CHAPTER 8

Symmetry in Space

The focus now shifts to a discussion of some symmetries in three (and more) dimensions.
Attention is restricted mostly to the symmetries of the five regular solids. The chapter

concludes with a discussion of some recent discoveries in group theory.

1. Regular and Semiregular Polyhedra

Proposition 1 of Book I of The Elements states that it is possible to construct equilateral
triangles. The thirteenth and last of these books is concerned exclusively with the
constructibility of the three dimensional analogs of the regular polygons. Euclid's
decision to both begin and end his text with a discussion of highly symmetrical figures
was in all likelihood conscious and testifies to a concern with esthetic issues that goes
back to the roots of geometry in Pythagorean mysticism.

A polyhedron is a solid body of finite extent whose surface consists of several
polygons, called faces. The sides and vertices of these polygonal faces are respectively
the edges and vertices of the polyhedron. The vertices, edges, and faces of a polyhedron
are collectively referred to as its cells.

A regular polyhedron is a polyhedron whose cells satisfy the following

constraints:
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8.1 REGULAR AND SEMIREGULAR POLYHEDRA

1. All the faces are the same regular polygon;

2. All the vertices are equivalent in the sense that for any two vertices u and v
there is a rotation of the polyhedron that replaces the vertex u with the vertex v
and also replaces all the edges emanating from u with the edges emanating from

V.

As proved by Euclid, there are five regular polyhedra. The easiest regular polyhedron to
visualize is of course the cube (Fig. 8.1) whose faces consist of 6 congruent squares. It
has 12 edges and 8 vertices. Almost as immediate as the cube is the tetrahedron, a
triangle-based pyramid, whose faces consist of 4 equilateral triangles. It has 6 edges
and 4 vertices. The octahedron a double square-based pyramid, has 8 equilateral
triangles as its faces. It has 12 edges and 6 vertices. The dodecahedron has 12
regular pentagons as its faces, 30 edges and 20 vertices. The icosahedron has 20

equilateral triangles as its faces, 30 edges and 12 vertices. These counts are tabulated in

Table 8.1.
v = vertices e = edges | f = faces v-e+f
Cube 8 12 6 8-12+6=2
Tetrahedron 4 6 4 4 -6+4=2
Octahedron 6 12 8 6-12+8=2
Dodecahedron 20 30 12 20 - 30 + 12 =2
Icosahedron 12 30 20 12 - 30 + 12 = 2
Table 8.1

It is commonly accepted that the Pythagorean were aware of all five regular

polyhedra. Theaetetus (415? - 369? BC) is credited with being the first mathematician to
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8.1 REGULAR AND SEMIREGULAR POLYHEDRA

formally prove their existence. While the existence of the cube, tetrahedron, and
octahedron hardly requires justification, the existence of the dodecahedron and
icosahedron is much less obvious. One way of demonstrating the existence of all these
polyhedra is by means of coordinates. Assume that space has been endowed with a

Cartesian coordinate system so that each point is described by a triple in

R3 = {(x,y,z) suchthat x,y, and z are real numbers} .

Then the following coordinates describe vertices of regular polyhedra.

Cube: (1, £1, 1)

Tetrahedron: (1,1,1, (1,-1,-1), (-1,1,-1), (-1,-1,1)
Octahedron: (=1,0,0), (0,%1,0), (0,0,=1)

Dodecahedron: 0, =1, £1/7), (x1/7,0, %7, (27, £1/7,0), (=1, 1, £1)
Icosahedron: (27,0, 1), (0,+1,+7), (=1,=7,0)

where Tt is the golden ratio (\/g - 1)/2 of Proposition 3.4.1.
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Cube Tetrahedron

Octahedron

Dodecahedron Icosahedron

Figure 8.1 The Platonic or regular polyhedra
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8.1 REGULAR AND SEMIREGULAR POLYHEDRA

a) Prisms b) Antiprisms

Figure 8.2 Some prisms and antiprisms

Figure 8.3 See Wikipedia.
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8.1 REGULAR AND SEMIREGULAR POLYHEDRA

A polyhedron is said to be semiregular if

1. All the faces are regular polygons;

2. All the vertices are equivalent in the sense that for any two vertices u and v
there is a rotation of the polyhedron that replaces the vertex u with the vertex v
and also replaces all the edges emanating from u with the edges emanating from

V.

