
 6.1 

CHAPTER 6 
 
 

Planar Symmetries 
 
 

As has been mentioned before, one of the most serious deficiencies in Euclid’s axiomatic 

development of geometry was his failure to provide an explicit discussion of rigid 

motions, despite the fact that they play an important role in several of his proofs, 

beginning with that of Proposition 4 of Book I.  These transformations are not mentioned 

in Hilbert’s axiomatization either, where they are replaced by several congruence axioms.  

Other axiom systems, notably that of Mario Pieri (1860 - 1925), do refer to such motions 

explicitly.  The 19th century also witnessed the creation of many alternative geometries, 

each with its own collection, or group, of rigid motions.  This proliferation of geometries 

called for their classification and in 1872 Felix Klein (1849 - 1925)  promulgated his 

Erlanger Program  in which he suggested that they be classified by their groups of rigid 

motions. 

 This chapter is devoted primarily to the classification of the rigid motions of the 

Euclidean plane and the allied topic of planar symmetry. Some information is also 

obtained about the rigid motions of the hyperbolic plane. 
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1.  Translations, Rotations, and Fixed points 

 

Informally speaking, a rigid motion of the plane is a transformation that does not alter the 

distances between the points.  More formally, a rigid motion is a function  f  of the plane 

into itself such that for any two points  P  and  Q 

 

PQ  =  P′Q′ , 

 

where  P′ = f(P)  and  Q′ = f(Q).  The prototypical rigid motion is the translation that 

“slides” the plane on itself so that all straight lines remain parallel to their original 

positions.  More precisely, given any two points  A  and  B, the translation that carries  A  

onto  B   is denoted by  τAB  and if  P  is any point then 

 

τAB(P)  =  Q 

 

where  Q  is the unique point such that  AB = PQ,  AB || PQ,  and  the segments  AB  and  

PQ  are similarly directed.  If  P  does not lie on  AB  then this, by virtue of Proposition 

3.1.7,  is tantamount to saying that the quadrilateral  ABQP  is a parallelogram. In Figure 

6.1  τAB(Pi) = Qi  for all  i = 1, 2, 3, 4.  Note that in this figure  PiPj  is both parallel and 

equal to  QiQj  whenever  i =/   j and hence  τAB  is indeed a rigid motion. 
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Figure 6.1   A translation. 

 

 The same translation can be represented in many different ways.  Thus, the 
translation  τAB  of Figure 6.1  can also be denoted by  τP1Q1

, τP2Q2
, and so on.  Two 

rigid motions  f  and  g  are said to be equal provided that 

 

f(P)  =  g(P)   for all points  P  in the plane. 

 

In other words, if the rigid motion is visualized as a physical movement of the plane, then 

the intermediary stages of the motion are immaterial: all that matters are the final 

positions of the points.    

 This chapter’s goal is the classification of all the rigid motions of the plane and 

the most important tool in this text’s approach is the composition of rigid motions.  The 

reader is reminded that if  f  and  g  are functions of any set into itself, then their 

composition   g   

€ 

o f  is a function of the same set into itself such that 

 

g   

€ 

o f(P)  =  g(f(P)) . 

 

The identity transformation  Id  is defined by the equation 
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Id(P)  =  P for every point  P 

 

and has the property that for any rigid motion  f, 

 

f   

€ 

o Id  =  Id   

€ 

o f  =  f. 

 

 The operation of composition is associative in the sense that for any three such 

functions  f, g,  and  h, 

 

(f   

€ 

o g)   

€ 

o h  =   f   

€ 

o (g   

€ 

o h) .  

 

 We begin with the composition of translations. 

 

PROPOSITION 6.1.1.   If  A, B, C  are any points of the plane,  then 

 

τBC   

€ 

o τAB  =  τAC . 

 

PROOF:  Let  P  be any point of the plane and set (see Fig. 6.2)  

 

P′  =  τAB(P)  P′′  =  τBC(P′)  =  τBC   

€ 

o τAB(P) . 

 

It is necessary to show that  P′′ =  τAC(P) .  However, as was noted above,  ABP′P  and 
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Figure 6.2   The composition of translations. 

