Math 725, Spring 2006
Midterm Exam Solutions

#1. Prove that a bipartite Eulerian graph must have an even number of edges.

Let G be Eulerian and bipartite with partite sets X,Y. Since G is Eulerian, dg(z) is even for every z € X.
Also, each edge has one endpoint in x, so

e(G) =) d(x)
rzeX
is even as well.
Alternately, since G is Eulerian it can be decomposed into cycles; that is, there are cycles Cq, ..., C; such

that F(G) = E(Cy) 4 --- 14 E(C,). Since G is bipartite, each of these cycles has even length, hence e(G) =
Soi_,e(Cy) is even.

#2. (a) Let G and H be connected graphs such that V(G) NV (H) = ), and let v € V(G) and
w € V(H). Let J be the graph formed from G and H by identifying the vertices v and w. Prove
that 7(J) = 7(G)r(H).

We have E(J) = E(G) LW E(H) and n(J) = n(G) + n(H) — 1.

Suppose that T C E(G) and U C E(H) are spanning trees of G and H respectively. Then |T U U| =
(n(G)—1)+(n(H)—1) =n(J)—1. Also, TUU is connected, because if z,y € V(G), then either z,y € V(G)
(when they are joined by a path in T'), or x,y € V(H) (when they are joined by a path in U), or z € V(G),
y € V(H) (when there is an z,v-path P C G and a w,y-path @ C H, and PUQ is an z, y-path in J). So
T U U is a spanning tree of J.

Now suppose that S C J is a spanning tree, and let T'= SN E(G) and U = SN E(H). Then T and U are
acyclic (since they are subsets of the acyclic edge set S). In particular

T <n(G)-1 and Ul <n(H)-1. (1)
But |S|=|T|+|U| = (n(G) — 1)+ (n(H) — 1). So equality must hold in both parts of (1). Hence T and U
are spanning trees of G and H respectively.
It follows that there is a bijection

{spanning trees of G} x {spanning trees of H} — {spanning trees of J},

and in particular 7(J) = 7(G)7(H).

(b) Let a,b > 2 be integers, and let G,; be the graph formed by identifying an edge of the
cycle C, with an edge of the cycle ;. Use the deletion-contraction recurrence and the result
of #2a to find a closed-form formula for 7(G,) in terms of a and b.

Let e be the “glued” edge of G, . Then G — e = Corp—2, and Gy p/e is the graph J built from G = Cy_q
and H = Cy_1 as in (a). So

7(Gap) = T(Cagp2) +7(J)=(a+b—2)+(a—1)(b—1) =ab— 1.




#3. Let G be a connected simple graph with girth 4. What are the possible values for the
girth of its complement G?

G must have at least four vertices. If it has four vertices exactly then it must be Cy; its complement consists
of two disconnected edges and has infinite girth (because it is acyclic). On the other hand, if n(G) > 5 then
let w, z,y, z be a 4-cycle and v another vertex. Then v cannot have both a neighbor in {w, y} and a neighbor
in {z, z}, else G would have a 3-clique, i.e., a 3-cycle. So either {v,w,y} or {v,x, 2z} is a coclique in G, hence
a 3-cycle in G. So G has girth 3.

In summary, G has girth either 3 or oco.

#4. Prove or disprove the statement that every tree has at most one perfect matching.

This is true. Let T be a tree and let M, M’ be perfect matchings. We know that every component of MAM’
is either a path or an even cycle. The latter is impossible because T is acyclic. On the other hand, for each
component that is a nontrivial path, each endpoint of the path is saturated by exactly one of the matchings
M, M'. Since both are perfect matchings, no component of MAM’ can be a nontrivial path. We conclude
that MAM’' = (), that is, M = M’. So T has at most one perfect matching.

It is also possible to proceed by induction on n(T). If n(T) = 1 (indeed, if n(T) is any odd number) then
T has no perfect matching, while if n(T) = 2 then T = K5 has one perfect matching consisting of its single
edge. Otherwise, let v be a leaf of 7" and w its unique neighbor. If M is a perfect matching of T, then in
particular v € V(M), so vw € M. So M consists of the edge vw together with a perfect matching M’ on the
graph 7" =T — v — w; in turn M’ is the union of perfect matchings on each component of T”. On the other
hand, T" is a forest (it is certainly acyclic but need not be connected), so each of its components is a tree,
and by induction has at most one perfect matching. Therefore T’ has at most one perfect matching, and
so does T. (While perhaps a little less elegant, this proof does give an algorithm for computing a perfect
matching of T if one exists.)

#5. (a) Prove that if G is bipartite, then o/(G) > ¢(G)/A(G).

The Konig-Egervdry Theorem says that o/ (G) = 5(G). Let @ be a minimum vertex cover, so that |Q| =
B(G) = o/ (G). Each vertex of @ has degree < A(G), hence covers at most A(G) edges. So  must have at
least e(G)/A(G) vertices if it is to have any hope of being a vertex cover. That is, o' (G) > e(G)/A(G), as
desired.

(b) Use the result of #5a to prove that every regular bipartite graph has a perfect matching.

Let G be a k-regular X,Y-bigraph. By the bipartite version of handshaking, we have e = k|X| = k|Y|.
Also, A(G) = k. By problem #5ba, we have o/(G) > e(G)/A(G) = k| X|/k. So a maximum matching M has
|X| = |Y]| edges, hence saturates 2| X| = n(G) vertices; that is, M is a perfect matching.



