Math 725, Spring 2006
Solution Set #6

#1. [West 4.3.15] Let G be a weighted graph with weight function wt : £ — Rx¢. For each
spanning tree 7' of G, define a(T) = min{wt(e) : e € T} and for each edge cut [S,S], define
b([S, S]) = max{wt(e) : e €[S, S]}. Prove that

max a(T) = min b([S, S]).

spanning trees T edge cuts [S,S5]

Let T be a spanning tree T and F = [S,S] an edge cut. Then T must contain at least one edge e € F,
otherwise it contains no path from any member of S to any member of S. Therefore

a(T) < wi(e) < b(F) (1)

from which it follows that

T) < min b([S,S)).
max o(T) < min b([S, 5])

Now, we want to prove that there exist T, F' for which equality holds in (1). Let T' be a maximum-weight
spanning tree, constructed by modifying Kruskal’s Algorithm (West, p. 95) so that each iteration adds the
edge of largest weight that does not complete a cycle.

Let e be the last edge added to 7. Then T'— e has two components, whose vertex sets partition V; call these
vertex sets S and S. Before the last iteration, the edges that can be added to T — e that do not form a cycle
are precisely the members of F' =[S, S].

Then wt(e’) > wt(e) for every e/ € T — e, because the algorithm added e’ to T before it added e. On the
other hand, wt(e’) < wt(e) for every e” € F, otherwise the algorithm would add e” instead of e. Combining
these two statements, we have

wt(e') > wt(e) > wt(e”) Ve’ €T, e’ eF

which implies that
a(T) > b(F)

as desired. m

#2. Let G be the graph with 16 vertices {a1,as,...,ds} corresponding to the squares of a 4 x 4
chessboard, with two vertices adjacent if they are connected by a knight move (that is, if one
of their row and column coordinates differs by 2, and the other by 1).

(a) Use the Max-Flow/Min-Cut algorithm to find a maximum family of PED paths joining
the vertices s = by, and ¢ = bs.

To do this, we replace each undirected edge xy by a pair of directed edges z7, ¥z, each having capacity 1
(although we can omit the edges having head s or tail y). Then an acyclic s,t-flow f can be partitioned
into | f| PED s, t-paths. There are many ways the algorithm might proceed, but you should wind up with a
family of four paths: for example,

P1 : bg, d3, C3, b3

PQI bQ, Cyq, dz, bg

Pg: bQ, a4, C1, bl, as, C2, d4, bg

P4: bQ, dl, c3, a2z, b4, Co, Qq, bg

(2)

It’s a little easier to illustrate this family with a picture:



(b) Certify that your answer is correct by exhibiting an s, ¢-edge cut of cardinality \'(s,t).

The set of edges incident to s, i.e., the edge cut [{s}, {s}], is an s, t-edge cut of cardinality 4.
(c) Prove that A(s,t) < N(s,t).

The vertex set X = {c4,¢3,d3} is an s,t-vertex cut of cardinality 3. The easiest way to verify this is to
observe directly that W = {aq4, b2, d1} is the vertex set of a component of G — X, since every other neighbor
of a vertex in W belongs to X. (Notice that it is not enough to assert that every path P; in (2) contains a
vertex X—that in itself does not rule out the possibility that G — X might have some other s, t-path.)

#3. [West 5.1.22] Given a set of lines in the plane with no three meeeting at a point, form
a graph G whose vertices are the intersections of the lines, with two vertices adjacent if they
appear consecutively on one of the lines. Prove that x(G) < 3.

Note that A(G) < 4, because each vertex lies on exactly two lines and has at most one neighbor in each
direction on each line.

Draw a new line ¢ that is not perpendicular to any line in the arrangement, and rotate the coordinates so
that £ becomes the z-axis. Now no line of the arrangement is vertical, so in particular every vertex has a
different z-coordinate.

