
Math 725, Spring 2006
Solution Set #5

#1. [West 3.3.7] For each k > 1, construct a k-regular simple graph having no perfect matching.

Here is one of several possible constructions.

If k is even, then the complete graph Kk+1 suffices; it is certainly k-regular, but has an odd number of
vertices, hence no perfect matching.

On the other hand, suppose that k > 1 is odd.Construct a graph Hk by starting with a complete graph on
vertices v1, v2, . . . , vk, and deleting the (k + 1)/2 edges

v1v2, v3v4, . . . , vk−2vk−1, vkv1.
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Notice that n(Hk) = k +2 is odd, and that Hk has k + 1 vertices of degree k and one vertex of degree k− 1.
Now construct a graph Gk from k ·Hk (that is, the disjoint union of k copies of Hk), inventing a new vertex
∗, and adding an edge from 0 to each vertex of degree k − 1 in one of the copies of Hk.

*
*
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By construction, Gk is k-regular. However, if we take S = {∗}, then |S| = 1 and o(Gk − S) = k (because
Gk − S ∼= k · Hk), so Gk has no perfect matching by Tutte’s theorem.



#2. [West 3.3.22] Let G be an X, Y -bigraph. Let H be the graph obtained from G by adding
one vertex to Y if n(G) is odd, then adding edges to make Y into a clique.

(a) Prove that G has a matching of size |X | if and only if H has a perfect matching.

( ⇐= ) If M is a perfect matching of H , then each vertex in X must be matched with a vertex of Y by a
vertex of E(G), because X is a coclique in H and NH(x) = NG(x) for all x ∈ X . Therefore M ∩ E(G) is a
matching of G saturating X , in particular of size |X |.

( =⇒ ) On the other hand, if M is a matching of G of size |X |, then it saturates X (since G is X, Y -bipartite).
If we regard M as a matching of H , then there are an even number (namely n(H) − 2|M |) of unsaturated
vertices, all of which belong to Y , which is a clique in H . So any pairing of these vertices extends M to a
perfect matching of H .

(b) Prove that if G satisfies Hall’s condition (that is, |N(S)| ≥ |S| for all S ⊆ X), then H satisfies Tutte’s
condition (that is, o(H − T ) ≤ |T | for all T ⊆ V (H)).

Suppose that G satisfies Hall’s condition. Let T ⊂ V (H) and S = V (H)−T = V (H−T ). Define TX = T∩X ,
TY = T ∩ Y , SX = S ∩ X , SY = S ∩ Y . Also define

Z = {x ∈ SX | N(x) ⊆ TY }.

The vertices of SY form a clique in H − T , so in particular they all belong to the same component J of
H − T . For each x ∈ SX , if x has a neighbor in SY (that is, if x 6∈ Z) then x ∈ V (J), while if x ∈ Z then x
is an isolated (hence odd) component of H − T . Thus we have

V (J) = V (H) − Z − TY (1)

and

o(H − T ) =

{

|Z| if n(J) is even,

|Z| + 1 if n(J) is odd.
(2)

Since N(Z) ⊆ TY , Hall’s condition implies that

|Z| ≤ |TY |. (3)

Case 1: TX 6= ∅. Then |T | ≥ |TY | + 1 ≥ |Z| + 1 (by (3)) ≥ o(H − T ) (by (2)).

Case 2: TX = ∅. If |Z| < |TY | then |T | = |TY | ≥ |Z| + 1 ≥ o(H − T ). On the other hand, if |Z| = |TY | then
by (1) it follows that n(J) = n(H) − |Z| − |TY | = n(H) − 2|Z| is even, so o(H − T ) = |Z| ≤ |TY | = |T |.

In all cases H satisfies Tutte’s condition.

(c) Use parts (a) and (b) to conclude that Tutte’s 1-Factor Theorem 3.3.3 implies Hall’s
Theorem 3.1.11.

We have shown that if Hall’s condition holds, then the graph H satisfies Tutte’s condition (part (b)), hence
has a perfect matching by Tutte’s theorem, so that G has a matching saturating X (part (a)). This is the
difficult direction of Hall’s theorem.



#3. [West 4.1.9] For each choice of integers k, `, m with 0 < k ≤ ` ≤ m, construct a simple
graph G such that κ(G) = k, κ′(G) = `, and δ(G) = m.

If k = ` = m then we may take H = Km+1. Otherwise, if k < m, we proceed as follows.

