
Math 821, Spring 2014
Solution Set #2
Due date: Friday, February 14

Problem #1 Show that a homotopy equivalence f : X → Y induces a bijection between
the set of path-components of X and the set of path-components of Y , and that f restricts
to a homotopy equivalence from each path-component of X to the corresponding path-
component of Y . Prove also the corresponding statements with components instead of
path-components. Deduce that if the components of a space X coincide with its path-
components, then the same holds for any space Y homotopy equivalent to X.

Solution: In general, if p is a point in a topological space, let’s write [p] for the component of that space
containing p, and 〈p〉 for the path-component of that space containing p.

First, we want to prove that

〈x〉 = 〈x′〉 ⇐⇒ 〈f(x)〉 = 〈f(x′)〉.
The =⇒ direction is easy: if φ is an x, x′-path in X, then f ◦ φ is an f(x), f(x′)-path in Y .

For the reverse direction, if ψ is an f(x), f(x′)-path in Y , then g ◦ψ is a g(f(x)), g(f(x′))-path in X. On the
other hand, 〈x〉 = 〈g(f(x))〉 because, by definition of homotopy equivalence, there is a homotopy ht : X → X
with h0 = 1 and h1 = g ◦ f ; the function γ : I → X given by γ(t) = ht(x) therefore defines a path from x to
g(f(x)). Similarly, we can construct a path from g(f(x′)) to x′. Concatenating these paths with g ◦ ψ gives
an x, x′-path in X and establishes the ⇐= direction.

Second, we want to prove that [x] = [x′] ⇐⇒ [f(x)] = [f(x′)]. The =⇒ direction follows from the fact
that the continuous image of a connected space is connected.

We now want to show that if [f(x)] = [f(x′)], then [x] = [x′]. By the =⇒ direction, the hypothesis
implies that [g(f(x))] = [g(f(x′))]. Again, consider the homotopy H : X × I → X with H(z, 0) = z and
H(z, 1) = g(f(z)). Let U = [H(x, 1)] and V = X \ U ; then the clopen decomposition X = U ·∪V pulls back
to a clopen decomposition

X × I = H−1(U) ·∪H−1(V )

but both (x, 1) and (x′, 1) lie in the same piece of this decomposition because H maps them into the same
component of X. That piece must H−1(U), On the other hand, path-components are contained in connected
components, and X has paths from (x, 0) to (x, 1) and from (x′, 0) to (x′, 1), namely

φ(t) = H(x, t), φ′(t) = H(x′, t),

so (x, 0) and (x′, 0) belong to H−1(U) as well, which is to say that x, x′ ∈ U as desired.

Third, once we know that f maps (path-)components to (path-)components, we know that for every com-
ponent C of X, the composition g ◦ f maps C to some (path-)component C ′ of X. On the other hand, if
{ht} is a homotopy between g ◦ f and 1X , then for every p ∈ C there is a path t 7→ ht(p) from p to g(f(p)).
This is only possible if C ′ = C. Now {ht|C} is a homotopy between (g ◦ f)|C = (g|D) ◦ (f |C) (where D is
the (path-)component of Y containing f(C)) and 1C .

The “deduce that. . . ” part is immediate. This problem is another justification that homotopy equivalence
is a sensible thing to consider.

Some students (at least in 2011) argued that since the continuous image of a (path-)connected space is
(path-)connected, the maps f and g induce surjections PX → PY and PY → PX respectively, where PX
means the set of (path-)connected components of X; therefore, |PX | ≥ |PY | ≥ |P (X)| and equality holds
throughout. However, these numbers may be infinite, when the statement “a ≤ b ≤ a =⇒ a = b” is the
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(highly nontrivial) Bernstein-Schröder-Cantor theorem of set theory. In the context of topology, I think it’s
more natural to show directly that f and g induce bijections.

Problem #2 Let p, q be distinct points on S2, and let X be the space obtained by gluing
them together. Determine the homotopy type of X.