The semiregular polyhedra differ from the regular ones only in that the faces need
not all be the same regular polygon. While one of the semiregular polyhedra was
mentioned by Plato (427-347 BC), their first serious study is commonly attributed to
Archimedes. They consist of the prisms and antiprisms (Fig 8.2) as well as the
Archimedian polyhedra. His work on this topic was lost and it was Johannes Kepler
(1571-1630) who once again constructed all the semiregular polyhedra and discussed
their relation to the regular polyhedra. Some of these semiregular polyhedra can be
derived by truncating the corners of the regular polyhedra. This process is demonstrated
here for the cube. In this description the cells of the original cube are referred to as the

old cells and those of the derived solid as the new ones.

Truncated cube I: All the corners of the cube are cut off in such a manner that the

cutting planes meet at the midpoints of the old edges (see Fig. 8.4). There are 12 new
vertices, one for each of the old edges. Each of the 8 old vertices contributes 3 new
edges, for a total of 24. Each of the 6 old square faces has been trimmed down to a
smaller new square face and each of the 8 truncated corners has left a new triangular
face, for a total of 14 new faces. The new polyhedron will be recognized as the

cuboctahedron of Figure 8.3.
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8.1 REGULAR AND SEMIREGULAR POLYHEDRA

Cutting off corners The truncated cube |

Figure 8.4

Truncated cube II: ~ Again all the corners of the cube are cut off but this time the

cutting planes do not meet at the midpoints of the edges. Instead, a central portion of the
old edge is left whose length equals that of the edge of the new triangular face created by
the truncation process (see Figure 8.5). There are 24 new vertices, two for each of the
old edges. Each of the 8 old vertices contributes 3 new edges, and there are also the
12 remnants of the old edges. These add up to a total of 36 new edges. Each of the 6
old square faces has been trimmed down to an octagon and each of the 8 truncated
corners has left a triangular face. Hence this polyhedron has 14 faces and is the one

titled truncated cube in Figure 8.3.
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8.1 REGULAR AND SEMIREGULAR POLYHEDRA

<N

Cutting off corners The truncated cube II

Figure 8.5

The rightmost column of the tally of the cells of the regular polyhedra (Table 8.1)
indicates that these counts are subject to a very simple and surprising relationship. This
relationship actually holds for all polyhedra provided that their definition excludes the
possibility of such troublesome features as the hole in the torus and the point juncture of
two cubes (Fig. 8.6). For such trouble-free polyhedra, whose precise definition falls

outside the bounds of this text, the following proposition holds.

Figure 8.6 Counterexamples to Euler’s equation.

PROPOSITION 8.1.1 (Euler's equation, 1758). For any polyhedron, v - e + f
= 2.
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8.1 REGULAR AND SEMIREGULAR POLYHEDRA

[l

This equation is named after its discoverer, Euler, who has already been mentioned
several times in this text. The discovery of this equation initiated a flourishing branch of
mathematics now known as topology. Note that the cells of the above truncated cubes
also satisfy Euler's equation. The pyramid and the prism that are based on n-sided
polygons are offered as further examples of non-regular polyhedra for which Euler's

equation holds . The pyramid has n+ 1 vertices, 2n edges, and n+ 1 faces so that

n+1) -2n+ (n+1) = 2

and the prism has 2n vertices, 3n edges, and n+ 2 faces so that again

2n - 3n + (n+2) = 2.

EXERCISES 8.1

1. Answer the following questions for each of the two polyhedra obtained from the octahedron by the
two truncation methods described in Figures 8.4-5 (parts a, b, ¢ are to be answered without

reference to Euler's equation),

a) How many vertices does it have?

b) How many edges does it have?

c) What regular polygons appear as its faces and how many times?
d) Identify the truncated polyhedron in Figure 8.1 or in Figure 8.3.
e) Verify that the cells of this polyhedron satisfy Euler's equation.

