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The building blocks for a coherent mathematical system come in several kinds:

e Undefined terms. These are typically extremely simple and basic objects (like “point” and “line”),
so simple that they resist being described in terms of simpler objects. Every system has to have some
undefined terms—you’ve got to start somewhere. (But in general, the fewer the better.)

e Postulates/Axioms. These are basic facts about undefined terms. The simpler and more funda-
mental they are, the better. For example, “every pair of points determines a line”, or “if x = y, then
y=2a".

e Definitions. We can define new terms using things that we already know.

e Theorems. These are the statements that makes mathematics what it is—they are facts that we prove
using axioms, definitions, and theorems that we’ve proved earlier. (Propositions, Lemmas, Corollaries
are all species of theorems.)

1 Undefined terms

We will start with the following undefined termsi!

e Point
e Line (= infinite straight line)
e Angle
e Distance between two points

e Measure of an angle

We'll write AB for the distance between two points A and B, and we’ll write mZABC for the measure of
angle ZABC.

We'll be careful to distinguish between an angle (which is a thing) and its measure (which is a number).
So, for instance, the two statements “/ABC = /XY Z” and “m/ABC = m/XY Z” don’t mean the same
thing—the first says these two angles are actually the same angle, while the second just says that they have
the same measure.

1Euclid included definitions of these terms in the Elements, but to a modern reader, his definitions are really intuitive
explanations rather than precise mathematical definitions. For example, he defined a point as “that which has no part”, a line
as “length without breadth”, and an angle as “the inclination to one another of two lines in a plane which meet one another
and do not lie in a straight line.” (The intuition here is that an angle records the difference between the directions of two lines
meeting in a point.)



2 Some definitions

When writing definitions, it is good practice to emphasize the word you are defining—that makes it easier
on the reader (and for that matter the writer as well).

Definition 1. A collection of three or more points is collinear if there is some line containing all those
points.

Definition 2. Two lines are parallel if they never meet.

Definition 3. When two lines meet in such a way that the adjacent angles are equal, the equal angles are
called right angles, and the lines are called perpendicular to each other.

Definition 4. A circle is the set of all points equally distant from a given point. That point is called the
center of the circle.

What about the term “line segment”? We all know what that is—it’s the portion of a line between two
points. But what does “between” mean?

With a little thought, we can define “between” using two concepts we already have: the undefined term
distance and the definition of collinear. Once we've done that, we can define what a line segment is. It’s
important to get these two definitions in the proper order.

Definition 5. Given three distinct collinear points A, B, C, we say that B is between A and C if AC > AB
and AC' > BC.

Definition 6. The line segment AB between two points A and B consists of A and B themselves, together
with the set of all points between them.

3 Axioms

Axiom 1. If A, B are distinct points, then there is exactly one line containing both A and B, which we
— <
denote AB (or BA).

This is Euclid’s first axiom. Notice that it includes a definition of notation. Also, it’s false in spheri-
cal geometry—if points A and B are polar opposites, then every one of the infinitely many great circles
containing A contains B as well (and vice versa).

The next group of axioms concern distance.

Axiom 2. AB = BA.

Axiom 3. AB=0 iff A= B.

The word “iff” is mathematician’s jargon for “if and only if”. That is, the axiom says that two different

things are true. First, if A = B, then AB = 0. Second, if AB = 0, then A = B. Logically, these are two
separate statements.

Axiom 4. If point C is between points A and B, then AC + BC = AB.
Axiom 5. (The triangle inequality) If C is not between A and B, then AC + BC' > AB.

Now, some axioms about angle measure.



Axiom 6. New version. (a.) m(£LBAC) = 0° iff B, A,C are collinear and A is not between B and C.

(b.) m(£LBAC) =180° iff B, A,C are collinear and A is between B and C.

(Note: In an earlier version of these notes, I said “if” instead of “iff”, but in fact we want both directions of
both assertions as axioms.)

It might seem odd to start by talking about angles that “aren’t really angles” (because they are defined
by three collinear points). On the other hand, it’s always a good idea in mathematics to look at extreme
cases. These axioms make sense if you think about what happens if the points move around a little bit.
To understand the first part of Axiom 6, imagine nudging B so that it is just off the segment AC; then
m(£LABC) should be very close to 180°, and the less you've nudged B, the closer m(ZABC) gets to 180°.

Axiom 7. Whenever two lines meet to make four angles, the measures of those four angles add up to 360°.

