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CHAPTER 8 
 

Symmetry in Space 
 
 

The focus now shifts to a discussion of some symmetries in three (and more) dimensions.  

Attention is restricted mostly to the symmetries of the five regular solids.  The chapter 

concludes with a discussion of some recent discoveries in group theory. 
 
 

1.  Regular and Semiregular Polyhedra 
 
 

Proposition 1 of Book I of The Elements states that it is possible to construct equilateral 

triangles.  The thirteenth and last of these books is concerned exclusively with the 

constructibility of the three dimensional analogs of the regular polygons.   Euclid's 

decision to both begin and end his text with a discussion of highly symmetrical figures 

was in all likelihood conscious and testifies to a concern with esthetic issues that goes 

back to the roots of geometry in Pythagorean mysticism. 

 A polyhedron is a solid body of finite extent whose surface consists of several 

polygons, called faces.   The sides and vertices of these polygonal faces are respectively 

the edges and vertices  of the polyhedron.  The vertices, edges, and faces of a polyhedron 

are collectively referred to as its cells. 

 A regular polyhedron is a polyhedron whose cells satisfy the following 

constraints: 
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1. All the faces are the same regular polygon; 

2. All the vertices are equivalent in the sense that for any two vertices  u  and  v  

there is a rotation of the polyhedron that replaces the vertex  u  with the vertex  v  

and also replaces all the edges emanating from  u  with the edges emanating from  

v. 

 

As proved by Euclid, there are five regular polyhedra.  The easiest regular polyhedron to 

visualize is of course the cube (Fig. 8.1) whose faces consist of  6  congruent squares.  It 

has  12  edges and  8  vertices.  Almost as immediate as the cube is the tetrahedron, a 

triangle-based pyramid, whose faces consist of  4  equilateral triangles.  It has  6  edges 

and  4  vertices.  The octahedron a double square-based pyramid, has  8  equilateral 

triangles as its faces.  It has  12  edges and  6  vertices.  The dodecahedron  has  12  

regular pentagons as its faces, 30  edges  and  20  vertices.  The icosahedron  has  20  

equilateral triangles as its faces, 30  edges and  12  vertices.  These counts are tabulated in 

Table 8.1. 

 

   

Cube

Tetrahedron

Octahedron

Dodecahedron

Icosahedron

v  =  vertices

8

4

6

20

12

12

6

12

30

30

6

4

8

12

20

e  =  edges f  =  faces v  -  e  +  f

8  -  12  +  6  =  2

4  -  6  +  4  =  2

6  -  12  +  8  =  2

20  -  30  +  12  =  2

12  -  30  +  12  =  2
 

Table 8.1 

 

 It is commonly accepted that the Pythagorean were aware of all five regular 

polyhedra.  Theaetetus (415? - 369? BC) is credited with being the first mathematician to 
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formally prove their existence.  While the existence of the cube, tetrahedron, and 

octahedron hardly requires justification, the existence of the dodecahedron and 

icosahedron is much less obvious.  One way of demonstrating the existence of all these 

polyhedra is by means of coordinates.  Assume that space has been endowed with a 

Cartesian coordinate system so that each point is described by a triple in 

 

R3  =  {(x, y, z)  such that   x, y,  and  z  are real numbers} . 

 

Then the following coordinates describe vertices of regular polyhedra. 

 

 Cube:   (±1, ±1, ±1) 

 Tetrahedron:  (1, 1, 1),  (1, -1, -1),  (-1, 1, -1),  (-1, -1, 1) 

 Octahedron:  (±1, 0, 0),  (0, ±1, 0),  (0, 0, ±1) 

 Dodecahedron: (0, ±τ, ±1/τ),  (±1/τ, 0, ±τ),  (±τ, ±1/τ, 0), (±1, ±1, ±1) 

 Icosahedron:  (±τ, 0, ±1),  (0, ±1, ±τ),  (±1, ±τ, 0) 

 

where  τ  is the golden ratio  ( 5  - 1)/2  of Proposition 3.4.1. 
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Figure 8.1 The Platonic or regular polyhedra 
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Figure 8.2  Some prisms and antiprisms 

 

 

Figure 8.3  See Wikipedia. 
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A polyhedron is said to be semiregular if 

 

1. All the faces are regular polygons; 

2. All the vertices are equivalent in the sense that for any two vertices u  and  v  

there is a rotation of the polyhedron that replaces the vertex  u  with the vertex  v  

and also replaces all the edges emanating from  u  with the edges emanating from  

v. 