Repeat Exercise 1 for the tetrahedron.
Repeat Exercise 1 for the dodecahedron.

Repeat Exercise 1 for the icosahedron.

W A W N

The truncation procedure that produced the truncated cube I can be applied to arbitrary polyhedra

so as to obtain new polyhedra. Without using Euler's equation find the number of vertices, edges,
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8.1 REGULAR AND SEMIREGULAR POLYHEDRA

and faces of the polyhedra obtained by applying this procedure to each of the polyhedra below.

Also verify Euler's equation for each derived polyhedron.

a) the two truncated cubes;

b) the two truncated tetrahedra;

c) the two truncated octahedra;

d) the two truncated dodecahedra;

e) the two truncated icosahedra;

f) a polyhedron with v vertices, e edges, and f faces, in which each vertex is incident to
3 edges.

6. The truncation procedure that produced the truncated cube II can be applied to arbitrary polyhedra
so as to obtain new polyhedra. Without using Euler's equation find the number of vertices, edges,
and faces of the polyhedra obtained by applying this procedure to each of the polyhedra below.
Also verify Euler's equation for each derived polyhedron.

a) the two truncated cubes;

b) the two truncated tetrahedra;

c) the two truncated octahedra;

d) the two truncated dodecahedra;

e) the two truncated icosahedra;

f) a polyhedron with v vertices, e edges, and f faces, in which each vertex is incident to
d edges.

7. Use your favorite mathematical computer application to draw the following regular polyhedron
from the coordinates given in this section:

a) tetrahedron b) octahedron c) cube
d) dodecahedron e) icosahedron.

8. Show that there are infinitely many polyhedra all of whose faces are congruent squares.

9. Show that the cell counts of the polyhedron in Figure 8.7 do not satisfy Euler's equation. Explain
why this is not a counterexample to this equation.

Figure 8.7
10. Show that the cell counts of the polyhedron in Figure 8.8 do not satisfy Euler's equation. Explain

why this is not a counterexample to this equation.
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11. Show that the cell counts of the polyhedron in Figure 8.9 do satisfy Euler's equation.
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Figure 8.9

12. Show that the cell counts of the polyhedron in Figure 8.10 do not satisfy Euler's equation.

Explain why this is not a counterexample to this equation.
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8.1 REGULAR AND SEMIREGULAR POLYHEDRA

Each of the corners of the pyramid based on an n-sided polygon is truncated (in the usual two
ways). Derive the number of vertices, edges, and faces of the resultant polyhedra without using
Euler's equation and verify that this equation does indeed hold.

Each of the corners of the prism based on an n-sided polygon is truncated (in the usual two ways).
Derive the number of vertices, edges, and faces of the resultant polyhedra without using Euler's
equation and verify that this equation does indeed hold.

A diagonal of a polyhedron is a line segment joining two of its vertices. A polyhedron is said to
be convex if it contains all of its diagonals either in its interior or on its faces. Show that there is
only one convex polyhedron all of whose faces are congruent squares.

Construct a cube using the medium of your choice.

Construct a tetrahedron using the medium of your choice.

Construct an octahedron using the medium of your choice.

Construct a dodecahedron using the medium of your choice.

Construct an icosahedron using the medium of your choice.

A paper model of the dodecahedron can be constructed from thirty square sheets of paper (8.5" 3
8.5" is easy to work with). Each piece should be folded in half and then each half is to be folded
in half again, accordion fashion. Next, fold each piece along the dashed lines indicated in Figure
8.11, where the two corners are isosceles right triangles. These last three folds should all bend

towards you. The pieces are to be tucked into each other as indicated in Figure 8.11.

