
Math 725, Spring 2006
Solution Set #1

#1. For any integers a, b ≥ 3, the graph Ca + Cb is 2-regular and simple, but is not a cycle (since it is not
connected). However, it is true that every connected 2-regular simple graph must be a cycle. (For example,
such a graph must be Eulerian, and the constructive proof of Theorem 1.2.26 can be used to show that the
Eulerian circuit contains one cycle only.)

#2. Consider the following labelings of the vertices by [8] = {1, 2, . . . , 8}:
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It is now routine to check that ij ∈ E(G) if and only if ij 6∈ E(H), which is precisely the statement that
Ḡ ∼= H . (Technically, the isomorphism is the bijection V (G) → V (H̄) given by the identity map on [8].)

#3. (a) A spanning subgraph of G is determined by its edge set, which can be any subset of E(G).
Therefore, the number of spanning subgraphs is just 2e(G).

(b) If G is connected, then it is a connected spanning subgraph of itself. On the other hand, if it has
a connected spanning subgraph H , then any two vertices in V (G) = V (H) are connected by a path in H ,
which is perforce a path in G, so G is connected.

(c) Suppose that G is disconnected. Let H be a component of G, let A = V (H), and let B = V (G)−V (H).
Both of these sets are nonempty, and G does not contain any edge with one endpoint in A and the other in
B. So every such edge belongs to Ḡ; that is, Ḡ contains a subgraph isomorphic to Ka,b, where a = |A| and
b = |B|. This subgraph is spanning (since a + b = n(G)) and connected. So Ḡ is connected by (b).

#4. Let aij be the entry of the adjacency matrix in position (i, j); that is, aij is the number of edges joining
vertices i and j. Assume G is loopless, so aii = 0 for all i. The (i, j) entry of A2 is

n
∑

k=1

aikakj .

This counts the number of i, j-walks of length two. Indeed, each such walk must go through one other vertex
k ∈ [n]−{i, j}. There are aik choices for the edge joining i and k and akj = ajk choices for the edge joining
k and j.

#5. There are many ways to prove that the Petersen graph (call it G for now) doesn’t have a 7-cycle.

Proof #1: It is enough to show that if we delete any three vertices from G, then the resulting graph G−X

does not have a 7-cycle. Let X ⊆ V (G) have cardinality 3. What is e(G − X)? Recall that G is 3-regular,
so each vertex in X is incident to exactly three edges. Deleting X will kill all of these edges; however, we
don’t want to double-count the edges with both endpoints in G, so we conclude that

e(G − X) = e(G) − 9 + e(G[X ]) = 6 + e(G[X ]).

On the one hand, this had better be at least 7 if G−X is going to have a 7-cycle. So X cannot be a coclique.
On the other hand, e(G[X ]) can be at most 2 (since we know that G has no 3-cycles).



Case 1: e(G[X ]) = 1. Let ij and k` be the two adjacent vertices in X . The other vertex in X cannot
be adjacent to either of these; without loss of generality it is ik. In particular, jm ∈ V (G − X). But
NG(jm) = {ik, i`, k`}, so jm has only one neighbor in G − X , hence cannot be part of a cycle.

Case 2: e(G[X ]) = 2. That is, G[X ] ∼= P3. Without loss of generality, we may assume that X = {ij, k`, im}.
Then G − X is the following graph:

ik il

jm

lm jk

jl km

Notice that n(G − X) = 7 and e(G − X) = 8. In particular, if G − X contains a 7-cycle then it can be
obtained by deleting one edge. But deleting any single edge will cause some vertex to have degree 1, so
G − X cannot contain a 7-cycle.

Proof #2: (This is shorter than the first proof, but it is less elementary in that it requires the use of
Proposition 1.1.38, which states that each two nonadjacent vertices in G have exactly one common neighbor.)
Let C ⊂ G be a 7-cycle with vertices v1, v2, . . . , v7. Then v1 and v4 have a unique common neighbor in G,
which is evidently not a vertex of C; call it x. Since Pete is 3-regular, we see that N(v1) = {v2, v7, x}. One
of these must be the common neighbor of v1 and v5.
— If N(v1) ∩ N(v5) = {v2}, then v2, v3, v4, v5 is a 4-cycle in G.
— If N(v1) ∩ N(v5) = {v7}, then v5, v6, v7 is a 3-cycle in G.
— If N(v1) ∩ N(v5) = {x}, then v4, v5, x is a 3-cycle in G.
In each case we have shown that Pete has girth ≤ 4, which contradicts Corollary 1.1.40.