 

 The semiregular polyhedra differ from the regular ones only in that the faces need 

not all be the same regular polygon.  While one of the semiregular polyhedra was 

mentioned by Plato (427-347 BC), their first serious study is commonly attributed to 

Archimedes. They consist of the prisms and  antiprisms (Fig 8.2) as well as the 

Archimedian polyhedra.  His work on this topic was lost and it was Johannes Kepler 

(1571-1630) who once again constructed all the semiregular polyhedra and discussed 

their relation to the regular polyhedra.  Some of these semiregular polyhedra can be 

derived by truncating the corners of the regular polyhedra.  This process is demonstrated 

here for the cube.  In this description the cells of the original cube are referred to as the 

old cells and those of the derived solid as the new ones. 

 

Truncated cube I: All the corners of the cube are cut off in such a manner that the 

cutting planes meet at the midpoints of the old edges  (see Fig. 8.4).  There are  12  new 

vertices,  one for each of the old edges. Each of the  8  old vertices contributes  3  new 

edges, for a total of  24.  Each of the  6  old  square faces has been trimmed down to a 

smaller new square face and each of the  8  truncated corners has left a new triangular 

face, for a total of  14  new faces.  The new polyhedron will be recognized as the 

cuboctahedron of Figure 8.3. 
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Cutting off corners The truncated cube I  

Figure 8.4 

 

Truncated cube II: Again all the corners of the cube are cut off but this time the 

cutting planes do not meet at the midpoints of the edges.  Instead, a central portion of the 

old edge is left whose length equals that of the edge of the new triangular face created by 

the truncation process (see Figure 8.5).  There are  24  new vertices,  two for each of the 

old edges.  Each of the  8  old vertices contributes  3  new edges,  and there are also the  

12  remnants of the old edges.  These add up to a total of  36  new edges.  Each of the  6  

old square faces has been trimmed down to an octagon and each of the 8  truncated 

corners has left a triangular face.  Hence this polyhedron has  14  faces and is the one 

titled truncated cube in Figure 8.3.   
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Cutting off corners The truncated cube II   

Figure 8.5 

 

 The rightmost column of the tally of the cells of the regular polyhedra (Table 8.1) 

indicates that these counts are subject to a very simple and surprising relationship.  This 

relationship actually holds for all polyhedra provided that their definition excludes the 

possibility of such troublesome features as the hole in the torus and the point juncture of 

two cubes (Fig. 8.6).  For such trouble-free polyhedra, whose precise definition falls 

outside the bounds of this text, the following proposition holds.  

 

 

Figure 8.6   Counterexamples to Euler’s equation. 

 

PROPOSITION 8.1.1 (Euler's equation, 1758).  For any polyhedron,   v  -  e  +  f     

=     2. 



 8.1 REGULAR AND SEMIREGULAR POLYHEDRA 

 8.9 

           [] 

 

This equation is named after its discoverer, Euler, who has already been mentioned 

several times in this text.  The discovery of this equation initiated a flourishing branch of 

mathematics now known as topology.  Note that the cells of the above truncated cubes 

also satisfy Euler's equation.  The pyramid and the prism that are based on n-sided 

polygons are offered as further examples of non-regular polyhedra for which Euler's 

equation holds .  The pyramid has  n + 1  vertices,  2n  edges,  and  n + 1  faces so that 

 

(n + 1)  -  2n  +  (n + 1)     =   2 

 

and the prism has  2n  vertices,   3n  edges,  and  n + 2  faces  so that again 

 

2n  -  3n  +  (n + 2)     =     2. 

 

EXERCISES 8.1 

 
1. Answer the following questions for each of the two polyhedra obtained from the octahedron by the 

 two truncation methods described in Figures 8.4-5 (parts a, b, c are to be answered without 

 reference to Euler's equation), 

 a) How many vertices does it have? 

 b) How many edges does it have? 

 c) What regular polygons appear as its faces and how many times? 

 d) Identify the truncated polyhedron in Figure 8.1 or in Figure 8.3. 

 e) Verify that the cells of this polyhedron satisfy Euler's equation. 