Figure 8.11

Construct all thirteen semiregular polyhedra using the medium of your choice.
Note that the torus of Figure 8.6 has 19 “meridians”. Assuming that it has n “equators”, derive
the number of vertices, edges, and faces (in terms of n) and show that Euler’s equation is not

satisfied.
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8.2 ROTATIONAL SYMMETRIES OF REGULAR POLYHEDRA

2. Rotational Symmetries of Regular Polyhedra

A symmetry of a polyhedron is a rigid transformation of its ambient space that leaves the
polyhedron in its original position. If the transformation is a rotation then the symmetry
is said to be a rotational symmetry. During the rotation the polyhedron may very well
pass through nearby parts of space that it did not occupy initially, but when the rotation is
accomplished the solid's position must coincide exactly with its initial position. Spatial
rotations are denoted by the symbol R,  where A indicates the axis and « the
magnitude and sense of the rotation.

The set of symmetries of a polyhedron is its symmetry group and the set of
rotational symmetries is its rotation group. The following theorem of Euler’s implies

that the rotation group of every polyhedron is closed under composition.

THEOREM 8.2.1. If the axes of two rotations of R’ intersect, then their

composition is a rotation whose axis passes through the intersection point.

The axes of those rotations that constitute symmetries of a polyhedron are
constrained by the fact that they must pass through a vertex, the midpoint of an edge, or

else the center of some face. This observation can be used to devise a notation for the

rotational symmetries. Accordingly, R,  denotes a rotation of the cube whose axis
passes through the vertex at 3 (Fig. 8.12), R,.. denotes a rotation of the cube whose

axis passes through the midpoint of the edge 26 (Fig. 8.13), and Ry,s. denotes a

rotation of the cube whose axis passes through the center of the square 1265 (Figs. 8.14-

15). This notation is subject to some redundancy. Thus, for the cube of Figures 8.12-15,
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8.2 ROTATIONAL SYMMETRIES OF REGULAR POLYHEDRA

the rotation R, . can also be written as R, , the rotation R,.  can also be written as

R

and the rotation R 1265 can also be written as R, 487 -

48,

Figure 8.14 R1265,900 = R3 487.-90° Figure 8.15 R126572700 = R3487,-270°

The symbol R, , denotes a rotation by the oriented angle «a where the

orientation is understood to be determined by an observer positioned outside the

polyhedron near A. Thus, R, ,csq00 (Fig. 8.14) denotes the 90° rotation of the cube

about the axis that passes through the centers of the faces 1265 and 3487,

counterclockwise from the point of view of an observer situated outside the cube near the

face 1265. Note that since -90° denotes a clockwise rotation it follows that R 0o =
1265.90

R34g7 gp0- The circles in the illustrations are meant to help visualize the rotation; they are

the "tracks" in which the vertices move to their new positions.
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8.2 ROTATIONAL SYMMETRIES OF REGULAR POLYHEDRA

Just like their two dimensional counterparts, spatial symmetries also have

permutation representations. Thus, since the rotation R 5400 cycles the vertices in

positions 1,2, 6,5 and also the vertices in positions 3,7, 8, 4, it has the permutation

representation (1 2 6 5)(3 7 8 4) . Similarly, the 180° rotation R1265,1800 has the

permutation representations (1 6)(2 5)(7 4)(8 3).
A qualitatively different symmetry of the cube is obtained by a 180° rotation

about an axis that passes through the midpoints of two diametrically opposite edges of the

cube. Such, for example, is the rotation Rye 1500 = Ryg 1500 (Fig. 8.13) It has the

permutation representation (1 7)(2 6)(3 5)(4 8). While this permutation looks very much

like that of R,¢s 400 above, there is a significant geometrical difference between them.

The permutation representation (1 7)(2 6)(3 5)(4 8) of R26’1800 has cycles that are in

fact cells of the cube, namely (2 6) and (4 8). On the other hand, none of the cycles of

the permutation representation (1 6)(2 5)(3 8)(4 7) of R1265’1800 are cells of the cube.

The permutation representation of the rotation R, ,p0 18 (1)(2 4 5)(3 8 6)(7).

