

Notes on the Tutte Polynomial

1 The recursive definition

We have already seen several graph isomorphism invariants that satisfy (and can be computed by means of) some sort of deletion-contraction recurrence:

$$\begin{aligned}\tau(G) &= \tau(G - e) + \tau(G/e) && \text{(number of spanning trees)} \\ a(G) &= a(G - e) + a(G/e) && \text{(number of acyclic orientations)} \\ \chi(G; k) &= \chi(G - e; k) - \chi(G/e; k) && \text{(the chromatic polynomial)}\end{aligned}\tag{1.1}$$

The *Tutte polynomial of a graph* is its “most general deletion-contraction invariant”; all these invariants, and much more useful information, can be obtained from it.

Definition: Let G be a graph. The *Tutte polynomial* $T(G) = T(G; x, y)$ is defined by the recurrence

$$T(G; x, y) := \begin{cases} 1 & \text{if } E(G) = \emptyset, \\ x \cdot T(G/e) & \text{if } e \text{ is a cut-edge,} \\ y \cdot T(G - e) & \text{if } e \text{ is a loop,} \\ T(G - e) + T(G/e) & \text{for any other edge } e. \end{cases}\tag{1.2}$$

Note that we have to keep track of loops and parallel edges; it is *not* true in general that the Tutte polynomial of a graph equals that of its underlying simple graph.

The problem with this definition is that it is far from clear why the polynomial $T(G)$ is independent of the choice of edge e . We will eventually prove that by giving a closed formula for $T(G)$ that does not depend on any such choice. First, some examples.

2 Examples

Example 2.1. Suppose G is a forest with m edges. Then

$$T(G; x, y) = x^m.\tag{2.1}$$

For $r = 0$, this is case (a) of the recurrence (1.2). Otherwise, every edge of G is a cut-edge, and G/e is a forest with $r - 1$ edges. By induction, $T(G/e) = x^{r-1}$, so $T(G) = x^r$ by case (b).

Example 2.2. Let L_r be the graph with one vertex and r loops. By a similar argument, using case (c) of (1.2), we have

$$T(L_r; x, y) = y^r.\tag{2.2}$$

More generally, any graph with r edges, all of which are loops, has Tutte polynomial y^r .

Example 2.3. It can be shown by induction on n that the Tutte polynomial of the n -cycle is

$$T(C_n; x, y) = x^{n-1} + x^{n-2} + \cdots + x^2 + x + y.\tag{2.3}$$

If we swap x and y in this formula, we obtain the Tutte polynomial of a graph with two vertices joined by n parallel edges.

Example 2.4. Let $G = K_3$ and e any edge (it doesn't matter which one). Then case (d) of (1.2) gives

$$\begin{aligned} T(K_3) &= T(K_3 - e) + T(K_3/e) \\ &= T(P_3) + T(C_2). \end{aligned}$$

Now P_3 is a tree with two edges, so its Tutte polynomial is x^2 . For the digon C_2 , let f be either edge. Then

$$\begin{aligned} T(C_2) &= T(C_2 - f) + T(C_2/f) \\ &= T(K_2) + T(L_1) \\ &= x + y, \end{aligned}$$

$$\text{so } T(K_3) = x^2 + x + y.$$

Example 2.5. We will compute the Tutte polynomial of the following graph G :

Applying the recurrence with the edge e gives

$$T \left(\begin{array}{c} \text{f} \\ \text{e} \\ \text{c} \\ \text{b} \end{array} \right) = T \left(\begin{array}{c} \text{b} \\ \text{c} \\ \text{e} \\ \text{f} \end{array} \right) + T \left(\begin{array}{c} \text{b} \\ \text{c} \\ \text{e} \\ \text{f} \end{array} \right)$$

while applying the recurrence with f gives

$$T\left(\begin{array}{c} \text{f} \\ \text{e} \\ \text{f} \end{array}\right) = T\left(\begin{array}{c} \text{f} \\ \text{e} \\ \text{f} \end{array}\right) + T\left(\begin{array}{c} \text{f} \\ \text{e} \\ \text{f} \end{array}\right)$$

There is no particular reason why these two calculations ought to yield the same answer—but they do. First,

$$\begin{aligned} T(A) &= x \cdot T(C_2) = x(x+y), \\ T(B) &= T(C_2) + T(L_2) = (x+y) + (y^2), \end{aligned}$$

yielding $T(G) = x^2 + xy + y^2 + x + y$. On the other hand,

$$\begin{aligned} T(Y) &= T(K_3) = x^2 + x + y, \\ T(Z) &= y \cdot T(C_2) = y(x + y), \end{aligned}$$

giving the same answer for $T(G)$.

