
Math 725, Spring 2006
Solution Set #3

#1. [West 2.3.14] Let C be a cycle in a connected weighted graph. Let e be an edge of
maximum weight in C; that is, wt(e) ≥ wt(e′) for all e′ ∈ E(C). Prove that there is a minimum-
weight spanning tree (MST) not containing e. Use this to prove that iteratively deleting a
heaviest non-cut-edge until the graph is acyclic produces an MST.

Let T be an MST. If e 6∈ T then there is nothing to prove, so suppose that e ∈ T . Let P be the path C − e,
and let x, y be the endpoints of e. Then each of the two components H, H ′ of the forest T − e contains one
of the two vertices x, y. Let e′ be an edge of P with one endpoint in each of H, H ′; such an edge must exist
because the endpoints of P are x and y. Then T ′ = T −e+e′ is a spanning tree that does not contain e, and
moreover wt(e′) ≤ wt(e), so wt(T ′) ≤ wt(T ). Since T is an MST, equality must hold in the last expression,
and in particular and T ′ is an MST that does not contain e.

Here is an explicit algorithm to compute an MST T of a connected weighted graph G:

T0 := E(G)
i := 0

while T contains a cycle C do

{
i := i + 1
Choose ei ∈ E(C) of maximum weight

Ti := Ti−1 − ei

}
T := Ti

First, T0 is connected, and ei is not a cut-edge of Ti−1 by Theorem 1.2.14, so by induction every Ti is
connected. Moreover, the loop terminates only when Ti is acyclic. So the output T is a spanning tree.

Second, T0 certainly contains an MST of G. By the first part of the problem, for each i, if Ti−1 contains a
spanning tree then so does Ti. Hence the output T contains, hence is, an MST. �

• Many of you tried to prove the first part of the statement using Kruskal’s algorithm. Unfortunately,
doing so introduces more difficulties than it solves, since G may have several different MST’s and you now
need to figure out some clever order of the edges so that Kruskal’s algorithm does not include e (particularly
if C has more than one heaviest edge). Yes, you can do this, but why go through the hassle? When solving
a problem like this, the right approach is usually to try to prove it by elementary methods (i.e., from the
definitions of MST and the exchange rules), and then haul out the heavy machinery only if the simpler
approach isn’t sufficient.

#2. [West 2.2.1] Determine which spanning trees of Kn have Prüfer codes that (a) contain
only one value; (b) contain exactly two values; or (c) contain n − 2 distinct values.

Let T be a spanning tree of Kn, and let p = (p1, p2, . . . , pn−2) be its Prüfer code.
(a.) If pi = j for every i, then T is the star centered at j; that is, its edges are {jk : k ∈ [n] − {j}}.

Equivalently, T ∼= K1,n−1.
(b.) If p contains exactly two values, then T has exactly two vertices that are not leaves. Such trees are

called “double-stars” (see Exercise 2.1.46). By the way, the number of such trees is
(
n

2

)
(2n−2 − 2).

(c.) If p contains all distinct values, then T has n − 2 vertices of degree 2 and two leaves; that is, T is a
path. (As we know, the number of paths in Kn is n(n − 1) · · · (3) = n!/2.) �



#3. [West 2.2.16, modified] Let Fn be the “n-fan” defined by

V (Fn) = {v0, v1, . . . , vn},

E(Fn) = {v1v2, v2v3, . . . , vn−1vn} ∪ {v0v1, v0v2, . . . , v0vn}.

a. Prove that τ(Fn) = 3τ(Fn−1) − τ(Fn−2).

b. Based on your argument in (a), describe a sequence of graphs G1, G2, G3, . . . so that ai = τ(Gi)
is the ith Fibonacci number; that is, a1 = a2 = 1 and ai = ai−1 + ai−2 for i ≥ 3.

(a.) Let e = v0vn ∈ E(Fn), and apply deletion-contraction:

τ(Fn) = τ(Fn − e) + τ(Fn/e). (1)

For example, F5, F − 5 − e, and F5/e are as follows:

v0

v1 v2 v3 v4 v5

v0

v1 v2 v3 v4 v5

v0

v5

5F 5F − e 5F / e  = H4

e

v1 v2 v3 v4

The graph Fn − e looks like Fn−1 with an extra leaf attached by a cut-edge. In particular, contracting that
cut-edge recovers Fn−1 and doesn’t change the number of spanning trees: that is, τ(Fn − e) = τ(Fn−1).

Meanwhile, Hn−1 := Fn/e looks like Fn−1 with one additional edge f parallel to v0vn−1.

