CHAPTER 7

Inversions

Transformations that are not rigid can be interesting too, even though they are not
as natural as the rigid motions of the previous chapter. The inversions of this chapter are
particularly appealing because they play important roles in both Euclidean and non-

Euclidean geometry.

1. Inversions as Transformations

Given a point C and a positive real number k, the inversion I~ is a transformation of

the plane that maps any point P # C of the plane into the point P' = I (P) such that

a) C, P' are collinear with C outside the segment PP,

and

b) CP-CP =K.

Figure 7.1 illustrates the action of a typical inversion.
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7.1 INVERSIONS AS TRANSFORMATIONS

It is clear that in general I-,(P) = P' if and only if I ,(P') = P and hence

2
Icx = 1d. Moreover, I~ ,(P)=P if and only if P is on the circle (C; k). Otherwise

the point

Figure 7.1 The inversion /-,

P is inside the circle (C; k) if and only P’ is outside it. If g = (C; k) the inversion

I will also be denoted by / e Note that /-, is undefined for C and only for C. The
point C is called the center of the inversion /. ,. Figure 7.2 displays the relation

between P and P' = ,(P) geometrically. The circle of this figure has radius k and

the lines SP’ and TP’ are tangent to it (see Exercise 8).

Figure 7.2

Any two points P, Q inside the circle (C; k) are transformed by the inversion

I~ into two points P', Q" such that
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7.1 INVERSIONS AS TRANSFORMATIONS

P'Q > PQ.

In fact, the closer P and Q are to the center C, the greater the discrepancy between
PQ and P'Q'. It follows that IC,k is not a rigid motion. Nevertheless, it does share
some of the properties of rigid motions. Rigid motions transform straight lines into
straight line (Proposition 6.1.2) and circles into circles (Exercise 6.1.2). Inversions, too,
transform straight lines and circles into straight lines and circles, although not necessarily
respectively: some straight lines are bent into circles and some circles are straightened

out. The next theorem describes these phenomena in detail.

THEOREM 7.1.1. The inversion Ic ;. maps

a) straight lines through C onto themselves,

b) straight lines not through C onto circles through C,

c) circles through C onto straight lines not through C,
d) circles not through C onto circles not through C.
PROOF:

a) This follows directly from the definition of inversions.

b) Let m be a straight line not through C, and let M be that point of m such

Figure 7.3
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7.1 INVERSIONS AS TRANSFORMATIONS

that CM L m (Figure 7.3) whereas P is an arbitrary point of m. Set

M = Ig (M) and P' = I (P).

2

Since CM -CM' = k= = CP -CP' itfollows that

CM’ CP’
CP = CM

Moreover, since Z PCM is common to both A CPM and A CM'P’, it follows from

Proposition 3.5.9 that these triangles are similar and consequently
LMPC = LPMC = 90°.

Since the points C and M’ are fixed (whereas P is arbitrary on m) it follows from

Exercise 4.2B.5 that P’ falls on the fixed circle with diameter CM'.
c) Let g be acircle through C,let CM' be a diameter of ¢, set M = I~ (M)

and let m be the line through M perpendicular to CM’ (Fig. 7.3). It follows from part

b above that IC,k(m) = g and hence
2
Ieia) = Icym) = m.
d) Let p be a circle not through C with P an arbitrary point on p. Let DE
be a diameter of p whose extension contains C, and suppose the given inversion I,

maps the points D, E, P onto the points D', E', P' (Figure 7.4). Since

CP-CP = CD-CD = CE-CE =k
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7.1 INVERSIONS AS TRANSFORMATIONS

Figure 74

it follows that

cw  cp CcE _cp
cp = cp ™ ¢cp =Cp o

Since £ DCP is commonto A DCP,A P'CD', A ECP,and A P'CE’ it follows that the

first two are similar to each other, as are the last two. Consequently,
L4 =/,2 and £5=1/L3
and
L1 =/4L2-L3=/,L4-L5=2L6=90".
Since D' and E' are fixed points it follows that P’ lies on the circle that has D'E’ as
its diameter (see Exercise 4.2B.5).

QED.