Solution: X ' S1 ∨ S2. This is Example 0.11 in Hatcher (p.13), so I only assigned 5 points for it. But it
is helpful to be able to see the homotopy equivalence for yourself. Here is my description of it.

To see this, start with S1 ∨ S2, which looks like a sphere glued to a circle at a point p. Let’s put the
circle inside the sphere (figure; left) Think of the circle as a closed loop from p to itself. Move the other
one endpoint of the loop to another point q 6= p (figure; center); this move is a homotopy equivalence by
Proposition 0.18. Then collapse the resulting non-closed path to a point (figure; right); this is a homotopy
equivalence by Prop. 0.17, and the resulting space is X.

Problem #3 For k ≥ 1, let Tn denote the n-holed torus. Construct a cell complex
structure on Tn.

Solution: Again, this is an example in Hatcher (p.5), so only 5 points. There are lots of ways to impose
a cell complex structure. Here’s one, which stems from the observation that Tn = T1#Tn−1, where # is
the operation of connected sum: cut out a small disk from each of the operands, then glue their boundaries
together.1 This basically reduces the problem to finding a fine enough cell structure on the torus that is
compatible with this operation. For example, start with the cell structure on the 1-hole torus shown below.
Make n photocopies, delete the cells X1, Y2, X2, . . . , Xn−1, Yn (here, e.g., Y2 means “the cell labeled Y in the
2nd photocopy”) and identify the boundaries: ∂X1 = ∂Y2, . . . , ∂Xn−1 = ∂Yn.

X

Y

Problem #4 Let X be a finite graph lying in a half-plane P ⊂ R3 and intersecting the
edge e of P in a subset of its vertices. Describe the homotopy type of the “surface of
revolution” obtained by rotating X about e.

Solution: Let R(X) be the surface of revolution thus obtained. First, we can assume that X is connected
— if it has multiple connected components Xα, then R(X) is the disjoint union of the R(Xα).

1This is not a purely topological operation, in the sense that you need to know the dimensions of two spaces in order to

build their connected sum.
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Second, observe that if a is an edge of X that has at least one endpoint not in e, then R(X) ' R(X/a); this
corresponds to deformation-retracting an annulus (specifically, the piece of R(X) corresponding to a) onto
a circle. (We just need to make sure that no other point hits the boundary during the contraction process.
For example, if such a contraction produces an edge between two vertices on e, then that edge needs to be
some kind of an arc rather than a line segment.)

Let

n = total number of vertices of X,

b = number of vertices of X lying on e,

m = number of edges of X.

If b = 0, then we can eventually replace X with a graph Y with one vertex and m − n + 1 loops, while
preserving the homotopy type of R(X). We then have

R(X) ' R(Y ) = S1 ×X = S1 × (S1)(m−n+1)

(which is the infamous “not-a-torus” space).

If b > 1, then we will eventually end up with a graph Y all of whose vertices lie on e, and such that
R(Y ) ' R(X). Then Y has b vertices and m− (n− b) edges.

Let T be a spanning tree of R(Y ). Then T has b− 1 edges, each of which gets rotated into a 2-sphere, and
so R(T ) ' (S2)∨(b−1). (This notation means “the wedge sum of b − 1 copies of S2”.) For each additional
edge a 6∈ T , the revolution R(a) is either a sphere attached to R(T ) at two points (if a is not a loop) or a
sphere with two of its points identified, then attached to R(T ) (if a is a loop). In either case, the edge a
contributes an additional S1 ∨ S2 to the homotopy type. We conclude that

R(X) ' R(Y ) ' (S2)∨(b−1) ∨ (S1 ∨ S2)∨(m−(n−b)−(b−1))

= (S2)∨(b−1) ∨ (S1 ∨ S2)∨(m−n+1)

= (S2)∨(m−n+b) ∨ (S1)∨(m−n+1).

(The graph pictured has n = 9, b = 4, m = 15, m− n+ b = 10, m− n+ 1 = 7.)