For simplicity of notation, set fn = τ(Fn), hn = τ(Hn). Then we can rewrite (1) as

fn = fn−1 + hn−1. (2)

Next, we apply deletion-contraction to Hn−1:

τ(Hn−1) = hn = τ(Hn−1 − f) + τ(Hn−1/f). (3)

f

HF− f  =F5 4 4 4 4 /  f/  e  = H H

Now Hn−1 − f ∼= Fn−1, and Hn−1/f looks like Hn−2 with an extra loop (which does not affect the number
of spanning trees). So (3) becomes

hn−1 = fn−1 + hn−2. (4)

Since n was arbitrary, we can replace n with n − 1 in (2) to obtain

fn−1 = fn−2 + hn−2.

Solving for hn−2 gives
hn−2 = fn−1 − fn−2.



Plugging that into (4) gives
hn−1 = 2fn−1 − fn−2.

Then plugging that into (2) gives
fn = 3fn−1 − fn−2

as desired.

(b.) The desired sequence of graphs Gi is

H0, F1, H1, F2, H2, F3, H3, . . .

(where we set H0 := K1). Then τ(H0) = τ(F1) = 1, and the equations (2) and (4) comprise the Fibonacci
recurrence. �

#4. [West 2.2.18] Use the Matrix-Tree Theorem to compute τ(Kr,s) for all numbers r, s.

Let the partite sets of Kr,s be X = {x1, . . . , xr} and Y = {y1, . . . , ys}. Note that d(xi) = s and d(yj) = r
for all i, j. So the Laplacian matrix L = L(Kr,s) is

















s 0 · · · 0 −1 −1 · · · −1
0 s · · · 0 −1 −1 · · · −1
...

...
...

...
...

...
0 0 · · · s −1 −1 · · · −1
−1 −1 · · · −1 r 0 · · · 0
−1 −1 · · · −1 0 r · · · 0
...

...
...

...
...

...
−1 −1 · · · −1 0 0 · · · r

















.

Note that this is an (r + s) × (r + s) square matrix, with with r rows (resp. columns) in the top (resp. left)
block and s rows (resp. columns) in the bottom (resp. right) block.

I’ll exhibit a basis for R
r+s consisting of eigenvectors for L. Let ηi denote the ith standard basis vector.

First, as usual, the “all-ones” vector
E0 = η1 + η2 + · · · + ηr+s

is a nullvector for L, that is, an eigenvector with eigenvalue 1.

Second, let
E1 = (η1 + · · · + ηr) − (ηr+1 + · · · + ηr+s);

we can calculate LE1 directly (I omit the details) to see that it is an eigenvector, with eigenvalue r + s.

Third, for 2 ≤ i ≤ r we have
L(η1 − ηi) = s(η1 − ηi)

and for r + 2 ≤ j ≤ r + s we have
L(ηr+1 − ηj) = r(ηr+1 − ηj).

Now, I claim that

{E0, E1} ∪ {η1 − ηi : 2 ≤ i ≤ r} ∪ {ηr+1 − ηj : r + 2 ≤ j ≤ r + s}



is a basis for R
r+s. Indeed, it has cardinality r + s, and we have already seen (from looking at the Laplacian

of Kn) that

{(E0 + E1)/2} ∪ {η1 − ηi : 2 ≤ i ≤ r},

{(E0 − E1)/2} ∪ {ηr+1 − ηj : r + 2 ≤ j ≤ r + s}

are bases for the linear span of the first r and last s basis vectors, respectively.

The upshot is that the eigenvalues of L = L(Kr,s) are

0, r + s, r, r, . . . , r
︸ ︷︷ ︸

s−1 times

, s, s, . . . , s
︸ ︷︷ ︸

r−1 times

.

Therefore, by the alternate version of the Matrix-Tree Theorem,

τ(Kr,s) =
(r + s)rs−1sr−1

n(Kr,s)
= rs−1sr−1. �

• It is also possible to apply row and column operations to the reduced Laplacian. However, you need to
be clever about which reduced Laplacian; as one of you noticed, it is easier not to delete the same row and
column. Instead, delete the rth row and the (r + 1)st column, to obtain a (r + s − 1) × (r + s − 1) square
matrix L′ = Lr,r+1(Kr,s) of the form

L′ =





S 0 −1
−1 −1 0
−1 −1 R





with the row blocks of heights r− 1, 1, s− 1 from top to bottom, and the column blocks of the same widths
left to right. Here S is a diagonal matrix with all diagonal entries equal to s, and R is a diagonal matrix
with all diagonal entries equal to r.

Now, subtracting the rth column from every column to its left gives the matrix

L′′ =





S 0 −1
0 −1 0
0 −1 R





and now subtracting the rth row from every row below it gives

L′′′ =





S 0 −1
0 −1 0
0 0 R



 .

