es of Higher Genus

If we can’t embed K33 in the plane (or, equivalently, the sphere), what if we
ings?
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If v(G) =1, then G is embeddable on a torus. For example, let G = K3 3:

on the

To construct a torus, we could take a sheet of paper, glue the top
right sides together. The
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The arrows indicate the orientations of the edges when they are glued to-
gether. (Reversing one of the arrows would produce a Klein bottle instead of
a torus.) Thus the two red dots represent the same point v. So do the two
green dots (v) and the four blue ones (w).

That means that we can represent toroidal embeddings of graphs by drawing
them on a square. For example, here’s an embedding of K3 3:

X Y

X2 ’ X2
) L‘ )
X 1 yl

Definition: The g-holed torus S; is the surface obtained by adding g
handles to the sphere.
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The genus of a graph G is
7(G) = min{g | G embeds on S,}.

Notice that v(G) < v(G), because we can eliminate a crossing by adding a
bridge. However, the inequality can be quite sharp. In fact, not only does



K5 have genus 1, but so does K7 (whose crossing number is 9)! (See p. 267
for the figure.)

Euler’s formula for tori If G has a 2-cell embedding on a surface of genus
g, then
n—e+f = 2-—2g.

Corollary: e <3(n—2+4 2g).

Theorem (Heawood 1890) If G is embeddable on a surface of genus g > 0,
then

X(G) < [el,
T VIT 8y
_ . _

where

Proof. 1t suffices to prove that G has a vertex of degree < ¢ — 1; the desired
result will then follow from induction on n. There is no problem if n < ¢, so
we assume that n > c.

The quantity c is a positive root of the polynomial
¢ —Tc+ (12 —129) = 0

which is equivalent to
12 — 12¢g

C

c—1 =6

S0
6(n — 2+ 2g)

n
129 — 12)

12g — 12)

C

2
= < by the Corollary
n

=6+

<6+ this is the key step!

=c— 1.
Notice that the key inequality requires that 12¢g — 12 > 0, that is, g > 1. So
the average degree of G is less than ¢, which means that at least one vertex
must have degree < ¢ — 1 as desired. |



Note that ¢ = 4 for ¢ = 0. However, Heawood’s argument does not suffice to
prove the Four-Color Theorem, because the second inequality in (x) is valid
only if g > 0.

For g = 1, we have ¢ = 7. So every toroidal graph is 7-colorable.

In fact, Heawood’s bound is sharp for g > 0; this is quite nontrivial but
can be proven more easily than the Four-Color Theorem. So, strangely, the
problem of determining the maximum chromatic number of genus-g graphs
is most difficult when g = 0.

Wagner’s Theorem can be generalized for the torus, in the following sense:

Theorem: For every n > 0, there is some finite set ®,, of (isomorphism
types of) graphs such that

v(G) <n <= G has no minor in ®,,.
For n = 0, we have &) = {K;, K33}.
Lots and lots of elements of ®; are known, but not the complete list.

How do we know that the set is finite? Well, there is an amazing result called
the Graph Minor Theorem (GMT), due to Robertson and Seymour:

In every infinite list of graphs, some graph is a minor of another.

It follows from the GMT that every list of minimal obstructions must be
finite, since no two elements of it are comparable.



