Math 821 Problem Set #3
Posted: Friday 2/25/11
Due date: Monday 3/7/11

Problem #1 Recall that for a space X and base point p € X, we have defined 71 (X, p)
to be the set of homotopy classes of p,p-paths on X — or equivalently of continuous
functions S — X. Recall also that S consists of two points (let’s call them a and b) with
the discrete topology. Accordingly, we could define mo(X,p) to be the set of homotopy
classes of continuous functions f : S° — X such that f(a) = p.

Describe the set mo(X, p) intrinsically in terms of X. Is there a natural way to endow it
with a group structure?

Solution: The homotopy type of such a thing is determined by the path-connected component of X
containing f(b). Therefore, a reasonable interpretation for mo(X,z) is as the set of connected components.
This set cannot naturally be made into a group.

Problem #2 (Hatcher, p.38, #2) Show that the change-of-basepoint homomorphism 3
(see p.28) depends only on the homotopy class of the path h.

Solution: Recall the setup: xg, 1 € X; h is a xg, x1-path in X; and By, is the map 71 (X, z1) — 71 (X, 20)
given by [f] — [h- f - h].

Suppose that h; is a homotopy of zg, z1-paths. Then h; - f - hy is a homotopy of xg-loops. In particular, if
B I, then B[f] = B [f].

Problem #3 (Hatcher, p.38, #7) Define f : S x I — S* x I by f(0,s) = (0 + 2=ws, s), so
f restricts to the identity on the two boundary circles of S x I. Show that f is homotopic
to the identity by a homotopy f; that is stationary on one of the boundary circles, but not
by any homotopy f; that is stationary on both boundary circles.

Solution: Visualize S! x I as a cylinder made of rubber, and f as a full twist of the cylinder. (Imagine
opening a jar full of extremely old rubber cement.)

(i) Define f; : St x I — S* x I by

f1(0,8) = (0 + 2mts, s).
This is evidently a homotopy (it is continuous in each of 8, s,t); fo is the identity map; and f; is the given
map f. Moreover, f; is stationary on the circle S* x {0}, i.e., f:(0,0) = (6p).

(ii) Suppose that f; is a homotopy that is stationary on both boundary circles. That is, f; : St x I — St x I
with

f0(973) = (‘9)5)7 ft(970) = (9,0),
f1(0,8) = (0 + 27s, s), f:(0,1) = (6,1).

We want to derive a contradiction. The idea is to draw a line down the side of the cylinder, so that twisting
by f wraps the line around the outside in a spiral. Projecting these two paths from S x I to S! will give two
closed loops in S*, one trivial and one that winds once around the circle — so they cannot be homotopic.
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Here is a precise argument. Fix some basepoint §; € S'. Let g; be the loop at §y obtained from f; by
restricting its domain to {6} x I, then projecting onto the S* factor. That is,

9¢(s) = p(fi(o, 5))
where p is the projection map S' x I — S!. T claim that {g;} is a path homotopy. It certainly is a
continuously varying family of functions I — S*, and

9:(0) = p(f:(60,0)) = (60,0) = o,
9¢(1) = p(f(00,1)) = (6o, 1) = b0,
which says that each g; defines a closed loop with basepoint 6.

We then have
go(s) = p(fo(bo, s))

91(s) = p(f1(bo, s))
= p(bp + 27s, s))
= 0y + 27s.
But these paths have winding numbers 0 and 1 respectively (since they lift to go(s) = 0 and g1(s) = 27s
respectively; recall that the winding number of a loop can be computed from any lift). Therefore, by what

we know about 1 (S?), they cannot be homotopic. This is a contradiction and says that no such homotopy
ft can exist.

Problem #4 [Hatcher p.38 #8| Does the Borsuk-Ulam theorem hold for the torus? In
other words, for every map f : ST x S' — R? must there exist (z,y) € S x S such that
f(z,y) = f(—x,—y)? Why or why not?

No. If we parametrize the torus S' x St as {f(s,t) = (e**,e') : s,t € [0,27]}, then the antipode of f(s,t)
is the point f(s + m,¢ + 7). We can naturally embed the torus in R? as a donut by, e.g.,

(e, e™) = (5cos s + costcoss, Hsins + costsins, sint).
Then the map P : St x S* — R? given by projection onto the zy-plane satisfies P(q) = —P(—q) # (0,0) for
all points g on the torus.

