

#1. Prove that a bipartite Eulerian graph must have an even number of edges.

Let G be Eulerian and bipartite with partite sets X, Y . Since G is Eulerian, $d_G(x)$ is even for every $x \in X$. Also, each edge has one endpoint in x , so

$$e(G) = \sum_{x \in X} d(x)$$

is even as well.

Alternately, since G is Eulerian it can be decomposed into cycles; that is, there are cycles C_1, \dots, C_r such that $E(G) = E(C_1) \sqcup \dots \sqcup E(C_r)$. Since G is bipartite, each of these cycles has even length, hence $e(G) = \sum_{i=1}^r e(C_i)$ is even.

#2. (a) Let G and H be connected graphs such that $V(G) \cap V(H) = \emptyset$, and let $v \in V(G)$ and $w \in V(H)$. Let J be the graph formed from G and H by identifying the vertices v and w . Prove that $\tau(J) = \tau(G)\tau(H)$.

We have $E(J) = E(G) \sqcup E(H)$ and $n(J) = n(G) + n(H) - 1$.

Suppose that $T \subseteq E(G)$ and $U \subseteq E(H)$ are spanning trees of G and H respectively. Then $|T \cup U| = (n(G) - 1) + (n(H) - 1) = n(J) - 1$. Also, $T \cup U$ is connected, because if $x, y \in V(G)$, then either $x, y \in V(G)$ (when they are joined by a path in T), or $x, y \in V(H)$ (when they are joined by a path in U), or $x \in V(G)$, $y \in V(H)$ (when there is an x, v -path $P \subseteq G$ and a w, y -path $Q \subseteq H$, and $P \cup Q$ is an x, y -path in J). So $T \cup U$ is a spanning tree of J .

Now suppose that $S \subseteq J$ is a spanning tree, and let $T = S \cap E(G)$ and $U = S \cap E(H)$. Then T and U are acyclic (since they are subsets of the acyclic edge set S). In particular

$$|T| \leq n(G) - 1 \quad \text{and} \quad |U| \leq n(H) - 1. \quad (1)$$

But $|S| = |T| + |U| = (n(G) - 1) + (n(H) - 1)$. So equality must hold in both parts of (1). Hence T and U are spanning trees of G and H respectively.

It follows that there is a bijection

$$\{\text{spanning trees of } G\} \times \{\text{spanning trees of } H\} \rightarrow \{\text{spanning trees of } J\},$$

and in particular $\tau(J) = \tau(G)\tau(H)$.

(b) Let $a, b \geq 2$ be integers, and let $G_{a,b}$ be the graph formed by identifying an edge of the cycle C_a with an edge of the cycle C_b . Use the deletion-contraction recurrence and the result of #2a to find a closed-form formula for $\tau(G_{a,b})$ in terms of a and b .

Let e be the “glued” edge of $G_{a,b}$. Then $G_{a,b} - e \cong C_{a+b-2}$, and $G_{a,b}/e$ is the graph J built from $G = C_{a-1}$ and $H = C_{b-1}$ as in (a). So

$$\tau(G_{a,b}) = \tau(C_{a+b-2}) + \tau(J) = (a+b-2) + (a-1)(b-1) = ab - 1.$$

#3. Let G be a connected simple graph with girth 4. What are the possible values for the girth of its complement \bar{G} ?

G must have at least four vertices. If it has four vertices exactly then it must be C_4 ; its complement consists of two disconnected edges and has infinite girth (because it is acyclic). On the other hand, if $n(G) > 5$ then let w, x, y, z be a 4-cycle and v another vertex. Then v cannot have both a neighbor in $\{w, y\}$ and a neighbor in $\{x, z\}$, else G would have a 3-clique, i.e., a 3-cycle. So either $\{v, w, y\}$ or $\{v, x, z\}$ is a coclique in G , hence a 3-cycle in \bar{G} . So \bar{G} has girth 3.

In summary, \bar{G} has girth either 3 or ∞ .

#4. Prove or disprove the statement that every tree has at most one perfect matching.

This is true. Let T be a tree and let M, M' be perfect matchings. We know that every component of $M \Delta M'$ is either a path or an even cycle. The latter is impossible because T is acyclic. On the other hand, for each component that is a nontrivial path, each endpoint of the path is saturated by exactly one of the matchings M, M' . Since both are perfect matchings, no component of $M \Delta M'$ can be a nontrivial path. We conclude that $M \Delta M' = \emptyset$, that is, $M = M'$. So T has at most one perfect matching.

It is also possible to proceed by induction on $n(T)$. If $n(T) = 1$ (indeed, if $n(T)$ is any odd number) then T has no perfect matching, while if $n(T) = 2$ then $T \cong K_2$ has one perfect matching consisting of its single edge. Otherwise, let v be a leaf of T and w its unique neighbor. If M is a perfect matching of T , then in particular $v \in V(M)$, so $vw \in M$. So M consists of the edge vw together with a perfect matching M' on the graph $T' = T - v - w$; in turn M' is the union of perfect matchings on each component of T' . On the other hand, T' is a forest (it is certainly acyclic but need not be connected), so each of its components is a tree, and by induction has at most one perfect matching. Therefore T' has at most one perfect matching, and so does T . (While perhaps a little less elegant, this proof does give an algorithm for computing a perfect matching of T if one exists.)

#5. (a) Prove that if G is bipartite, then $\alpha'(G) \geq e(G)/\Delta(G)$.

The König-Egerváry Theorem says that $\alpha'(G) = \beta(G)$. Let Q be a minimum vertex cover, so that $|Q| = \beta(G) = \alpha'(G)$. Each vertex of Q has degree $\leq \Delta(G)$, hence covers at most $\Delta(G)$ edges. So Q must have at least $e(G)/\Delta(G)$ vertices if it is to have any hope of being a vertex cover. That is, $\alpha'(G) \geq e(G)/\Delta(G)$, as desired.

(b) Use the result of #5a to prove that every regular bipartite graph has a perfect matching.

Let G be a k -regular X, Y -bigraph. By the bipartite version of handshaking, we have $e = k|X| = k|Y|$. Also, $\Delta(G) = k$. By problem #5a, we have $\alpha'(G) \geq e(G)/\Delta(G) = k|X|/k$. So a maximum matching M has $|X| = |Y|$ edges, hence saturates $2|X| = n(G)$ vertices; that is, M is a perfect matching.