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CHAPTER 7 
 
 

Inversions 

 

 Transformations that are not rigid can be interesting too, even though they are not 

as natural as the rigid motions of the previous chapter.  The inversions of this chapter are 

particularly appealing because they play important roles in both Euclidean and non-

Euclidean geometry. 

 

 

 

1. Inversions as Transformations 
 

Given a point  C  and a positive real number  k,  the inversion  IC,k  is a transformation of 

the plane that maps any point  P =/   C  of the plane into the point  P′ = IC,k(P)  such that 

 

 a) C, P′  are collinear with  C  outside the segment  PP′, 

and   

 b) CP ⋅ CP′  =  k2 . 

 

Figure 7.1 illustrates the action of a typical inversion. 
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 It is clear that in general  IC,k(P) = P′  if and only if  IC,k(P′) = P  and hence  

I
2  

C,k  = Id.  Moreover,  IC,k(P) = P  if and only if  P  is on the circle  (C; k).  Otherwise 

the point   

 

 
Figure 7.1   The inversion IC,k  

 

P  is inside the circle  (C; k)  if and only  P′  is outside it.  If  g  =  (C; k)  the inversion  

IC,k  will also be denoted by  Ig.  Note that  IC,k  is undefined for  C  and only for  C.  The 

point C  is called the center of the inversion  IC,k.  Figure 7.2 displays the relation 

between  P  and  P′ = IC,k(P)  geometrically.  The circle of this figure has radius  k  and 

the lines  SP’ and   TP’ are tangent to it (see Exercise 8). 

 

 

Figure 7.2 

 

 Any two points  P, Q  inside the circle  (C; k)  are transformed by the inversion  

IC,k  into two points  P′, Q′  such that   
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P′Q′  >  PQ. 

 

In fact, the closer  P  and  Q  are to the center  C,  the greater the discrepancy between  

PQ  and  P′Q′.  It follows that  IC,k  is not a rigid motion.  Nevertheless, it does share 

some of the properties of rigid motions.  Rigid motions transform straight lines into 

straight line (Proposition 6.1.2) and circles into circles (Exercise 6.1.2).  Inversions, too, 

transform straight lines and circles into straight lines and circles, although not necessarily 

respectively:  some straight lines are bent into circles and some circles are straightened 

out.  The next theorem describes these phenomena in detail. 

 

THEOREM 7.1.1.   The inversion  IC,k  maps 

 a) straight lines through  C  onto themselves, 

 b) straight lines not through  C  onto circles through  C, 

 c) circles through  C  onto straight lines not through  C, 

 d) circles not through  C  onto circles not through  C. 

 

PROOF:   

 a)   This follows directly from the definition of inversions. 

 b)   Let  m  be a straight line not through  C,  and let  M  be that point of  m  such  

 

 

Figure 7.3 
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that CM ⊥ m  (Figure 7.3)  whereas  P  is an arbitrary point of  m.  Set 

 

M′  =  IC,k(M)  and  P′  =  IC,k(P) .   

 

Since   CM ⋅ CM′  =  k2  =  CP ⋅ CP′    it follows that 

 
CM’
CP    =  

CP’
CM   . 

 

Moreover, since  ∠ PCM  is common to both  Δ CPM  and  Δ CM′P′,  it follows from 

Proposition 3.5.9 that these triangles are similar and consequently 

 

∠ M′P′C  =  ∠ PMC  =  90o. 

 

Since the points  C  and  M′  are fixed (whereas  P  is arbitrary on  m)  it follows from 

Exercise 4.2B.5 that  P′  falls on the fixed circle with diameter  CM′. 

 c)   Let  q  be a circle through  C, let  CM′  be a diameter of  q, set  M = IC,k(M′)  

and let  m  be the line through  M  perpendicular to  CM’ (Fig. 7.3).  It follows from part  

b  above that  IC,k(m)  =  q  and hence 

 

IC,k(q)  =  I
2  

C,k(m)   =  m . 

