Math 725, Spring 2006

Solution Set #5

#1. [West 3.3.7] For each k > 1, construct a k-regular simple graph having no perfect matching.
Here is one of several possible constructions.

If k is even, then the complete graph Ky suffices; it is certainly k-regular, but has an odd number of
vertices, hence no perfect matching.

On the other hand, suppose that k£ > 1 is odd.Construct a graph Hy by starting with a complete graph on
vertices vy, va, ..., vg, and deleting the (k + 1)/2 edges

V102, V3V4, ..., Vg—2Vk—1, UEU1.
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Notice that n(Hy) = k + 2 is odd, and that Hj has k+ 1 vertices of degree k and one vertex of degree k — 1.
Now construct a graph Gy, from k- Hy, (that is, the disjoint union of k copies of H}), inventing a new vertex
x, and adding an edge from 0 to each vertex of degree k — 1 in one of the copies of Hy,.

Gs3

By construction, Gy, is k-regular. However, if we take S = {«}, then |S| = 1 and o(Gj, — S) = k (because
Gy — S =k - Hy), so Gy, has no perfect matching by Tutte’s theorem.



#2. [West 3.3.22] Let G be an X,Y-bigraph. Let H be the graph obtained from G by adding
one vertex to Y if n(G) is odd, then adding edges to make Y into a clique.

(a) Prove that G has a matching of size | X| if and only if H has a perfect matching.

(<) If M is a perfect matching of H, then each vertex in X must be matched with a vertex of Y by a
vertex of F(G), because X is a coclique in H and Ny (z) = Ng(x) for all x € X. Therefore M N E(G) is a
matching of G saturating X, in particular of size |X|.

(=) On the other hand, if M is a matching of G of size | X|, then it saturates X (since G is X, Y-bipartite).
If we regard M as a matching of H, then there are an even number (namely n(H) — 2|M|) of unsaturated
vertices, all of which belong to Y, which is a clique in H. So any pairing of these vertices extends M to a
perfect matching of H.

(b) Prove that if G satisfies Hall’s condition (that is, |[N(S)| > |S]| for all S C X), then H satisfies Tutte’s
condition (that is, o(H —T) < |T| for all T C V(H)).

Suppose that G satisfies Hall’s condition. Let T'C V(H) and S = V(H)—T = V(H—T). Define Tx = TNX,
Ty =TNY,Sx=5SNX, Sy =5NY. Also define
Z:{(EGSX | N(i)gTy}

The vertices of Sy form a clique in H — T', so in particular they all belong to the same component .J of
H —T. For each z € Sy, if x has a neighbor in Sy (that is, if € Z) then x € V(J), while if x € Z then x
is an isolated (hence odd) component of H — T'. Thus we have

V(J)=V(H)-Z-Ty W
and
[z if n(J) is even,
oH-T)= {|Z| +1 ifn(J) is odd. (2)

Since N(Z) C Ty, Hall’s condition implies that
1Z] < [Ty |. (3)
Case 1: Tx #0. Then |T| > [Ty|+1 > |Z|+1 (by (3)) > o(H —T) (by (2)).

Case 2: Ty = 0. If |Z| < |Ty| then |T| =|Ty| > |Z|+ 1 > o(H — T). On the other hand, if |Z| = |Ty| then
by (1) it follows that n(J) =n(H) — |Z| — |Ty| =n(H) — 2|Z] is even, so o(H — T) = |Z| < |Ty| = |T).

In all cases H satisfies Tutte’s condition.

(c) Use parts (a) and (b) to conclude that Tutte’s 1-Factor Theorem 3.3.3 implies Hall’s
Theorem 3.1.11.

We have shown that if Hall’s condition holds, then the graph H satisfies Tutte’s condition (part (b)), hence
has a perfect matching by Tutte’s theorem, so that G has a matching saturating X (part (a)). This is the
difficult direction of Hall’s theorem.



#3. [West 4.1.9] For each choice of integers k,¢,m with 0 < k < ¢ < m, construct a simple
graph G such that x(G) =k, £'(G) = ¢, and §(G) = m.