Now, apply the greedy coloring algorithm, ordering the vertices by their z-coordinates. For each vertex v
with collinear neighbors u, w, we have either u < v < w or u > v > w. In particular, at most one of u,w can
precede v in the ordering, and the same is true for the other line on which v lies. Therefore, at most two
neighbors of v have been colored before it is, and the coloring uses at most three colors. |

Alternately, for any subgraph H C G, let v be the vertex of H with the smallest z-coordinate. By the same
reasoning as above, di(z) < 2, s0 6(H) < 2. So x(G) < 3 by Theorem 5.1.19 (which we did not discuss in
class).

#4. [West 5.1.38] Prove that y(G) = w(G) if G is bipartite.

Let G = (V,E). If G = K, then there is nothing to prove: x(G) = w(G) = n. Otherwise, let U be the set
of politicians in G, that is,
U={veV |Nw=V-{v}}.



Then every maximal clique contains U, and each member of U forms a singleton color class with respect to
every proper coloring. Therefore x(G—U) = x(G) — |U| and w(G —U) = w(G) — |U|. Hence we may replace
G with G — U, which is a politician-free graph whose complement is bipartite. Then

w(@ = aG) (by definition)
= B(G) (by Cor. 3.1.24)
= n(G) - d(G) (by Thm. 3.1.22).

Let M be a maximum matching on G, i.e., |[M| = a(’G). Construct a coloring of G as follows: for each
e =vw € M, the vertices {v, w} form a color class, and if a vertex z is M-unsaturated, then it is a singleton
color class. This coloring is proper, and uses n(G) — o’ (G) colors. Therefore x(G) < n(G) — o/ (G) = w(G).
Since x(G) > w(G) in general (Prop. 5.1.7), we have x(G) = w(G). [

#5. [West 5.3.4] (a) Prove that the chromatic polynomial of the n-cycle is x(Cy; k) =
(k=1)"+ (=1)"(k—1).

We proceed by induction on n.

Base case: If n = 2, then Cs is the digon, and its chromatic polynomial is k(k — 1). Indeed, the formula
gives
(k—12%*+(-1)%*k—-1) = (K> -2k+1)+(k—1) = K>~k = k(k—1).

Inductive step: Suppose that n > 2 and x(Cp; k) (k—1)"+ (—=1)"(k —1). We will prove the analogous
formula for Cp,41. Let e € E(Cp41). Then G — e & P41 (a tree with n + 1 vertices) and G/e = C,,, so
X(Cni1; k) = X(Pagrs k) = x(Cn; k)
= k(k-1)"—((k-1)"+(-1)"(k—-1))
= (k—D"" 4 (1) (k-1). [ |

(b) For H =GV K, prove that x(H; k) =k - x(G; k- 1).

Let v be the vertex of K1 in H. Since Ny (v) = V(G), the vertex v must form its own color class in any
proper coloring. Therefore, a k-coloring f of H counsists of a choice for f(v) together with a proper coloring
of G using the remaining k — 1 colors, from which the desired formula follows.

(c) Use (a) and (b) to find the chromatic polynomial of the wheel W,, = C,, V Kj.

X(Was k) = Xx(Cn V K15 k) = k- x(Cr; k= 1) = k[(k —2)" + (=1)"(k — 2)].

Bonus problem: We proved in class that a tree T on n vertices has chromatic polynomial
X(T; k) = k(k — 1)1 (see Proposition 5.3.3). Conversely, suppose that G is a graph with
chromatic polynomial x(G; k) = k(k —1)"~! for some n. Must G be a tree?

Almost. I didn’t say anything about G being simple! Indeed, if G is simple, then since x(G; k) = k(k —
"l =k"—(n—1)k""14- .. we know by Theorem 5.3.10 that G has n vertices and n — 1 edges. Moreover,
G cannot be disconnected, because if it has ¢ components then x(G; k) is divisible by k¢, which is true only
for ¢ = 1. Therefore G must be a tree.

Therefore, in general, x(G; k) = k(k—1)""! if and only if G is a loopless graph on n vertices whose underlying
simple graph is a tree.