Axiom 8. Suppose that A, B,C are collinear points, with B between A and C, and that X is not collinear
with A, B and C. Then m(LAXB) + m(£LBXC) = m(LAXC). Moreover, m(LABX) + m(£XBC) =
m(LABC). (We know that ZABC = 180° by Aziom[6.)

Axiom [8 has a bit more going on than its predecessors, so here’s a picture that illustrates it. The first
statement says that the measures of the two red angles add up to the measure of the blue angle. The second
statement says that the two green angles add up to 180°.

An axiom about logic:

Axiom 9. FEquals can be substituted for equals.

Two axioms about parallel lines:
Axiom 10. Given a point P and a line ¢, there is exactly one line through P parallel to £.

Axiom 11. If ¢ and ¢ are parallel lines and m is a line that meets them both, then alternate interior angles
are equal.

That is, Axiom[11]says that the two red angles are equal in the following picture (provided that the horizontal
lines are parallel).



Axiom 10 (which is called Playfair’s Axiom) and Axiom [11] distinguish Euclidean geometry from other
geometries, such as spherical geometry (which we've talked a little about) and hyperbolic geometry (which
we’ll see eventually). Both axioms are intuitively correct, but it took mathematicians a long time to realize
that it was possible to do geometry without them.

Now for two axioms that connect number and geometry:

Axiom 12. For any positive whole number n, and distinct points A, B, there is some C between A, B such

that n- AC = AB.

Axiom 13. For any positive whole number n and angle ZABC, there is a point D between A and C' such
that n - m(LABD) = m(£LABC).

4 Some theorems

Now that we have a bunch of axioms and definitions in place, we can start using them to prove theorems.
(We reserve the right to add more axioms and definitions later if we need to.) Many of these theorems may
seem obvious, but that’s the point: even seemingly obvious statements need to be proved.

The first theorem was actually one of Euclid’s original five postulates (= axioms). In our axiom system,
which is not the same as Euclid’s, we don’t need to make it an axiom—we can prove it from the axioms and
definitions above.

Theorem 1. All right angles have the same measure, namely 90°.

Proof. Suppose that ZABX is a right angle. By Definition [3, this means that the segments AB and BX
— < —

can be extended to perpendicular lines AB and BX. Let C be a point on AB such that B is between A

and C. Now, by Definition (3] of “perpendicular”, we know that

mLABX = m/ZXBC

and by Axiom [8] we know that
mZABX + mZXBC = 180°.

Substituting the first equation into the second, we find that 2m/ZABC = 180°, so mZABC = 90°. O

Notice that this proof says explicitly when it using an axiom or definition. This is an important habit to
acquire when writing proofs—it’s just like citing your sources.

By the way, the little box at the end is a sign that the proof is complete. (The old practice was to use the
abbreviation “Q.E.D.”, a Latin acronym meaning “...which was to be proven”.)



The next several theorems say that certain things are unique. every line segment has exactly one midpoint,
every angle has exactly one bisector, and every line has exactly one perpendicular through a point on it.

Definition 7. A midpoint of a line segment AB is a point C on AB such that AC = BC and 2- AC = AB.

Theorem 2. Every line segment AB has exactly one midpoint.

Proof. First, we show that AB has at least one midpoint. By Axiom 12} we can find a point C' between A
and B (that is, on AB) such that
2. AC = AB. (1)

So we just need to show that AC' = BC. By Axiom [4, we also know that AC + BC = AB so substituting
for AB in equation (1) (which we can do by Axiom[9)) gives us 2- AC' = AC + BC, and subtracting AC' from
both sides gives AC = BC,

The second part of the proof is to show that AB has only one midpoint. To do this, suppose that C' and D
are both midpoints—the goal is then to show that in fact C = D. By Axiom [3] we can do this by showing
that CD = 0. We don’t know anything about C'D directly; what we do know is that since C' and D are both
midpoints of AB.

AC:CB:AD:DB:ATB. (2)

Now C' is either between A and D, or between B and D If C is between A and D, then Axiom |4 says that
AC + CD = AD. But since AC' = AD (by equation (2)), this means that CD = 0.

If C is between B and D, then Axiom[4]says that BC'+ CD = BD. But since BC = BD (by equation (2)),
this means that CD = 0.