If kK = /¢ = m then we may take H = K,,,+1. Otherwise, if £ < m, we proceed as follows.
Let H be the disjoint union of two copies of K,,11, with vertex sets X = {x1,22,...,2m41 and ¥ =
{y1,y2, -, Ym+1 respectively. We then construct G by adding to H the edges
{ziy; |1 <i<k} U {xpy; | k+1<5 <1}
For example, if k =2, { =4 and m = 6, then G is the graph shown below.

Then:
e H is m-regular and dg(xm+1) = dg(Tm+1). So 6(G) = m.

e The edge cut [X,Y] has cardinality ¢, so x'(G) < {. Every other edge cut F has the form [X'UY’, X" U
Y"], where X = X' U X" Y =Y’ 1YY", and either X', X" are both nonempty. That is, F' must contain an
edge cut of at least one of the cliques X,Y, so |F| > k'(Km+1) = m. Hence [X,Y] is a minimum edge cut
and k'(G) = £.

o Theset {x1,...,2x} is a vertex cut of cardinality k, so k(G) < k. For every @ C V(G), the graph G—Q
has at most two components, since X NV (G — Q) and Y NV (G — Q) are both cliques in G, and in fact it will
have two components only if ) contains an endpoint of every edge joining X to Y—that is, only if either
x; € Q or y; € Q for every i € [k]. Hence x(G) > k.

#4. [West 4.1.14] Let G be a connected graph such that for every edge e, there are cycles
C4,C5 such that E(C;) N E(Cy) = {e}. Prove that G is 3-edge-connected.

First, the given condition implies that every edge of G belongs to a cycle. That is, G has no cut-edge (by
Theorem 1.2.14), hence is 2-edge-connected.

Suppose now that G has an edge cut of cardinality 2, say F' = [S,S] = {e, f}. We may assume without

loss of generality that F is a bond (a minimal edge cut); then G[S] and G[S] are connected by Prop. 4.1.15.
Note that f is a cut-edge of G — e, and the endpoints of e lie in different components (namely G[S] and
G[S]) of (G —€) — f = G — F. Therefore, for every cycle C C G containing e, the path C — e between the
endpoints of e must contain the edge f. Hence there is no pair of cycles whose intersection is exactly {e}, a

contradiction. We conclude that G has no edge cut of cardinality 2, hence is 3-edge-connected.



#5. [West 4.2.23] Let G be an X,Y-bigraph. Let H be the graph obtained from G by adding
two new vertices s,t, an edge sz for every =z € X, and an edge ty for every y € Y.
(a) Prove that o/(G) = Au(s,t).

For every perfect matching {z1y1,..., 2y} C E(G), the set

{(S7x17y17t)3 sy (S7xT7yT7t)}

is a p.i.d. family of s,¢-paths in H. Hence o/(G) < Ag(s,t). On the other hand, if P is a family of p.i.d.
s, t-paths, then each P; € P contains an edge e; € [X,Y], and no two of the edges e; share an endpoint (by
p.i.d.-ness), hence the set of all e¢; form a matching of cardinality equal to that of P. So o/(G) > Au(s,t).

(b) Prove that 8(G) = ku(s,t).

Let Q CV(G) =V(H)—{s,t}. Then Q is a vertex cover of G if and only if G — @ has no edges, i.e., H — Q
has no edges from X to Y, which is equivalent to the condition that s,¢ belong to different components
of H— @, i.e., that Q) is an s,t-cut in H. Hence the maximum size of a set ) satisfying these equivalent
conditions is B(G) = ku(s,t).

#6. [West 4.2.12] Use Menger’s Theorem to give a proof that x(G) = '(G) when G is 3-regular.

Let z,y € V(G), and let P = {Py, P, ... be a family of pairwise edge-disjoint z, y-paths. I claim that the
family P is in fact pairwise internally disjoint. Indeed, suppose that P;, P € P share some internal vertex z.
Then each P; contains two edges e;1, ¢;2 incident to z, and the p.e.d. condition implies that eq1, €12, €21, €22
are all distinct. But then d(z) > 4, which contradicts the assumption of 3-regularity.

It follows that A(x,y) = N (z,y) for every z,y € V(G). By the two versions of Menger’s Theorem, we have

G) = in A — in N = K (Q).
K(G) i (z,y) oo (z,y) = £'(G)