2. Repeat Exercise 1  for the tetrahedron. 

3. Repeat Exercise 1  for the dodecahedron. 

4. Repeat Exercise 1  for the icosahedron. 

5. The truncation procedure that produced the truncated cube I can be applied to arbitrary polyhedra 

so as to obtain new polyhedra.  Without using Euler's equation find the number of vertices, edges, 
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and faces of the polyhedra obtained by applying this procedure to each of  the polyhedra below.  

Also verify Euler's equation for each derived polyhedron. 

 a) the two truncated cubes; 

 b) the two truncated tetrahedra; 

 c) the two truncated octahedra; 

 d) the two truncated dodecahedra; 

 e) the two truncated icosahedra; 

f) a polyhedron with  v  vertices,  e  edges,  and  f  faces,  in which each vertex is incident to  

3  edges.  

6. The truncation procedure that produced the truncated cube II can be applied to arbitrary polyhedra 

so as to obtain new polyhedra.  Without using Euler's equation find the number of vertices, edges, 

and faces of the polyhedra obtained by applying this procedure to each of  the polyhedra below.  

Also verify Euler's equation for each derived polyhedron. 

 a) the two truncated cubes; 

 b) the two truncated tetrahedra; 

 c) the two truncated octahedra; 

 d) the two truncated dodecahedra; 

 e) the two truncated icosahedra; 

f) a polyhedron with  v  vertices,  e  edges,  and  f  faces,  in which each vertex is incident to  

d  edges. 
7. Use your favorite mathematical computer application to draw the following regular polyhedron 

from the coordinates given in this section: 

 a)   tetrahedron  b)   octahedron  c)   cube 

 d)   dodecahedron  e)   icosahedron. 

8. Show that there are infinitely many polyhedra all of whose faces are congruent squares. 

9. Show that the cell counts of the polyhedron in Figure 8.7 do not satisfy Euler's equation.  Explain 

why this is not a counterexample to this equation. 

 

 
Figure 8.7 

 

10. Show that the cell counts of the polyhedron in Figure 8.8 do not satisfy Euler's equation.  Explain 

why this is not a counterexample to this equation. 
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Figure 8.8 

 

11. Show that the cell counts of the polyhedron in Figure 8.9 do satisfy Euler's equation.  

  

 
Figure 8.9 

 
12. Show that the cell counts of the polyhedron in Figure 8.10 do not satisfy Euler's equation.  

Explain why this is not a counterexample to this equation. 
 

 
Figure 8.10 
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13. Each of the corners of the pyramid based on an n-sided polygon is truncated (in the usual two 

ways).  Derive the number of vertices, edges, and faces of the resultant polyhedra without using 

Euler's equation and verify that this equation does indeed hold. 

14. Each of the corners of the prism based on an n-sided polygon is truncated (in the usual two ways).  

Derive the number of vertices, edges, and faces of the resultant polyhedra without using Euler's 

equation and verify that this equation does indeed hold. 

15. A diagonal of a polyhedron is a line segment joining two of its vertices.  A polyhedron is said to 

be convex if it contains all of its diagonals either in its interior or on its faces.  Show that there is 

only one convex polyhedron all of whose faces are congruent squares. 

16. Construct a cube using the medium of your choice. 

17. Construct a tetrahedron using the medium of your choice. 

18. Construct an octahedron using the medium of your choice. 

19. Construct a dodecahedron using the medium of your choice. 

20. Construct an icosahedron using the medium of your choice. 

21. A paper model of the dodecahedron can be constructed from thirty square sheets of paper (8.5" 3 

8.5"  is easy to work with).  Each piece should be folded in half and then each half is to be folded 

in half again, accordion fashion.  Next, fold each piece along the dashed lines indicated in Figure 

8.11, where the two corners are isosceles right triangles.  These last three folds should all bend 

towards you.  The pieces are to be tucked into each other as indicated in Figure 8.11. 

 

 
Figure 8.11 

 

22. Construct all thirteen semiregular polyhedra using the medium of your choice. 
23. Note that the torus of Figure 8.6 has  19  “meridians”.  Assuming that it has  n  “equators”, derive 

the number of vertices, edges, and faces (in terms of  n)  and show that Euler’s equation is not 

satisfied. 
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2.  Rotational Symmetries of Regular Polyhedra 
 

 

A symmetry of a polyhedron is a rigid transformation of its ambient space that leaves the 

polyhedron in its original position.  If the transformation is a rotation then the symmetry 

is said to be a  rotational symmetry.  During the rotation the polyhedron may very well 

pass through nearby parts of space that it did not occupy initially, but when the rotation is 

accomplished the solid's position must coincide exactly with its initial position.   Spatial 

rotations are denoted by the symbol  RA,α  where   A  indicates the axis  and  α  the 

magnitude and sense of the rotation. 