 

 d)   Let  p  be a circle not through  C  with  P  an arbitrary point on  p.  Let  DE  

be a diameter of  p  whose extension contains  C,  and suppose the given inversion  IC,k  

maps the points  D, E, P  onto the points  D′, E′, P′ (Figure 7.4).  Since 

 

CP ⋅ CP′  =  CD ⋅ CD′  =  CE ⋅ CE′  =  k2 
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Figure 7.4 

 

it follows that 

 
CD
CP’   =  

CP
CD’      and     

CE
CP’   =  

CP
CE’  . 

 

Since  ∠ DCP  is common to  Δ DCP, Δ P′CD′, Δ ECP, and Δ P′CE′  it follows that the 

first two are similar to each other, as are the last two.  Consequently, 

 

∠ 4  =  ∠ 2     and     ∠ 5  =  ∠ 3  

 

and  

 

∠ 1  =  ∠ 2 - ∠ 3  =  ∠ 4 - ∠ 5  =  ∠ 6  =  90o . 

 

Since  D′  and  E′  are fixed points it follows that  P′  lies on the circle that has  D′E′  as 

its diameter (see Exercise 4.2B.5). 

          Q.E.D. 

 

 The following observations are implicit in the proof of the above theorem: 
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When the inversion I
C,k  

transforms a circle into a circle, their centers are 

collinear with  C.  When the inversion transforms a straight line into a 

circle, or vice versa, the line through  C  perpendicular to the straight line 

contains the center of the circle. 

 

EXAMPLE 7.1.2.  Let  I  =  IO,6,  where  O  denotes the origin and let  m  denote the 

line  y = -6 (Fig. 7.5).  By Theorem 7.1.1b,  I(m)  is a circle  q  that contains O  and whose 

center lies on the  y-axis.  Since  I  fixes the point  (-6, 0),  this point must lie on  q.  It 

follows that  q  is the circle  ((-3, 0); 3). 

 

 

Figure 7.5 

 

EXAMPLE 7.1.3.   Let  I  =  IO,6  and let  q  =  ((4,0); 1) (Fig. 7.6).  It follows from 

Theorem 7.1.1d  that  I(q)  is also a circle, with center on the  x-axis, which of necessity 

contains the points 

 

I((5, 0))  =  ((
36
5  ), 0)  =  (7.2, 0)   and   I((3, 0)  =  (

36
3  , 0)  =  (12, 0) . 

 

Consequently  I(q)  =  ((9.6, 0); 2.4). 
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Figure 7.6 

 

EXAMPLE 7.1.4.  Identify the inversion  IC,k  that maps the circle  (O; 2)  onto the 

straight line  x = 6.   

 By Theorem 7.1.1c,  C  must be either  (2, 0)  or  (-2, 0) (Fig. 7.7).  Since  C 

 

 

Figure 7.7 

 

cannot lie between a point and its image, it follows that  C  =  (-2, 0).  Finally, since  IC,k  

maps  (2, 0)  onto  (6, 0)  it follows that 

 

€ 

k = [2 − (−2)]⋅ [6 − (−2)] = 4 2. 

 

 Another way in which inversions resemble rigid motions is that they too preserve 

the measures of angles (see Exercise 6.1.8).  Of course, since inversions bend straight 

lines it is necessary to allow for non-rectilineal angles.  As is customary in calculus, the 

measure of the angle determined by two intersecting curves is defined to be the measure 

of the angle between their respective tangents at that intersection.   
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PROPOSITION 7.1.5.   Inversions preserve angles (but reverse their senses). 

PROOF:   Figure  7.8  describes how an inversion centered at  C  transforms the angle  α   

formed by the curves  h  and  j  into the angle  α′  formed by the image curves  h′  =  

IC,k(h)   and  j′ = IC,k(j).  It is clear that the sense of the angle is reversed by the inversion.   

 

 

Figure 7.8 

 

Since 

 

α  =  ∠ 1 - ∠ 2     and     α′   =  ∠ 3 - ∠ 4 , 

 

it will suffice to prove the special case that  ∠ 1 = ∠ 3,  or,  that  α = α′  in Figure 7.9.  

However, the equation    

 

CP⋅CP′  =  k2  =  CQ⋅CQ′ 

 

implies that 

 

Δ CPQ  ~ Δ CQ′P′   
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and hence 

 

∠  CQ′P′  =  ∠ CPQ . 

