
Notes on the Tutte Polynomial

1 The recursive definition

We have already seen several graph isomorphism invariants that satisfy (and can by computed by means of)
some sort of deletion-contraction recurrence:

τ(G) = τ(G − e) + τ(G/e) (number of spanning trees)

a(G) = a(G − e) + a(G/e) (number of acyclic orientations)

χ(G; k) = χ(G − e; k) − χ(G/e; k) (the chromatic polynomial)

(1.1)

The Tutte polynomial of a graph is its “most general deletion-contraction invariant”; all these invariants,
and much more useful information, can be obtained from it.

Definition: Let G be a graph. The Tutte polynomial T (G) = T (G; x, y) is defined by the recurrence

T (G; x, y) :=















1 if E(G) = ∅, (a)
x · T (G/e) if e is a cut-edge, (b)
y · T (G − e) if e is a loop, (c)
T (G − e) + T (G/e) for any other edge e. (d)

(1.2)

Note that we have to keep track of loops and parallel edges; it is not true in general that the Tutte polynomial
of a graph equals that of its underlying simple graph.

The problem with this definition is that it is far from clear clear why the polynomial T (G) is independent
of the choice of edge e. We will eventually prove that by giving a closed formula for T (G) that does not
depend on any such choice. First, some examples.

2 Examples

Example 2.1. Suppose G is a forest with m edges. Then

T (G; x, y) = xm. (2.1)

For r = 0, this is case (a) of the recurrence (1.2). Otherwise, every edge of G is a cut-edge, and G/e is a
forest with r − 1 edges. By induction, T (G/e) = xr−1, so T (G) = xr by case (b).

Example 2.2. Let Lr be the graph with one vertex and r loops. By a similar argument, using case (c) of
(1.2), we have

T (Lr; x, y) = yr. (2.2)

More generally, any graph with r edges, all of which are loops, has Tutte polynomial yr.

Example 2.3. It can be shown by induction on n that the Tutte polynomial of the n-cycle is

T (Cn; x, y) = xn−1 + xn−2 + · · · + x2 + x + y. (2.3)

If we swap x and y in this formula, we obtain the Tutte polynomial of a graph with two vertices joined by
n parallel edges.



Example 2.4. Let G = K3 and e any edge (it doesn’t matter which one). Then case (d) of (1.2) gives

T (K3) = T (K3 − e) + T (K3/e)

= T (P3) + T (C2).

Now P3 is a tree with two edges, so its Tutte polynomial is x2. For the digon C2, let f be either edge. Then

T (C2) = T (C2 − f) + T (C2/f)

= T (K2) + T (L1)

= x + y,

so T (K3) = x2 + x + y.

Example 2.5. We will compute the Tutte polynomial of the following graph G:

Applying the recurrence with the edge e gives

TTfT
e

A B

while applying the recurrence with f gives

TTfT
e

There is no particular reason why these two calculations ought to yield the same answer—but they do. First,

T (A) = x · T (C2) = x(x + y),

T (B) = T (C2) + T (L2) = (x + y) + (y2),

yielding T (G) = x2 + xy + y2 + x + y. On the other hand,

T (Y ) = T (K3) = x2 + x + y,

T (Z) = y · T (C2) = y(x + y),

giving the same answer for T (G).

Example 2.6. One more calculation: T (K4). Of course, it doesn’t matter which edge we start with; in the
following diagram, we use the one indicated in red.

TTT

XW

e f



So we now have to calculate the Tutte polynomials of W and X . Apply the recurrence (1.2) with the labeled
edge e ∈ E(W ):

TT

W’

T(W)

W"

Now T (W ′) = x · T (K3), and W ′′ is the graph G of Example 4. On the other hand, applying the recurrence
to f ∈ E(X) gives

TT(X)

X’

T

X"

So X ′ ∼= G, and T (X ′′) = y · T (B), with B as in Example 4. Putting it all together:

T (K4) = T (W ) + T (X)

= T (W ′) + T (W ′′) + T (X ′) + T (X ′′)

= x(x2 + x + y) + 2(x2 + xy + y2 + x + y) + y(x + y + y2)

= (x3 + y3) + (3x2 + 2xy + 3y2) + (2x + 2y).