 The set of symmetries of a polyhedron is its symmetry group and the set of 

rotational symmetries is its rotation group.  The following theorem of Euler’s implies 

that the rotation group of every polyhedron is closed under composition. 

 

THEOREM 8.2.1.  If the axes of two rotations of  R3  intersect, then their 

composition is a rotation whose axis passes through the intersection point. 

           u 

 

The axes of those rotations that constitute symmetries of a polyhedron are 

constrained by the fact that they must pass through a vertex, the midpoint of an edge, or 

else the center of some face.  This observation can be used to devise a notation for the 

rotational symmetries.  Accordingly,  R7,⋅  denotes a rotation of the cube whose axis 

passes through the vertex at  3  (Fig. 8.12),  R26,⋅   denotes a rotation of the cube whose 

axis passes through the midpoint of the edge  26  (Fig. 8.13),  and  R1265,⋅   denotes a 

rotation of the cube whose axis passes through the center of the square  1265  (Figs. 8.14-

15).  This notation is subject to some redundancy.  Thus,  for the cube of Figures 8.12-15,  
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the rotation R7, ⋅   can also be written as  R1,⋅, the rotation  R26,⋅   can also be written as  

R48,⋅,  and the rotation  R1265,⋅   can also be written as  R3487,⋅  . 

 

   
Figure 8.12 R7,120o = R1,-120o   Figure 8.13  R26,180o  =  R48,180o 

 

 

     
 Figure 8.14  R1265,90o   =  R3487,-90o  Figure 8.15   R1265,270o   =  R3487,-270o 

 

 The symbol  RA,α  denotes a rotation by the oriented angle  α  where the 

orientation is understood to be determined by an observer positioned outside the 

polyhedron near  A.  Thus,  R1265,90o  (Fig. 8.14) denotes the 90o  rotation of the cube 

about the axis that passes through the centers of the faces 1265  and  3487, 

counterclockwise from the point of view of an observer situated outside the cube near the 

face 1265.  Note that since  -90o  denotes a clockwise rotation it follows that R1265,90o   =  

R3487,-90o.  The circles in the illustrations are meant to help visualize the rotation; they are 

the "tracks" in which the vertices move to their new positions. 
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 Just like their two dimensional counterparts, spatial symmetries also have 

permutation representations.  Thus, since the rotation  R1265,90o  cycles the vertices in 

positions  1, 2, 6, 5  and also the vertices in positions  3, 7, 8, 4,  it has the permutation 

representation  (1 2 6 5)(3 7 8 4) .  Similarly,  the  180o  rotation  R1265,180o  has the 

permutation representations  (1 6)(2 5)(7 4)(8 3). 

 A qualitatively different symmetry of the cube is obtained by a  180o  rotation 

about an axis that passes through the midpoints of two diametrically opposite edges of the 

cube.  Such, for example, is the rotation  R26,180o  =  R48,180o (Fig. 8.13)  It has the 

permutation representation  (1 7)(2 6)(3 5)(4 8).  While this permutation looks very much 

like that of  R1265,180o  above,  there is a significant geometrical difference between them.  

The permutation representation (1 7)(2 6)(3 5)(4 8)  of  R26,180o   has cycles that are in 

fact cells of the cube, namely  (2 6)  and  (4 8).  On the other hand, none of the cycles of 

the permutation representation  (1 6)(2 5)(3 8)(4 7)  of  R1265,180o  are cells of the cube.  

 The permutation representation of the rotation R7,120o   is   (1)(2 4 5)(3 8 6)(7). 

 The compositions of rotational symmetries are easily computed by means of their 

permutation representations.  Accordingly,  since   R1265,90o  =  (1 2 6 5)(3 7 8 4)   and   

R7,120o  =  (1)(2 4 5)(3 8 6)(7)  it follows that 

 

 (R1265,90o)o(R7,120o)  =  (1 2 6 5)(3 7 8 4)o(1)(2 4 5)(3 8 6)(7) 

 

  =     (1 2 3 4)(5 6 7 8)     =     R1234,-90o . 

