
Math 821 Problem Set #3
Posted: Friday 2/25/11
Due date: Monday 3/7/11

Problem #1 Recall that for a space X and base point p ∈ X, we have defined π1(X, p)
to be the set of homotopy classes of p, p-paths on X — or equivalently of continuous
functions S1 → X. Recall also that S0 consists of two points (let’s call them a and b) with
the discrete topology. Accordingly, we could define π0(X, p) to be the set of homotopy
classes of continuous functions f : S0 → X such that f(a) = p.

Describe the set π0(X, p) intrinsically in terms of X. Is there a natural way to endow it
with a group structure?

Solution: The homotopy type of such a thing is determined by the path-connected component of X
containing f(b). Therefore, a reasonable interpretation for π0(X,x) is as the set of connected components.
This set cannot naturally be made into a group.

Problem #2 (Hatcher, p.38, #2) Show that the change-of-basepoint homomorphism βh

(see p.28) depends only on the homotopy class of the path h.

Solution: Recall the setup: x0, x1 ∈ X; h is a x0, x1-path in X; and βh is the map π1(X,x1)→ π1(X,x0)
given by [f ] 7→ [h · f · h̄].

Suppose that ht is a homotopy of x0, x1-paths. Then ht · f · ht is a homotopy of x0-loops. In particular, if
h ' h′, then βh[f ] ' βh′ [f ].

Problem #3 (Hatcher, p.38, #7) Define f : S1 × I → S1 × I by f(θ, s) = (θ + 2πs, s), so
f restricts to the identity on the two boundary circles of S1× I. Show that f is homotopic
to the identity by a homotopy ft that is stationary on one of the boundary circles, but not
by any homotopy ft that is stationary on both boundary circles.

Solution: Visualize S1 × I as a cylinder made of rubber, and f as a full twist of the cylinder. (Imagine
opening a jar full of extremely old rubber cement.)

(i) Define ft : S1 × I → S1 × I by
ft(θ, s) = (θ + 2πts, s).

This is evidently a homotopy (it is continuous in each of θ, s, t); f0 is the identity map; and f1 is the given
map f . Moreover, ft is stationary on the circle S1 × {0}, i.e., ft(θ, 0) = (θ0).

(ii) Suppose that ft is a homotopy that is stationary on both boundary circles. That is, ft : S1× I → S1× I
with

f0(θ, s) = (θ, s), ft(θ, 0) = (θ, 0),

f1(θ, s) = (θ + 2πs, s), ft(θ, 1) = (θ, 1).

We want to derive a contradiction. The idea is to draw a line down the side of the cylinder, so that twisting
by f wraps the line around the outside in a spiral. Projecting these two paths from S1×I to S1 will give two
closed loops in S1, one trivial and one that winds once around the circle — so they cannot be homotopic.
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Here is a precise argument. Fix some basepoint θ0 ∈ S1. Let gt be the loop at θ0 obtained from ft by
restricting its domain to {θ0} × I, then projecting onto the S1 factor. That is,

gt(s) = p(ft(θ0, s))

where p is the projection map S1 × I → S1. I claim that {gt} is a path homotopy. It certainly is a
continuously varying family of functions I → S1, and

gt(0) = p(ft(θ0, 0)) = (θ0, 0) = θ0,

gt(1) = p(ft(θ0, 1)) = (θ0, 1) = θ0,

which says that each gt defines a closed loop with basepoint θ0.

We then have

g0(s) = p(f0(θ0, s))

= p(θ0, s)

= θ0,

g1(s) = p(f1(θ0, s))

= p(θ0 + 2πs, s))

= θ0 + 2πs.

But these paths have winding numbers 0 and 1 respectively (since they lift to g̃0(s) = 0 and g̃1(s) = 2πs
respectively; recall that the winding number of a loop can be computed from any lift). Therefore, by what
we know about π1(S1), they cannot be homotopic. This is a contradiction and says that no such homotopy
ft can exist.

Problem #4 [Hatcher p.38 #8] Does the Borsuk-Ulam theorem hold for the torus? In
other words, for every map f : S1 × S1 → R2 must there exist (x, y) ∈ S1 × S1 such that
f(x, y) = f(−x,−y)? Why or why not?

No. If we parametrize the torus S1 × S1 as {f(s, t) = (eis, eit) : s, t ∈ [0, 2π]}, then the antipode of f(s, t)
is the point f(s+ π, t+ π). We can naturally embed the torus in R3 as a donut by, e.g.,

(eis, eit) 7→ (5 cos s+ cos t cos s, 5 sin s+ cos t sin s, sin t).