This matrix is block upper-triangular, and these row and column operations haven’t changed the determinant,
so the Matrix-Tree Theorem gives

τ(Kr,s) = (−1)r+(r+1) det L′ = − detL′′′ = sr−1rs−1.



#5. [West 2.1.58, modified] In this problem, you will prove the following theorem due to
Smolenskii. Let S and T be trees with leaves x1, . . . , xm and y1, . . . , ym respectively, such that
{dS(xi, xj) = dT (yi, yj) for all i, j. (Let’s call the data {dS(xi, xj) : 1 ≤ i < j ≤ m} the leaf-distance

sequence of T , or the LDS for short.) Then there is an isomorphism f : S → T such that
f(xi) = yi for every i.

a. Suppose that f : G → H is an isomorphism. Let u ∈ V (G) and v = f(u) ∈ V (H). Let G′

be the graph constructed by attaching a leaf u′ to G at u (that is, V (G′) = V (G) ·t {u′} and
E(G′) = E(G) ·t {uu′}) and let H ′ be the graph constructed by attaching a leaf v′ to H at v.
Show that G′ ∼= H ′. (This is one of those statements that is intuitively true, but requires
careful bookkeeping. In particular, you really have to use the definition of an isomorphism!)

Extend f to a bijection V (G′) → V (H ′) by defining f(u′) = f(v′). Then

f(NG′(u′)) = f({u}) = {v} = NH′(f(u′))

and
f(NG′(u)) = f(NG(u) ∪ {u′}) = NH(f(u)) ∪ {v′} = NH′(f(u))

and for x ∈ V (G) − {u, u′},

f(NG′(x)) = f(NG(x)) = NH(f(x)) = NH′(f(x)),

so we have verified that the extended function f gives an isomorphism G′ ∼= H ′.

b. A stub of S is a leaf xi whose unique neighbor in S has degree > 2. Fix a leaf xi ∈ V (S) and
let w be its stem (unique neighbor). Call xi a stub iff dT (w) > 2. Show that xi is a stub if and
only if for some j, k,

d(xi, xj) + d(xi, xk) = d(xj , xk) + 2.

Conclude that xi is a stub of S if and only if yi is a stub of T .

Suppose that xi is a stub. Let T ′ = T − xi, so that dT ′(w) ≥ 2. Let P be a maximal path in T containing
w but not vi. Since w has at least two neighbors other than vi, the path P will have as its endpoints two
different leaves of T other than vi; call these vj and vk. Let Pj and Pk be the vj , w-subpath and w, vk-subpath
of P , respectively.

xi

xj xk

w

P

Then the unique xi, xj -path in T is Pj ∪{wxj}, and the unique xi, xk-path in T is Pk ∪{wxk}. In particular

d(xi, xj) + d(xi, xk) = (e(Pj) + 1) + (e(Pk) + 1) = e(P ) + 2 = d(xj , xk) + 2.

Now suppose that there exist leaves xj , xk such that this equality holds. Let P be the path joining xj and
xk, and let Q be a shortest path from xi to a vertex z ∈ P . In particular Q contains no other vertex of P .
Let Pj and Pk be respectively the vj , z- and z, vk-subpaths of P ; note that each of these paths contains at
least one edge (since z cannot be a leaf; it has a neighbor in P and a neighbor outside P ). Then Q∪Pj and
Q ∪ Pk are respectively the unique xi, xj- and xi, xk-paths in T .



xj xk

xi

P

w

z

Q

Now
d(xi, xj) + d(xi, xk) = e(Q ∪ Pj) + e(Q ∪ Pk) = 2e(Q) + e(P )

and
d(xj , xk) + 2 = e(P ) + 2.

By the desired equality, we have e(Q) = 1; that is, Q is the single edge viw. So w = z ∈ P , and w has at
least two neighbors other than vi, namely, one in each of Pj and Pk.

Finally, the property of being a stub is preserved under isomorphism, since if vi is a leaf with stem w and f
is an isomorphism, then d(vi) = d(f(vi)) and d(w) = d(f(w)). Therefore xi is a stub if and only if yi is.

c. Suppose that x1 is not a stub. Describe the leaves and the LDS of S − x1 in terms of those
of S.

If x1 is not a stub, then the leaves of S − x1 are

{w, x2, x3, . . . , xm},

where w is the stem of x1. The LDS of S − x1 is given by

dS−x1
(w, xj) = dS(x1, xj) − 1

for 2 ≤ j ≤ m, and
dS−x1

(xj , xk) = dS(xj , xk)

for 2 ≤ j < k ≤ m.

d. Suppose that xi is a stub. Describe the leaves and the LDS of S − xi in terms of those of S.