 

 

Figure 7.9 

 

Since the limiting values, as  θ → 0,  of  ∠ CQ′P′  and  ∠ CPQ   are  180o - α′  and   

180o - α   respectively,  it follows that  α = α′. 

           Q.E.D. 

 

 Two intersecting circles are said to be orthogonal if their respective tangents at 

the point of intersection are perpendicular to each other.  However, by Proposition 4.1.4, 

the tangent line is perpendicular to the radius through the point of contact and hence it 

follows that two intersecting circles are orthogonal if and only if their tangents at the 

point of intersection pass through each other’s centers (see Fig. 7.10).  In fact, 

orthogonality is guaranteed by one of the tangents passing through the center of the other.  

Exercise  3  relates orthogonality to inversions. 
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C D

 

Figure 7.10   Two orthogonal circles with respective centers C  and  D. 

 

 

A straight line is said to be orthogonal to a circle if it is perpendicular to the 

tangents at the intersection points.  This is equivalent to saying that the straight line 

contains a diameter of the circle.   

 

 

EXERCISES 7.1 

 
1. If  O  denotes the origin, to what point or curve does the inversion  IO,4  transform the sets below? 

 a) The point  (3, 0)   b) The point  (0, -2) 

 c) The point  (2, 2)   d) The point  (-1, 1) 

 e) The line   y = -2x   f) The line  x + y  =  4 

 g) The line  x = 4   h) The line  y = -4 

 i) The line  x = 2   j) The line  y = -8 

 k) The line  y = x + 8  l) The line  y = -x + 4 

 m) The line  y = x - 2   n) The line  y = -x - 8 

 o) The circle  (O; 3)   p) The circle  (O; 8) 

 q) The circle  ((3, 0); 1)  r) The circle  ((3, 0); 6) 

 s) The circle  ((0, 8); 2)  t) The circle  ((0, 8); 4) 

 u) The circle  ((0, 8); 6)  v) The circle  ((0, 8); 8) 

 w) The circle  ((0, 8); 10)  x) The circle  ((4, 4); 4) 

 y) The circle  ((5, 5); 5)  z) The circle  ((5, 5); 26 ) 

2. For each of the following pairs of curves, decide whether there exists an inversion that transforms 

one onto the other.  Identify the inversion if it exists. 
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 a) The x axis and the line  y = 2 

 b) The circle  (O; 5)  and the line  x = 3 

 c) The circle  (O; 5)  and the line  x = 5 

 d) The circle  (O; 5)  and the line  x = 10 

 e) The circle  (O; 5)  and the circle  (O; 10) 

 f) The circle  (O; 5)  and the circle  ((5, 0); 5) 

 g) The circle  (O; 5)  and the circle  ((35, 0); 30)) 
3. Let  p  be a circle  C  a point  and  k  a positive real number.  Prove that  IC,k(p) = p   if and only if 

the circles  p  and  (C; k)  are orthogonal. 

4. Let  I  be an inversion and let  p  be a circle such that  I(p)  is also a circle.  When do  p  and  I(p)  

have different radii? 

5. Let  p  and  q  be two circles with different radii.  Show that there is an inversion  I such that  I(p)  

= q. 

6. Let  m  be a straight line.  Characterize all the circles  p  such that there exists an inversion  I  for 

which  I(m) = p. 

7. Let  p  be a circle.  Characterize all the straight lines  m  such that there exists an inversion  I  for 

which  I(p) = m. 
8. Prove that if the radius of the circle of Figure 7.2 is  k,  then IC,k(P) = P′. 

9(C). Write a script that will take a circle  (C; k)  and a point  P  as input and yield  IC,k(P)  as output. 

10(C). Use a computer application to verify the following parts of Theorem 7.1.1: a)  a b)  b 

 c)  c d)  d. 

 

7.2 Inversions to the Rescue 

 

Inversions can be very useful in transforming problems about circles into simpler 

problems about straight lines.  Two examples of this procedure are offered. 