A comment: I should have required that each component of X have at least one vertex on e. (Otherwise,
if for example X consists of one vertex off e and a loop attached to it, then R(X) is a torus rather than a
wedge of spheres.)

Problem #5 Let 0 ≤ k ≤ n. Recall from class that the Grassmannian G(k, n) is defined
as the space of k-dimensional subspaces V ⊂ Rn, so that in particular, G(1,Rn) = RPn−1.
(Fact: Everything in this problem works the same way if you change R to C, except that
the dimensions of all the cells get doubled.)

(#5a) Work out an explicit cell decomposition for G(2, 4) as a finite CW-complex. That
is, describe how to decompose the set G(2, 4) into pieces, each of which is isomorphic
to a R-vector space. If you do this correctly (hint: row-reduced echelon form), then the
isomorphisms should be straightforward from the construction.

Any V ∈ G(2, 4) can be expressed as the column span of a k× n matrix M . Performing elementary column
operations on the matrix doesn’t change the span, and we know that we can eventually put M into a unique
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reduced column-echelon form, i.e., one of the following things:
1 0
0 1
∗ ∗
∗ ∗

 ,


1 0
∗ 0
0 1
∗ ∗

 ,


1 0
∗ 0
∗ 0
0 1

 ,


0 0
1 0
0 1
∗ ∗

 ,


0 0
1 0
∗ 0
0 1

 ,


0 0
0 0
1 0
0 1


This gives a cell structure with f -polynomial

f(X, q) :=
∑
eα∈X

qdim eα = q4 + q3 + 2q2 + q + 1.

Specifically, the cells classify points in G(2, 4) by the locations of the pivots in its reduced column-echelon
form. Moving the pivots upwards gives a bigger cell; specifically, if we write eij for the cell whose pivots are
in rows i, j with i < j, then eij ⊆ ei′j′ iff i ≤ i′ and j ≤ j′.

(#5b) Describe the attaching poset of G(2, 4). (Recall that this is the partially ordered set
whose elements are the cells eα, and whose order relation is given by eα ≥ eβ if eα ⊇ eβ).

It looks like this:
e12

e13

e14 e23

e24

e34

(#5c) Describe the attaching poset of G(2, 5).

The cells can be labeled {eij | 1 ≤ i < j ≤ 5}. The order relation is given combinatorially by

eij ⊃ ei′j′ ⇐⇒ i ≤ i′ and j ≤ j′.
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Here is the whole partially ordered set:

e12

e13

e14 e23

e15 e24

e25 e34

e35

e45

(#5d) Write out the poset P (2, 3) of all Ferrers diagrams with at most two rows and
at most three columns, ordered by containment (as sets of squares). Compare it to your
previous answer.
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∅
The two posets are isomorphic. This is true in general — the attaching poset of the Schubert cell decompo-
sition of G(k, n) is isomorphic to the lattice of partitions that fit inside a (n− k)× k rectangle. The number
of squares in a partition equals the dimension of the corresponding Schubert cell. By the way, the general
formula for the number of Schubert cells of each dimension is very nice:

∑
eα∈G(k,n)

qdim eα =
(1− qn)(1− qn−1) · · · (1− qn−k+1)

(1− qk)(1− qk−1) · · · (1− q)
.

This is called a q-binomial coefficient. It isn’t even obvious that this expression is a polynomial — but in
fact it is.

Problem #6 [Extra credit; Hatcher p.19, #20] Show that the subspace X ⊂ R3 formed
by a Klein bottle intersecting itself in a circle, as shown in the figure on p.19 of Hatcher,
is homotopy equivalent to S1 ∨ S1 ∨ S2.

Solution: I’m not going to try to draw the picture in LaTeX, but here’s the idea – try to see it in your
head. Look at the disk where the cylinder intersects itself. Squash that to a point — this is a homotopy
equivalence. What is left looks like a sphere in which three points have been identified. By an argument just
like that of Problem #2 above, this space is homotopy-equivalent to S2 ∨ S1 ∨ S1.