 

On the other hand, 

 

 (R7,120o)o(R1265,90o)  =  (1)(2 4 5)(3 8 6)(7)o(1 2 6 5)(3 7 8 4) 

 

  =     (1 4 8 5)(2 3 7 6)     =     R1485,-90o . 



 8.2 ROTATIONAL SYMMETRIES OF REGULAR POLYHEDRA 

 8.16 

 

Similarly,  since  R26,180o  =   (1 7)(2 6)(3 5)(4 8)  and  R34,180o  =  (1 7)(2 8)(3 4)(5 6)  it 

follows that 

 

 (R26,180o)o(R34,180o)  =  (1 7)(2 6)(3 5)(4 8)o(1 7)(2 8)(3 4)(5 6) 

 

  =     (1)(2 4 5)(3 8 6)(7)     =     R7,120o . 

 

 The number of symmetries in a group is that group’s order.   

 

PROPOSITION 8.2.2.   The rotation group of the cube has order  24  and its  

rotations are classified as: 
  
 
 Id 

 8 rotations of  the type  Rvertex,120o   

 6 rotations of the type Redge,180o   

 6 rotations of the type  Rface,90o  

 3 rotations of the type Rface,180o . 

 

SKETCH OF PROOF:   This follows from the fact that the cube has 4 axes that join 

opposite vertices,  6  axes that join opposite edges, and  3  axes that join opposite faces. 

           Q.E.D. 

 

 Whereas the axis of any rotational symmetry of the cube joins the midpoints of 

cells of the same dimension, the tetrahedron presents us with a new alternative.  The axis 

of the symmetry  R 3,-120o  joins the vertex  3  to the center of the triangular face with 

vertices 1, 2, and 4.  This rotation has the permutation representation  (1 4 2)(3).  The 
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only qualitatively different rotational symmetry of the tetrahedron is the  180o  rotation 

about the line joining  the midpoints of two opposite edges.  Such, for example,  is  

R24,180o  =  (1 3)(2 4)  .  Note that 

 

 (R3,-120o)o(R24,180o)     =     (1 4 2)(3)o(1 3)(2 4)     =     (1 3 4)(2)      

 

 =     R2,-120o 

 

The rotational symmetries of the tetrahedron are illustrated in Figures 8.16-17  and 

summarized in a proposition. 

 

    
Figure 8.16  R3,240o   Figure 8.17  R13,180o 

 

 

PROPOSITION 8.2.3.   The rotation group of the tetrahedron has order  12  and its 

rotations are classified as: 
  
 
 Id 

 4 rotations of each of the types  Rvertex,120o  and  Rvertex,240o  

 3 rotations of the type Redge,180o.   

           [] 
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 The verification of the analogous proposition regarding the octahedron, is 

relegated to Exercise 1. 

 

PROPOSITION 8.2.4.   The rotation group of the octahedron has order  24  and its 

rotations are classified as: 

 
 
 Id 

 6 rotations of the type  Rvertex,90o 

 3 rotations of the type  Rvertex,180o 

 6 rotations of the type Redge,180o   

 8 rotations of each of the types  Rface,120o . 

           [] 

 

EXERCISES 8.2 

 
1. Classify the rotational symmetries of the octahedron. 

2. Classify the rotational symmetries of the dodecahedron. 

3. Classify the rotational symmetries of the icosahedron. 
4. Suppose  A = R1,120o,  B = R26,180o,  C = R2376,90o,  D = R1234,180o  are symmetries of the 

cube of Figures 8.12-15. 

 a) Find the permutation representations of  A, B, C, D 

 b) Identify the following symmetries: 

 i) AoA  ii) AoB  iii) AoC  iv) AoD 

 v) BoA  vi) BoB  vii) BoC  viii) BoD 

 ix) CoA  x) CoB  xi) CoC  xii) CoD 

 xiii) DoA  xiv) DoB  xv) DoC  xvi) DoD 
5. Repeat Exercise 4 with  A = R2,-120o,  B = R15,180o,  C = R3487,270o,  D = R5678,180o. 

6. Suppose  A = R1,120o,  B = R24,180o,  C = R2,240o,  D = R14,180o  are symmetries of the 

tetrahedron of Figures 8.16-17. 

 a) Find the permutation representations of  A, B, C, D 

 b) Identify the following symmetries: 
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 i) AoA  ii) AoB  iii) AoC  iv) AoD 

 v) BoA  vi) BoB  vii) BoC  viii) BoD 

 ix) CoA  x) CoB  xi) CoC  xii) CoD 

 xiii) DoA  xiv) DoB  xv) DoC  xvi) DoD 
7. Repeat Exercise 6 with  A = R3,120o,  B = R23,180o,  C = R3,240o,  D = R12,180o. 

