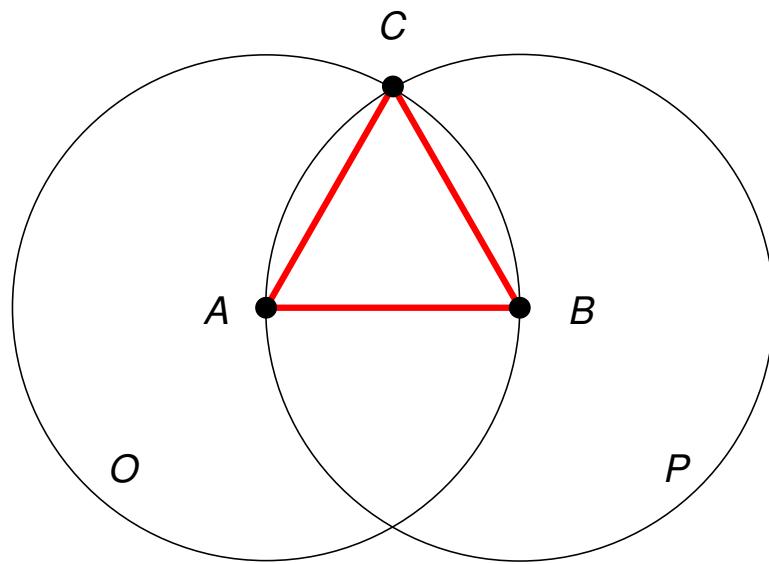


Note: There are correct constructions and explanations other than the ones I give here. The main purpose of this solution set is to give you an idea of how to write comprehensive explanations.

EG3: Construct an equilateral triangle ΔABC .

1. Draw two points A and B .
2. Construct a circle O centered at A and passing through B .
3. Construct a circle P centered at B and passing through A .
4. Let C be one of the points where O and P meet.
5. The triangle ΔABC will then be equilateral.

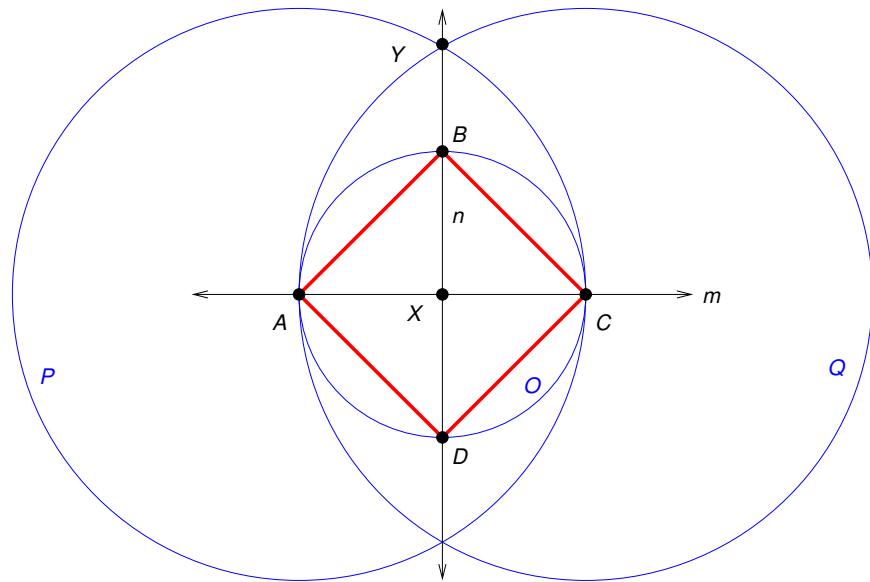


Here's why the construction works.

Since circle O is centered at A and contains both B and C (by steps 2 and 4), it follows (from the definition of a circle) that $AB = AC$. Likewise, since circle P is centered at B and contains both A and C (by steps 3 and 4), it follows (from the definition of a circle) that $AB = BC$. Therefore, $AB = AC = BC$, which means that ΔABC is an equilateral triangle.

EG9: Construct a square with vertices A, B, C, D .

1. Draw a point X , a line m containing X , and a circle O centered at X .
2. Let A and C be the two points where m meets O .
3. Construct a circle P centered at A passing through C .
4. Construct a circle Q centered at C passing through A .
5. Find one of the points where P and Q intersect; call it Y . Draw a line n through Y and X .
6. Let B and D be the two points where line n meets circle O .
7. The quadrilateral $S = ABCD$ will then be a square.



Here's why this works.

We have constructed n to be perpendicular to m at X . That is

$$\angle AXB = \angle BXC = \angle CXD = \angle DXA = 90^\circ.$$

Moreover, the segments XA, XB, XC, XD are all radii of circle O (by steps 2 and 6 of the construction), so they have equal length. Therefore, by the Side-Angle-Side rule, the triangles

$$\Delta XAB, \Delta XBC, \Delta XCD, \Delta XDA$$

are mutually congruent. Therefore,

$$AB = BC = CD = DA.$$

We now know that S is a rhombus. We still need to explain why S is a square.

By the observation made in SA4: \overline{AC} is a diameter of O and B lies on O , so $m\angle ABC = 90^\circ$. The same reasoning applies to each of the other three angles of S .

We now know that S is a quadrilateral with four equal sides and four right angles; that is, it is a square.