There are some interesting things about this polynomial. First, it is symmetric in x and y—that is, if we
swap x and y, the polynomial is unchanged. Second, if we plug in various values of x and y, the numbers
that come out are rather suggestive:

T (K4; 0, 0) = 0,

T (K4; 0, 1) = 6, T (K4; 1, 1) = 16,

T (K4; 0, 2) = 24, T (K4; 1, 2) = 38, T (K4; 2, 2) = 64.

It’s not entirely clear what all this means, but 24 = 4! is the number of acyclic orientations of K4 and 16
is the number of spanning trees, among other things. These same substitutions work for K3; recall that
T (K3; x, y) = x2 + x + y, so T (K3; 1, 1) = 3 is the number of spanning trees and T (K3; 2, 0) = 6 = 3! is the
number of acyclic orientations.

(These are not coincidences!)

3 A closed formula for T (G)

In order to prove that the Tutte polynomial is well-defined by the recurrence (1.2), we will give a closed
formula for T (G; x, y), one that does not potentially depend on any choiuce of edges and consequently is
well-defined.

Definition: Let G = (V, E) be a graph. The rank rG(F ) = r(F ) of an edge set F ⊆ E is defined as

r(F ) := max{|X | : X ⊆ F is acyclic.} (3.1)



The rank of G itself, denoted r(G), is just the rank of its edge set. Equivalently, this is the size of a spanning
forest of G.

The corank of F is r(G) − r(F ). This can be described as the minimum number of edges that need to be
added to F in order to make it span G—that is, contain a spanning forest. That is,

r(G) − r(F ) = min{|Y | : Y ⊇ F spanning} − |F |. (3.2)

We can now state the closed formula for the Tutte polynomial:

T(G; x, y) :=
∑

F⊆E

(x − 1)r(G)−r(F )(y − 1)|F |−r(F ). (3.3)

(For the time being, I use the boldface T(G) to distinguish this polynomial from the recursive definition of
T (G). Once we have proved that the two are equal, I’ll dispense with the boldface. In lecture, I used T (G)
for the closed-form and T̃ (G) for the recurrence.)

Theorem 3.1. T(G; x, y = T (G; x, y).

Before giving the proof, we use the formula (3.3) to calculate T (K3; x, y). Note that r(G) = 2, and that
r(F ) = min(|F |, 2) for all F ⊆ E. We calculate the Tutte polynomial as follows, using (3.3):

|F | # of sets F ⊆ E r(F ) Contribution to T (G; x, y)
0 1 0 (x − 1)2(y − 1)0 = x2 − 2x + 1
1 3 1 3(x − 1)1(y − 1)0 = 3x − 3
2 3 2 3(x − 1)0(y − 1)0 = 3
3 1 2 (x − 1)0(y − 1)1 = y − 1
5 x2 + x + y.

Note that this agrees with the recursive calculation in Example 3.

Proof of Theorem 3.1. We induct on e(G). For the base case E = ∅, note that r(∅) = |∅| = 0, so that (3.3)
gives

T(G; x, y) = (x − 1)0(y − 1)0 = 1 = T (G; x, y)

by case (a) of (1.2).

For the inductive step, suppose that the theorem holds for all graphs with fewer edges than G. In particular,
if we choose e ∈ E arbitrarily, then the theorem holds for G− e and (provided that e is not a loop) for G/e.

First, suppose that e is neither a cut-edge nor a loop. Then r(G) = r(G − e) = r(G/e) + 1, and for F ⊆ E,

rG(F ) =

{

rG−e(F ) if e 6∈ F,

rG/e(F − e) + 1 if e ∈ F.

So we can calculate T (G; x, y) as



∑

F⊆E
e6∈F

(x − 1)r(G)−r(F )(y − 1)|F |−r(F ) +
∑

F⊆E
e∈F

(x − 1)r(G)−r(F )(y − 1)|F |−r(F )

=
∑

F : e6∈F

(x − 1)r(G−e)−rG−e(F )(y − 1)|F |−rG−e(F )

+
∑

F : e∈F

(x − 1)r(G/e)−rG/e(F−e)(y − 1)|F−e|−rG/e(F−e)

=
∑

F⊆E−{e}

(x − 1)r(G−e)−rG−e(F )(y − 1)|F |−rG−e(F )

+
∑

F⊆E−{e}

(x − 1)r(G/e)−rG/e(F−e)(y − 1)|F−e|−rG/e(F−e)

= T̃ (G − e) + T̃ (G/e)

which agrees with case (d) of (1.2).