Example 2.6. One more calculation: $T(K_4)$. Of course, it doesn't matter which edge we start with; in the following diagram, we use the one indicated in red.

$$T \left(\begin{array}{c} \text{Diagram A} \end{array} \right) = T \left(\begin{array}{c} \text{Diagram B} \\ \text{W} \end{array} \right) + T \left(\begin{array}{c} \text{Diagram C} \\ \text{X} \end{array} \right)$$

So we now have to calculate the Tutte polynomials of W and X . Apply the recurrence (1.2) with the labeled edge $e \in E(W)$:

$$T(W) = T\left(\begin{array}{c} \text{graph} \\ W' \end{array}\right) + T\left(\begin{array}{c} \text{graph} \\ W'' \end{array}\right)$$

Now $T(W') = x \cdot T(K_3)$, and W'' is the graph G of Example 4. On the other hand, applying the recurrence to $f \in E(X)$ gives

$$T(X) = T\left(\begin{array}{c} \text{graph} \\ X' \end{array}\right) + T\left(\begin{array}{c} \text{graph} \\ X'' \end{array}\right)$$

So $X' \cong G$, and $T(X'') = y \cdot T(B)$, with B as in Example 4. Putting it all together:

$$\begin{aligned} T(K_4) &= T(W) + T(X) \\ &= T(W') + T(W'') + T(X') + T(X'') \\ &= x(x^2 + x + y) + 2(x^2 + xy + y^2 + x + y) + y(x + y + y^2) \\ &= (x^3 + y^3) + (3x^2 + 2xy + 3y^2) + (2x + 2y). \end{aligned}$$

There are some interesting things about this polynomial. First, it is symmetric in x and y —that is, if we swap x and y , the polynomial is unchanged. Second, if we plug in various values of x and y , the numbers that come out are rather suggestive:

$$\begin{aligned} T(K_4; 0, 0) &= 0, \\ T(K_4; 0, 1) &= 6, & T(K_4; 1, 1) &= 16, \\ T(K_4; 0, 2) &= 24, & T(K_4; 1, 2) &= 38, & T(K_4; 2, 2) &= 64. \end{aligned}$$

It's not entirely clear what all this means, but $24 = 4!$ is the number of acyclic orientations of K_4 and 16 is the number of spanning trees, among other things. These same substitutions work for K_3 ; recall that $T(K_3; x, y) = x^2 + x + y$, so $T(K_3; 1, 1) = 3$ is the number of spanning trees and $T(K_3; 2, 0) = 6 = 3!$ is the number of acyclic orientations.

(These are not coincidences!)

3 A closed formula for $T(G)$

In order to prove that the Tutte polynomial is well-defined by the recurrence (1.2), we will give a closed formula for $T(G; x, y)$, one that does not potentially depend on any choice of edges and consequently is well-defined.

Definition: Let $G = (V, E)$ be a graph. The *rank* $r_G(F) = r(F)$ of an edge set $F \subseteq E$ is defined as

$$r(F) := \max\{|X| : X \subseteq F \text{ is acyclic}\}. \quad (3.1)$$

The rank of G itself, denoted $r(G)$, is just the rank of its edge set. Equivalently, this is the size of a spanning forest of G .

The *corank* of F is $r(G) - r(F)$. This can be described as the minimum number of edges that need to be added to F in order to make it span G —that is, contain a spanning forest. That is,

$$r(G) - r(F) = \min\{|Y| : Y \supseteq F \text{ spanning}\} - |F|. \quad (3.2)$$

We can now state the closed formula for the Tutte polynomial:

$$\mathbf{T}(G; x, y) := \sum_{F \subseteq E} (x-1)^{r(G)-r(F)} (y-1)^{|F|-r(F)}. \quad (3.3)$$

(For the time being, I use the boldface $\mathbf{T}(G)$ to distinguish this polynomial from the recursive definition of $T(G)$. Once we have proved that the two are equal, I'll dispense with the boldface. In lecture, I used $T(G)$ for the closed-form and $\tilde{T}(G)$ for the recurrence.)

