Math 821, Spring 2014
Solution Set #1
Due date: Friday, January 31

Problem #1 Let X be a path-connected topological space. Prove that X is connected.
(Recall that the converse is not true — the topologists’ sine curve is a counterexample.)

Solution: We need to show that X has no subset U that is “clopen” (i.e., both closed and open) other
than () or X. Suppose U is such a clopen subset, so that its complement V = X \ U is also clopen. Suppose
that p € U and that ¢ € X \ U. Let P be a p,¢-path in X parametrized by f : I = [0,1] — X. Then
P=(PnU)YPNV). Let A= f~Y(PNU)and B= f~Y(PNV). Then

AUB =1 (because f(I) = P);

AN B =10 (because f(A)N f(B) =0);

A, B are open in I (by continuity);

0 C A BCI (because 0 € A\ Band 1€ B\ A).

But this is a contradiction because I is connected. Therefore, no such pair p, ¢ can exist, which says that
one of U, X \ U is empty. It follows that X is connected. (In principle, this argument uses the continuity
of f to reduce the “path-connected implies connected” statement about an arbitrary topological space to
the same statement about the familiar topological space I.) (|

Alternate Solution: Fix € X. For every y € X, choose a path f, : I — X with f,(0) = z and f,(1) = v,
and let Py = f,(I) € X. Then each P, is connected (because it is the continuous image of the connected
space I) and (,cx Py # 0 (because it contains ), so (J,c x Py = X is connected.

Problem #2 Let I' be a finite graph. Prove that if " is connected, then it is path-
connected.

Solution: T’ll prove something more general: every space X that is both connected and locally path-
connected is path-connected. (“Locally path-connected” means that every point x has a connected open
neighborhood U,.) A graph is locally path-connected because every vertex has a neighborhood that looks
like the vertex itself plus d rays sticking out (where d is the degree of the vertex — the number of edges
attached to it, possibly infinite, counting a loop as two edges) and every point on the interior of an edge has
a neighborhood that looks like an open interval.

Let x € X and let Y be the set of all points that are joined to x by a path. For every y € Y and ¢ € Uy,
we have an x, y-path and a y, ¢g-path; concatenating them produces an z, g-path. Therefore Y = Uer U, is
open.

On the other hand, let Z = X \ Y. For every z € Z and ¢ € U,, we cannot have an g, z-path, since
we certainly have a z,¢-path and concatenating the two would produce an z,x-path, which cannot exist.
Therefore, Z = J,., U. is open.

We have constructed a clopen decomposition X = YJZ with Y # () (because z € Y'). Since X is connected,
we must have Y = X and Z = (). This is precisely the statement that X is path-connected.

In fact, we don’t even need the assumption of finiteness — any cell complex will work. What this tells us,
among other things, is that the topologists’ sine curve cannot be realized as a cell complex.



Problem #3 Let X and Y be topological spaces and let f : X — Y be a continuous
function that is onto. Prove that if X is compact, then so is Y.

Solution: Let {U, | a € A} be an open cover of Y. Then {f~1(U,) | « € A} is an open cover of X (because
every point in X gets mapped to a point in at least one U,, hence belongs to f~1(U,)). By compactness, it
has a finite subcover: {f~1(U,) | o € A’}, where A’ C A is finite. Le., X = f~1(U,). This implies
set-theoretically that ¥ =

acA’

acar Ua, so there we have the desired finite subcover.

Problem #4 [Hatcher p.18 #1] Construct an explicit deformation retraction of the torus
with one point deleted onto a graph consisting of two circles intersecting in a point.

Solution: Draw a square () from which the center point ¢ has been deleted. For each point p € @ \ ¢, draw
the ray ¢p and let f(p) be the point where that ray hits the boundary 9Q. Define F': Q x I — Q by

F(p,t) = (1 —t)p+tf(p)
(where the arithmetic is vector arithmetic in R?). Note that F(0,p) = p and F(1,p) = f(p). Moreover, if
p € 0Q then F(p,t) = p for all t. So F is a deformation retraction.
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If we pass from @ to the torus T by identifying opposite sides, the map F' is still well-defined and is a
deformation retraction. Note that 0@} maps onto the union of two circles that meet in a point — one
longitudinal and one meridional circle.