In either case, Axiom 3 tells us that C = D. O

Notice that the two cases were essentially the same, In a written proof, you might the author say something
like, “Without loss of generality, we’ll just consider the first case”—that’s what this means.

Definition 8. A bisector of an angle ZBAC is a line AD such that D is between B and C and m/BAD =
mLDAC = %méBAC’.

Theorem 3. FEvery angle ZBAC has exactly one bisector.

Proof. By Axiom 13, ZBAC has at least one bisector. We have to show that it has only one.

Suppose that AD and AE are both bisectors. Then D and E are points on BC. So D is either between B
and E, or between E and C. Without loss of generality, we’ll consider the first case. By Axiom [8]

m/BAD +m/DAE = m/BAE.
— >
On the other hand, since AD and AFE are both bisectors, we know from Definition [8] that

m/BAD = m/BAE = %mABAC’.

Substituting this into the previous equation gives m/BAD + m/DAFE = m/BAD, which implies that

m/ZDAE = 0. By Axiom[6, the points A, D, E are collinear — but that means that 1<4—D) = j‘l—)E7 so both
bisectors are the same. O

As an immediate corollary, we get the following uniqueness result:



Theorem 4. If C is between A and B, then there is exactly one line £ passing through C that is perpendicular
to AB.

Proof. Suppose that £ is such a line. Then £ is a bisector of ZACB. By Theorem [3, there is exactly one
such line. O

Before we start looking at congruence and similarity, we need to establish a few more theorems.

Theorem 5. Any two distinct lines intersect in at most one point.

Proof. Let m and n be lines that have two different points P, Q in common. By Axiom [T, there is exactly
one line containing P and Q). Both m and n must be that line. Therefore, m = n. O

Just like Axiom[I] this is a statement that seems utterly obvious, but fails in spherical geometry, where every
pair of distinct lines meets in two (polar opposite) points.

Theorem 6. The sum of the interior angles of any triangle is 180°. That is, if AABC' is any triangle, then
m/ABC +m/BAC + m/ACB = 180°.

Proof. Draw a line £ through C parallel to AB. (By Axiom [10, there is exactly one such line.) Put points
D and FE on £ so that C' is between D and E.

By Axiom [8/and Axiom [6]
a+y+p0" = (@ +y)+ 08 = mLECB+m/BCD = m/ZECD = 180°.
By Axiom /11, a = o* and 3 = [8*. Substituting into the last equation gives o + v + 3 = 180°. O

Theorem 7. Suppose that two distinct lines m,m’ both intersect a third line n. If alternate interior angles
are equal, or if corresponding angles are equal then m and m' are parallel.

Proof. Here’s the picture:



Let’s prove the “alternate interior angles” case. We are given that a = o/, and we want to prove that m and
m’ are parallel.

Suppose that m and m’ meet at a point Z. Then we have a triangle AAZZ’. By Theorem [6,
MLAZZ +mLAZ'Z +mlZAZ = o+ B+mLZAZ = 180°.

On the other hand, a + 8 = 180° by Axiom [8. Therefore, m/ZAZ' = 0, which says that Z, A, Z' are
collinear—but they’re not. This is a contradiction, and we conclude that m and m’ do not meet.

As for the “corresponding angles” case, alternate interior angles (such as « and ') are equal if and only if
corresponding angles (such as a and ') are equal. This is because of the Vertical Angle Theorem (which
says that o/ = o”). O

5 Congruence and similarity

Definition 9. Two things are congruent iff one of them can be moved rigidly so that it coincides with the
other. In particular, if one of them consists of line segments then so does the other, and corresponding sides
have the same measure. We write F = G to mean that F and G are congruent.

Definition 10. Two things are similar iff one of them is proportional to the other. In particular, if one of
them consists of line segments then so does the other, and corresponding sides have proportional measures.
We write F ~ G to mean that F and G are similar.

Notice that “congruent” is a stronger relationship than “similar”. If two things are congruent, then they are
necessarily similar, but two similar things don’t have to be congruent.

Axiom 14. (SSS) Two triangles are congruent iff their corresponding sides are equal. That is, if AABC and
AA'B'C’ are two triangles such that AB = A'B’, AC = A'C’, and BC = B'C’, then AABC = AA'B'C’.

We already know from Definition [9 that if the triangles are congruent, then corresponding sides are equal.
What is new in Axiom[14/is the reverse implication: if corresponding sides are equal, then the triangles are
congruent.