Theorem 3.1. $\mathbf{T}(G; x, y) = T(G; x, y)$.

Before giving the proof, we use the formula (3.3) to calculate $T(K_3; x, y)$. Note that $r(G) = 2$, and that $r(F) = \min(|F|, 2)$ for all $F \subseteq E$. We calculate the Tutte polynomial as follows, using (3.3):

$ F $	# of sets $F \subseteq E$	$r(F)$	Contribution to $T(G; x, y)$	
0	1	0	$(x-1)^2(y-1)^0 =$	$x^2 - 2x + 1$
1	3	1	$3(x-1)^1(y-1)^0 =$	$3x - 3$
2	3	2	$3(x-1)^0(y-1)^0 =$	3
3	1	2	$(x-1)^0(y-1)^1 =$	$y - 1$
5				$x^2 + x + y.$

Note that this agrees with the recursive calculation in Example 3.

Proof of Theorem 3.1. We induct on $e(G)$. For the base case $E = \emptyset$, note that $r(\emptyset) = |\emptyset| = 0$, so that (3.3) gives

$$\mathbf{T}(G; x, y) = (x-1)^0(y-1)^0 = 1 = T(G; x, y)$$

by case (a) of (1.2).

For the inductive step, suppose that the theorem holds for all graphs with fewer edges than G . In particular, if we choose $e \in E$ arbitrarily, then the theorem holds for $G - e$ and (provided that e is not a loop) for G/e .

First, suppose that e is neither a cut-edge nor a loop. Then $r(G) = r(G - e) = r(G/e) + 1$, and for $F \subseteq E$,

$$r_G(F) = \begin{cases} r_{G-e}(F) & \text{if } e \notin F, \\ r_{G/e}(F - e) + 1 & \text{if } e \in F. \end{cases}$$

So we can calculate $T(G; x, y)$ as

$$\begin{aligned}
& \sum_{\substack{F \subseteq E \\ e \notin F}} (x-1)^{r(G)-r(F)} (y-1)^{|F|-r(F)} + \sum_{\substack{F \subseteq E \\ e \in F}} (x-1)^{r(G)-r(F)} (y-1)^{|F|-r(F)} \\
&= \sum_{\substack{F: e \notin F}} (x-1)^{r(G-e)-r_{G-e}(F)} (y-1)^{|F|-r_{G-e}(F)} \\
&\quad + \sum_{\substack{F: e \in F}} (x-1)^{r(G/e)-r_{G/e}(F-e)} (y-1)^{|F-e|-r_{G/e}(F-e)} \\
&= \sum_{\substack{F \subseteq E - \{e\}}} (x-1)^{r(G-e)-r_{G-e}(F)} (y-1)^{|F|-r_{G-e}(F)} \\
&\quad + \sum_{\substack{F \subseteq E - \{e\}}} (x-1)^{r(G/e)-r_{G/e}(F-e)} (y-1)^{|F-e|-r_{G/e}(F-e)} \\
&= \tilde{T}(G-e) + \tilde{T}(G/e)
\end{aligned}$$

which agrees with case (d) of (1.2).

Second, suppose that e is a cut-edge. Rewrite $\mathbf{T}(G; x, y)$ as a sum over all $F \subseteq E - \{e\}$ by pairing the summands for F and $F + e$. For all such F , we have $|F + e| = |F| + 1$ and $r(F + e) = 1 + r(F)$ (the latter because e is a cut-edge). Therefore

$$\begin{aligned}
\mathbf{T}(G; x, y) &= \left[\sum_{F \subseteq E - \{e\}} (x-1)^{r(G)-r(F)} (y-1)^{|F|-r(F)} + (x-1)^{r(G)-r(F+e)} (y-1)^{|F+e|-r(F+e)} \right] \\
&= \sum_{F \subseteq E - \{e\}} \left[(x-1)^{r(G)-r(F)} (y-1)^{|F|-r(F)} + (x-1)^{r(G)-r(F)-1} (y-1)^{|F|-r(F)} \right] \\
&= \sum_{F \subseteq E - \{e\}} \left[(x-1)^{r(G)-r(F)-1} (y-1)^{|F|-r(F)} \right] \left[(x-1) + 1 \right] \\
&= x \cdot \sum_{F \subseteq E - \{e\}} (x-1)^{r(G)-r(F)-1} (y-1)^{|F|-r(F)}. \tag{3.4}
\end{aligned}$$

