Math 725, Spring 2006
Solution Set #1

#1. For any integers a,b > 3, the graph C, + C}, is 2-regular and simple, but is not a cycle (since it is not
connected). However, it is true that every connected 2-regular simple graph must be a cycle. (For example,
such a graph must be Eulerian, and the constructive proof of Theorem 1.2.26 can be used to show that the
Eulerian circuit contains one cycle only.)

#2. Consider the following labelings of the vertices by [8] = {1,2,...,8}:

1 7 1 6

G H

It is now routine to check that ij € E(G) if and only if ij ¢ F(H), which is precisely the statement that

G = H. (Technically, the isomorphism is the bijection V(G) — V(H) given by the identity map on [8].)

#3. (a) A spanning subgraph of G is determined by its edge set, which can be any subset of E(G).
Therefore, the number of spanning subgraphs is just 2¢(¢).

(b) If G is connected, then it is a connected spanning subgraph of itself. On the other hand, if it has
a connected spanning subgraph H, then any two vertices in V(G) = V(H) are connected by a path in H,
which is perforce a path in G, so G is connected.

(¢) Suppose that G is disconnected. Let H be a component of G, let A = V(H), and let B = V(G)—-V (H).
Both of these sets are nonempty, and G does not contain any edge with one endpoint in A and the other in
B. So every such edge belongs to G that is, G contains a subgraph isomorphic to K, ;, where a = |A| and
b = |B|. This subgraph is spanning (since a + b = n(G)) and connected. So G is connected by (b).

#4. Let a;; be the entry of the adjacency matrix in position (4, j); that is, a;; is the number of edges joining
vertices i and j. Assume G is loopless, so a;; = 0 for all . The (i,j) entry of A? is

n
E Ak Ak -
k=1

This counts the number of i, j-walks of length two. Indeed, each such walk must go through one other vertex
k € [n] —{i,j}. There are a;j, choices for the edge joining ¢ and k and ax; = a;j choices for the edge joining
k and j.

#5. There are many ways to prove that the Petersen graph (call it G for now) doesn’t have a 7-cycle.

Proof #1: 1t is enough to show that if we delete any three vertices from G, then the resulting graph G — X
does not have a 7-cycle. Let X C V(@) have cardinality 3. What is e(G — X)? Recall that G is 3-regular,
so each vertex in X is incident to exactly three edges. Deleting X will kill all of these edges; however, we
don’t want to double-count the edges with both endpoints in G, so we conclude that

(G — X) = e(G) — 9 + e(G[X]) = 6 + e(G[X]).

On the one hand, this had better be at least 7 if G — X is going to have a 7-cycle. So X cannot be a coclique.
On the other hand, e(G[X]) can be at most 2 (since we know that G has no 3-cycles).



Case 1: e(G[X]) = 1. Let ij and k¢ be the two adjacent vertices in X. The other vertex in X cannot
be adjacent to either of these; without loss of generality it is ¢k. In particular, jm € V(G — X). But
Ng(jm) = {ik,il, kl}, so jm has only one neighbor in G — X, hence cannot be part of a cycle.

CASE 2: e(G[X]) = 2. That is, G[X] & P;. Without loss of generality, we may assume that X = {ij, k¢, im}.
Then G — X is the following graph:

Im ik

Notice that n(G — X) = 7 and e(G — X) = 8. In particular, if G — X contains a 7-cycle then it can be
obtained by deleting one edge. But deleting any single edge will cause some vertex to have degree 1, so
G — X cannot contain a 7-cycle.

Proof #2: (This is shorter than the first proof, but it is less elementary in that it requires the use of
Proposition 1.1.38, which states that each two nonadjacent vertices in G have exactly one common neighbor.)
Let C C G be a 7-cycle with vertices vy, vs,...,v7. Then vy and vy have a unique common neighbor in G,
which is evidently not a vertex of C; call it z. Since Pete is 3-regular, we see that N(vy) = {v2,v7,2}. One
of these must be the common neighbor of v; and vs.

— If N(v1) N N(vs) = {vs}, then vg, v3,v4,v5 is a 4-cycle in G.

— If N(v1) N N(vs) = {vr}, then vs, v, v7 is a 3-cycle in G.

— If N(v1) N N(vs) = {z}, then vq,v5,z is a 3-cycle in G.

In each case we have shown that Pete has girth < 4, which contradicts Corollary 1.1.40.

