
Math 725, Spring 2006
Midterm Exam Solutions

#1. Prove that a bipartite Eulerian graph must have an even number of edges.

Let G be Eulerian and bipartite with partite sets X, Y . Since G is Eulerian, dG(x) is even for every x ∈ X .
Also, each edge has one endpoint in x, so

e(G) =
∑

x∈X

d(x)

is even as well.

Alternately, since G is Eulerian it can be decomposed into cycles; that is, there are cycles C1, . . . , Cr such
that E(G) = E(C1) ·t · · · ·t E(Cr). Since G is bipartite, each of these cycles has even length, hence e(G) =∑r

i=1
e(Ci) is even.

#2. (a) Let G and H be connected graphs such that V (G) ∩ V (H) = ∅, and let v ∈ V (G) and
w ∈ V (H). Let J be the graph formed from G and H by identifying the vertices v and w. Prove
that τ(J) = τ(G)τ(H).

We have E(J) = E(G) ·t E(H) and n(J) = n(G) + n(H) − 1.

Suppose that T ⊆ E(G) and U ⊆ E(H) are spanning trees of G and H respectively. Then |T ∪ U | =
(n(G)−1)+(n(H)−1) = n(J)−1. Also, T ∪U is connected, because if x, y ∈ V (G), then either x, y ∈ V (G)
(when they are joined by a path in T ), or x, y ∈ V (H) (when they are joined by a path in U), or x ∈ V (G),
y ∈ V (H) (when there is an x, v-path P ⊆ G and a w, y-path Q ⊆ H , and P ∪ Q is an x, y-path in J). So
T ∪ U is a spanning tree of J .

Now suppose that S ⊆ J is a spanning tree, and let T = S ∩ E(G) and U = S ∩ E(H). Then T and U are
acyclic (since they are subsets of the acyclic edge set S). In particular

|T | ≤ n(G) − 1 and |U | ≤ n(H) − 1. (1)

But |S| = |T |+ |U | = (n(G) − 1) + (n(H) − 1). So equality must hold in both parts of (1). Hence T and U
are spanning trees of G and H respectively.

It follows that there is a bijection

{spanning trees of G} × {spanning trees of H} → {spanning trees of J},

and in particular τ(J) = τ(G)τ(H).

(b) Let a, b ≥ 2 be integers, and let Ga,b be the graph formed by identifying an edge of the
cycle Ca with an edge of the cycle Cb. Use the deletion-contraction recurrence and the result
of #2a to find a closed-form formula for τ(Ga,b) in terms of a and b.

Let e be the “glued” edge of Ga,b. Then Ga,b − e ∼= Ca+b−2, and Ga,b/e is the graph J built from G = Ca−1

and H = Cb−1 as in (a). So

τ(Ga,b) = τ(Ca+b−2) + τ(J) = (a + b − 2) + (a − 1)(b − 1) = ab − 1.



#3. Let G be a connected simple graph with girth 4. What are the possible values for the
girth of its complement G?

G must have at least four vertices. If it has four vertices exactly then it must be C4; its complement consists
of two disconnected edges and has infinite girth (because it is acyclic). On the other hand, if n(G) > 5 then
let w, x, y, z be a 4-cycle and v another vertex. Then v cannot have both a neighbor in {w, y} and a neighbor
in {x, z}, else G would have a 3-clique, i.e., a 3-cycle. So either {v, w, y} or {v, x, z} is a coclique in G, hence
a 3-cycle in Ḡ. So Ḡ has girth 3.

In summary, G has girth either 3 or ∞.

#4. Prove or disprove the statement that every tree has at most one perfect matching.

This is true. Let T be a tree and let M, M ′ be perfect matchings. We know that every component of M4M ′

is either a path or an even cycle. The latter is impossible because T is acyclic. On the other hand, for each
component that is a nontrivial path, each endpoint of the path is saturated by exactly one of the matchings
M, M ′. Since both are perfect matchings, no component of M4M ′ can be a nontrivial path. We conclude
that M4M ′ = ∅, that is, M = M ′. So T has at most one perfect matching.

It is also possible to proceed by induction on n(T ). If n(T ) = 1 (indeed, if n(T ) is any odd number) then
T has no perfect matching, while if n(T ) = 2 then T ∼= K2 has one perfect matching consisting of its single
edge. Otherwise, let v be a leaf of T and w its unique neighbor. If M is a perfect matching of T , then in
particular v ∈ V (M), so vw ∈ M . So M consists of the edge vw together with a perfect matching M ′ on the
graph T ′ = T − v −w; in turn M ′ is the union of perfect matchings on each component of T ′. On the other
hand, T ′ is a forest (it is certainly acyclic but need not be connected), so each of its components is a tree,
and by induction has at most one perfect matching. Therefore T ′ has at most one perfect matching, and
so does T . (While perhaps a little less elegant, this proof does give an algorithm for computing a perfect
matching of T if one exists.)

#5. (a) Prove that if G is bipartite, then α′(G) ≥ e(G)/∆(G).

The König-Egerváry Theorem says that α′(G) = β(G). Let Q be a minimum vertex cover, so that |Q| =
β(G) = α′(G). Each vertex of Q has degree ≤ ∆(G), hence covers at most ∆(G) edges. So Q must have at
least e(G)/∆(G) vertices if it is to have any hope of being a vertex cover. That is, α′(G) ≥ e(G)/∆(G), as
desired.

(b) Use the result of #5a to prove that every regular bipartite graph has a perfect matching.

Let G be a k-regular X, Y -bigraph. By the bipartite version of handshaking, we have e = k|X | = k|Y |.
Also, ∆(G) = k. By problem #5a, we have α′(G) ≥ e(G)/∆(G) = k|X |/k. So a maximum matching M has
|X | = |Y | edges, hence saturates 2|X | = n(G) vertices; that is, M is a perfect matching.