The compositions of rotational symmetries are easily computed by means of their

permutation representations. Accordingly, since R ye5900 = (1265)(3784) and

Ry 1500 = (1)(245)(3 8 6)(7) it follows that
(R|265.000)o(R7 1590) = (1265)(37 8 4)o(1)(245)386)(7)
= (12345678 = Rjpy_gp0-
On the other hand,
(R; 1200)o(R 65 990) = (1)(245)(38 6)(7)o(1265)(3784)
= (14852376) = Rjg5.90-

8.15



8.2 ROTATIONAL SYMMETRIES OF REGULAR POLYHEDRA

Similarly, since Ry g0 = (1 7)26)(35)(48) and Ry, g0 = (1 72 8)(3 4)(56) it

follows that

(Ry6.1800)o(R34 1800) = (1 7)(2 6)(3 5)(4 8)o(1 7)(2 8)(3 4)(5 6)

= (DE245B86)(7) = R;jy0-

The number of symmetries in a group is that group’s order.

PROPOSITION 8.2.2. The rotation group of the cube has order 24 and its

rotations are classified as:

Id

8 rotations of the type R ... 1500
6 rotations of the type Redge, 180°
6 rotations of the type Rpce00°

3 rotations of the type R face, 1807 -

SKETCH OF PROOQOF: This follows from the fact that the cube has 4 axes that join
opposite vertices, 6 axes that join opposite edges, and 3 axes that join opposite faces.

Q.ED.

Whereas the axis of any rotational symmetry of the cube joins the midpoints of

cells of the same dimension, the tetrahedron presents us with a new alternative. The axis

of the symmetry R ; ,,j0 joins the vertex 3 to the center of the triangular face with

vertices 1, 2, and 4. This rotation has the permutation representation (1 4 2)(3). The
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8.2 ROTATIONAL SYMMETRIES OF REGULAR POLYHEDRA

only qualitatively different rotational symmetry of the tetrahedron is the 180° rotation

about the line joining the midpoints of two opposite edges. Such, for example, is

R24’1800 = (13)(24) . Note that

(R3_1500)0o(Ryy 15000 = (142)B)(13)24) = (134)(Q2)

2.-120°

The rotational symmetries of the tetrahedron are illustrated in Figures 8.16-17 and

summarized in a proposition.

Figure 8.16 R; ,,q0 Figure 8.17 R ; |gq0

PROPOSITION 8.2.3. The rotation group of the tetrahedron has order 12 and its

rotations are classified as:

Id

4 rotations of each of the types R, riex.120° and R, .. 2400

3 rotations of the type R, dge,180°"

[l
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The verification of the analogous proposition regarding the octahedron, is

relegated to Exercise 1.

PROPOSITION 8.2.4. The rotation group of the octahedron has order 24 and its

rotations are classified as:

Id
6 rotations of the type R

vertex,90°

3 rotations of the type R

vertex,180°

6 rotations of the type Redge, 180°

8 rotations of each of the types Rface, 1200 -
[l
EXERCISES 8.2
1. Classify the rotational symmetries of the octahedron.
2. Classify the rotational symmetries of the dodecahedron.
3. Classify the rotational symmetries of the icosahedron.
4. Suppose A = R 1500, B = Ryg 1200, C = Ry376 990, D = Ryy3, (g0 are symmetries of the

cube of Figures 8.12-15.

a) Find the permutation representations of A, B, C, D
b) Identify the following symmetries:
i) AoA ii) AoB iii) AoC iv) AoD
V) BoA vi) BoB vii) BoC viii) BoD
ix) CoA X) CoB xi) CoC Xii) CoD
xiii) DoA Xiv) DoB XV) DoC XVvi) DoD
5. Repeat Exercise 4 with A = R27_1200, B = R15,180°’ C= R3487,270°’ D= R5678,1800'
6. Suppose A = R1,120°’ B = R24,180°’ C = R2’2400, D = R14,180° are symmetries of the

tetrahedron of Figures 8.16-17.
a) Find the permutation representations of A, B, C, D

b) Identify the following symmetries:
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AoA
BoA
CoA
DoA

ii)
Vi)

X)

Xiv)