 

EXAMPLE 7.2.1.   Let two circles  p  and  q  intersect in  A  and  B, and let the 

extensions of the diameters of  p  and  q  through  B  intersect  q  and  p  in the points  C  

and  D  respectively.  Show that the line  

€ 

↔
AB   contains a diameter of the circle that 

circumscribes Δ BCD. 
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Figure 7.11 

 

 Let  k  be any real number and suppose the inversion  I = IB,k  is applied to the 

given configuration of circles so that  A′ = I(A), C′ = I(C), D′ = I(D), p′ = I(p), q′ = I(q), 

r′ = I(r) (Fig.7.11).  Since  BC  and  BD  are orthogonal to  p  and  q  respectively, it 

follows from Proposition  7.1.5 that  BC′ ⊥ p′  and  BD′ ⊥ q′.  The concurrence of the 

three altitudes of the triangle (Exercise 4.2B.11) now implies that  BA′ ⊥ r′  and hence  

BA  contains a diameter of  r. 

 

 Proposition 7.2.3 below was first proved by Ptolemy .  It was an important tool in 

his construction of the table of chords which appears in his definitive book on Greek 

astronomy, the Almagest.  The proof of the required lemma is relegated to Exercise 1. 

 

LEMMA 7.2.2.    Suppose   P′ = IC,k(P)  and  Q′ = IC,k(Q).  Then 

 

€ 

′ P ′ Q =
k 2PQ

CP ⋅CQ      

      []  
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PROPOSITION 7.2.3.   In a cyclic quadrilateral the product of the diagonals 

equals the sum of the products of the two pairs of opposite sides. 

 

 

Figure 7.12 

 

PROOF:   Let  ABCD  be a cyclic quadrilateral inscribed in a circle of diameter  k  (Fig. 

7.12).  It follows from Theorem 7.1.1b that  IA,k  inverts this circle into a tangent line that 

contains the points  B′ = IA,k(B),  C′ = IA,k(C),  and  D′ = IA,k(D) .  Since  B′C′ + C′D′   =  

B′D′  it follows from the lemma that 

 

€ 

k 2BC
AB ⋅ AC

+
k 2CD
AC ⋅ AD

=
k 2BD
AB ⋅ AD  

 

or, upon multiplying this equation by   (AB ⋅ AC ⋅ AD)/k2 , 

 

BC ⋅ AD  +  CD ⋅ AB  =  BD ⋅ AC . 

           Q.E.D. 

 

 In order to illustrate one more application of inversions we return to the issue of 

constructibility.  In elementary geometry classes it is customary to construct figures using 

rulers and compasses.  These two tools, however, are qualitatively different.  The 
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compass generates a circle because of its mechanical properties whereas the ruler simply 

allows us to copy a given straight line onto the paper.  The circular analog of a ruler 

would be a coin or the lid of a jar.  What then is the linear analog of the compass?  In 

other words, what mechanical device, consisting of linked rods, would constrain a pencil 

to move so as to draw a straight line?  Such devices are called linkages, the simplest one 

being a single rod  AB  with fixed point  A.  It is clear that a pencil attached at  B would 

be constrained to draw a circle. 

 The utility of linkages in drawing curves has been studied for hundreds of years, 

but the first one capable of drawing a straight line was invented in 1864 by A. Peaucellier 

(1832 -  1913), who was an engineer in the French army.  In his honor this device, which 

contains  7  rods,  is called Peaucellier’s cell.  In 1874  Harry Hart (1848 - 1920)  

invented a  5  rod linkage for drawing straight lines and it is unknown whether there are 

any such linkages with fewer than  5  rods. 

 

 

Figure 7.13   Peaucellier’s cell. 

 

 Peaucellier’s cell is depicted in Figure 7.13  where the points  C  and  X  are fixed, 

XP = XC,  and the solid lines  XP, AP = PB = BP′ = P′A  and  CA = CB  denote rods that 

are loosely linked at their endpoints. The dashed lines denote auxiliary lines that serve 
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only for the purpose of demonstrating the properties of the linkage.  Since  APBP’  is a 

rhombus we have 

 

CP ⋅ CP′  =   (CD - DP)(CD + DP)  =  CD2 - DP2   

=  (CD2 + DA2) - (DP2 + DA2)  =  CA2  +  AP2. 

 

If  k  =  CA2 + AP2   then  k  is constant and we have 

 

P′  =  IC,k(P) . 