The following observations are implicit in the proof of the above theorem:
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7.1 INVERSIONS AS TRANSFORMATIONS

When the inversion IC . transforms a circle into a circle, their centers are

collinear with C. When the inversion transforms a straight line into a
circle, or vice versa, the line through C perpendicular to the straight line

contains the center of the circle.

EXAMPLE 7.1.2. Let I = I,,, where O denotes the origin and let m denote the

line y=-6 (Fig.7.5). By Theorem 7.1.1b, I(m) is acircle g that contains O and whose
center lies on the y-axis. Since I fixes the point (-6, 0), this point must lie on ¢g. It

follows that ¢ is the circle ((-3,0); 3).

[

(] )
m
-6

Figure 7.5

EXAMPLE 7.1.3. Let I = Ipe and let g = ((40); 1) (Fig. 7.6). It follows from

Theorem 7.1.1d that I(g) is also a circle, with center on the x-axis, which of necessity

contains the points

36 36
1((5,0)) = ((57),0) = (72,0) and I((3,0) = (37,0) = (12,0).

Consequently I(g) = ((9.6,0); 2.4).
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7.1 INVERSIONS AS TRANSFORMATIONS

I(q)

Figure 7.6

EXAMPLE 7.1.4. Identify the inversion Icy that maps the circle (O; 2) onto the

straight line x = 6.

By Theorem 7.1.1c, C must be either (2,0) or (-2,0) (Fig.7.7). Since C

y

2 6

(1
L

Figure 7.7

cannot lie between a point and its image, it follows that C = (-2,0). Finally, since [~

maps (2,0) onto (6,0) it follows that

k=2-(=2)]-[6-(-2)] = 4~2.

Another way in which inversions resemble rigid motions is that they too preserve
the measures of angles (see Exercise 6.1.8). Of course, since inversions bend straight
lines it is necessary to allow for non-rectilineal angles. As is customary in calculus, the
measure of the angle determined by two intersecting curves is defined to be the measure

of the angle between their respective tangents at that intersection.
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7.1 INVERSIONS AS TRANSFORMATIONS

PROPOSITION 7.1.5. Inversions preserve angles (but reverse their senses).
PROOF: Figure 7.8 describes how an inversion centered at C transforms the angle o

formed by the curves /4 and j into the angle o' formed by the image curves h' =

Ic(h) and j =1 c k7). Ttis clear that the sense of the angle is reversed by the inversion.

Figure 7.8

Since

a=/,1-22 and o =1L3-2L4,

it will suffice to prove the special case that £ 1=/ 3, or, that a = o in Figure 7.9.

However, the equation

CPCP = kX = CO-CQ

implies that

ACPQ ~ACQP
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7.1 INVERSIONS AS TRANSFORMATIONS

and hence

/L CQP = L CPQ.

Figure 7.9

Since the limiting values,as 8 — 0, of £Z CQ'P' and £ CPQ are 180° - & and
180° - « respectively, it follows that a = o'.

Q.ED.

Two intersecting circles are said to be orthogonal if their respective tangents at
the point of intersection are perpendicular to each other. However, by Proposition 4.1 .4,
the tangent line is perpendicular to the radius through the point of contact and hence it
follows that two intersecting circles are orthogonal if and only if their tangents at the
point of intersection pass through each other’s centers (see Fig. 7.10). In fact,
orthogonality is guaranteed by one of the tangents passing through the center of the other.

Exercise 3 relates orthogonality to inversions.
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7.1 INVERSIONS AS TRANSFORMATIONS

Figure 7.10 Two orthogonal circles with respective centers C and D.

A straight line is said to be orthogonal to a circle if it is perpendicular to the
tangents at the intersection points. This is equivalent to saying that the straight line

contains a diameter of the circle.

