
Math 821, Spring 2014
Solution Set #1
Due date: Friday, January 31

Problem #1 Let X be a path-connected topological space. Prove that X is connected.
(Recall that the converse is not true — the topologists’ sine curve is a counterexample.)

Solution: We need to show that X has no subset U that is “clopen” (i.e., both closed and open) other
than ∅ or X. Suppose U is such a clopen subset, so that its complement V = X \U is also clopen. Suppose
that p ∈ U and that q ∈ X \ U . Let P be a p, q-path in X parametrized by f : I = [0, 1] → X. Then
P = (P ∩ U) ·∪(P ∩ V ). Let A = f−1(P ∩ U) and B = f−1(P ∩ V ). Then

• A ∪B = I (because f(I) = P );
• A ∩B = ∅ (because f(A) ∩ f(B) = ∅);
• A,B are open in I (by continuity);
• ∅ ( A,B ( I (because 0 ∈ A \B and 1 ∈ B \A).

But this is a contradiction because I is connected. Therefore, no such pair p, q can exist, which says that
one of U,X \ U is empty. It follows that X is connected. (In principle, this argument uses the continuity
of f to reduce the “path-connected implies connected” statement about an arbitrary topological space to
the same statement about the familiar topological space I.) �

Alternate Solution: Fix x ∈ X. For every y ∈ X, choose a path fy : I → X with fy(0) = x and fy(1) = y,
and let Py = fy(I) ⊆ X. Then each Py is connected (because it is the continuous image of the connected
space I) and

⋂
y∈X Py 6= ∅ (because it contains x), so

⋃
y∈X Py = X is connected.

Problem #2 Let Γ be a finite graph. Prove that if Γ is connected, then it is path-
connected.

Solution: I’ll prove something more general: every space X that is both connected and locally path-
connected is path-connected. (“Locally path-connected” means that every point x has a connected open
neighborhood Ux.) A graph is locally path-connected because every vertex has a neighborhood that looks
like the vertex itself plus d rays sticking out (where d is the degree of the vertex — the number of edges
attached to it, possibly infinite, counting a loop as two edges) and every point on the interior of an edge has
a neighborhood that looks like an open interval.

Let x ∈ X and let Y be the set of all points that are joined to x by a path. For every y ∈ Y and q ∈ Uy,
we have an x, y-path and a y, q-path; concatenating them produces an x, q-path. Therefore Y =

⋃
y∈Y Uy is

open.

On the other hand, let Z = X \ Y . For every z ∈ Z and q ∈ Uz, we cannot have an q, x-path, since
we certainly have a z, q-path and concatenating the two would produce an z, x-path, which cannot exist.
Therefore, Z =

⋃
z∈Z Uz is open.

We have constructed a clopen decomposition X = Y ·∪Z with Y 6= ∅ (because x ∈ Y ). Since X is connected,
we must have Y = X and Z = ∅. This is precisely the statement that X is path-connected.

In fact, we don’t even need the assumption of finiteness — any cell complex will work. What this tells us,
among other things, is that the topologists’ sine curve cannot be realized as a cell complex.
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Problem #3 Let X and Y be topological spaces and let f : X � Y be a continuous
function that is onto. Prove that if X is compact, then so is Y .

Solution: Let {Uα | α ∈ A} be an open cover of Y . Then {f−1(Uα) | α ∈ A} is an open cover of X (because
every point in X gets mapped to a point in at least one Uα, hence belongs to f−1(Uα)). By compactness, it
has a finite subcover: {f−1(Uα) | α ∈ A′}, where A′ ⊆ A is finite. I.e., X =

⋃
α∈A′ f−1(Uα). This implies

set-theoretically that Y =
⋃
α∈A′ Uα, so there we have the desired finite subcover.

Problem #4 [Hatcher p.18 #1] Construct an explicit deformation retraction of the torus
with one point deleted onto a graph consisting of two circles intersecting in a point.

Solution: Draw a square Q from which the center point c has been deleted. For each point p ∈ Q \ c, draw
the ray −→cp and let f(p) be the point where that ray hits the boundary ∂Q. Define F : Q× I → Q by

F (p, t) = (1− t)p+ tf(p)

(where the arithmetic is vector arithmetic in R2). Note that F (0, p) = p and F (1, p) = f(p). Moreover, if
p ∈ ∂Q then F (p, t) = p for all t. So F is a deformation retraction.

c

Q

If we pass from Q to the torus T by identifying opposite sides, the map F is still well-defined and is a
deformation retraction. Note that ∂Q maps onto the union of two circles that meet in a point — one
longitudinal and one meridional circle.

