

Math 796 Problem Set #4
Due Friday, March 14

Problem #1 (Stanley, EC1, 3.45) Prove the *q-binomial theorem*:

$$\prod_{k=0}^{n-1} (x - q^k) = \sum_{k=0}^n \binom{\mathbf{n}}{\mathbf{k}} (-1)^k q^{\binom{k}{2}} x^{n-k}.$$

Here $\binom{\mathbf{n}}{\mathbf{k}}$ denotes the *q-binomial coefficient*:

$$\binom{\mathbf{n}}{\mathbf{k}} = \frac{(q^n - 1)(q^n - q) \cdots (q^n - q^{k-1})}{(q^k - 1)(q^k - q) \cdots (q^k - q^{k-1})};$$

see Stanley, EC1, pp. 26–28, or Aigner [who uses the notation $\binom{n}{k}_q$ and calls them “Gaussian coefficients”], pp. 69, 79, 94. You may, with appropriate citation, use identities such as (17b) on p. 26 of Stanley.

(Hint: Let $V = \mathbb{F}_q^n$ and let X be a vector space over \mathbb{F}_q with x elements. Count the number of one-to-one linear transformations $V \rightarrow X$ in two ways.) Derive the ordinary binomial theorem as a corollary.

Problem #2 (Stanley, EC1, Supp. 4) Let P be a finite poset, and let μ be the Möbius function of $\hat{P} = P \cup \{\hat{0}, \hat{1}\}$. Suppose that P has a fixed-point-free automorphism $\sigma : P \rightarrow P$ of prime order p ; that is, $\sigma(x) \neq x$ and $\sigma^p(x) = x$ for all $x \in P$. Prove that $\mu(\hat{0}, \hat{1}) \cong -1 \pmod{p}$. What does this say in the case that $\hat{P} = \Pi_p$?

Problem #3 Let \mathcal{A} be a real hyperplane arrangement. Recall that the *dual graph* G of \mathcal{A} has as its vertices the regions of \mathcal{A} , with two vertices joined by an edge if the corresponding regions share a common boundary. Prove that G is bipartite.

Problem #4 (Stanley, HA, 2.5) Let K be a field, let G be a graph on n vertices, and let $\mathcal{B}_G = \mathcal{B}_n \cup \mathcal{A}_G$; that is, \mathcal{B} consists of the coordinate hyperplanes in K^n together with the hyperplanes $x_i = x_j$ for all edges ij of G . Calculate $\chi_{\mathcal{B}_G}(k)$ in terms of $\chi_{\mathcal{A}_G}(k)$.