EXERCISES 7.1
1. If O denotes the origin, to what point or curve does the inversion [ 04 transform the sets below?
a) The point (3,0) b) The point (0, -2)
c) The point (2,2) d) The point (-1, 1)
e) The line y=-2x f) The line x+y = 4
2) The line x=4 h) The line y =-4
i) The line x =2 i) The line y =-8
k) The line y=x+38 1) The line y=-x+4
m) The line y=x-2 n) The line y=-x-8
0) The circle (O; 3) p) The circle (O; 8)
qQ) The circle ((3,0); 1) r) The circle ((3,0); 6)
S) The circle ((0, 8); 2) t) The circle ((0, 8); 4)
u) The circle ((0, 8); 6) V) The circle ((0, 8); 8)
W) The circle ((0, 8); 10) X) The circle ((4,4);4)
y) The circle ((5,5);5) Z) The circle ((5,5); \/2_6 )
2. For each of the following pairs of curves, decide whether there exists an inversion that transforms

one onto the other. Identify the inversion if it exists.
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7.1 INVERSIONS AS TRANSFORMATIONS

a) The x axis and the line y =2
b) The circle (O;5) and the line x=3
c) The circle (O;5) and the line x=15
d) The circle (O;5) and the line x =10
e) The circle (O;5) and the circle (O; 10)
f) The circle (O;5) and the circle ((5,0);5)
g) The circle (O;5) and the circle ((35,0); 30))
3. Let p beacircle C apoint and k a positive real number. Prove that [ C. «P)=p if and only if

the circles p and (C; k) are orthogonal.

4. Let I be an inversion and let p be a circle such that I(p) is also a circle. When do p and I(p)

have different radii?

5. Let p and g be two circles with different radii. Show that there is an inversion I such that I(p)
= q.
6. Let m be a straight line. Characterize all the circles p such that there exists an inversion [ for

which I(m) = p.

7. Let p be acircle. Characterize all the straight lines m such that there exists an inversion [ for

which I(p) = m.

8. Prove that if the radius of the circle of Figure 7.2 is k, then IC k( P)=P"
9(C).  Write a script that will take a circle (C; k) and a point P as input and yield /- ,(P) as output.

10(C). Use a computer application to verify the following parts of Theorem 7.1.1:

c) c

d) d.

7.2 Inversions to the Rescue

Inversions can be very useful in transforming problems about circles into simpler

problems about straight lines. Two examples of this procedure are offered.

EXAMPLE 7.2.1.

extensions of the diameters of p and ¢ through B intersect ¢ and p in the points C

<>
and D respectively. Show that the line AB contains a diameter of the circle that

circumscribes A BCD.

7.11
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D/

Figure 7.11

Let k be any real number and suppose the inversion [ = Iy, is applied to the
given configuration of circles so that A" = I[(A), C' = I(C), D' = I(D), p' = I(p), q' = I(q),
r' = I(r) (Fig.7.11). Since BC and BD are orthogonal to p and ¢ respectively, it
follows from Proposition 7.1.5 that BC' L p' and BD' L ¢'. The concurrence of the
three altitudes of the triangle (Exercise 4.2B.11) now implies that BA’" L r' and hence

BA contains a diameter of r.

Proposition 7.2.3 below was first proved by Ptolemy . It was an important tool in
his construction of the table of chords which appears in his definitive book on Greek

astronomy, the Almagest. The proof of the required lemma is relegated to Exercise 1.
LEMMA 7.2.2. Suppose P’ = Ic (P) and Q' =1c,(Q). Then

k*PQ

P/ "
Q CP-CQ
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7.2 INVERSIONS TO THE RESCUE

PROPOSITION 7.2.3. In a cyclic quadrilateral the product of the diagonals

equals the sum of the products of the two pairs of opposite sides.

B’ C D'

Figure 7.12

PROOF: Let ABCD be a cyclic quadrilateral inscribed in a circle of diameter k (Fig.

7.12). It follows from Theorem 7.1.1b that 1, , inverts this circle into a tangent line that
contains the points B' =1, (B), C' =1, ,(C), and D' =1, (D) . Since B'C' + C'D’" =
B'D' it follows from the lemma that

K'BC _ k’CD _ k’BD
AB-AC AC-AD AB-AD

or, upon multiplying this equation by (AB -AC - AD )/k2 ,

BC -AD + CD -AB = BD -AC.

QED.

In order to illustrate one more application of inversions we return to the issue of
constructibility. In elementary geometry classes it is customary to construct figures using

rulers and compasses. These two tools, however, are qualitatively different. The
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7.2 INVERSIONS TO THE RESCUE

compass generates a circle because of its mechanical properties whereas the ruler simply
allows us to copy a given straight line onto the paper. The circular analog of a ruler
would be a coin or the lid of a jar. What then is the linear analog of the compass? In
other words, what mechanical device, consisting of linked rods, would constrain a pencil
to move so as to draw a straight line? Such devices are called /inkages, the simplest one
being a single rod AB with fixed point A. It is clear that a pencil attached at B would
be constrained to draw a circle.