Proof #3: Classify all the closed paths of length 7. To do this, we use the labeling of the vertices by
two-element subsetse of [5], with adjacency given by disjointness. For each path v1, v2, v3, we can write
v1 = ij, v2 = k`, v3 = mi, where {i, j, k, `, m} = [5]. We can continue the path by repeatedly choosing
vk+1 ∈ N(vk) − {v1, . . . , vk−1} for k = 4, 5, . . . ; for example, v4 can be either jk or j`, and then the choice
of v5 depends on the choice of v4. I won’t draw out the whole search tree, but if you do it, you will see that
it is impossible to have v8 = v1.

#6. I’ll prove the contrapositive. Suppose that G is bipartite with bipartition X, Y . That is, each edge of
G has one endpoint in each of X and Y . It is then immediate that for any subgraph H the pair X ∩ V (H),
Y ∩ V (H) is a bipartition of H .

We have seen that odd cycles are not bipartite. Therefore, no graph containing an odd cycle can be
bipartite.

#8. Let H be a component of G − v. There must be an edge e ∈ E(G) with one endpoint in H and one
endpoint in V (G) − V (H); otherwise, H would be a maximal connected subgraph of G and G wouldn’t be
connected. On the other hand, the condition that H is a component of G− v says that there is no edge with
one endpoint in H and the other endpoint in V (G − v) − V (H). So the other endpoint of e must be v.

If v is a cut-vertex of G, then G − v is disconnected, hence has at least two components. By the previous
observation, this implies that dG(v) ≥ 2.

#9. Recall that every walk in a bipartite graph must alternate between the two partite sets. Therefore,
every walk of even (odd) length must have its endpoints in the same (different) partite sets. Now let G be a



connected X, Y -bigraph and let X ′, Y ′ be another bipartition. Suppose that there exist vertices x ∈ X ∩X ′

and y ∈ X ∩ Y ′. Since G is connected, it contains an x, y-walk; but by the second observation, its length
must be both even and odd, a contradiction. Therefore, either X = X ′ and Y = Y ′, or else X = Y ′ and
Y = X ′.

Now suppose that G is disconnected and bipartite. Let H be one of its components and J = G−H . Let X, Y

be a bipartition of H and let X ′, Y ′ be a bipartition of J −H . Then (X∪X ′), (Y ∪Y ′) and (X∪Y ′), (Y ∪X)
are genuinely different bipartitions of G. Alternately, given a proper 2-coloring of G, it is possible to swap
the colors in a single component. (Indeed, up to swapping, the number of proper colorings of a bipartite
graph G is 2c(G)−1.)

#10. Suppose that G is disconnected. Let X be the vertex set of one of its components, and let Y =
V (G) − X ; then there is no edge with one endpoint in each of X and Y .

Now suppose that G is connected and that V (G) = X ·t Y . Let P be a minimum-length X, Y -path (that is,
a path with one endpoint in each of X and Y ). Say that the vertices of P in order are v0, v1, . . . , vn, with
v0 ∈ X and vn ∈ Y . Suppose that n ≥ 2. If v1 ∈ X , then deleting v0 produces a shorter X, Y -path, which
contradicts the minimality of P . On the other hand, if v1 ∈ Y , then deleting vn produces a shorter X, Y -
path. We conclude that n = 1 and P is a single edge, as desired. (This argument looks a bit artificial, but
it does at least provide an algorithm for reducing a given X, Y -path to an X, Y -edge, deleting one endpoint
at a time.)

Bonus problem: Fix n, and let X (resp. Y ) be the set of bit strings with an even (resp. odd) number of
1’s. Thus V (Qn) = V (Rn) = X ·t Y .

First, suppose that n is odd. If two bit strings v, w are adjacent in Rn, then they agree in exactly one bit,
hence differ in the other n − 1 bits. Since n − 1 is even, the parity of v is the same as that of w. That is,
there is no edge with one endpoint in each of X and Y , so Rn is disconnected (by #10 above). But Qn is
connected, so Qn 6∼= Rn.

Now, suppose that n is even. For a bit string v, write v̄ for the string obtained by flipping every bit in v; for
instance, 01001 = 10110. Define a function f : V (Qn) → V (Rn) by

f(v) =

{

v if v ∈ X,

v̄ if v ∈ Y.

Since n is even, v and v̄ have the same parity. Hence the function f is a bijection (indeed, it is its own
inverse).

To check that f is an isomorphism, note that if vw ∈ E(Qn), then they differ in exactly one bit, so in
particular exactly one of them, say v, is even. Thus f(v) = v and f(w) = w̄ agree in exactly one bit, and
hence f(v)f(w) ∈ E(Rn). By essentially the same argument, f(v)f(w) ∈ E(Rn) only if vw ∈ E(Qn).