AoB iii)
BoB vii)
CoB X1)
DoB XV)

AoC
BoC
CoC
DoC

iv)
viii)
Xii)

Xvi)

Repeat Exercise 6 with A = R371200, B = R23,1800’ C= R3’2400, D= R12,180°‘

Suppose A = R1,900, B = R25,1800’ C = R235,2400, D = R4,180° are symmetries of the

octahedron of Figure 8.18.

a)
b)

Find the permutation representations of A, B, C, D

Identify the following symmetries:

AoA
BoA
CoA
DoA

ii)

Vi)

AoB iii)
BoB vii)
CoB X1)
DoB XV)

Figure 8.18 Octahedron

AoC
BoC
CoC
DoC

viii)
Xii)

Xvi)

Repeat Exercise 8 with A = Rl,lSOO’ B = R46,1800’ C= R345,1200, D= R6,900'

Suppose A = R5,120°’ B = R57,180°’ C = R57jbf,720’ D = Rlde2,144° are symmetries of the

dodecahedron of Figure 8.19.

a)
b)
i)
v)
ix)

xiii)

Find the permutation representations of A, B, C, D

Identify the following symmetries:

AoA
BoA
CoA
DoA

ii)
Vi)
X)

Xiv)

AoB iii)
BoB vii)
CoB X1)
DoB XV)

8.19

AoC
BoC
CoC
DoC

iv)
viii)
Xii)

Xvi)

AoD
BoD
CoD
DoD

AoD
BoD
CoD
DoD

AoD
BoD
CoD
DoD
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Figure 8.19 Dodecahedron

Repeat Exercise 10 with A = R3’2400, B = Rbf,lSOO’ C= R68iae,1440’ D= R2fbch,72°‘
Suppose A = R1,720, B = R4a,1800’ C = R349,2400, D = R4’144o are symmetries of the

icosahedron of Figure 8.20.

a) Find the permutation representations of A, B, C, D

b) Identify the following symmetries:

i) AoA ii) AoB iii) AoC iv) AoD
V) BoA vi) BoB vii) BoC viii) BoD
ix) CoA X) CoB xi) CoC Xii) CoD
Xxiii) DoA Xiv) DoB XV) DoC XVvi) DoD

Figure 8.20 Icosahedron

Repeat Exercise 12 with A = R6,1440’ B = R89,1800’ C= R126,1200’ D= RC’1440.

How many rotational symmetries does a rectangular box have if all of its dimensions are different?
How many rotational symmetries does a rectangular box have if exactly two of its dimensions are
the same?

A triangular prism has an equilateral base. How many rotational symmetries does it have?

A triangular prism has a base with sides 6, 6,4. How many rotational symmetries does it have?
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18. A prism has a base that is a regular n-gon. How many rotational symmetries does it have?

3. Monstrous Moonshine

The previous section described the rotational symmetries of the cube and the octahedron
separately. Since the cube’s symmetries are permutations of 8 vertices whereas those of
the octahedron are permutations of 6 vertices, these polyhedra’s rotation groups look
quite different. Nevertheless, there is a natural sense in which these two groups are
identical. Observe that in Figures 8.21-23 a cube has been placed inside an octahedron so

that each of the vertices of the first is the center of a triangular face of the latter. The

Figure 8.21 Figure 8.22 Figure 8.23

feasibility of this placement implies that every R, -symmetry of the cube is also an

face

R -symmetry of the octahedron (Fig. 8.21). Similarly, every R edge™Symmetry of the

vertex

cube is also an R_, -symmetry of the octahedron (Fig. 8.22) and every R -symmetry

edge vertex

of the cube is an R -symmetry of the octahedron (Fig. 8.23). Thus, the rotation groups

of the cube and the octahedron are now revealed as being identical. Technically, they are
said to be isomorphic. 1t is clear that isomorphic groups must have the same order and

so the rotation groups of the cube and the tetrahedron are not isomorphic. Groups of the
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8.3 MONSTROUS MOONSHINE

same order need not be isomorphic either. This is demonstrated by the symmetry group
of the regular 12-gon. This polygon has 24 symmetries and the cube has 24 rotational
symmetries. However, the 30° rotation of this polygon has order 12 and no rotational
symmetry of the cube has such an order. Hence the symmetry group of the regular 12-
gon and the rotation group of the cube are not isomorphic, even though they have the
same orders (see Exercise 6).