Axiom 15. (AAA) Two triangles are similar iff their corresponding angles are equal. That is, if m/BAC =
ms/B'A'C', m/ABC = m/A'B'C’, and m/BCA = m/B'C'A’, then AABC ~ AA'B'C’.

The abbreviations SSS and AAA are short for “Side-Side-Side” and “Angle-Angle-Angle”. It is natural to
ask about other criteria for congruence of triangles.



Theorem 8. (ASA) Two triangles are congruent iff two pairs of corresponding angles, and the sides between
them, are equal. That is,

AABC = AA'B'C' iff mLBAC = m4B'A'C!', mZABC =m/ZA'B'C!, and AB = A'B’.
Proof. To prove a theorem with an “iff” in its statement, we need to prove that both implications hold. In

this case, it is easy to prove that if the triangles are congruent, then the three equalities actually hold —
this is an immediate consequence of Definition [9]

So suppose we have two triangles that satisfy the three equalities. Draw then so that the points A, B, A’, B
lie along the same line n, in that order. Also, let

a=m/LBAC, 8 =mLABC
o =msB'A'CY, B =msA'B'C".

By Theorem |7} we know that jﬁ’ and A'C’ are parallel (because they both intersect n, and the corresponding

“— —
angles a, o' are equal). By similar logic, we know that BC and B’C’ are parallel.

Now, slide AA’B’C’ along n so that the segments A’B’ and AB coincide with each other, i.e., A = A’ and
B = B’. (We know we can do this because AB = A’B’ by hypothesis.) Theorem [7] still applies, but here

— —>
it says that AC' and A’C’ are actually the same line (they can’t be parallel because they both contain the
point A = A’, so according to theorem the only other possibility is that they weren’t distinct lines to begin

— —
with). Similarly, BC and B’C” coincide.

— > —> —>
Let £ = AC = A'C' and m = BC = B’C’. The lines £ and m intersect in a unique point, by Theorem [5.
But that unique point must be both C' and C" — so we conclude that C' = C’, and the proof is done. O

An equivalent way of stating the ASA theorem is as follows:

A triangle is determined, up to congruence, by one side and the two angles adjacent to it.



In other words, if you know the length of AB and the angles o and 3 in the figure above, then there’s only
one possible point where C' can be, hence only one possible triangle AABC'.

Here’s another congruence theorem.

Theorem 9. (SAS) Two triangles are congruent iff two pairs of corresponding sides, and the angles between
those sides, are equal. That is,

AABC =2 AA'B'C' iff AB=A'B', AC=AC', and m£BAC = m/B'A'C’.

Proof. Again, if the triangles are congruent, then the three equalities do indeed hold by Definition[9.

As in the proof of Theorem [8 before, we draw the triangles so that A, B, A’, B’ are collinear, and we can
«— < > — < >

conclude from Theorem |7 that AC' and A’C" are parallel (but not BC and B’C”, since we don’t know whether

—>

or not 3 equals 3'). Once again, slide AA’B’C’ along n so that A = A’ and B = B’, so that now AC = AT

Now, either C’ is between A and C or C is between A and C’. Without loss of generality, suppose the first

case. Then Axiom [4] says that AC' + C'C = AC. Also, A and A’ are the same point, so AC' = A'C’,

and substituting into the previous equation, we get A’'C’ + C'C = AC. But A’C’ = AC by hypothesis, so
C'C = 0. Therefore C = C’ by Axiom 3. O

An equivalent way of stating the SAS theorem is as follows:
A triangle is determined, up to congruence, by two sides and the angle between them.

It is important that the angle has to be between the sides (that’s why we call it SAS and not SSA). Specifying
two sides and an angle opposite one of the sides does not determine the triangle up to congruence — see
problem SA 20.

Here are some important consequence of the angle congruence theorems.

Theorem 10. The base angles of an iosceles triangle are equal. That is, if AB = AC then ZABC =2 ZACB.