Note: Many of you found the explicit formula for f. Specifically, if p = (x,y) in Cartesian coordinates, then
1
f(p) = ———=7p
max(|z], |y|
which is well-defined precisely because p # (0,0). However, the geometric description above is sufficient.

One solver (Billy) found another way to say this: build the torus by starting with the closed unit disk,
partitioning its boundary circle into four 90° arcs (say, the intersections with the four quadrants in R?), and
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identifying them. Then the deformation retraction can be expressed very naturally in polar coordinates:
F((r,0),t) =((1 —t)r+t,0).



Problem #5 [Hatcher p.18 #3, more or less| (a) Show that homotopy equivalence of
spaces is an equivalence relation.

For reflexivity, the identity map is a homotopy equivalence, and symmetry is immediate from the definition.
For transitivity, suppose we have maps as shown that are all homotopy equivalences.

f h
v T

Let p=gokoho f. We need to construct a homotopy « ~ 1 x. By hypothesis, suppose we have a homotopy
g :Y =Y, =1y, g =koh.
Then g o ¢q; o f is a homotopy with gogy o f =p and gog; o f = go f. Therefore
p=gokohof~gof~1x.

(b) Fix spaces X,Y and let f,g be maps X — Y. Show that the relation “f is homotopic to g”
is an equivalence relation.

Reflexivity: f ~ f by the homotopy F(z,t) = f(x).
Symmetry: If F(x,t) is a homotopy between f and g then F'(z,1 — t) is a homotopy between g and f.

Transitivity: If F(z,t), G(x,t) realize homotopies f ~ g and g ~ h, then define H(x,t) = F(x,2t) for
0<t<1/2and H(z,t) =G(z,2t — 1) for 1/2 <¢ < 1.

(c) Show that a map homotopic to a homotopy equivalence is a homotopy equivalence.

Lemma: Let fy, fi be homotopic maps X — Y. Leta: W — X and b:Y — Z be maps. Then fyoa ~ fioa
and bo fg ~bo fi.

Proof: If F: X — I is a homotopy between f; and fi, then F o (a x 1) is a homotopy between fy o a and
fioaand bo F is a homotopy between bo fy and bo fi.

Corollary: If fo ~ f1 and ¢ is a homotopy inverse for fy, then by the lemma we have fiog ~ foog ~ 1y
and go f; ~ go fi ~ 1x. So something even stronger is true: if g is a homotopy inverse for f then it is a
homotopy inverse for any map to which F' is homotopic.



Problem #6 [Hatcher p.19 #14] Given nonnegative integers v, e, f with v —e+ f = 2
(and v, f > 0), construct a cell structure on S? having v 0-cells, e 1-cells, and f 2-cells.
(Do not use any facts about spanning trees or Euler characteristic.)

Solution: First, a terminological note. The following phrases are all synonyms:

“cell structure on S?”;
“cell complex homeomorphic to S27;
“cellular 2-sphere”;

“cellular S27;
“cellulation of S
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There is only one cellular S? with (v,e, f) = (1,0,1): take a 2-cell and squash its boundary to a point.
Equivalently, this is the one-point compactification of R2.

For the case e > 0, there are several constructions; here is one. Draw a sphere with an equator, and put
v vertices on the equator, making v edges between them. (If e = 1 this means that the equator is a loop;
that’s okay.) Then pick one of the vertices and draw f — 2 nested loops at it, all reaching into the southern
hemisphere. We end up with a cell structure with v vertices and v + f — 2 = e edges. The number of faces
is f because the equator separates the globe into two 2-cells (the northern and southern hemispheres), and
each loop adds one more to the count of 2-cells. For example, here is a picture with (v, e, f) = (5,7,4):

Note 1: In order to have a regular cellular 2-sphere, I believe it is necessary and sufficient to have at least
two cells of each dimension.

Note 2: Many of you broke the problem into several cases depending on the value of e. This is OK as a
means of solving the problem, but when you write it up, you should see if you can find a simpler solution
that does not require case analysis.