8. Suppose  A = R1,90o,  B = R25,180o,  C = R235,240o,  D = R4,180o  are symmetries of the 

octahedron of Figure 8.18. 

 a) Find the permutation representations of  A, B, C, D 

 b) Identify the following symmetries: 

 i) AoA  ii) AoB  iii) AoC  iv) AoD 

 v) BoA  vi) BoB  vii) BoC  viii) BoD 

 ix) CoA  x) CoB  xi) CoC  xii) CoD 

 xiii) DoA  xiv) DoB  xv) DoC  xvi) DoD 

 

 
      Figure 8.18 Octahedron 

 
9. Repeat Exercise 8 with  A = R1,180o,  B = R46,180o,  C = R345,120o,  D = R6,90o. 

10. Suppose  A = R5,120o,  B = R57,180o,  C = R57jbf,72o,  D = R1d5f2,144o  are symmetries of the 

 dodecahedron of Figure 8.19. 

 a) Find the permutation representations of  A, B, C, D 

 b) Identify the following symmetries: 

 i) AoA  ii) AoB  iii) AoC  iv) AoD 

 v) BoA  vi) BoB  vii) BoC  viii) BoD 

 ix) CoA  x) CoB  xi) CoC  xii) CoD 

 xiii) DoA  xiv) DoB  xv) DoC  xvi) DoD 
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Figure 8.19  Dodecahedron 

 
11. Repeat Exercise 10 with  A = R3,240o,  B = Rbf,180o,  C = R68iae,144o,  D = R2fbch,72o. 

12. Suppose  A = R1,72o,  B = R4a,180o,  C = R349,240o,  D = R4,144o  are symmetries of the 

icosahedron of Figure 8.20. 

 a) Find the permutation representations of  A, B, C, D 

 b) Identify the following symmetries: 

 i) AoA  ii) AoB  iii) AoC  iv) AoD 

 v) BoA  vi) BoB  vii) BoC  viii) BoD 

 ix) CoA  x) CoB  xi) CoC  xii) CoD 

 xiii) DoA  xiv) DoB  xv) DoC  xvi) DoD 

 

 
Figure 8.20 Icosahedron 

 
13. Repeat Exercise 12 with  A = R6,144o,  B = R89,180o,  C = R126,120o,  D = Rc,144o. 

14. How many rotational symmetries does a rectangular box have if all of its dimensions are different? 

15. How many rotational symmetries does a rectangular box have if exactly two of its dimensions are 

the same? 

16. A triangular prism has an equilateral base.  How many rotational symmetries does it have? 

17. A triangular prism has a base with sides  6, 6, 4.  How many rotational symmetries does it have? 
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18. A prism has a base that is a regular n-gon.  How many rotational symmetries does it have? 

 
 

3. Monstrous Moonshine 
 

 

The previous section described the rotational symmetries of the cube and the octahedron 

separately.  Since the cube’s symmetries are permutations of  8  vertices whereas those of 

the octahedron are permutations of  6  vertices, these polyhedra’s rotation groups look 

quite different. Nevertheless, there is a natural sense in which these two groups are 

identical.  Observe that in Figures 8.21-23 a cube has been placed inside an octahedron so 

that each of the vertices of the first is the center of a triangular face of the latter.  The 

 

    

  

Figure 8.21     Figure 8.22   Figure 8.23 

 

feasibility of this placement implies that every Rface-symmetry  of the cube is also an 

Rvertex-symmetry  of the octahedron (Fig. 8.21).  Similarly, every Redge-symmetry of the 

cube is also an  Redge-symmetry of the octahedron (Fig. 8.22) and every  Rvertex-symmetry 

of the cube is an  Rface-symmetry of the octahedron (Fig. 8.23).  Thus, the rotation groups 

of the cube and the octahedron are now revealed as being identical.  Technically, they are 

said to be isomorphic.   It is clear that isomorphic groups must have the same order and 

so the rotation groups of the cube and the tetrahedron are not isomorphic.  Groups of the 
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same order need not be isomorphic either. This is demonstrated by the symmetry group 

of the regular 12-gon.  This polygon has  24  symmetries and the cube has  24  rotational 

symmetries.  However, the  30o  rotation of this polygon has order  12  and no rotational 

symmetry of the cube has such an order.  Hence the symmetry group of the regular 12-

gon and the rotation group of the cube are not isomorphic, even though they have the 

same orders (see Exercise 6). 

