

#1. [West 4.3.15] Let G be a weighted graph with weight function $\text{wt} : E \rightarrow \mathbb{R}_{\geq 0}$. For each spanning tree T of G , define $a(T) = \min\{\text{wt}(e) : e \in T\}$ and for each edge cut $[S, \bar{S}]$, define $b([S, \bar{S}]) = \max\{\text{wt}(e) : e \in [S, \bar{S}]\}$. Prove that

$$\max_{\text{spanning trees } T} a(T) = \min_{\text{edge cuts } [S, \bar{S}]} b([S, \bar{S}]).$$

Let T be a spanning tree and $F = [S, \bar{S}]$ an edge cut. Then T must contain at least one edge $e \in F$, otherwise it contains no path from any member of S to any member of \bar{S} . Therefore

$$a(T) \leq \text{wt}(e) \leq b(F) \tag{1}$$

from which it follows that

$$\max_T a(T) \leq \min_{[S, \bar{S}]} b([S, \bar{S}]).$$

Now, we want to prove that there exist T, F for which equality holds in (1). Let T be a maximum-weight spanning tree, constructed by modifying Kruskal's Algorithm (West, p. 95) so that each iteration adds the edge of *largest* weight that does not complete a cycle.

Let e be the last edge added to T . Then $T - e$ has two components, whose vertex sets partition V ; call these vertex sets S and \bar{S} . Before the last iteration, the edges that can be added to $T - e$ that do not form a cycle are precisely the members of $F = [S, \bar{S}]$.

Then $\text{wt}(e') \geq \text{wt}(e)$ for every $e' \in T - e$, because the algorithm added e' to T before it added e . On the other hand, $\text{wt}(e'') \leq \text{wt}(e)$ for every $e'' \in F$, otherwise the algorithm would add e'' instead of e . Combining these two statements, we have

$$\text{wt}(e') \geq \text{wt}(e) \geq \text{wt}(e'') \quad \forall e' \in T, e'' \in F$$

which implies that

$$a(T) \geq b(F)$$

as desired. ■

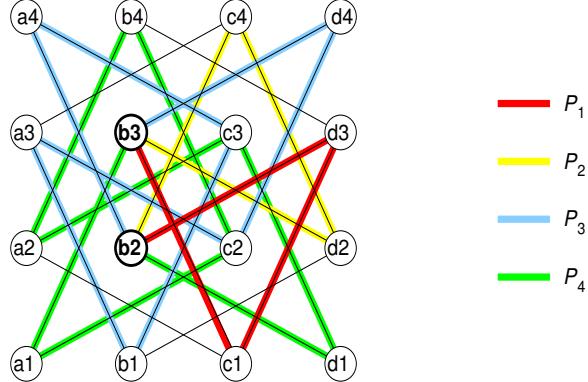
#2. Let G be the graph with 16 vertices $\{a_1, a_2, \dots, d_4\}$ corresponding to the squares of a 4×4 chessboard, with two vertices adjacent if they are connected by a knight move (that is, if one of their row and column coordinates differs by 2, and the other by 1).

(a) Use the Max-Flow/Min-Cut algorithm to find a maximum family of PED paths joining the vertices $s = b_2$ and $t = b_3$.

To do this, we replace each undirected edge xy by a pair of directed edges \vec{xy} , \vec{yx} , each having capacity 1 (although we can omit the edges having head s or tail y). Then an acyclic s, t -flow f can be partitioned into $|f|$ PED s, t -paths. There are many ways the algorithm might proceed, but you should wind up with a family of four paths: for example,

$$\begin{aligned} P_1 &: b_2, d_3, c_3, b_3 \\ P_2 &: b_2, c_4, d_2, b_3 \\ P_3 &: b_2, a_4, c_1, b_1, a_3, c_2, d_4, b_3 \\ P_4 &: b_2, d_1, c_3, a_2, b_4, c_2, a_1, b_3 \end{aligned} \tag{2}$$

It's a little easier to illustrate this family with a picture:



(b) Certify that your answer is correct by exhibiting an s, t -edge cut of cardinality $\lambda'(s, t)$.

The set of edges incident to s , i.e., the edge cut $[\{s\}, \overline{\{s\}}]$, is an s, t -edge cut of cardinality 4.

(c) Prove that $\lambda(s, t) < \lambda'(s, t)$.

The vertex set $X = \{c4, c3, d3\}$ is an s, t -vertex cut of cardinality 3. The easiest way to verify this is to observe directly that $W = \{a4, b2, d1\}$ is the vertex set of a component of $G - X$, since every other neighbor of a vertex in W belongs to X . (Notice that it is *not* enough to assert that every path P_i in (2) contains a vertex X —that in itself does not rule out the possibility that $G - X$ might have some other s, t -path.)

#3. [West 5.1.22] Given a set of lines in the plane with no three meeting at a point, form a graph G whose vertices are the intersections of the lines, with two vertices adjacent if they appear consecutively on one of the lines. Prove that $\chi(G) \leq 3$.

Note that $\Delta(G) \leq 4$, because each vertex lies on exactly two lines and has at most one neighbor in each direction on each line.

Draw a new line ℓ that is not perpendicular to any line in the arrangement, and rotate the coordinates so that ℓ becomes the x -axis. Now no line of the arrangement is vertical, so in particular every vertex has a different x -coordinate.