Second, suppose that e is a cut-edge. Rewrite T(G; x, y) as a sum over all F ⊆ E − {e} by by pairing the
summands for F and F + e. For all such F , we have |F + e| = |F | + 1 and r(F + e) = 1 + r(F ) (the latter
because e is a cut-edge). Therefore

T(G; x, y) =





∑

F⊆E−{e}

(x − 1)r(G)−r(F )(y − 1)|F |−r(F ) + (x − 1)r(G)−r(F+e)(y − 1)|F+e|−r(F+e)





=
∑

F⊆E−{e}

[

(x − 1)r(G)−r(F )(y − 1)|F |−r(F ) + (x − 1)r(G)−r(F )−1(y − 1)|F |−r(F )
]

=
∑

F⊆E−{e}

[

(x − 1)r(G)−r(F )−1(y − 1)|F |−r(F )
][

(x − 1) + 1
]

= x ·
∑

F⊆E−{e}

(x − 1)r(G)−r(F )−1(y − 1)|F |−r(F ). (3.4)

Now E − {e} = E(G/e), and for every subset F , we have rG(F ) = rG/e(F ). Also, r(G) = r(G/e) + 1. So
(3.4) becomes

x ·
∑

F⊆E(G/e)

(x − 1)r(G/e)−r(F )(y − 1)|F |−r(F ).

By induction, this is just x · T (G/e; x, y). This agrees with case (b) of the recurrence (1.2).

The case that e is a loop is similar, and is left as an exercise.

We now drop the notation T(G) and use T (G; x, y) for both the polynomial defined recursively by (1.2),
and the same polynomial defined in closed form by (3.3).

Corollary 3.2. The polynomial T (G; x, y) has nonnegative integer coefficients

Proof. By induction on e(G), using the recurrence (1.2).



4 A few applications

All the other deletion-contraction invariants that we know about (see (1.1)) can be obtained as specializations

of the Tutte polynomial—that is, by setting the parameters x and y to other values. In some cases, such
as the chromatic polynomial, we may need the additional correction of multiplying by a monomial (because
T (G; x, y) does not keep track of the number of vertices).

4.1 Spanning forests

Theorem 4.1. The number τ(G) of spanning forests of G is

τ(G) = T (G; 1, 1).

At the end of Example 2.6), we observed that this formula holds for the graphs K3 and K4. It is also easily
seen to hold for forests by Example 2.1. The formula can be proved using either the recurrence (1.2) or the
closed form (3.3).

Proof of Theorem 2. Plugging x = y = 1 into (1.2), we find that

T (G; 1, 1) =



















1 if E(G) = ∅,

T (G/e; 1, 1) if e is a cut-edge,

T (G − e; 1, 1) if e is a loop,

T (G − e; 1, 1) + T (G/e; 1, 1) otherwise.

This is precisely the recurrence defining τ(G).

Another proof of Theorem 2. Plug x = y = 1 into (3.3). It looks as though this will kill every term, but
actually some of the terms—namely, those with both r(G) − r(F ) = 0 and |F | − r(F ) = 0—are identically
1, and will be unaffected by the substitution x = y = 1. Every other term will indeed be killed. Therefore

T (G; 1, 1) = #{F ⊆ E | r(G) = r(F ), |F | = r(F )}. (4.1)

But r(F ) = r(G) if and only if F contains a spanning forest of G, and r(F ) = |F | if and only F is acyclic.
Hence the edge sets F counted in (4.1) are precisely the spanning forests of G.

By similar arguments, the closed formula (3.3) implies that

T (G; 2, 1) = number of acyclic subgraphs of G,

T (G; 1, 2) = number of spanning subgraphs of G,

T (G; 2, 2) = 2e(G).