Let H be the disjoint union of two copies of Km+1, with vertex sets X = {x1, x2, . . . , xm+1 and Y =
{y1, y2, . . . , ym+1 respectively. We then construct G by adding to H the edges

{xiyi | 1 ≤ i ≤ k} ∪ {xkyj | k + 1 ≤ j ≤ `}.

For example, if k = 2, ` = 4 and m = 6, then G is the graph shown below.

Then:

• H is m-regular and dG(xm+1) = dH(xm+1). So δ(G) = m.

• The edge cut [X, Y ] has cardinality `, so κ′(G) ≤ `. Every other edge cut F has the form [X ′ ∪Y ′, X ′′ ∪
Y ′′], where X = X ′ ·t X ′′, Y = Y ′ ·t Y ′′, and either X ′, X ′′ are both nonempty. That is, F must contain an
edge cut of at least one of the cliques X, Y , so |F | ≥ κ′(Km+1) = m. Hence [X, Y ] is a minimum edge cut
and κ′(G) = `.

• The set {x1, . . . , xk} is a vertex cut of cardinality k, so κ(G) ≤ k. For every Q ⊂ V (G), the graph G−Q
has at most two components, since X ∩V (G−Q) and Y ∩V (G−Q) are both cliques in G, and in fact it will
have two components only if Q contains an endpoint of every edge joining X to Y —that is, only if either
xi ∈ Q or yi ∈ Q for every i ∈ [k]. Hence κ(G) ≥ k.

#4. [West 4.1.14] Let G be a connected graph such that for every edge e, there are cycles
C1, C2 such that E(C1) ∩ E(C2) = {e}. Prove that G is 3-edge-connected.

First, the given condition implies that every edge of G belongs to a cycle. That is, G has no cut-edge (by
Theorem 1.2.14), hence is 2-edge-connected.

Suppose now that G has an edge cut of cardinality 2, say F = [S, S̄] = {e, f}. We may assume without
loss of generality that F is a bond (a minimal edge cut); then G[S] and G[S̄] are connected by Prop. 4.1.15.
Note that f is a cut-edge of G − e, and the endpoints of e lie in different components (namely G[S] and
G[S̄]) of (G − e) − f = G − F . Therefore, for every cycle C ⊆ G containing e, the path C − e between the
endpoints of e must contain the edge f . Hence there is no pair of cycles whose intersection is exactly {e}, a
contradiction. We conclude that G has no edge cut of cardinality 2, hence is 3-edge-connected.



#5. [West 4.2.23] Let G be an X, Y -bigraph. Let H be the graph obtained from G by adding
two new vertices s, t, an edge sx for every x ∈ X, and an edge ty for every y ∈ Y .

(a) Prove that α′(G) = λH(s, t).

For every perfect matching {x1y1, . . . , xryr} ⊆ E(G), the set

{(s, x1, y1, t), . . . , (s, xr , yr, t)}

is a p.i.d. family of s, t-paths in H . Hence α′(G) ≤ λH (s, t). On the other hand, if P is a family of p.i.d.
s, t-paths, then each Pi ∈ P contains an edge ei ∈ [X, Y ], and no two of the edges ei share an endpoint (by
p.i.d.-ness), hence the set of all ei form a matching of cardinality equal to that of P. So α′(G) ≥ λH(s, t).

(b) Prove that β(G) = κH(s, t).

Let Q ⊆ V (G) = V (H)−{s, t}. Then Q is a vertex cover of G if and only if G−Q has no edges, i.e., H −Q
has no edges from X to Y , which is equivalent to the condition that s, t belong to different components
of H − Q, i.e., that Q is an s, t-cut in H . Hence the maximum size of a set Q satisfying these equivalent
conditions is β(G) = κH(s, t).

#6. [West 4.2.12] Use Menger’s Theorem to give a proof that κ(G) = κ′(G) when G is 3-regular.

Let x, y ∈ V (G), and let P = {P1, P2, . . . be a family of pairwise edge-disjoint x, y-paths. I claim that the
family P is in fact pairwise internally disjoint. Indeed, suppose that P1, P2 ∈ P share some internal vertex z.
Then each Pi contains two edges ei1, ei2 incident to z, and the p.e.d. condition implies that e11, e12, e21, e22

are all distinct. But then d(z) ≥ 4, which contradicts the assumption of 3-regularity.

It follows that λ(x, y) = λ′(x, y) for every x, y ∈ V (G). By the two versions of Menger’s Theorem, we have

κ(G) = min
x,y∈V (G)

λ(x, y) = min
x,y∈V (G)

λ′(x, y) = κ′(G).