 Group theory, the mathematical theory of symmetry, has its origins in the work of 

Joseph Louis Lagrange (1736 - 1813) on the theory of equations.  It was later used by 

Niels Henrik Abel (1802 - 1829) and E′  variste Galois (1811 - 1832)  to settle the question 

of which equations could be solved by explicit algebraic formulas and which could only 

be solved by means of successive approximations.  The subsequent investigations of 

Felix Klein (1849 - 1925) and Henri Poincare′  (1854 - 1912)  pointed out the central role 

that symmetry also plays in geometry. 

 One of the main goals of group theory is the classification of all groups up to 

isomorphism.  While there is no expectation that this goal will be achieved in the 

foreseeable future, a significant milestone was passed less than twenty years ago when 

the finite simple groups were completely classified.  There is nothing simple about the 

simple groups, nor is it possible to characterize them in this text.  The symmetries of the 

icosahedron (and the dodecahedron) constitute a simple group whereas those of the cube 

and tetrahedron are not simple, but this difference does not have a geometrical 

interpretation.  Algebraically, though, the difference is extremely important.  The 

simplicity of the dodecahedral group turns out to be responsible for the non-existence of a 

formulaic solution for the general fifth degree equation 

 

ax5  +  bx4  +  cx3  +  dx2  +  ex  +  f     =     0. 
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Conversely,  the non-simplicity of the symmetry group of the tetrahedron is ultimately 

tantamount to the existence of such a formula for the fourth degree equation 

 

ax4  +  bx3  +  cx2  +  dx  +  e     =     0. 

 

The classification of the finite simple groups constitutes the most monumental task ever 

accomplished by mathematicians.  Its proof is spread over  500  articles comprising more 

than  14,000  journal pages written by hundreds of researchers.  This classification asserts 

that the finite simple groups fall into two categories:  several infinite families of graphs 

that possess clear patterns and  26  exceptional groups, known as the sporadic  groups, 

for which no general pattern has been found.   

 The first of the sporadic groups was discovered in  1861  and the last two almost 

simultaneously in 1980.  The largest of these was nicknamed MONSTER because of its 

order which is 

 

808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000 

 

MONSTER, discovered by Bernd Fischer and Robert L. Griess, is the group of 

symmetries of a (non-regular) polyhedron in  196,883  dimensions.  When word of this 

discovery reached John McKay he pointed out the remarkable coincidence that  196,884  

is one of the coefficients in the series 

 

j     =     q-1  +  744  +  196,884q  +  21,493,760q2  +  864,299,970q3   

  +  20,245,856,256q4  +  333,202,640,600q5  +  4,252,023,300,096q6   

  +  44,656,994,071,935q7  +  401,490,886,656,000q8  +  ... 
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which arises in the seemingly unrelated context of doubly periodic functions on the 

hyperbolic plane.  For the purposes of this exposition, these functions can be thought of 

as patterns that underlie non-Euclidean wallpaper designs.  As mathematicians were at a 

loss to explain this conjunction they dubbed the following equation as McKay's formula: 

 

196,884     =     1  +  196,883. 

 

Shortly thereafter John Thompson noted that actually much more was true.  The number 

196,883  is the second one of an important sequence of  194  integers, the degrees of the 

characters of MONSTER,  of which the first twelve are 

 
1 

196,883 
21,296,876 
842,609,326 

18,538,750,076 
19,360,062,527 
293,553,734,298 

3,879,214,937,598 
36,173,193,327,999 
125,510,727,015,275 
190,292,345,709,543 
222,879,856,734,249 

 

and the last one is 

 

258,823,477,531,055,064,045,234,375 

 

The significance of these integers is that, except for  1,  each denotes the number of 

dimensions required by a new polyhedron whose symmetry group is isomorphic to 
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MONSTER.  What Thompson discovered was that, with the exception of  744,  all the 

other early coefficients in the j-series also have simple expressions in terms of 

MONSTER'S degrees.  For example, 

 

21,493,760     =      1  +  196,883  +   21,296,876 

864,299,970     =     2⋅1  +  2⋅196,883  +  21,296,876  +  842,609,326 

 

John H. Conway assigned the name Moonshine  to these and other related unexplained 

phenomena in 1979 "... intending the word to convey our feelings that they are seen in a 

dim light, and that the whole subject is rather vaguely illicit."  It should be remembered 

that at that time the existence of MONSTER had only been conjectured so that even the 

aforementioned list of degrees was questionable, not to mention their purported relation 

with the coefficients of the  j-series. 

