

Math 796 Problem Set #2
Due Friday, February 15

Problem #1 Prove that Π_n is a geometric lattice. (Hint: Construct a collection of vectors $S = \{s_{ij} \mid 1 \leq i < j \leq n\}$ in \mathbb{R}^n such that $L(S) \cong \Pi_n$.)

Problem #2 Let \mathbb{F} be a field, let $n \in \mathbb{N}$, and let S be a finite subset of the vector space \mathbb{F}^n . Recall from class on 2/1/08 the definitions of the posets $L(S)$ and $L^{\text{aff}}(S)$. For $s = (s_1, \dots, s_n) \in S$, let $\hat{s} = (1, s_1, \dots, s_n) \in \mathbb{F}^{n+1}$, and let $\hat{S} = \{\hat{s} \mid s \in S\}$. Prove that $L(\hat{S}) = L^{\text{aff}}(S)$.

Problem #3 Determine, with proof, all pairs of integers $k \leq n$ such that there exists a graph G with $M(G) \cong U_k(n)$. (Recall that $U_k(n)$ is the matroid on $E = [n]$ such that every subset of E of cardinality k is a basis.)

Problem #4 Prove that the two forms of the basis exchange condition are equivalent. That is, if \mathcal{B} is a family of subsets of a finite set E , all of the same cardinality, then prove that

for every $e \in B \setminus B'$, there exists $e' \in B' \setminus B$ such that $B \setminus \{e\} \cup \{e'\} \in \mathcal{B}$

if and only if

for every $e \in B \setminus B'$, there exists $e' \in B' \setminus B$ such that $B' \setminus \{e'\} \cup \{e\} \in \mathcal{B}$.

(Hint: Consider $|B \setminus B'|$.)

Problem #5 Let M be a matroid on ground set E with rank function r . Let M^* be the dual matroid to M , and let r^* be its rank function. Find a formula for r^* in terms of r .

Problem #6 Let E be a finite set, let \mathcal{I} be a simplicial complex on E , and let $w : E \rightarrow \mathbb{R}$ be a weight function. For $A \subseteq E$, define $w(A) = \sum_{e \in A} w(e)$. Consider the problem of maximizing $w(A)$ over all maximal[†] elements $A \in \mathcal{I}$ (also known as *facets* of \mathcal{I}). A naive approach to try to produce such a set A , which may or may not work for a given \mathcal{I} and w , is the following *greedy algorithm*:

- (1) Let $A = \emptyset$.
- (2) If A is a facet of \mathcal{I} , stop.
Otherwise, find $e \in E \setminus A$ of maximal weight such that $A \cup \{e\} \in \mathcal{I}$, and replace A with $A \cup \{e\}$.
- (3) Repeat step 2 until A is a facet of \mathcal{I} .

(#6a) Construct a simplicial complex and a weight function for which this algorithm does not produce a facet of maximal weight. (Hint: The smallest example has $|E| = 3$.)

(#6b) Prove that the following two conditions are equivalent:

- The algorithm produces a facet of maximal weight for every weight function w .
- \mathcal{I} is a matroid independence system.

[†]Recall that “maximal” means “not contained in any other element of \mathcal{I} ”, which is a logically weaker condition than “of largest possible cardinality”.