Math 725, Spring 2006
Solution Set #4

#1. [West 3.1.24] A permutation matriz P is a square matrix all of whose entries are 0 or 1,
with exactly one 1 in each row and in each column. For k a positive integer, prove that a
square matrix of nonnegative integers can be written as the sum of £ permutation matrices if
and only if every row and every column has sum k.

Let A be an n x n square matrix with nonnegative integer entries a;; Construct a bipartite graph G with
partite sets X = {z1...,2,}, Y = {y1,...,yn} in which a;; is the number of parallel edges joining x;
and y;. (In essence, A is to be regarded as the adjacency matrix of G; although it does not quite match
Definition 1.1.17, it contains enough information to specify G up to isomorphism.) This construction is
reversible, so that we have a bijection between X, Y-bipartite graphs and n X n nonnegative integer matrices.

The sum of the entries in the i** row (respectively, j** column) of A gives de(x;) (vesp. dg(y;)). Hence,
the condition that all these sums equal k is equivalent to the condition that G be k-regular. Then G has
a perfect matching M by Corollary 3.1.13. The graph G — M is (k — 1)-regular, so by induction on k we
can partition the edges of G into k perfect matchings. Each such matching corresponds to a permutation
matrix, and the sum of these permutation matrices is precisely the matrix A, as desired. |

. est 3.1. se the Konig-Egervary eorem to prove Hall’s Marriage eorem.
2. [West 3.1.31] U he Konig-E ary Th Hall’s Marri Th

Let G be an X, Y-bigraph, and assume the Konig-Egervary Theorem; that is, o/(G) = B(G). We want to
prove Hall’s Theorem, i.e., that G has a matching saturating X if and only if Hall’s condition holds for X,
that is, [N (S)| > |S] for every S C X. As we know, the “only if” direction is easy, so the gist of the problem
is to use the Konig-Egervary condition to prove the “if” direction.

Let 2 = |X| and y = |Y|. We lose nothing by deleting all isolated vertices from Y. Then N(X) =Y, so
z < y by Hall’s condition.

Let @ be a vertex cover of G. Let S =QNX,T=QNY, s =S| and t = |T|. By definition of vertex
cover, we must have N(X —S) C T,sot > [N(X —S)| > |X — S| = x — s, the last inequality following from
Hall’s condition. From this it follows that |Q| = s +¢ > z. On the other hand, X itself is a vertex cover, so
it must be a minimum vertex cover; that is, 5(G) = x. By the Koénig-Egervéry Theorem, o/ (G) = z. Hence
any maximum matching of G must saturate X, as desired. ]

#3. [West 3.1.19, Schrijver] Let Y be a finite set and A = {4;,...,A,,} a family of subsets
of Y (not necessarily disjoint). A system of distinct representatives (or SDR) for A is a set of
distinct elements yi,...,y,, €Y such that y; € A; for all i.

(a) Prove that A has an SDR if and only if |J,.q 4i| > || for all S C [m].
Construct a simple bipartite graph G with partite sets {A1,..., A} and {y1,...,ym}, with an edge from
A; to y; if and only if y; € A;. Then an SDR for A is just a perfect matching of G. Moreover, by the

construction of G we have
U Ai = N(A) = N (Uies Ai),
i€s i€s
so by Hall’s theorem the stated condition is equivalent to the existence of a perfect matching for G.

(b) Let B = {By,...,B,,} be another family of subsets of Y. Prove that A and B have a
common SDR if and only if for each I C [n], the set |J,.; A; meets at least |I| of the sets B;.
Oops! 1 forgot to specify the crucial condition that A and B are not supposed to be just any old set
families—they are supposed to be set partitions of Y. That is, each element of Y belongs to exactly one A;
and exactly one Bj;.



With this additional condition in hand, we can construct a bipartite graph G with A and B the partite sets,
and edges {A;B; : A; N B; # 0}. Then G has a perfect matching if and only if A and B have a common
SDR; notice that the condition that A is a partition—that A; N Ay = () for ¢ # i'—is precisely what we need
to conclude that a common system of representatives for A and B is in fact a common system of distinct
representatives. The condition stated in the problem is then just Hall’s condition for G.

#4. [Schrijver] Let G = (V,E) be a simple graph with n = n(G) and §(G) > 2. Define a
bimatching to be an edge set B C F such that no vertex belongs to more than two edges in B,
and define a bicover to be an edge set C' C F if every vertex belongs to at least two edges in C.
Let

= &(G@) = max{|B|: B is a bimatching},
= (@) = min{|C|: C is a bicover}.
Prove that a < ﬁ and that & + ﬁ = 2n.
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For v € V and F C E, write dp(v) for the number of edges of F having v as an endpoint; equivalently, the
degree of v in the spanning subgraph (V, F'). Let B be a bimatching and C' a bicover. By the handshaking
formula (Proposition 1.3.3 in West), we have 2|B| =}, dg(v) and 2|C| = }_ .\, dc(v). But dp(v) <2 <
de(v) for all v, so it follows that |B| < |C|. Therefore @ < 3 (indeed, & < n < 3).

First, let B be a maximum bimatching on G, so |B| = a. For k = 0, 1,2, let s be the number of vertices
with degree k in B; that is, in the spanning subgraph (V, B). The handshaking formula (Proposition 1.3.3
in West) gives

a=|p =222 1)
Now form a bicover C' by adding to B two edges incident to each vertex with degree 0 in B, and one edge
incident to each vertex with degree 1 in B. The desired edges exist because §(G) > 2; on the other hand,
some of the newly chosen edges may coincide. Also, we have |C| > 3 by definition of 3. So

3 4s0 + 351 + 2s
ﬁSICI§|B|+250+81:% o

and adding (1) and (2) gives

. = s1+ 2s 4s0 + 381 + 2s
a+f < 12 2+ 0 21 2

2(so + 51+ s2) = 2n. (3)

Now let C' be a minimum bicover on G, so |C| = 3. The handshaking formula gives

B=joj=3y W (1)
veV
Notice that if e = 2y € C, then d¢(z) and d¢(y) cannot both be > 3, for in that case C' — e is a bicover. To
put it another way, the vertices v for which d¢(v) > 2 form a coclique in C. Construct a bimatching B from
C by removing exactly do(v) — 2 edges incident to each such v. By the previous observation, no two of these
edges coincide. So in fact we are removing do(v) — 2 edges incident to every v € V, since deo(v) — 2 > 0 for
all v. So we can calculate |B| exactly:

Bl =[C| = Y (dc(v) - 2). ()

veV
By definition we have |B| < &. Putting this together with (4) and (5), we obtain

a+p > 22%@)—2(%@)—2) = Y 2= o2 (6)

veV veV veV
The desired result now follows from (3) and (6).