 As was noted above, the existence of MONSTER was conclusively demonstrated 

in 1980 by R. Griess who tried, unsuccessfully, to have its named changed to The 

Friendly Giant.  Monstrous Moonshine mathematics was finally explained by Richard E. 

Borcherds who found the connection in the theory of Vertex Algebras, a discipline 

developed recently for the purpose of providing a mathematical foundation to the new 

Superstring Theory of physics.  For this work Borcherds received the 1998 Fields Medal, 

the most prestigious award bestowed by the mathematical community. 

 

EXERCISES 8.3 

 
In the exercises below  f1 = 1, f2 = 196,883, f3 = 21,296,876, ...  denote the degrees of the characters of 

MONSTER  and  ak  denotes the coefficient of  q
k
  in the  j-series, so that  a-1 = 1, a0 = 744, a1 = 196,884, 

a2 = 21,493,760, ... . 
1. Find integers  x1, x2, ..., x6  such that  a4  =  x1f1 + x2f2 + ... + x6f6 . 

2. Find integers  x1, x2, ..., x7  such that  a5  =  x1f1 + x2f2 + ... + x7f7 . 
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3. Find integers  x1, x2, x3, ...  such that  a6  =  x1f1 + x2f2 + x3f3 + ... . 

4. Find integers  x1, x2, x3, ...  such that  a7  =  x1f1 + x2f2 + x3f3 + ... . 

5. Find integers  x1, x2, x3, ...  such that  a8  =  x1f1 + x2f2 + x3f3 + ... . 

6. Show that the rotation groups of the cube and the prism whose base is a regular 12-gon are not 

isomorphic even though they have the same orders. 

 

CHAPTER REVIEW EXERCISES 

 
In the exercises below, for each integer  n ≥ 3,  Pn  denotes the pyramid obtained by joining the vertices of 

a regular  n-gon  to a point outside the plane of the  n-gon  and lying directly above its center.  The 
polyhedron  PPn  is the double pyramid obtained by fitting together two copies of the pyramid  Pn  at their 

base. 
1. Verify that for each  n ≥ 3,  Euler's equation holds for the pyramid  Pn  and for both of the 

polyhedra obtained from it by truncation. 
2. Verify that for each  n ≥ 3,  Euler's equation holds for the double pyramid  PPn  and for both of 

the polyhedra obtained from it by a type II truncation. 
3. Describe the rotational symmetries of the pyramid  P3.  Note that there are two cases to be 

considered.   
4. Describe the rotational symmetries of the pyramid  Pn,  n ≥ 4.   

5. Describe the rotational symmetries of the double pyramid  PP4.  Note that there are two cases to 

be considered.   
6. Describe the rotational symmetries of the double pyramid  PPn , n /=  4.   

7. Explain why the regular  n-gon  and the double pyramid  PPn  have isomorphic rotation groups  

for  n ≥ 5 (when considered in 3-space). 

8. Prove that the icosahedron and dodecahedron have isomorphic rotation groups. 
9. Are the following statements true or false?  Justify your answers. 

a) Every polyhedron has at least one symmetry.  

b) Every regular polyhedron has at least two symmetries. 

c) Every regular polyhedron has at least as many symmetries as vertices. 

d) Every regular polyhedron has at least as many symmetries as edges. 

e) The composition of every two rotations of  R
3
  is also a rotation. 

f) If two rotations of  R
3
  have intersecting axes, then their composition is also a rotation. 

g) All the semiregular polyhedra can be obtained from the regular polyhedra by truncation. 

h) Euler discovered the regular polyhedra. 

i) 196,883  is an interesting integer. 
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j) MONSTER is a symmetry group. 

k) MONSTER was discovered by John H. Conway. 

l) Every two symmetry groups are isomorphic. 

m) The rotation groups of the cube and the octahedron are isomorphic. 

n) The rotation groups of the cube and the tetrahedron are isomorphic. 

o) There are at least 193 distinct polyhedra whose symmetry groups are isomorphic to 

MONSTER. 

 

 


