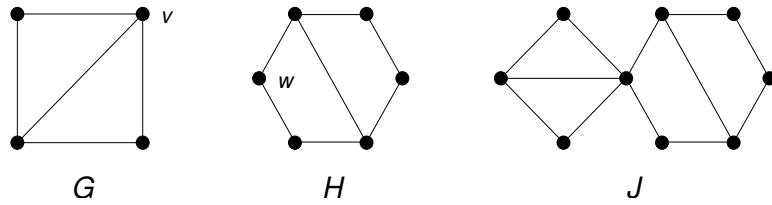


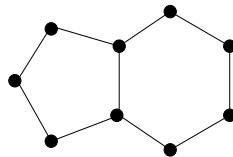
Do all five problems. No books or other notes are allowed. You can cite results proved in class provided that you indicate clearly that you are doing so.

#1. Prove that a bipartite Eulerian graph must have an even number of edges.

#2. (a) Let G and H be connected graphs such that $V(G) \cap V(H) = \emptyset$, and let $v \in V(G)$ and $w \in V(H)$. Let J be the graph formed from G and H by identifying the vertices v and w . Prove that $\tau(J) = \tau(G)\tau(H)$. (The following figure gives an example of the construction of J .)



(b) Let $a, b \geq 2$ be integers, and let $G_{a,b}$ be the graph formed by identifying an edge of the cycle C_a with an edge of the cycle C_b . For example, $G_{5,6}$ is the following graph:



Use the deletion-contraction recurrence and the result of #2a to find a closed-form formula for $\tau(G_{a,b})$ in terms of a and b .

#3. Let G be a connected simple graph with girth 4. What are the possible values for the girth of its complement \overline{G} ?

#4. Prove or disprove the statement that every tree has at most one perfect matching.

#5. (a) Prove that if G is bipartite, then

$$\alpha'(G) \geq e(G)/\Delta(G).$$

(As a reminder, $\alpha'(G)$ is the size of a maximum matching in G , and $\Delta(G)$ is the maximum degree of a vertex.)

(b) Use the result of #5a to prove that every regular bipartite graph has a perfect matching.