
Math 725, Spring 2006
Solution Set #6

#1. [West 4.3.15] Let G be a weighted graph with weight function wt : E → R≥0. For each
spanning tree T of G, define a(T ) = min{wt(e) : e ∈ T} and for each edge cut [S, S̄], define
b([S, S̄]) = max{wt(e) : e ∈ [S, S̄]}. Prove that

max
spanning trees T

a(T ) = min
edge cuts [S,S̄]

b([S, S̄]).

Let T be a spanning tree T and F = [S, S̄] an edge cut. Then T must contain at least one edge e ∈ F ,
otherwise it contains no path from any member of S to any member of S̄. Therefore

a(T ) ≤ wt(e) ≤ b(F ) (1)

from which it follows that
max

T
a(T ) ≤ min

[S,S̄]
b([S, S̄]).

Now, we want to prove that there exist T, F for which equality holds in (1). Let T be a maximum-weight
spanning tree, constructed by modifying Kruskal’s Algorithm (West, p. 95) so that each iteration adds the
edge of largest weight that does not complete a cycle.

Let e be the last edge added to T . Then T − e has two components, whose vertex sets partition V ; call these
vertex sets S and S̄. Before the last iteration, the edges that can be added to T − e that do not form a cycle
are precisely the members of F = [S, S̄].

Then wt(e′) ≥ wt(e) for every e′ ∈ T − e, because the algorithm added e′ to T before it added e. On the
other hand, wt(e′′) ≤ wt(e) for every e′′ ∈ F , otherwise the algorithm would add e′′ instead of e. Combining
these two statements, we have

wt(e′) ≥ wt(e) ≥ wt(e′′) ∀e′ ∈ T, e′′ ∈ F

which implies that
a(T ) ≥ b(F )

as desired. �

#2. Let G be the graph with 16 vertices {a1, a2, . . . , d4} corresponding to the squares of a 4× 4
chessboard, with two vertices adjacent if they are connected by a knight move (that is, if one
of their row and column coordinates differs by 2, and the other by 1).

(a) Use the Max-Flow/Min-Cut algorithm to find a maximum family of PED paths joining
the vertices s = b2 and t = b3.

To do this, we replace each undirected edge xy by a pair of directed edges −→xy, −→yx, each having capacity 1
(although we can omit the edges having head s or tail y). Then an acyclic s, t-flow f can be partitioned
into |f | PED s, t-paths. There are many ways the algorithm might proceed, but you should wind up with a
family of four paths: for example,

P1 : b2, d3, c3, b3

P2 : b2, c4, d2, b3

P3 : b2, a4, c1, b1, a3, c2, d4, b3

P4 : b2, d1, c3, a2, b4, c2, a1, b3

(2)

It’s a little easier to illustrate this family with a picture:
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(b) Certify that your answer is correct by exhibiting an s, t-edge cut of cardinality λ′(s, t).

The set of edges incident to s, i.e., the edge cut [{s}, {s}], is an s, t-edge cut of cardinality 4.

(c) Prove that λ(s, t) < λ′(s, t).

The vertex set X = {c4, c3, d3} is an s, t-vertex cut of cardinality 3. The easiest way to verify this is to
observe directly that W = {a4, b2, d1} is the vertex set of a component of G−X , since every other neighbor
of a vertex in W belongs to X . (Notice that it is not enough to assert that every path Pi in (2) contains a
vertex X—that in itself does not rule out the possibility that G − X might have some other s, t-path.)

#3. [West 5.1.22] Given a set of lines in the plane with no three meeeting at a point, form
a graph G whose vertices are the intersections of the lines, with two vertices adjacent if they
appear consecutively on one of the lines. Prove that χ(G) ≤ 3.

Note that ∆(G) ≤ 4, because each vertex lies on exactly two lines and has at most one neighbor in each
direction on each line.

Draw a new line ` that is not perpendicular to any line in the arrangement, and rotate the coordinates so
that ` becomes the x-axis. Now no line of the arrangement is vertical, so in particular every vertex has a
different x-coordinate.