Note: Many of you found the explicit formula for f . Specifically, if p = (x, y) in Cartesian coordinates, then

f(p) =
1

max(|x|, |y|
p

which is well-defined precisely because p 6= (0, 0). However, the geometric description above is sufficient.

One solver (Billy) found another way to say this: build the torus by starting with the closed unit disk,
partitioning its boundary circle into four 90◦ arcs (say, the intersections with the four quadrants in R2), and
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identifying them. Then the deformation retraction can be expressed very naturally in polar coordinates:
F ((r, θ), t) = ((1− t)r + t, θ).
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Problem #5 [Hatcher p.18 #3, more or less] (a) Show that homotopy equivalence of
spaces is an equivalence relation.

For reflexivity, the identity map is a homotopy equivalence, and symmetry is immediate from the definition.
For transitivity, suppose we have maps as shown that are all homotopy equivalences.

X

f
))
Y

g
ii

h
))
Z

k

ii

Let p = g ◦k ◦h◦f . We need to construct a homotopy α ' 1X . By hypothesis, suppose we have a homotopy

qt : Y → Y, q0 = 1Y , q1 = k ◦ h.
Then g ◦ qt ◦ f is a homotopy with g ◦ q1 ◦ f = p and g ◦ qt ◦ f = g ◦ f . Therefore

p = g ◦ k ◦ h ◦ f ' g ◦ f ' 1X .

(b) Fix spaces X,Y and let f, g be maps X → Y . Show that the relation “f is homotopic to g”
is an equivalence relation.

Reflexivity: f ' f by the homotopy F (x, t) = f(x).

Symmetry: If F (x, t) is a homotopy between f and g then F (x, 1− t) is a homotopy between g and f .

Transitivity: If F (x, t), G(x, t) realize homotopies f ' g and g ' h, then define H(x, t) = F (x, 2t) for
0 ≤ t ≤ 1/2 and H(x, t) = G(x, 2t− 1) for 1/2 ≤ t ≤ 1.

(c) Show that a map homotopic to a homotopy equivalence is a homotopy equivalence.

Lemma: Let f0, f1 be homotopic maps X → Y . Let a : W → X and b : Y → Z be maps. Then f0 ◦a ' f1 ◦a
and b ◦ f0 ' b ◦ f1.

Proof: If F : X → I is a homotopy between f0 and f1, then F ◦ (a × 1) is a homotopy between f0 ◦ a and
f1 ◦ a and b ◦ F is a homotopy between b ◦ f0 and b ◦ f1.

Corollary: If f0 ' f1 and g is a homotopy inverse for f0, then by the lemma we have f1 ◦ g ' f0 ◦ g ' 1Y
and g ◦ f1 ' g ◦ f1 ' 1X . So something even stronger is true: if g is a homotopy inverse for f then it is a
homotopy inverse for any map to which F is homotopic.
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Problem #6 [Hatcher p.19 #14] Given nonnegative integers v, e, f with v − e + f = 2
(and v, f > 0), construct a cell structure on S2 having v 0-cells, e 1-cells, and f 2-cells.
(Do not use any facts about spanning trees or Euler characteristic.)

Solution: First, a terminological note. The following phrases are all synonyms:

• “cell structure on S2”;
• “cell complex homeomorphic to S2”;
• “cellular 2-sphere”;
• “cellular S2”;
• “cellulation of S2”.

There is only one cellular S2 with (v, e, f) = (1, 0, 1): take a 2-cell and squash its boundary to a point.
Equivalently, this is the one-point compactification of R2.

For the case e > 0, there are several constructions; here is one. Draw a sphere with an equator, and put
v vertices on the equator, making v edges between them. (If e = 1 this means that the equator is a loop;
that’s okay.) Then pick one of the vertices and draw f − 2 nested loops at it, all reaching into the southern
hemisphere. We end up with a cell structure with v vertices and v + f − 2 = e edges. The number of faces
is f because the equator separates the globe into two 2-cells (the northern and southern hemispheres), and
each loop adds one more to the count of 2-cells. For example, here is a picture with (v, e, f) = (5, 7, 4):

Note 1: In order to have a regular cellular 2-sphere, I believe it is necessary and sufficient to have at least
two cells of each dimension.

Note 2: Many of you broke the problem into several cases depending on the value of e. This is OK as a
means of solving the problem, but when you write it up, you should see if you can find a simpler solution
that does not require case analysis.