First proof. Let D be the midpoint of BC. Then AD = AD; AB = AC (given); and BD = CD (by
definition of midpoint). So AABD =2 AACD by SSS. By definition of congruence, ZABC = /ACB. O

Second proof. Let £ be the bisector of angle ZBAC, and let E be the point where ¢ meets BC. Then
AE = AE; AB = AC (given); and ZBAE = ZCAFE (by definition of angle bisector So AABD = AACD
by SAS. Again, by definition of congruence, ZABC = ZACB. O

Third (and slickest) proof. Observe that AB = AC, AC = AB, and BC = C'B. Therefore AABC = ABAC
by SSS. In particular, ZABC = ZACB. (The big idea here is that the triangle is congruent to a reflected
copy of itself.) O



N
B D C B E C B C
Proof 1 Proof 2 Proof 3

The points D and F are actually the same point, but we can’t assume that from the start — so it is a logical
mistake to say something like, “Let ¢ be the bisector of ZBAC, and let £ meet BC' at its midpoint”. To put
it another way, you can’t assume that you can construct ¢ in a way that meets both those specifications. On
the other hand, we can now prove that D and F coincide.

Finally, two more very useful theorems about triangles inscribed in a semicircle.

Theorem 11. Suppose that AB is a diamater of a circle centered at O, and that C is a point on the circle.
Then

mZACB = 90° (3a)

and
m/BOC = 2m/BAC. (3b)

Proof. The segments OA, OB, OC are all radii of the circle, so the triangles AOAC and AOBC are isosceles.
Therefore, by Theorem [10,

m/OAC =m/OCA and mZOCB =m/0OBC.
Let o = mZOAC = mZOCA and 8 = mZOCB = m/Z/0OBC. By Axiom|[8 and Theorem [6]
2a+28 = mLOAC + mZLOCA+ mZOCB +m/ZOBC = m/ZBAC +m/ZACB +m/ABC = 180°

from which it follows that o + 8 = 90°, proving (3a).

10



Now, let 6 = mZBOC. Then

0+ 26 =180°
and we already know that
2a0 + 203 = 180°
and combining these two equations yields
0 =2«
which proves (3b). 0O

6 The Pythagorean Theorem

Theorem 12. In a right triangle with legs of lengths a and b and hypotenuse of length ¢, we have

a® + v =2

Proof. Suppose we are given such a right triangle AAW X, where WX is the hypotenuse (see figure, left,
below). Construct a square W XY Z using the hypotenuse as one side (see figure, right, below).

z
C
c Y
w W
C
a Cc a Cc
A b X A b X

Extend AW and AX to segments AD and AB respectively so that ZABY and ZADZ are right angles, and
then extend BY and DZ until they meet at C. (See figure, left, below.)

11



a
c c
b
c Y c Y
W W
c ¢ c ¢ b
a a
A b X B A b X a B
By Theorem |6,
MLAW X + mZAXW + msWAX = 180°, (4a)
and /W AX is a right angle, so
mLAW X + mZAXW = 90°. (4b)
On the other hand, by Axiom [§]
mZAXW +msWXY + msZBXY = 180° (4c)
and ZW XY is a right angle, so
mZAXW +ms/BXY = 90°. (4d)

Comparing (4b) and tells us that mZAW X = m/BXY . Repeating these arguments, we find that

LAWX =2 /BXY 2 /CYZ = /DZW and
AXW 2 /BYX 2 /02Y 2 /DWZ.

Also, WX = XY =Y Z = ZW by construction, so by ASA,
AAWX =2 ABXY =2 ACYZ =2 ADZW

and so
AW =BX =CY =DZ = a, AX =BY =CZ =DW =b.

(See figure, right, above.)
Now, we calculate the area of the square W XY Z two ways. On the one hand,

area(WXYZ) = ¢ (5a)
On the other hand,

area(WXY Z) = area(ABCD) — area(AAW X ) — area(ABXY') — area(ACY Z) — area(ADZW)
(a+b)* — 4(ab/2)

= (a®> 4 2ab + b%) — 2ab = a® + V. (5b)
Now, equating and (5b) gives the Pythagorean Theorem. O
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7 Definitions and theorems about quadrilaterals

Definition 11. A quadrilateral Q@ = ABCD consists of four points A, B,C,D and the line segments
AB,BC,CD,DA. The diagonals of @) are the line segments AC and BD. The quadrilateral is called
convex if the diagonals cross each other, but AB does not meet C'D and BC does not meet DA. All

quadrilaterals we’ll consider will be convex.

Theorem 13. [EG 23] The angles of every quadrilateral add up to 360°.

Proof. Draw the quadrilateral ABCD and the diagonal AC. Label the angles as shown.