The utility of linkages in drawing curves has been studied for hundreds of years,
but the first one capable of drawing a straight line was invented in 1864 by A. Peaucellier
(1832 - 1913), who was an engineer in the French army. In his honor this device, which
contains 7 rods, is called Peaucellier’s cell. In 1874 Harry Hart (1848 - 1920)
invented a 5 rod linkage for drawing straight lines and it is unknown whether there are

any such linkages with fewer than 5 rods.

Figure 7.13 Peaucellier’s cell.

Peaucellier’s cell is depicted in Figure 7.13 where the points C and X are fixed,
XP = XC, and the solid lines XP, AP = PB = BP' = P'A and CA = CB denote rods that

are loosely linked at their endpoints. The dashed lines denote auxiliary lines that serve
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only for the purpose of demonstrating the properties of the linkage. Since APBP’ is a

rhombus we have

If £k =

CP-CP' = (CD-DP)CD +DP) = CD* - DP’

= (CD’ + DA%) - (DP* + DA®) = CA® + AP’

\ CA2 + AP2 then k is constant and we have

P' = I (P).

Since the rod XP constrains P to move in a circle ¢ that contains C, it follows from

Proposition 7.1.1c that P’ traces out a straight line m.

EXERCISES 7.2

7(C).

Prove Lemma 7.2.2.

Two circles p and g have a common tangent at a point 7, and a variable circle through T
intersects p and ¢ orthogonally in points P and Q. Prove that PXQ passes through a fixed
point.

Suppose ABCD is a cyclic quadrilateral. If T is the point of contact of a circle containing A
and B with another circle containing C and D, show that the locus of T is a circle.

Prove that if ABCD is a convex quadrilateral, then BC -AD + CD -AB = BD - AC. Show that
equality holds if and only if ABCD is cyclic.

Let p be a fixed circle and let P be a fixed point not on p. Prove that there exists a point P’
distinct from P such that every circle through P that is orthogonal to p also passes through P’.
Let p be a fixed circle and P a fixed point. Show that the locus of the centers of all the circles

that pass through P and are orthogonal to p is a straight line.

Use a computer application to verify Proposition 7.2.3.
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7.3 Inversions as Hyperbolic Rigid Motions

In addition to the role they play in Euclidean geometry, inversions also provide a
powerful tool for describing the rigid motions of non-Euclidean geometry in the context
of the upper half-plane model of Section 1.2. As was the case in that section, the
exposition here is informal and no proofs are given. Instead, several examples are
offered that are easily implemented on computers and substantiate the discussion.
Exercises 13-17 provide an opportunity for an exploration of the properties of the
hyperbolic rigid motions.

It was proven in Section 6.4 that every hyperbolic rigid motion can be expressed
as the composition of hyperbolic reflections. These hyperbolic reflections are now

described in the context of the upper half-plane geometry.

PROPOSITION 7.3.1. There are two kinds of reflections of the upper half-plane:
a) Euclidean reflections whose axes are vertical;

b) Inversions whose centers are on the x-axis.

[l

It stands to reason that Euclidean reflections with vertical axes should also double
as hyperbolic reflections. After all, the distortion of lengths that was used to create this
geometry depends only on the distances from the x-axis, and since these particular
reflections do not change these distances, it is not surprising that they constitute

hyperbolic
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7.3 INVERSIONS AS HYPERBOLIC RIGID MOTIONS

CH

Figure 7.14 Hyperbolic reflections.

rigid motions. Figure 7.14 illustrates the effect of the reflections of both types on a

triangle. Hyperbolic A A'B'C" is both the Euclidean and the hyperbolic reflection of A
ABC in the vertical geodesic m, and A A’B"C" = ¢(A ABC) is the hyperbolic

reflection of A ABC in the bowed geodesic g.
EXAMPLE 7.3.2. Find a hyperbolic reflection that transforms the point P(1, 1) to

the point Q(3,5) (Fig.7.15).