4.2 The chromatic polynomial and acyclic orientations

Theorem 4.2. The chromatic polynomial of G is

χ(G; k) = (−1)n(G)−c(G) kc(G) T (G; 1 − k, 0). (4.2)



To prove this, one can use the recurrence (1.2) to show that the right-hand side of (4.2) is given by the
chromatic recurrence (West, Thm. 5.3.6). In particular, if n(G) = n(H) and T (G; x, y) = T (H ; x, y) then
χ(g; k) = χ(H ; k). The converse is false—there exist two connected graphs on five vertices with the same
chromatic polynomial but different Tutte polynomials.

Substituting k = −1 in (4.2) yields

χ(G; −1) = (−1)n(G)T (G; 2, 0).

By Stanley’s theorem (West, Thm. 5.3.27), it follows that T (G; 2, 0) is the number of acyclic orientations
of G.

5 A spanning tree expansion of T (G)

We have observed that T (G; 1, 1) = τ(G) and that TG(x, y) has nonnegative integer coefficients. This
suggests that T (G) might be given by a sum of monomials corresponding to spanning trees: that is, for each
spanning tree T there are nonnegative integers a(T ), b(T ) such that

T (G; x, y) =
∑

spanning trees T

xa(T )yb(T ). (5.1)

This is equivalently to expanding the Tutte polynomial as

T (G; x, y) =
∑

i≥0, j≥0

tijx
iyj (5.2)

(note that this sum is finite!), where

tij = #{spanning trees T with a(T ) = i and b(T ) = j}. (5.3)

So, what are a(T ) and b(T )?

Order the edges E = E(G) as e1, e2, . . . , es, and let T be a spanning tree. An edge ei ∈ T is said to be
internally active (with respect to T ) if it is the smallest edge of the edge cut between the two components
of T − ei. Equivalently,

ej 6∈ T, T − ei + ej a tree =⇒ j ≥ i.

An edge ej ∈ E −T is said to be externally active (with respect to T ) if it is the smallest edge of the unique
cycle in T + ej . Equivalently,

ei ∈ T, T − ei + ej a tree =⇒ i ≥ j.

Theorem 5.1. Fix an ordering of E. For each spanning tree T , let a(T ) be the number of internally active

edges of T and let b(T ) be the number of externally active edges. Then the formula (5.1) holds.

We omit the proof, which involves verifying the recurrence (1.2) and is straightforward if tedious.

For a particular tree T , the numbers a(T ), b(T ) depend on the choice of ordering, hence are not isomorphism
invariants of T (or of the pair T, G). However, the numbers tij do not depend on such a choice, since they are
isomorphism invariants of G (by virtue of being coefficients of the Tutte polynomial). It is rather surprising
that all e(G)! possible orderings of the edges produce the same numbers tij .



In some cases, the coefficients tij have combinatorial interpretations independent of (5.3), and are known to
satisfy certain equalities. For example, t01 = t10 for all graphs; this number is called the chromatic invariant

θ(G). It can be shown θ(G) depends only on the homeomorphism type of G (for example, (2.3) implies that
θ(C) = 1 for all cycles C). Moreover, there is the amazing fact

θ(G) = |χ′
G(1)|,

where χ′(G) is the derivative of the chromatic polynomial.

6 Further references

The foregoing is just the tip of the iceberg. The Tutte polynomial can be used to count colorings of G by the
number of improper edges, to obtain information on group-valued flows on G, to compute the probability
that a random subgraph of G is connected, and to study knot theory, statistical mechanics, and topology. It
is also one of the most useful tools in studying matroids, which are more general combinatorial objects than
graphs. There are still many open problems concerning the Tutte polynomial; for instance, there is much
more to be said about the combinatorial meaning of the coefficients tij .

The canonical reference on the Tutte polynomial is the survey article “The Tutte polynomial and its appli-
cations” by T. Brylawski and J. Oxley, which appears as pp. 123–225 of Matroid applications, N. White, ed.
(Cambridge University Press, 1992). Another nice exposition is the final chapter of Modern Graph Theory

by B. Bollobás (Graduate Texts in Mathematics 184, Springer, 1998). W.T. Tutte first constructed the
polynomial (in a slightly different but equivalent form) in “A contribution to the theory of chromatic poly-
nomials”, Canadian J. Math. 6 (1954), 80–91, and developed some of its basic properties in “On dichromatic
polynomials”, J. Comb. Theory 2 (1967), 301–320.