Now, apply the greedy coloring algorithm, ordering the vertices by their x-coordinates. For each vertex v
with collinear neighbors u, w, we have either u < v < w or u > v > w. In particular, at most one of u, w can
precede v in the ordering, and the same is true for the other line on which v lies. Therefore, at most two
neighbors of v have been colored before it is, and the coloring uses at most three colors. �

Alternately, for any subgraph H ⊆ G, let v be the vertex of H with the smallest x-coordinate. By the same
reasoning as above, dH(x) ≤ 2, so δ(H) ≤ 2. So χ(G) ≤ 3 by Theorem 5.1.19 (which we did not discuss in
class).

#4. [West 5.1.38] Prove that χ(G) = ω(G) if Ḡ is bipartite.

Let G = (V, E). If G ∼= Kn, then there is nothing to prove: χ(G) = ω(G) = n. Otherwise, let U be the set
of politicians in G, that is,

U =
{

v ∈ V | N(v) = V − {v}
}

.



Then every maximal clique contains U , and each member of U forms a singleton color class with respect to
every proper coloring. Therefore χ(G−U) = χ(G)−|U | and ω(G−U) = ω(G)−|U |. Hence we may replace
G with G − U , which is a politician-free graph whose complement is bipartite. Then

ω(G) = α(Ḡ) (by definition)
= β′(Ḡ) (by Cor. 3.1.24)
= n(G) − α′(Ḡ) (by Thm. 3.1.22).

Let M be a maximum matching on Ḡ, i.e., |M | = α(′Ḡ). Construct a coloring of G as follows: for each
e = vw ∈ M , the vertices {v, w} form a color class, and if a vertex x is M -unsaturated, then it is a singleton
color class. This coloring is proper, and uses n(G) − α′(Ḡ) colors. Therefore χ(G) ≤ n(G) − α′(Ḡ) = ω(G).
Since χ(G) ≥ ω(G) in general (Prop. 5.1.7), we have χ(G) = ω(G). �

#5. [West 5.3.4] (a) Prove that the chromatic polynomial of the n-cycle is χ(Cn; k) =
(k − 1)n + (−1)n(k − 1).

We proceed by induction on n.

Base case: If n = 2, then C2 is the digon, and its chromatic polynomial is k(k − 1). Indeed, the formula
gives

(k − 1)2 + (−1)2(k − 1) = (k2 − 2k + 1) + (k − 1) = k2 − k = k(k − 1).

Inductive step: Suppose that n ≥ 2 and χ(Cn; k) = (k − 1)n + (−1)n(k − 1). We will prove the analogous
formula for Cn+1. Let e ∈ E(Cn+1). Then G − e ∼= Pn+1 (a tree with n + 1 vertices) and G/e ∼= Cn, so

χ(Cn+1; k) = χ(Pn+1; k) − χ(Cn; k)

= k(k − 1)n − ((k − 1)n + (−1)n(k − 1))

= (k − 1)n+1 + (−1)n+1(k − 1). �

(b) For H = G ∨ K1, prove that χ(H ; k) = k · χ(G; k − 1).

Let v be the vertex of K1 in H . Since NH(v) = V (G), the vertex v must form its own color class in any
proper coloring. Therefore, a k-coloring f of H consists of a choice for f(v) together with a proper coloring
of G using the remaining k − 1 colors, from which the desired formula follows.

(c) Use (a) and (b) to find the chromatic polynomial of the wheel Wn = Cn ∨ K1.

χ(Wn; k) = χ(Cn ∨ K1; k) = k · χ(Cn; k − 1) = k
[

(k − 2)n + (−1)n(k − 2)
]

.

Bonus problem: We proved in class that a tree T on n vertices has chromatic polynomial
χ(T ; k) = k(k − 1)n−1 (see Proposition 5.3.3). Conversely, suppose that G is a graph with
chromatic polynomial χ(G; k) = k(k − 1)n−1 for some n. Must G be a tree?

Almost. I didn’t say anything about G being simple! Indeed, if G is simple, then since χ(G; k) = k(k −
1)n−1 = kn−(n−1)kn−1+ · · · , we know by Theorem 5.3.10 that G has n vertices and n−1 edges. Moreover,
G cannot be disconnected, because if it has c components then χ(G; k) is divisible by kc, which is true only
for c = 1. Therefore G must be a tree.

Therefore, in general, χ(G; k) = k(k−1)n−1 if and only if G is a loopless graph on n vertices whose underlying
simple graph is a tree.