 

Since the rod  XP  constrains  P  to move in a circle  q  that contains  C,  it follows from 

Proposition 7.1.1c that  P′  traces out a straight line  m. 

 

 

EXERCISES 7.2 

 
1. Prove Lemma 7.2.2. 

 

2. Two circles  p  and  q  have a common tangent at a point  T, and a variable circle through  T  

intersects  p  and  q  orthogonally in points  P  and  Q.  Prove that  PQ
×

   passes through a fixed 

point. 

3. Suppose  ABCD  is a cyclic quadrilateral.  If  T  is the point of contact of a circle containing  A  

and  B  with another circle containing  C  and  D, show that the locus of  T  is a circle. 

4. Prove that if  ABCD  is a convex quadrilateral, then  BC ⋅ AD  +  CD ⋅ AB  ≥  BD ⋅ AC.  Show that 

equality holds if and only if  ABCD    is cyclic. 

5. Let  p  be a fixed circle and let  P  be a fixed point not on  p.  Prove that there exists a point  P′   

distinct from  P  such that every circle through  P  that is orthogonal to  p  also passes through  P′. 

6. Let  p  be a fixed circle and  P  a fixed point.  Show that the locus of the centers of all the circles 

that pass through  P  and are orthogonal to  p  is a straight line. 

7(C). Use a computer application to verify Proposition 7.2.3. 
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7.3   Inversions as Hyperbolic Rigid Motions 
 
In addition to the role they play in Euclidean geometry, inversions also provide a 

powerful tool for describing the rigid motions of non-Euclidean geometry in the context 

of the upper half-plane model of Section 1.2.  As was the case in that section, the 

exposition here is informal and no proofs are given.  Instead, several examples are 

offered that  are easily implemented on computers and substantiate the discussion.  

Exercises 13-17 provide an opportunity for an exploration of the properties of the 

hyperbolic rigid motions. 

 It was proven in Section 6.4 that every hyperbolic rigid motion can be expressed 

as the composition of hyperbolic reflections.  These hyperbolic reflections are now 

described in the context of the upper half-plane geometry. 

 

PROPOSITION 7.3.1.   There are two kinds of reflections of the upper half-plane: 

a) Euclidean reflections whose axes are vertical; 

b) Inversions whose centers are on the x-axis. 

           [] 

 

 It stands to reason that Euclidean reflections with vertical axes should also double 

as hyperbolic reflections.  After all, the distortion of lengths that was used to create this 

geometry depends only on the distances from the x-axis, and since these particular 

reflections do not change these distances, it is not surprising that they constitute 

hyperbolic   
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Figure 7.14   Hyperbolic reflections. 

 

rigid motions.  Figure 7.14 illustrates the effect of the reflections of both types on a 

triangle. Hyperbolic Δ A′B′C′   is both the Euclidean and the hyperbolic reflection of  Δ 

ABC  in the vertical geodesic  m,  and  Δ A″Β″C″  =  Ig(Δ ABC)   is the hyperbolic 

reflection of  Δ ABC  in the bowed geodesic  g. 

 

EXAMPLE 7.3.2.   Find a hyperbolic reflection that transforms the point  P(1, 1)  to 

the point  Q(3, 5) (Fig. 7.15). 
 The line  

€ 

↔
PQ   has equation   y - 1  =  

1
2 (x - 1)   and intersects the x-axis at the 

 

 

 

Figure 7.15 

 

point C(-1, 0).  Since  

 

CP ⋅ CQ  =  (1 + 1)2 + (1 - 0)2  ⋅ (5 + 1)2 + (3 - 0)2    
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=  5  ⋅ 45   =  15 

 

it follows that the inversion  IC, 15   is the required hyperbolic reflection. 

 

EXAMPLE 7.3.3.   Find a hyperbolic reflection that transforms the geodesic consisting 

of the upper half of the circle  ((4, 0); 2)  onto the upper half of the straight line  x = -3 

(Figure 7.16). 

 Any inversion centered at  (6, 0)  will  transform the given semicircle into a 

vertical ray.  Since    (6 - 2)(6 - (-3))  =  36,  it follows that the requisite hyperbolic 

reflection is the inversion  I(6, 0),6 with fixed circle  g. 

