
Math 725, Spring 2006
Solution Set #4

#1. [West 3.1.24] A permutation matrix P is a square matrix all of whose entries are 0 or 1,
with exactly one 1 in each row and in each column. For k a positive integer, prove that a
square matrix of nonnegative integers can be written as the sum of k permutation matrices if
and only if every row and every column has sum k.

Let A be an n × n square matrix with nonnegative integer entries aij Construct a bipartite graph G with
partite sets X = {x1 . . . , xn}, Y = {y1, . . . , yn} in which aij is the number of parallel edges joining xi

and yj . (In essence, A is to be regarded as the adjacency matrix of G; although it does not quite match
Definition 1.1.17, it contains enough information to specify G up to isomorphism.) This construction is
reversible, so that we have a bijection between X, Y -bipartite graphs and n×n nonnegative integer matrices.

The sum of the entries in the ith row (respectively, jth column) of A gives dG(xi) (resp. dG(yj)). Hence,
the condition that all these sums equal k is equivalent to the condition that G be k-regular. Then G has
a perfect matching M by Corollary 3.1.13. The graph G − M is (k − 1)-regular, so by induction on k we
can partition the edges of G into k perfect matchings. Each such matching corresponds to a permutation
matrix, and the sum of these permutation matrices is precisely the matrix A, as desired. �

#2. [West 3.1.31] Use the König-Egerváry Theorem to prove Hall’s Marriage Theorem.

Let G be an X, Y -bigraph, and assume the König-Egerváry Theorem; that is, α′(G) = β(G). We want to
prove Hall’s Theorem, i.e., that G has a matching saturating X if and only if Hall’s condition holds for X ,
that is, |N(S)| ≥ |S| for every S ⊆ X . As we know, the “only if” direction is easy, so the gist of the problem
is to use the König-Egerváry condition to prove the “if” direction.

Let x = |X | and y = |Y |. We lose nothing by deleting all isolated vertices from Y . Then N(X) = Y , so
x ≤ y by Hall’s condition.

Let Q be a vertex cover of G. Let S = Q ∩ X , T = Q ∩ Y , s = |S| and t = |T |. By definition of vertex
cover, we must have N(X −S) ⊆ T , so t ≥ |N(X −S)| ≥ |X −S| = x− s, the last inequality following from
Hall’s condition. From this it follows that |Q| = s + t ≥ x. On the other hand, X itself is a vertex cover, so
it must be a minimum vertex cover; that is, β(G) = x. By the König-Egerváry Theorem, α′(G) = x. Hence
any maximum matching of G must saturate X , as desired. �

#3. [West 3.1.19, Schrijver] Let Y be a finite set and A = {A1, . . . , Am} a family of subsets
of Y (not necessarily disjoint). A system of distinct representatives (or SDR) for A is a set of
distinct elements y1, . . . , ym ∈ Y such that yi ∈ Ai for all i.

(a) Prove that A has an SDR if and only if
∣

∣

⋃

i∈S Ai

∣

∣ ≥ |S| for all S ⊆ [m].

Construct a simple bipartite graph G with partite sets {A1, . . . , Am} and {y1, . . . , ym}, with an edge from
Ai to yj if and only if yj ∈ Ai. Then an SDR for A is just a perfect matching of G. Moreover, by the
construction of G we have

⋃

i∈S

Ai =
⋃

i∈S

N(Ai) = N (∪i∈SAi) ,

so by Hall’s theorem the stated condition is equivalent to the existence of a perfect matching for G.

(b) Let B = {B1, . . . , Bm} be another family of subsets of Y . Prove that A and B have a
common SDR if and only if for each I ⊆ [n], the set

⋃

i∈I Ai meets at least |I | of the sets Bj.

Oops! I forgot to specify the crucial condition that A and B are not supposed to be just any old set
families—they are supposed to be set partitions of Y . That is, each element of Y belongs to exactly one Ai

and exactly one Bj .



With this additional condition in hand, we can construct a bipartite graph G with A and B the partite sets,
and edges {AiBj : Ai ∩ Bj 6= ∅}. Then G has a perfect matching if and only if A and B have a common
SDR; notice that the condition that A is a partition—that Ai ∩Ai′ = ∅ for i 6= i′—is precisely what we need
to conclude that a common system of representatives for A and B is in fact a common system of distinct

representatives. The condition stated in the problem is then just Hall’s condition for G.

#4. [Schrijver] Let G = (V, E) be a simple graph with n = n(G) and δ(G) ≥ 2. Define a
bimatching to be an edge set B ⊆ E such that no vertex belongs to more than two edges in B,
and define a bicover to be an edge set C ⊆ E if every vertex belongs to at least two edges in C.
Let

α̃ = α̃(G) = max{|B| : B is a bimatching},

β̃ = β̃(G) = min{|C| : C is a bicover}.

Prove that α̃ ≤ β̃ and that α̃ + β̃ = 2n.

For v ∈ V and F ⊆ E, write dF (v) for the number of edges of F having v as an endpoint; equivalently, the
degree of v in the spanning subgraph (V, F ). Let B be a bimatching and C a bicover. By the handshaking
formula (Proposition 1.3.3 in West), we have 2|B| =

∑

v∈V dB(v) and 2|C| =
∑

v∈V dC(v). But dB(v) ≤ 2 ≤

dC(v) for all v, so it follows that |B| ≤ |C|. Therefore α̃ ≤ β̃ (indeed, α̃ ≤ n ≤ β̃).

First, let B be a maximum bimatching on G, so |B| = α̃. For k = 0, 1, 2, let sk be the number of vertices
with degree k in B; that is, in the spanning subgraph (V, B). The handshaking formula (Proposition 1.3.3
in West) gives

α̃ = |B| =
s1 + 2s2

2
. (1)

Now form a bicover C by adding to B two edges incident to each vertex with degree 0 in B, and one edge
incident to each vertex with degree 1 in B. The desired edges exist because δ(G) ≥ 2; on the other hand,

some of the newly chosen edges may coincide. Also, we have |C| ≥ β̃ by definition of β̃. So

β̃ ≤ |C| ≤ |B| + 2s0 + s1 =
4s0 + 3s1 + 2s2

2
(2)

and adding (1) and (2) gives

α̃ + β̃ ≤
s1 + 2s2

2
+

4s0 + 3s1 + 2s2

2
= 2(s0 + s1 + s2) = 2n. (3)

Now let C be a minimum bicover on G, so |C| = β̃. The handshaking formula gives

β̃ = |C| =
∑

v∈V

dC(v)

2
. (4)

Notice that if e = xy ∈ C, then dC(x) and dC(y) cannot both be ≥ 3, for in that case C − e is a bicover. To
put it another way, the vertices v for which dC(v) > 2 form a coclique in C. Construct a bimatching B from
C by removing exactly dC(v)−2 edges incident to each such v. By the previous observation, no two of these
edges coincide. So in fact we are removing dC(v) − 2 edges incident to every v ∈ V , since dC(v) − 2 ≥ 0 for
all v. So we can calculate |B| exactly:

|B| = |C| −
∑

v∈V

(dC(v) − 2). (5)

By definition we have |B| ≤ α̃. Putting this together with (4) and (5), we obtain

α̃ + β̃ ≥ 2
∑

v∈V

dC(v)

2
−

∑

v∈V

(dC(v) − 2) =
∑

v∈V

2 = 2n. (6)

The desired result now follows from (3) and (6).


