

Problem #5 (Hatcher, p.53, #6, modified) Let X be a path-connected cell complex, and let Y be a cell
complex obtained from X by attaching an n-cell for some n > 3. Show that the inclusion X — Y induces
an isomorphism 71 (X) 2 m (Y).

Solution: The proof of Prop. 1.26 goes through, changing €2 to e?. At the very end, we have that A,
deformation-retracts onto a circle in e” \ {y4}, i.e., an n-ball minus a point. But such a thing is simply-
connected (as we know, it is homotopy-equivalent to S"~!) and therefore 7 (A,) = 0, and the group N in
the statement of the proposition is trivial.

Another argument uses Van Kampen’s theorem. Let e be the n-cell that gets attached (so e = D™) and let
f:0e=8""1 = X be the attaching map. Write Y = X U Z where Z is obtained by fattening Je slightly
into an open set that contains, and deformation-retracts onto, it. (This is a mapping cylinder neighborhood
in the sense of Example 0.15.) Then Z is contractible, hence simply-connected (since it deformation-retracts
onto an n-ball) and X N Z is simply-connected (because it deformation-retracts onto the simply-connected
(n—1)-sphere de). Now applying Van Kampen’s theorem to the decomposition Y = X U Z gives a surjection
m1(X) — 7 (Y) whose kernel is zero.

Problem #6 (Hatcher p.79, #2) Show that if p; : X; — X; and py : X5 — X are covering spaces, then
so is their product p; X ps : X7 x X — X7 x Xs.

Solution: For i = 1,2, let {U.} be an open cover of X; that is “good”, i.e., every component of p{l(Ué) is
mapped homeomorphically to U by p;. The components V of (p; X p2) (U} x U2) are just the products
Vi x V5, where V; is a component of p{l(Ué), and since p;|y, are homeomorphisms, so is (p1 X p2)|v. So
{UL x U2} is a good cover of X1 x X,. By the way, this argument implies that the number of sheets of a
covering space is multiplicative under direct product.

Problem #7 (Hatcher p.80, #12) Let a and b be the generators of 71 (S'V.St, 2) corresponding to the two
copies of S!, with g their common point. Draw a picture of the covering space X of Stv St corresponding
to the normal subgroup of 7 (S! vV S1) generated by a?, b%, and (ab)?*, and prove that this covering space is
indeed the correct one. (Le., this group should be p, (X, Z).)

Solution: The space X is a necklace of eight circles:



The number of sheets of the covering is 8 (the cardinality of the preimage of any point in X, for example
xo). If we take Take T € X, to be the highlighted point. Then the colored loops in X, given by

(1) the blue circle containing Zg,
(2) the red circle containing &g, and
(3) walking all the way around the “outer arcs” of the necklace

map via p, to the loops a2, b? and (ab)* in G = m(X).

Claim 1: p.m;(X) is normal in m;(X). This is true by Prop. 1.39 in Hatcher, but we didn’t get to this
theorem until Friday 3/14, so here’s a more elementary proof. By the symmetry of X, the same colored
loops are available at every basepoint, so the group p.m1(X) is independent of the choice of basepoint. Given
g €m(X) and h € p,m (X)), lift g to a path § in X from & to #; and lift h to a loop h at #;. Then §-h-h
is a loop at I that maps via p, to ghg. It follows that p,71(X) is closed under conjugation in G, proving
Claim 1. Moreover, }
H:=(a*,*,(ab)*) C pm(X) < G
(recall that the notation << . >> means “normal subgroup generated by”) and therefore

G/H = (a,b | a®,b?, (ab)*).

Claim 2: The set
C :={e, a, b, ab, ba, aba, bab, abab} C G

contains a set of coset representatives for G/H. Indeed, any word with two consecutive instances of the
same letter can be replaced with a shorter word that is equivalent modulo H (i.e., in the same coset of
H), so we can pick a set of coset representatives consisting of words alternating between a’s and b’s (cf. the
discussion of Zs % Zs on p.42 of Hatcher). The defining relations of G/H say that abab is its own inverse; on
the other hand (abab)(baba) reduces to the empty word, so (abab)~! = abab = baba. The relations also say
that ababa = bab and babab = aba, so any alternating word of length 5 or more can be reduced modulo H
to an element of C. This proves Claim 2.

We have shown that
(G pmi(X)] < [G: H (because H C p,m (X))
<8 (by the construction of coset representatives)
=[G : pomi (X)) (since X is an 8-sheeted covering).

Therefore, equality must hold throughout, and it follows that p. (7715( ) = H as desired, By the way, G/H is
isomorphic to the dihedral group D, — which is easily seen to be the set of deck transformations, i.e., the
symmetries of the colored octagon.