If x1 is a stub, then the leaves of S − x1 are just {x2, x3, . . . , xm}, and dS−x1
(xj , xk) = dS(xj , xk) for

2 ≤ j < k ≤ m.

e. Prove Smolenskii’s theorem by induction on the number of vertices. (Hint: Let x′

1 and
y′

1 be the unique neighbors of x1 and y1 respectively. Show that there is an isomorphism
S − x1 → T − x1 mapping x′

1 to y′

1 and apply (a). This is easier in the case that the leaves x1, y1

are not stubs; if they are stubs, then you must use (b) to identify x′

1 uniquely from the LDS
of S.)

We would like to argue inductively as follows. Suppose that S, T are trees with the same order and LDS,
with leaves {x1, . . . , xm} and {y1, . . . , ym} as above. Then the trees S ′ = S − x1 and T ′ = T − y1 have the
same LDS (by (c) or (d)), so there is an isomorphism f : S ′ → T ′. However, it does not follow immediately
from (a) that f can be extended to an isomorphism between S and T , since we do not know that f maps
the stem of x1 to the stem of y1.

To take care of this subtlety, we will prove the following stronger statement by induction:



Let S, T be trees of order n and leaves {x1, . . . , xm}, {y1, . . . , ym} respectively, and suppose
that dS(xi, xj) = dT (yi, yj) for all i, j. Then there is an isomorphism f : S → T such that
f(xi) = yi for all i.

As a base case, this is trivial for trees with n ≤ 3. Suppose that it holds for trees of order < n; we will
prove it for trees S, T of order exactly n. Suppose that S, T have the same LDS, and let S ′ = S − x1 and
T ′ = T − y1.

If x1 is not a stub of S, then y1 is not a stub of T , by (b) and the equality of LDS’s. Let x′

1 and y′

1 be their
respective stems. By (c), the trees S ′ and T ′ have the same LDS’s, and by induction there is an isomorphism
f : S′ → T ′ such that f(x′

1) = y′

1 and f(xi) = yi for 2 ≤ i ≤ m. By (a), defining f(x1) = y1 gives the desired
isomorphism f : S → T .

Now suppose that x1 is a stub, so that y1 is also a stub. By (b), again, S ′ and T ′ have the same LDS, and
by induction, there is an isomorphism f : S ′ → T ′ such that f(xi) = yi for 2 ≤ i ≤ m. To extend f to an
isomorphism S → T , it suffices to show that f(x′

1) = y′

1. Choose leaves xj , xk of S (hence of S′) as in (b).
Then the numbers

a = dS(xj , x1) − 1,

b = dS(xk, x1) − 1

sum to dS′(xj , xk), and so x′

1 is uniquely determined as the vertex z on the (unique) xj , xk-path in S′ such
that

dS′(xj , z) = a,

dS′(xk , z) = b.

On the other hand, f maps z = x′

1 to the unique vertex of T ′ at distance a from yj and distance b from
yk, which is just y′

1 (because S and T have the same LDS). To reiterate this, we have f(x′

1) = f(y′

1), so f
extends to the desired isomorphism S → T . �

Bonus problem: [West 2.3.16] Four people must cross a canyon at night on a fragile bridge.
At most two people can be on the bridge at once, and there is only one flashlight (which can
cross only by being carried). Kovalevskaia can cross the bridge in 10 minutes, Legendre in 5
minutes, Macaulay in 2 minutes, and Noether in 1 minute. If two people cross together, they
move at the speed of the slower person. Oh, by the way, in 18 minutes a flash flood is going
to roar down the canyon and wash away the bridge (together with anyone who isn’t yet safe
on the other side). Can the four people get across in time?

Draw a graph in which the vertices are labeled by subsets of {K, L, M, N, F} (representing which people are
still left on the unsafe side of the bridge; F stands for “flashlight”). The edges correspond to single crossings.
Note that the graph is bipartite, since each edge must join a set containing F n to one not containing F .

Weight each edge by the time it takes to make a particular crossing; for example, the edge from KLMF to
K (representing Legendre and Macaulay crossing together to safety) has weight 5.

The quickest way to save all four people is represented by the shortest path from KLMNF to ∅ in the
weighted graph thus constructed. In fact, there is a path of weight 17:

KLMNF
2

−→ MNF
1

−→ M
10
−→ KLNF

2
−→ KL

2
−→ KLMNF



That is, proceed as follows:

(1) Send K and L across (2 minutes)
(2) Send K back (1 minute)
(3) Send M and N across (10 minutes)
(4) Send L back (2 minutes)
(5) Send K and L across (2 minutes)

Total: 17 minutes, and everyone’s saved.