Group theory, the mathematical theory of symmetry, has its origins in the work of
Joseph Louis Lagrange (1736 - 1813) on the theory of equations. It was later used by
Niels Henrik Abel (1802 - 1829) and E variste Galois (1811 - 1832) to settle the question
of which equations could be solved by explicit algebraic formulas and which could only
be solved by means of successive approximations. The subsequent investigations of
Felix Klein (1849 - 1925) and Henri Poincaré (1854 - 1912) pointed out the central role
that symmetry also plays in geometry.

One of the main goals of group theory is the classification of all groups up to
isomorphism. While there is no expectation that this goal will be achieved in the
foreseeable future, a significant milestone was passed less than twenty years ago when
the finite simple groups were completely classified. There is nothing simple about the
simple groups, nor is it possible to characterize them in this text. The symmetries of the
icosahedron (and the dodecahedron) constitute a simple group whereas those of the cube
and tetrahedron are not simple, but this difference does not have a geometrical
interpretation.  Algebraically, though, the difference is extremely important. The
simplicity of the dodecahedral group turns out to be responsible for the non-existence of a

formulaic solution for the general fifth degree equation

5 4 3 2
ax + bx + cx +dv +ex+f = 0.
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Conversely, the non-simplicity of the symmetry group of the tetrahedron is ultimately

tantamount to the existence of such a formula for the fourth degree equation

4 3 2
ax + bx + cx +de +e = 0.

The classification of the finite simple groups constitutes the most monumental task ever
accomplished by mathematicians. Its proof is spread over 500 articles comprising more
than 14,000 journal pages written by hundreds of researchers. This classification asserts
that the finite simple groups fall into two categories: several infinite families of graphs
that possess clear patterns and 26 exceptional groups, known as the sporadic groups,
for which no general pattern has been found.

The first of the sporadic groups was discovered in 1861 and the last two almost
simultaneously in 1980. The largest of these was nicknamed MONSTER because of its

order which is

808,017,424,794,512,875,886,459,904,961,710,757 005,754,368 000,000,000

MONSTER, discovered by Bernd Fischer and Robert L. Griess, is the group of
symmetries of a (non-regular) polyhedron in 196,883 dimensions. When word of this
discovery reached John McKay he pointed out the remarkable coincidence that 196,884

is one of the coefficients in the series
o= g+ 744 + 196,884g + 2149377604° + 864.2999704°

+ 20245856256 + 333.202.640,6004 + 4.252,023,300,096¢°
+ 44,656,994071,935¢" + 401.490,886,656.0004° + ...
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which arises in the seemingly unrelated context of doubly periodic functions on the
hyperbolic plane. For the purposes of this exposition, these functions can be thought of
as patterns that underlie non-Euclidean wallpaper designs. As mathematicians were at a

loss to explain this conjunction they dubbed the following equation as McKay's formula:

196,884 = 1 + 196,883.

Shortly thereafter John Thompson noted that actually much more was true. The number
196,883 is the second one of an important sequence of 194 integers, the degrees of the

characters of MONSTER, of which the first twelve are

1
196,883
21,296,876
842,609,326
18.,538,750,076
19,360,062,527
293,553,734,298
3,879,214,937,598
36,173,193,327,999
125,510,727,015,275
190,292,345,709,543
222.,879,856,734,249

and the last one is

258,823,477,531,055,064,045,234,375

The significance of these integers is that, except for 1, each denotes the number of

dimensions required by a new polyhedron whose symmetry group is isomorphic to
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MONSTER. What Thompson discovered was that, with the exception of 744, all the
other early coefficients in the j-series also have simple expressions in terms of

MONSTER'S degrees. For example,

21493760 = 1 + 196,883 + 21,296,876
864299970 = 21 + 2:196,883 + 21,296,876 + 842,609,326

John H. Conway assigned the name Moonshine to these and other related unexplained
phenomena in 1979 "... intending the word to convey our feelings that they are seen in a
dim light, and that the whole subject is rather vaguely illicit." It should be remembered
that at that time the existence of MONSTER had only been conjectured so that even the
aforementioned list of degrees was questionable, not to mention their purported relation
with the coefficients of the j-series.