 

 

 

Figure 7.16   A hyperbolic reflection. 

 

 Inasmuch as the definition of a Euclidean rotation makes no reference to 

parallelism or any of its consequences, it can also serve as the definition of a hyperbolic 

rotation.  Unfortunately, because of the distortion of distances in the upper half-plane this 

definition is not very helpful in trying to visualize this non-Euclidean transformation.  

However, Proposition 6.2.2, which states that the composition of two reflections with 
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intersecting axes is a rotation about the point of intersection, is neutral, and so it applies 

here as well.  Hence, if  Ig  denotes the inversion whose fixed circle is  g (Fig. 7.17)  and  

 

 

 

Figure 7.17   Hyperbolic reflections. 

 

we recall that  ρm  is  also a hyperbolic reflection, then  ρm + Ig  is a hyperbolic rotation 

R  about the point  X.  Note that   

 

R(Δ ABC)  =  ρm (Ig(Δ ABC))  =  ρm(Δ A′B′C′)  =  Δ A”B”C” . 

 

If  g  =  (O; 3)  and  m  is the line  x = -2,   it follows from Exercise12 that   

 

∠ (g, m) =  ∠ XOM  =  cos-1(
2
3 )  =  48.2o.   

 

Consequently,  R  =  RX,96.4o .  Figure 7.18  illustrates a hyperbolic rotation  R = RY,60o. 
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Figure 7.18   A hyperbolic rotation. 

 

In this figure    Pi+1 = R(Pi)  for  i = 1, 2, ..., 5  and  P1 = R(P6).  Obviously, these points 

all lie on a hyperbolic circle centered at  Y.  Exercise 15(C) examines this issue further. 

 The definition of a Euclidean translation does involve parallelism and is therefore 

of no use in the hyperbolic context.  Instead, motivated by Proposition 6.2.1, a hyperbolic 

translation is defined as the composition of two hyperbolic reflections whose axes do not 

intersect.  If the axes of both the hyperbolic reflections are straight geodesics, then their 

composition is a horizontal Euclidean translation.  This is illustrated in Figure 7.19  

where  τ  =  ρn + ρm  and  τ(Pi)  =  Pi+1  for  i = 1, 2, 3, 4 .   

 

 

Figure 7.19   Both a Euclidean and a hyperbolic translation. 
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Such horizontal Euclidean translations constitute hyperbolic rigid motions for the same 

reason that the Euclidean reflections  ρm  and  ρn  do.  They do not alter the distances of 

points from the x-axis. 

 Figure 7.20  illustrates the composition of hyperbolic reflections of mixed types 

with non-intersecting axes.  If  τ =  Ig + ρm  then  Pi+1  =  τ(Pi)   for  i = 1, 2, 3, 4.  Note 

 

 

Figure 7.20   A hyperbolic translation. 

 

that the orbit of this translation  τ  does go out to hyperbolic infinity just as Euclidean 

translations go out to Euclidean infinity.  This stands in marked contrast with the orbit of 

the hyperbolic rotation  R  of Figure 7.18. 

 Figure 7.21 displays an orbit of the hyperbolic glide-reflection  γ = τ + IO,5  

where  τ  is the horizontal shift  (x, y) → (x + 2, y). 
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Figure 7.21   A hyperbolic glide-reflection. 

 

 Since the proof of Theorem 6.4.2  is neutral, it follows that every hyperbolic rigid 

motion is the composition of no more than three hyperbolic reflections.  The group of all 

the rigid motions of the upper half-plane is one of the best studies structures of advanced 

mathematics.  It has also proved to be an indispensable tool in such diverse areas as 

geometry (of course), number theory, and analysis.  An elementary discussion of this 

topic and its surprising connection with complex numbers can be found in the author’s 

The Poincare′   Half-Plane: A Gateway to Modern Geometry. 

 Given a point  P  and a transformation  f,  the orbit of  P  generated by  f  is the 

sequence of points   P, f(P), f
2
(P), f

3
(P), … .  Thus, the sequences  P1, P2, P3, …  of 

Figures  7.18-21  are all orbits.  These orbits help visualize the action of the 

transformation that generated them.  It is clear that orbits of Euclidean translations are 

contained in straight lines whereas orbits of Euclidean rotations are circular in nature.  