1
The line PO has equation y-1 = 5 (x-1) and intersects the x-axis at the

0(5,3)

P, 1)

Figure 7.15

point C(-1,0). Since

cP-co=N1+1P+1-02 NG+ 12 +G-0)
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7.3 INVERSIONS AS HYPERBOLIC RIGID MOTIONS

=5 V45 = 15

it follows that the inversion / cA15 is the required hyperbolic reflection.

EXAMPLE 7.3.3. Find a hyperbolic reflection that transforms the geodesic consisting
of the upper half of the circle ((4, 0); 2) onto the upper half of the straight line x = -3
(Figure 7.16).

Any inversion centered at (6, 0) will transform the given semicircle into a

vertical ray. Since (6 - 2)(6 - (-3)) = 36, it follows that the requisite hyperbolic

reflection is the inversion 1(6, 0).6 with fixed circle g.

-3 2 6

Figure 7.16 A hyperbolic reflection.

Inasmuch as the definition of a Euclidean rotation makes no reference to
parallelism or any of its consequences, it can also serve as the definition of a hyperbolic
rotation. Unfortunately, because of the distortion of distances in the upper half-plane this
definition is not very helpful in trying to visualize this non-Euclidean transformation.

However, Proposition 6.2.2, which states that the composition of two reflections with
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intersecting axes is a rotation about the point of intersection, is neutral, and so it applies

here as well. Hence, if [ o denotes the inversion whose fixed circle is g (Fig.7.17) and
B!

BN

C/

M o

Figure 7.17 Hyperbolic reflections.

we recall that o, is also a hyperbolic reflection, then p, + 1 p is a hyperbolic rotation

R about the point X. Note that

R(AABC) = p,, (I(AABC)) = p,(AAB'C') = AA’B"C”.

If ¢ = (0;3) and m isthe line x=-2, it follows from Exercisel2 that

)
L(g,m)= LXOM = cos (3) = 48.2°.

Consequently, R = Ry g 40 - Figure 7.18 illustrates a hyperbolic rotation R = Ry ¢go.
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o U

06 P. 5 P4

M

Figure 7.18 A hyperbolic rotation.

In this figure P, ,=R(P;) for i=1,2,..,5 and P, = R(P;). Obviously, these points
g i+1 i 1 6

all lie on a hyperbolic circle centered at Y. Exercise 15(C) examines this issue further.
The definition of a Euclidean translation does involve parallelism and is therefore
of no use in the hyperbolic context. Instead, motivated by Proposition 6.2.1, a hyperbolic
translation is defined as the composition of two hyperbolic reflections whose axes do not
intersect. If the axes of both the hyperbolic reflections are straight geodesics, then their

composition is a horizontal Euclidean translation. This is illustrated in Figure 7.19

where 7 = 0, P, and P,) =P for i=1,2,3,4.

i+1

Figure 7.19 Both a Euclidean and a hyperbolic translation.

7.20



7.3 INVERSIONS AS HYPERBOLIC RIGID MOTIONS

Such horizontal Euclidean translations constitute hyperbolic rigid motions for the same

reason that the Euclidean reflections p, and p, do. They do not alter the distances of

points from the x-axis.

Figure 7.20 illustrates the composition of hyperbolic reflections of mixed types

with non-intersecting axes. If 7= Ig + 0, then P, = 1P for i=1,2,3,4. Note

Figure 7.20 A hyperbolic translation.

that the orbit of this translation Tt does go out to hyperbolic infinity just as Euclidean
translations go out to Euclidean infinity. This stands in marked contrast with the orbit of

the hyperbolic rotation R of Figure 7.18.
Figure 7.21 displays an orbit of the hyperbolic glide-reflection y =7 + [

where 7 is the horizontal shift (x,y) = (x +2,y).
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7.3 INVERSIONS AS HYPERBOLIC RIGID MOTIONS

Figure 7.21 A hyperbolic glide-reflection.

Since the proof of Theorem 6.4.2 is neutral, it follows that every hyperbolic rigid
motion is the composition of no more than three hyperbolic reflections. The group of all
the rigid motions of the upper half-plane is one of the best studies structures of advanced
mathematics. It has also proved to be an indispensable tool in such diverse areas as
geometry (of course), number theory, and analysis. An elementary discussion of this
topic and its surprising connection with complex numbers can be found in the author’s
The Poincaré Half-Plane: A Gateway to Modern Geometry.