As was noted above, the existence of MONSTER was conclusively demonstrated
in 1980 by R. Griess who tried, unsuccessfully, to have its named changed to The
Friendly Giant. Monstrous Moonshine mathematics was finally explained by Richard E.
Borcherds who found the connection in the theory of Vertex Algebras, a discipline
developed recently for the purpose of providing a mathematical foundation to the new
Superstring Theory of physics. For this work Borcherds received the 1998 Fields Medal,

the most prestigious award bestowed by the mathematical community.

EXERCISES 8.3

In the exercises below =1,f, = 196,883, f, = 21,296,876, ... denote the degrees of the characters o
1 2 3 8

k
MONSTER and a denotes the coefficient of q in the j-series, so that a;= 1, a,= 744, a,= 196,884,
a, = 21,493,760, ... .
1. Find integers Xy Xy oo Xg such that a = x]f] + x2f2 + ...+ x6f6.

2. Find integers Xps Xgs e Xz such that ag = x]f] + x2f2 + ...+ x7f7.
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3. Find integers Xy, Xp, X3, . such that ag = x]f] + x2f2 + x3f3 + ...
4. Find integers Xy Xp X3, . such that a; = x]f] + x2f2 + x3f3 + ...
5. Find integers Xy, Xp, X3, . such that ag = x]f] + x2f2 + x3f3 + ...
6. Show that the rotation groups of the cube and the prism whose base is a regular 12-gon are not

isomorphic even though they have the same orders.

CHAPTER REVIEW EXERCISES

In the exercises below, for each integer n =3, P, denotes the pyramid obtained by joining the vertices of

a regular n-gon to a point outside the plane of the n-gon and lying directly above its center. The
polyhedron PP, is the double pyramid obtained by fitting together two copies of the pyramid P, at their

base.

1. Verify that for each n = 3, Euler's equation holds for the pyramid P, and for both of the
polyhedra obtained from it by truncation.

2. Verify that for each n = 3, Euler's equation holds for the double pyramid PP, and for both of
the polyhedra obtained from it by a type II truncation.

3. Describe the rotational symmetries of the pyramid P;. Note that there are two cases to be
considered.

4. Describe the rotational symmetries of the pyramid P,, n=4.

5. Describe the rotational symmetries of the double pyramid PP,. Note that there are two cases to
be considered.

6. Describe the rotational symmetries of the double pyramid PP, ,n# 4.

7. Explain why the regular n-gon and the double pyramid PP, have isomorphic rotation groups
for n =5 (when considered in 3-space).

8. Prove that the icosahedron and dodecahedron have isomorphic rotation groups.

9. Are the following statements true or false? Justify your answers.
a) Every polyhedron has at least one symmetry.
b) Every regular polyhedron has at least two symmetries.
c) Every regular polyhedron has at least as many symmetries as vertices.
d) Every regular polyhedron has at least as many symmetries as edges.
e) The composition of every two rotations of R3 is also a rotation.
f) If two rotations of R3 have intersecting axes, then their composition is also a rotation.
2) All the semiregular polyhedra can be obtained from the regular polyhedra by truncation.
h) Euler discovered the regular polyhedra.
i) 196,883 is an interesting integer.
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MONSTER is a symmetry group.

MONSTER was discovered by John H. Conway.

Every two symmetry groups are isomorphic.

The rotation groups of the cube and the octahedron are isomorphic.
The rotation groups of the cube and the tetrahedron are isomorphic.

There are at least 193 distinct polyhedra whose symmetry groups are isomorphic to

MONSTER.
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