A

Then,

mZABC +m/BCD +m/ZCDA+m/ZDAB =03+ (y+60)+d+ (¢ + ) (by Axiom
=(a+p+v)+O++¢)
= 180° + 180° = 360° (by Theoreml[6). O

— > <
Definition 12. A quadrilateral Q = ABCD is a parallelogram if AB is parallel to CD and BC'is parallel

to AD. It is a rectangle if ZABC,/BCD,/CDA,/DAB are all right angles. It is a rhombus if AB =
BC =CD = DA. Tt is a square if it is both a rectangle and a rhombus.

The next several theorems are about parallelograms.

Theorem 14. [EG 27] In a parallelogram PQRS, opposite sides and opposite angles are equal. That is, if
<~ <~ > >
PQ is parallel to RS and PS' is parallel to QR, then

PQ=RS and PS=RQ (6a)

and
/PQR= /RSP and ZQRS = /ZSPQ. (6b)

Proof. Draw the diagonal PR. By Axiom (11, ZSRP = /RPQ and Z/SPR = /QRP. Also, PR = RP
(Axiom[2), so by ASA (Theorem[8), we have congruent triangles: APRS = ARPQ. In particular, RS = PQ
and PS = RQ = QR, proving (6a). Also, ZRSP = /PQR, which is one of the assertions of (6b), and we
can obtain the other equality by constructing the diagonal QS and arguing similarly. O
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The next theorem is a well-known fact about parallelograms, but does take a little effort to prove. Once
we know it, it will be very useful in the following two results about special kinds of parallelograms (that is,
rhombi and rectangles).

Theorem 15. The diagonals of every parallelogram bisect each other. That is, if PQRS is any parallelogram,
and X = PRN QS is the point where its diagonals meet, then PX = RX and QX = SX.

Proof. By Axiom[11 and the fact that P, X, R are collinear, we have
£LXRS = /PRS = /RPQ = ZXPQ

and similarly by Axiom [11 and the fact that @, X, S are collinear,
LXSR=/ZQSR=/SQP = LXQP.

Moreover, Theorem 14/ tells us that PQ = SR. Together with the underlined angle equalities and ASA, we
conclude that
AXSR=AXQP (7)

from which it follows that PX = RX and QX = SX. O

Theorem 16 (EG 28). The diagonals of parallelogram PQRS meet at a right angle if and only if the
parallelogram is a rhombus.

Proof. Part I: Suppose that the diagonals PR, QS meet at a right angle. Then
PX=PX, QX=S5X, and /ZPXSX=/PXQ,

the second equality by Theorem [15 and the third by Theorem So APXS =2 APXQ@ by SAS, and in
particular PS = P(@Q. By the same argument, PQ = QR = RS = SP. That is, the parallelogram is a
rhombus.

Part IT: Suppose that the parallelogram is a rhombus. Then the triangles
APXQ@, ARX(Q, ARXS, APXS (8)
are mutually congruent by SSS. In particular,
/PXQ = /RXQ = /RXS =~ /PXS.
But these four angles add up to 360° by Axiom[7} so each of the four must equal 90°. O

Theorem 17 (EG 29). The diagonals of a parallelogram are congruent to each other if and only if the
parallelogram is a rectangle.

14



Proof. Part I: Suppose that PR = QS. Then PX = QX = RX = SX by Theorem [15. So each of the
triangles
APXQ, ARXQ@, ARXS, APXS

is isosceles, so
XPQ=/XQP, /XRQZ=Z/XQR, /4XRSZ/XSR, /XPS=/XSP.

The argument of Theorem [15] says that AXSR =2 AXQP (see (7)) and likewise AXPS =2 AXRQ, so
/XRS = /XPQ and Z/XPS = /XRQ. Combining with the previous equalities, we know that

a=mLXPQ=m/LXQP =m/XRS=m/XSR,
B=m/XRQ=m/XQR=m/XPS=m/XSP.

On the other hand, adding up the eight angles just listed gives 360° by Theorem 13. Therefore o+ 3 = 90°,
and each angle of the quadrilateral is « + § (for example, mZPQR = m/PQX + mZXQR = « + () by
Theorem [8. Therefore, the parallelogram is a rectangle.

Part II: Suppose that PQRS is a rectangle. We could prove that PR = QS by methods similar to the
previous results, but there’s a much easier way: apply the Pythagorean Theorem, which says that

QS = /(PQ)?2+ (PS)? and PR=/(RS)+ (PS)2

On the other hand, PQ = RS by Theorem[15, so QS = PR. O
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