Problem #5 [Hatcher p.39 #9] Use the 2-dimensional case of the Borsuk-Ulam theo-
rem (Hatcher, Thm. 1.10, p.32) to prove the “Ham and Cheese Sandwich Theorem”: if
A1, Ay, A3 are compact measurable sets in R3, then there is a plane in R3® that simultane-
ously divides each A; into two pieces of equal measure.

Solution: WLOG (scaling if necessary), assume that Ay, Ay, A3 C D3.

For v € S?, let Ly be the line through v and —v. For t € [~1,1], let P(¢,v) be the plane parallel to L, that
meets it at the point tv. Let Bs be the part of Az that is on the same Let f5(¢) be the fraction of the volume
of Az that is on the same side of P(t,v) as —2v is. Thus f,(¢) increases continuously and monotonically
from 0 to 1 as t increases from —1 to 1. Therefore f;!(1/2) is some nonempty closed connected set, i.e.,
an interval of the form [ay,by] (where ay, by also depend continuously on v). Let Q(v) = P((ay + by)/2,t).
Thus @ is a plane parallel to L, that depends continuously on v and, for every v, splits Az into two
equal-volume pieces. Note also that Q(v) = Q(—v).
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Now, for v € S? and i = 1,2, let f;(v) be the fraction of the volume of A; that is on the same side of Q(v) as
v itself is. By the Borsuk-Ulam theorem, there is some pair of antipodal points +v such that f;(v) = f;(—v)
for i = 1,2. Since f;(—v) =1— f;(v), we have f;(v) = 1/2, so the plane Q(v) splits each of A; and As into
two equal pieces as well.

Problem #6 [Hatcher p.39 #12] Fix p € S!. Show that every homomorphism 7 (S, p) —
(S, p) can be realized as the induced homomorphism ¢, for some ¢ : ST — S1.

Regard S! as the unit circle in C and let p = 1. The path f: I — S! given by s — exp(2mis) generates the
infinite cyclic group (S, p) = Z. Every homomorphism « : Z — Z is specified by the number n = «a/(1).

Meanwhile, for any n € Z, the complex function ¢(z) = 2™ maps S! to S!, and the path ¢, f has winding
number n because ¢ o f(s) = f(s)™ = exp(2mwins) lifts to the map I — R given by s — ns.

Problem #7 [Hatcher, p.52, #1] Recall that the center of a group G is defined as Z(G) =
{g€ G: gh=hg Vh € G}.

(#7a) Show that the free product G * H of nontrivial groups G and H has trivial center.

Solution: Any non-identity element w € G x H can be written uniquely as a product w = w;y -+ - w, of
non-identity elements of G and H, with letters w; alternating between G and H (p.42). If wy € H then w
does not commute with any non-identity element of G, while if w; € G then w does not commute with any
non-identity element of H. Therefore, the only element of the center is the word of length 0, namely e.

(#7b) Show that the only elements of G*H of finite order are the conjugates of finite-order
elements in G U H.

Suppose that w € G * H and w™ = e. Write w in reduced form: w = ¢ - -- g where the letters alternate
between G and H.

w" = (91"'%)(91“'91«) (91"'gk) = e.
We need to be able to somehow cancel this expression using only relations within G and H. The only
possibility is that g and g; either both belong to G or both to H, and that g = g7 1. Note that this implies
that k is odd, say kK = 2K + 1. Canceling gives

wn:(92"'gk—1)(92"'gk:—1) (92"'gk):€-

Now the only possibility for cancellation is that gx—; = g5 ! Continuing in this way, we eventually find that

=011 G1=05's -y gr42 = 9K
But this says that w = zyxz~!, where 2 = g, ---gx and y = gx4+1. Moreover, y belongs to either G or H
(because it is a single letter), and

n 1

Yy = (r twr)" =2z w" s =2l = e

so y has finite order. So we have shown that every finite-order element of G * H is a conjugate of a finite-order
element of one of G or H.