Exercise 15 offers the reader the opportunity to explore the orbits generated by 

hyperbolic transformations. 

 

EXERCISES 7.3 
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1. Find a hyperbolic reflection that transforms the point  (1, 1)  to the point  (-3, 5). 

2. Find a hyperbolic reflection that transforms the point  (1, 1)  to the point  (-3, 1). 

3. Find a hyperbolic reflection that transforms the upper half of  x = 4  to the upper half of the circle  

(O; 4). 

4. Find a hyperbolic reflection that transforms the upper half of  x = 4  to the upper half of the circle  

(O; 2). 

5. Find a hyperbolic reflection that transforms the upper half of  x = 4  to the upper half of the circle  

(O; 5). 

6. Find a hyperbolic reflection that transforms the upper half of  x = 4  to the upper half of  x = 17. 

7. Find a hyperbolic reflection that transforms the upper half of  (O; 5)  to the upper half of  (O; 3). 

8. Find a hyperbolic reflection that transforms the upper half of  (O; 5)  to the upper half of   

 ((9, 0); 2). 

9. Prove that given any two points of the upper half plane, there is a hyperbolic reflection that 

transforms one onto the other. 

10. Prove that given any two intersecting geodesics of the upper half plane there is a hyperbolic 

reflection that transforms one onto the other. 

11. Prove that given any two non intersecting geodesics of the upper half plane there is a hyperbolic 

reflection that transforms one onto the other. 

12. Prove that in Figure 7.17  ∠ (g, m)  =  ∠ XOM. 

13(C). Write a script that will reflect any two points of the upper half-plane in any bowed geodesic.  Use 

the script of Exercise 1.2.17 to substantiate the claim that this transformation is indeed a 

hyperbolic rigid motion. 

14(C). Write a script that will reflect any triangle of the upper half-plane in any bowed geodesic. 

15(C). Let  P  an arbitrary point of the upper half-plane,  m  an arbitrary vertical straight line and   g  an 

arbitrary circle centered on the x-axis.  Write a script that takes  P, m, and  g  as its input and yields 
several iterations of the action of  ρm   

€ 

o  Ig  on  P.  Use this script to explore the following 

questions: 
 a)   When  m  and  g  intersect, what is the geometrical nature of the orbits of ρm   

€ 

o  Ig ? 

 b)   What does a hyperbolic circle look like to a Euclidean observer? 
 c)   When  m  and  g  do not intersect, what is the geometrical nature of the orbits of  ρm   

€ 

o  Ig?  To 

be specific, what is the nature of each orbit of ρm   

€ 

o  Ig   and how do these orbits relate to each 

other? 

16(C). Use a computer application to model non-Euclidean glide-reflections. 

17*(C). Use a computer application to explore the notion of a hyperbolic inversion. 
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1. Prove that if  f is any Euclidean rigid motion and  I  is any inversion, then  f   

€ 

o  I   

€ 

o  f
-1

  is also an 

inversion. 

2. Suppose  F  is any Euclidean rigid motion and  I  is any inversion.  Is  I   

€ 

o  f   

€ 

o I
-1

  necessarily a 

Euclidean rigid motion? 

3. Is the composition of two inversions ever an inversion? 

4. When is the composition of two inversions a Euclidean rigid motion? 

5. Are the following statements true or false?  Justify your answers. 

a) Every inversion is a rigid motion of Euclidean geometry. 

b) Some inversions are rigid motions of Euclidean geometry. 

c) Every inversion is a rigid motion of hyperbolic geometry. 

d) Some inversions are rigid motions of hyperbolic geometry. 

e) Every rigid motion of hyperbolic geometry is an inversion. 

f) Some rigid motions of hyperbolic geometry are inversions. 

g) Inversions transform circles into circles. 

h) Given a straight line, there exists no inversion that will transform it into another, distinct, 

straight line. 

i) Peaucellier’s cell was a notorious torture chamber in the Bastille. 

j) Given any two circles there exists either a Euclidean rigid motion or an inversion that 

transforms one into the other. 

 