Proof #3: Classify all the closed paths of length 7. To do this, we use the labeling of the vertices by
two-element subsetse of [5], with adjacency given by disjointness. For each path vq,vs,v3, we can write
vy = ij, vo = ki, v = mi, where {i,5,k,¢,m} = [5]. We can continue the path by repeatedly choosing
Vg1 € N(vk) —{v1,...,vp—1} for k = 4,5,...; for example, vy can be either jk or j¢, and then the choice
of v5 depends on the choice of vy. I won’t draw out the whole search tree, but if you do it, you will see that
it is impossible to have vg = v.

#6. D'll prove the contrapositive. Suppose that G is bipartite with bipartition X,Y. That is, each edge of
G has one endpoint in each of X and Y. It is then immediate that for any subgraph H the pair X NV (H),
Y NV(H) is a bipartition of H.

We have seen that odd cycles are not bipartite. Therefore, no graph containing an odd cycle can be
bipartite.

#8. Let H be a component of G — v. There must be an edge e € E(G) with one endpoint in H and one
endpoint in V(G) — V(H); otherwise, H would be a maximal connected subgraph of G and G wouldn’t be
connected. On the other hand, the condition that H is a component of G — v says that there is no edge with
one endpoint in H and the other endpoint in V(G —v) — V(H). So the other endpoint of e must be v.

If v is a cut-vertex of G, then G — v is disconnected, hence has at least two components. By the previous
observation, this implies that dg(v) > 2.

#9. Recall that every walk in a bipartite graph must alternate between the two partite sets. Therefore,
every walk of even (odd) length must have its endpoints in the same (different) partite sets. Now let G be a



connected X, Y-bigraph and let X', Y’ be another bipartition. Suppose that there exist vertices z € X N X’
and y € X NY’. Since G is connected, it contains an x,y-walk; but by the second observation, its length
must be both even and odd, a contradiction. Therefore, either X = X’ and Y = Y, or else X = Y’ and
Y =X

Now suppose that G is disconnected and bipartite. Let H be one of its components and J = G— H. Let X,Y
be a bipartition of H and let X', Y” be a bipartition of J— H. Then (XUX’), (Y UY”) and (XUY"), (Y UX)
are genuinely different bipartitions of G. Alternately, given a proper 2-coloring of G, it is possible to swap
the colors in a single component. (Indeed, up to swapping, the number of proper colorings of a bipartite
graph G is 2¢(¢)~1))

#10. Suppose that G is disconnected. Let X be the vertex set of one of its components, and let ¥ =
V(G) — X; then there is no edge with one endpoint in each of X and Y.

Now suppose that G is connected and that V(G) = X Y. Let P be a minimum-length X, Y-path (that is,
a path with one endpoint in each of X and Y'). Say that the vertices of P in order are vg, v1, ..., v,, with
vg € X and v, € Y. Suppose that n > 2. If v; € X, then deleting vy produces a shorter X, Y-path, which
contradicts the minimality of P. On the other hand, if v; € Y, then deleting v,, produces a shorter X, Y-
path. We conclude that n = 1 and P is a single edge, as desired. (This argument looks a bit artificial, but
it does at least provide an algorithm for reducing a given X, Y-path to an X, Y-edge, deleting one endpoint
at a time.)

Bonus problem: Fix n, and let X (resp. Y') be the set of bit strings with an even (resp. odd) number of
I’s. Thus V(Qn) =V(R,) =X 1Y.

First, suppose that n is odd. If two bit strings v, w are adjacent in R,, then they agree in exactly one bit,
hence differ in the other n — 1 bits. Since n — 1 is even, the parity of v is the same as that of w. That is,
there is no edge with one endpoint in each of X and Y, so R, is disconnected (by #10 above). But @,, is
connected, so Q, # R,.

Now, suppose that n is even. For a bit string v, write v for the string obtained by flipping every bit in v; for
instance, 01001 = 10110. Define a function f: V(Q,) — V(R,) by

f(v):{v ifvelX,

v ifveY.

Since n is even, v and ¥ have the same parity. Hence the function f is a bijection (indeed, it is its own
inverse).

To check that f is an isomorphism, note that if vw € E(Q,), then they differ in exactly one bit, so in
particular exactly one of them, say v, is even. Thus f(v) = v and f(w) = @ agree in exactly one bit, and
hence f(v)f(w) € E(R,). By essentially the same argument, f(v)f(w) € E(R,,) only if vw € E(Q,).