Now $E - \{e\} = E(G/e)$, and for every subset F , we have $r_G(F) = r_{G/e}(F)$. Also, $r(G) = r(G/e) + 1$. So (3.4) becomes

$$x \cdot \sum_{F \subseteq E(G/e)} (x-1)^{r(G/e)-r(F)} (y-1)^{|F|-r(F)}.$$

By induction, this is just $x \cdot T(G/e; x, y)$. This agrees with case (b) of the recurrence (1.2).

The case that e is a loop is similar, and is left as an exercise. \square

We now drop the notation $\mathbf{T}(G)$ and use $T(G; x, y)$ for both the polynomial defined recursively by (1.2), and the same polynomial defined in closed form by (3.3).

Corollary 3.2. *The polynomial $T(G; x, y)$ has nonnegative integer coefficients*

Proof. By induction on $e(G)$, using the recurrence (1.2). \square

4 A few applications

All the other deletion-contraction invariants that we know about (see (1.1)) can be obtained as *specializations* of the Tutte polynomial—that is, by setting the parameters x and y to other values. In some cases, such as the chromatic polynomial, we may need the additional correction of multiplying by a monomial (because $T(G; x, y)$ does not keep track of the number of vertices).

4.1 Spanning forests

Theorem 4.1. *The number $\tau(G)$ of spanning forests of G is*

$$\tau(G) = T(G; 1, 1).$$

At the end of Example 2.6), we observed that this formula holds for the graphs K_3 and K_4 . It is also easily seen to hold for forests by Example 2.1. The formula can be proved using either the recurrence (1.2) or the closed form (3.3).

Proof of Theorem 2. Plugging $x = y = 1$ into (1.2), we find that

$$T(G; 1, 1) = \begin{cases} 1 & \text{if } E(G) = \emptyset, \\ T(G/e; 1, 1) & \text{if } e \text{ is a cut-edge,} \\ T(G - e; 1, 1) & \text{if } e \text{ is a loop,} \\ T(G - e; 1, 1) + T(G/e; 1, 1) & \text{otherwise.} \end{cases}$$

This is precisely the recurrence defining $\tau(G)$. □

Another proof of Theorem 2. Plug $x = y = 1$ into (3.3). It looks as though this will kill every term, but actually some of the terms—namely, those with both $r(G) - r(F) = 0$ and $|F| - r(F) = 0$ —are identically 1, and will be unaffected by the substitution $x = y = 1$. Every other term will indeed be killed. Therefore

$$T(G; 1, 1) = \#\{F \subseteq E \mid r(G) = r(F), |F| = r(F)\}. \quad (4.1)$$

But $r(F) = r(G)$ if and only if F contains a spanning forest of G , and $r(F) = |F|$ if and only if F is acyclic. Hence the edge sets F counted in (4.1) are precisely the spanning forests of G . □

By similar arguments, the closed formula (3.3) implies that

$$\begin{aligned} T(G; 2, 1) &= \text{number of acyclic subgraphs of } G, \\ T(G; 1, 2) &= \text{number of spanning subgraphs of } G, \\ T(G; 2, 2) &= 2^{e(G)}. \end{aligned}$$

4.2 The chromatic polynomial and acyclic orientations

Theorem 4.2. *The chromatic polynomial of G is*

$$\chi(G; k) = (-1)^{n(G) - c(G)} k^{c(G)} T(G; 1 - k, 0). \quad (4.2)$$

To prove this, one can use the recurrence (1.2) to show that the right-hand side of (4.2) is given by the chromatic recurrence (West, Thm. 5.3.6). In particular, if $n(G) = n(H)$ and $T(G; x, y) = T(H; x, y)$ then $\chi(g; k) = \chi(H; k)$. The converse is false—there exist two connected graphs on five vertices with the same chromatic polynomial but different Tutte polynomials.