Now, apply the greedy coloring algorithm, ordering the vertices by their x -coordinates. For each vertex v with collinear neighbors u, w , we have either $u < v < w$ or $u > v > w$. In particular, at most one of u, w can precede v in the ordering, and the same is true for the other line on which v lies. Therefore, at most two neighbors of v have been colored before it is, and the coloring uses at most three colors. ■

Alternately, for any subgraph $H \subseteq G$, let v be the vertex of H with the smallest x -coordinate. By the same reasoning as above, $d_H(x) \leq 2$, so $\delta(H) \leq 2$. So $\chi(G) \leq 3$ by Theorem 5.1.19 (which we did not discuss in class).

#4. [West 5.1.38] Prove that $\chi(G) = \omega(G)$ if \bar{G} is bipartite.

Let $G = (V, E)$. If $G \cong K_n$, then there is nothing to prove: $\chi(G) = \omega(G) = n$. Otherwise, let U be the set of politicians in G , that is,

$$U = \{v \in V \mid N(v) = V - \{v\}\}.$$

Then every maximal clique contains U , and each member of U forms a singleton color class with respect to every proper coloring. Therefore $\chi(G - U) = \chi(G) - |U|$ and $\omega(G - U) = \omega(G) - |U|$. Hence we may replace G with $G - U$, which is a politician-free graph whose complement is bipartite. Then

$$\begin{aligned}\omega(G) &= \alpha(\bar{G}) && \text{(by definition)} \\ &= \beta'(\bar{G}) && \text{(by Cor. 3.1.24)} \\ &= n(G) - \alpha'(\bar{G}) && \text{(by Thm. 3.1.22).}\end{aligned}$$

Let M be a maximum matching on \bar{G} , i.e., $|M| = \alpha'(\bar{G})$. Construct a coloring of G as follows: for each $e = vw \in M$, the vertices $\{v, w\}$ form a color class, and if a vertex x is M -unsaturated, then it is a singleton color class. This coloring is proper, and uses $n(G) - \alpha'(\bar{G})$ colors. Therefore $\chi(G) \leq n(G) - \alpha'(\bar{G}) = \omega(G)$. Since $\chi(G) \geq \omega(G)$ in general (Prop. 5.1.7), we have $\chi(G) = \omega(G)$. \blacksquare

#5. [West 5.3.4] (a) Prove that the chromatic polynomial of the n -cycle is $\chi(C_n; k) = (k - 1)^n + (-1)^n(k - 1)$.

We proceed by induction on n .

Base case: If $n = 2$, then C_2 is the digon, and its chromatic polynomial is $k(k - 1)$. Indeed, the formula gives

$$(k - 1)^2 + (-1)^2(k - 1) = (k^2 - 2k + 1) + (k - 1) = k^2 - k = k(k - 1).$$

Inductive step: Suppose that $n \geq 2$ and $\chi(C_n; k) = (k - 1)^n + (-1)^n(k - 1)$. We will prove the analogous formula for C_{n+1} . Let $e \in E(C_{n+1})$. Then $G - e \cong P_{n+1}$ (a tree with $n + 1$ vertices) and $G/e \cong C_n$, so

$$\begin{aligned}\chi(C_{n+1}; k) &= \chi(P_{n+1}; k) - \chi(C_n; k) \\ &= k(k - 1)^n - ((k - 1)^n + (-1)^n(k - 1)) \\ &= (k - 1)^{n+1} + (-1)^{n+1}(k - 1).\end{aligned}\blacksquare$$

(b) For $H = G \vee K_1$, prove that $\chi(H; k) = k \cdot \chi(G; k - 1)$.

Let v be the vertex of K_1 in H . Since $N_H(v) = V(G)$, the vertex v must form its own color class in any proper coloring. Therefore, a k -coloring f of H consists of a choice for $f(v)$ together with a proper coloring of G using the remaining $k - 1$ colors, from which the desired formula follows.

(c) Use (a) and (b) to find the chromatic polynomial of the wheel $W_n = C_n \vee K_1$.

$$\chi(W_n; k) = \chi(C_n \vee K_1; k) = k \cdot \chi(C_n; k - 1) = k[(k - 2)^n + (-1)^n(k - 2)].$$

Bonus problem: We proved in class that a tree T on n vertices has chromatic polynomial $\chi(T; k) = k(k - 1)^{n-1}$ (see Proposition 5.3.3). Conversely, suppose that G is a graph with chromatic polynomial $\chi(G; k) = k(k - 1)^{n-1}$ for some n . Must G be a tree?

Almost. I didn't say anything about G being simple! Indeed, if G is simple, then since $\chi(G; k) = k(k - 1)^{n-1} = k^n - (n - 1)k^{n-1} + \dots$, we know by Theorem 5.3.10 that G has n vertices and $n - 1$ edges. Moreover, G cannot be disconnected, because if it has c components then $\chi(G; k)$ is divisible by k^c , which is true only for $c = 1$. Therefore G must be a tree.

Therefore, in general, $\chi(G; k) = k(k - 1)^{n-1}$ if and only if G is a loopless graph on n vertices whose underlying simple graph is a tree.