Given a point P and a transformation f, the orbit of P generated by f is the
sequence of points P, f(P),fZ(P),fS(P), .... Thus, the sequences Pq, Py, P3, ... of
Figures 7.18-21 are all orbits. These orbits help visualize the action of the
transformation that generated them. It is clear that orbits of Euclidean translations are
contained in straight lines whereas orbits of Euclidean rotations are circular in nature.
Exercise 15 offers the reader the opportunity to explore the orbits generated by

hyperbolic transformations.

EXERCISES 7.3
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10.

11.

12.

13(C).

14(C).
15(C).

16(C).

7.3 INVERSIONS AS HYPERBOLIC RIGID MOTIONS

Find a hyperbolic reflection that transforms the point (1, 1) to the point (-3, 5).

Find a hyperbolic reflection that transforms the point (1, 1) to the point (-3, 1).

Find a hyperbolic reflection that transforms the upper half of x =4 to the upper half of the circle
(0: 4).

Find a hyperbolic reflection that transforms the upper half of x =4 to the upper half of the circle
(0; 2).

Find a hyperbolic reflection that transforms the upper half of x =4 to the upper half of the circle
(0;)5).

Find a hyperbolic reflection that transforms the upper half of x =4 to the upper half of x =17.
Find a hyperbolic reflection that transforms the upper half of (O; 5) to the upper half of (O; 3).
Find a hyperbolic reflection that transforms the upper half of (O; 5) to the upper half of

((9,0); 2).

Prove that given any two points of the upper half plane, there is a hyperbolic reflection that
transforms one onto the other.

Prove that given any two intersecting geodesics of the upper half plane there is a hyperbolic
reflection that transforms one onto the other.

Prove that given any two non intersecting geodesics of the upper half plane there is a hyperbolic
reflection that transforms one onto the other.

Prove that in Figure 7.17 £ (g, m) = £ XOM.

Write a script that will reflect any two points of the upper half-plane in any bowed geodesic. Use
the script of Exercise 1.2.17 to substantiate the claim that this transformation is indeed a
hyperbolic rigid motion.

Write a script that will reflect any triangle of the upper half-plane in any bowed geodesic.

Let P an arbitrary point of the upper half-plane, m an arbitrary vertical straight line and g an
arbitrary circle centered on the x-axis. Write a script that takes P, m,and g as its input and yields

several iterations of the action of p, o Ig on P. Use this script to explore the following

questions:
a) When m and g intersect, what is the geometrical nature of the orbits of p, © Ig ?

b) What does a hyperbolic circle look like to a Euclidean observer?
¢) When m and g do not intersect, what is the geometrical nature of the orbits of p, o Ig? To

be specific, what is the nature of each orbit of p, © Ig and how do these orbits relate to each

other?

Use a computer application to model non-Euclidean glide-reflections.

17#(C). Use a computer application to explore the notion of a hyperbolic inversion.

7.23



CHAPTER REVIEW

CHAPTER REVIEW EXERCISES

-1
1. Prove that if fis any Euclidean rigid motion and [ is any inversion, then f o I o f is also an
inversion.
-1
2. Suppose F is any Euclidean rigid motion and [ is any inversion. Is I o f o [  necessarily a

Euclidean rigid motion?

3. Is the composition of two inversions ever an inversion?
4. When is the composition of two inversions a Euclidean rigid motion?
5. Are the following statements true or false? Justify your answers.
a) Every inversion is a rigid motion of Euclidean geometry.
b) Some inversions are rigid motions of Euclidean geometry.
c) Every inversion is a rigid motion of hyperbolic geometry.
d) Some inversions are rigid motions of hyperbolic geometry.
e) Every rigid motion of hyperbolic geometry is an inversion.
f) Some rigid motions of hyperbolic geometry are inversions.
2) Inversions transform circles into circles.
h) Given a straight line, there exists no inversion that will transform it into another, distinct,
straight line.
i) Peaucellier’s cell was a notorious torture chamber in the Bastille.
i) Given any two circles there exists either a Euclidean rigid motion or an inversion that

transforms one into the other.
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