Substituting $k = -1$ in (4.2) yields

$$\chi(G; -1) = (-1)^{n(G)} T(G; 2, 0).$$

By Stanley's theorem (West, Thm. 5.3.27), it follows that $T(G; 2, 0)$ is the number of acyclic orientations of G .

5 A spanning tree expansion of $T(G)$

We have observed that $T(G; 1, 1) = \tau(G)$ and that $T_G(x, y)$ has nonnegative integer coefficients. This suggests that $T(G)$ might be given by a sum of monomials corresponding to spanning trees: that is, for each spanning tree T there are nonnegative integers $a(T), b(T)$ such that

$$T(G; x, y) = \sum_{\text{spanning trees } T} x^{a(T)} y^{b(T)}. \quad (5.1)$$

This is equivalently to expanding the Tutte polynomial as

$$T(G; x, y) = \sum_{i \geq 0, j \geq 0} t_{ij} x^i y^j \quad (5.2)$$

(note that this sum is finite!), where

$$t_{ij} = \#\{\text{spanning trees } T \text{ with } a(T) = i \text{ and } b(T) = j\}. \quad (5.3)$$

So, what are $a(T)$ and $b(T)$?

Order the edges $E = E(G)$ as e_1, e_2, \dots, e_s , and let T be a spanning tree. An edge $e_i \in T$ is said to be *internally active* (with respect to T) if it is the smallest edge of the edge cut between the two components of $T - e_i$. Equivalently,

$$e_j \notin T, T - e_i + e_j \text{ a tree} \implies j \geq i.$$

An edge $e_j \in E - T$ is said to be *externally active* (with respect to T) if it is the smallest edge of the unique cycle in $T + e_j$. Equivalently,

$$e_i \in T, T - e_i + e_j \text{ a tree} \implies i \geq j.$$

Theorem 5.1. *Fix an ordering of E . For each spanning tree T , let $a(T)$ be the number of internally active edges of T and let $b(T)$ be the number of externally active edges. Then the formula (5.1) holds.*

We omit the proof, which involves verifying the recurrence (1.2) and is straightforward if tedious.

For a particular tree T , the numbers $a(T), b(T)$ depend on the choice of ordering, hence are not isomorphism invariants of T (or of the pair T, G). However, the numbers t_{ij} do not depend on such a choice, since they are isomorphism invariants of G (by virtue of being coefficients of the Tutte polynomial). It is rather surprising that all $e(G)!$ possible orderings of the edges produce the same numbers t_{ij} .

In some cases, the coefficients t_{ij} have combinatorial interpretations independent of (5.3), and are known to satisfy certain equalities. For example, $t_{01} = t_{10}$ for all graphs; this number is called the *chromatic invariant* $\theta(G)$. It can be shown $\theta(G)$ depends only on the *homeomorphism type* of G (for example, (2.3) implies that $\theta(C) = 1$ for all cycles C). Moreover, there is the amazing fact

$$\theta(G) = |\chi'_G(1)|,$$

where $\chi'(G)$ is the *derivative* of the chromatic polynomial.

6 Further references

The foregoing is just the tip of the iceberg. The Tutte polynomial can be used to count colorings of G by the number of improper edges, to obtain information on group-valued flows on G , to compute the probability that a random subgraph of G is connected, and to study knot theory, statistical mechanics, and topology. It is also one of the most useful tools in studying *matroids*, which are more general combinatorial objects than graphs. There are still many open problems concerning the Tutte polynomial; for instance, there is much more to be said about the combinatorial meaning of the coefficients t_{ij} .

The canonical reference on the Tutte polynomial is the survey article “The Tutte polynomial and its applications” by T. Brylawski and J. Oxley, which appears as pp. 123–225 of *Matroid applications*, N. White, ed. (Cambridge University Press, 1992). Another nice exposition is the final chapter of *Modern Graph Theory* by B. Bollobás (Graduate Texts in Mathematics 184, Springer, 1998). W.T. Tutte first constructed the polynomial (in a slightly different but equivalent form) in “A contribution to the theory of chromatic polynomials”, *Canadian J. Math.* **6** (1954), 80–91, and developed some of its basic properties in “On dichromatic polynomials”, *J. Comb. Theory* **2** (1967), 301–320.