Then the map P : S1 × S1 → R2 given by projection onto the xy-plane satisfies P (q) = −P (−q) 6= (0, 0) for
all points q on the torus.

Problem #5 [Hatcher p.39 #9] Use the 2-dimensional case of the Borsuk-Ulam theo-
rem (Hatcher, Thm. 1.10, p.32) to prove the “Ham and Cheese Sandwich Theorem”: if
A1, A2, A3 are compact measurable sets in R3, then there is a plane in R3 that simultane-
ously divides each Ai into two pieces of equal measure.

Solution: WLOG (scaling if necessary), assume that A1, A2, A3 ⊂ D3.

For v ∈ S2, let Lv be the line through v and −v. For t ∈ [−1, 1], let P (t,v) be the plane parallel to Lv that
meets it at the point tv. Let B3 be the part of A3 that is on the same Let fv(t) be the fraction of the volume
of A3 that is on the same side of P (t,v) as −2v is. Thus fv(t) increases continuously and monotonically
from 0 to 1 as t increases from −1 to 1. Therefore f−1v (1/2) is some nonempty closed connected set, i.e.,
an interval of the form [av, bv] (where av, bv also depend continuously on v). Let Q(v) = P ((av + bv)/2, t).
Thus Qv is a plane parallel to Lv that depends continuously on v and, for every v, splits A3 into two
equal-volume pieces. Note also that Q(v) = Q(−v).
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Now, for v ∈ S2 and i = 1, 2, let fi(v) be the fraction of the volume of Ai that is on the same side of Q(v) as
v itself is. By the Borsuk-Ulam theorem, there is some pair of antipodal points ±v such that fi(v) = fi(−v)
for i = 1, 2. Since fi(−v) = 1− fi(v), we have fi(v) = 1/2, so the plane Q(v) splits each of A1 and A2 into
two equal pieces as well.

Problem #6 [Hatcher p.39 #12] Fix p ∈ S1. Show that every homomorphism π1(S1, p)→
π(S1, p) can be realized as the induced homomorphism φ∗ for some φ : S1 → S1.

Regard S1 as the unit circle in C and let p = 1. The path f : I → S1 given by s 7→ exp(2πis) generates the
infinite cyclic group π1(S1, p) ∼= Z. Every homomorphism α : Z→ Z is specified by the number n = α(1).

Meanwhile, for any n ∈ Z, the complex function φ(z) = zn maps S1 to S1, and the path φ∗f has winding
number n because φ ◦ f(s) = f(s)n = exp(2πins) lifts to the map I → R given by s 7→ ns.

Problem #7 [Hatcher, p.52, #1] Recall that the center of a group G is defined as Z(G) =
{g ∈ G : gh = hg ∀h ∈ G}.

(#7a) Show that the free product G ∗H of nontrivial groups G and H has trivial center.

Solution: Any non-identity element w ∈ G ∗ H can be written uniquely as a product w = w1 · · ·wn of
non-identity elements of G and H, with letters wi alternating between G and H (p.42). If w1 ∈ H then w
does not commute with any non-identity element of G, while if w1 ∈ G then w does not commute with any
non-identity element of H. Therefore, the only element of the center is the word of length 0, namely e.

(#7b) Show that the only elements of G∗H of finite order are the conjugates of finite-order
elements in G ∪H.

Suppose that w ∈ G ∗ H and wn = e. Write w in reduced form: w = g1 · · · gk where the letters alternate
between G and H.

wn = (g1 · · · gk)(g1 · · · gk) · · · (g1 · · · gk) = e.

We need to be able to somehow cancel this expression using only relations within G and H. The only
possibility is that gk and g1 either both belong to G or both to H, and that gk = g−11 . Note that this implies
that k is odd, say k = 2K + 1. Canceling gives

wn = (g2 · · · gk−1)(g2 · · · gk−1) · · · (g2 · · · gk) = e.

Now the only possibility for cancellation is that gk−1 = g−12 . Continuing in this way, we eventually find that

gk = g−11 , gk−1 = g−12 , . . . , gK+2 = g−1K .

But this says that w = xyx−1, where x = g1 · · · gK and y = gK+1. Moreover, y belongs to either G or H
(because it is a single letter), and

yn = (x−1wx)n = x−1wnx = x−1x = e

so y has finite order. So we have shown that every finite-order element of G∗H is a conjugate of a finite-order
element of one of G or H.


