The 5-Color Theorem

Theorem: Let G = (V,E) be a planar graph. Then x(G) < 5.

Proof. We induct on n = n(G). For the base case(s), if n < 5 then G is certainly 5-colorable. So assume
inductively that every planar graph on fewer than n vertices is 5-colorable.

Recall that Euler’s formula implies e(G) < 3n — 6. Therefore 0(G) <5 (otherwise e(G) = (3, ¢y d(v))/2 >
3n). Let v be a vertex of minimal degree.

The graph G —wv is planar, and by induction has a proper 5-coloring f. If § < 5, or if § = 5 and two neighbors
of v have the same color, then we can extend f to a 5-coloring of G.

Otherwise, fix a planar embedding of G. Let v1,vs,vs, vy, v5 be the neighbors of v, listed in cyclic order
around v. Assume WLOG that f(v;) = i. Let G;; be the induced subgraph of G — v on the vertices of
colors ¢ and j.

Claim: There is a pair of colors 7, j such that v; and v; lie in different components of G;;.

Proof of claim: Either v, vs is such a pair or it isn’t. If it is, we’re done. If not, then vy, v3 lie in the same
component Y of G —wv. So Y contains a vy, vs-path that alternates between colors 1 and 3.

Adding the edges vvy and vvs to this path forms a cycle C' C G separating vy and vg. That is, either vg is
inside C' and vy lies outside C, or vice versa. Here are the two possibilities:

But then V(C) is a ve2,v4-cut, and none of its vertices belongs to Gas. Hence ve and vy lie in different
components of Ga4, proving the claim.



Let 4, j be as in the claim, and let X be the component of G;; that contains v;. In the example below, color %
is indicated in blue and color j in red. The edges of G;; are highlighted in green.

Now form a new coloring f by swapping the colors i, j on X, leaving the color of every other vertex unchanged.
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It is easy to check that f is a proper 5-coloring. Moreover, f(w) # i for w € N(v). So we can set f(v) =i
to produce a proper 5-coloring of G, as desired.