 

BCP′′P′  are both parallelograms.  It follows from Proposition 3.1.8 that  AP and BP′  are 

equal to and parallel to BP′  and  CP′′  respectively.  Hence,  by Proposition 3.1.7   

ACP′′P  is a parallelogram and so  P′′  =  τAC(P). 

           Q.E.D. 

 

 It follows from this proposition that the composition of any two translations is 

itself a translation.  For if  f  and  g  are any translations and  P  is any point, then we 

could set  P′ = f(P),  P′′ = g(P′)  and conclude that 

 

g   

€ 

o f  =  τP′P′′   

€ 

o τPP′  =  τPP′′ . 

 

 The inverse  f-1  of the rigid motion  f  is a rigid motion such that 

 

f   

€ 

o f
-1

  = f
-1

   

€ 

o  f  =  Id. 

 

It is clear that for any two points  A  and  B,  τ
-1
AB   =  τBA. 

 Another type of rigid motion is the rotation.  If  C  is any point of the plane and  α  

is some directed angle,  then the rotation  RC,α  is the rotation that moves the general 
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point  P  to the point   P′  =  RC,α(P)  where    CP′ = CP  and  ∠ P′CP = α  (Fig. 6.3).  

Exercise  

 

 
Figure 6.3   The rotation  RC,α 

 

1 calls for the formal proof of the rigidity of rotations.  The point  C  is the pivot point of 

the rotation  RC,α. The angle  α  of the rotation is understood to be oriented, in the sense 

that it can be either positive or negative, and the rotation accordingly proceeds either 

counterclockwise or clockwise.  Moreover, if  n  is any integer and  β = α + n⋅360o,  then  

Rc,β = Rc,α .  Consequently, in describing any rotation  Rc,α  the angle will generally be 

chosen so that  0 ≤ α < 360o.  Note that  R-1C,α  =  RC,-α . 

  The composition of the rotations  RC,α  and  RC,β  is clearly  RC,α+β , but what 

about the composition of  RC,α  with  RD,β  where  C  and  D  are distinct points?  In order 

to answer this natural question, it is first necessary to deal with the issue of identifying 

rigid motions in general.  The following sequence of propositions aims to answer the 

question of 

 

How much information is it necessary to have about a rigid motion before 

we can say that it is known? 

 

It will soon be seen that surprisingly little is needed. 
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PROPOSITION 6.1.2.   Every rigid motion transforms straight lines into straight 

lines. 

PROOF:   Let  f  be a rigid motion, let  m  be a straight line with two distinct points  A  

and  B  on it, and set  A′ = f(A)  and  B′ = f(B)  (Fig 6.4).  If  P  is any point of  m  

between  A   

 

Figure 6.4 

 

A′P + P′B′   =  AP  +  PB  =  AB  =  A′ B′. 

 

and  B,    and  P′ = f(P), then it follows from Proposition 2.3.25 that  P′  is on the line 

segment  A′B′.  A similar argument (Exercise 5) demonstrates that  as long as  P  is on  m  

then  P′  is  on the line  

€ 

↔
A'B'   even when  P  is not between  A  and  B. 

 Conversely,  let  P′  be any point of 

€ 

↔
A'B'  that lies on the line segment  A′Β′.  

Since  A′B′ = AB  there is a unique point  P  of  m  such that 

 

AP  =  A′P′   and   BP  =  B′P′. 

 

If  P′′ =  f(P),  then 

 

A′P′′  =  AP  =  A′P′    and    B′P′′  =  BP  =  B′P′ 
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so that  P′  and  P′′ = f(P)  must be identical.  The same holds even when  P′  is on 

€ 

↔
A'B'  

but not between  A′  and  B′.  This means that every point of 

€ 

↔
A'B' is covered by some 

point of  m.  In other words,  f(m) = 

€ 

↔
A'B'. 

           Q.E.D. 

 

PROPOSITION 6.1.3.   If two rigid motions agree on two distinct points then they 

agree at every point of the straight line joining them. 

PROOF:   Let  f  and  g  be two rigid motions and  A  and  B  two distinct points such that 

 

f(A)  =  g(A)  =  A′    and    f(B) = g(B)  =  B′. 

 

If  P  is any point of   AB, then, by Proposition  6.1.2,  f(P)  and  g(P)  are both points of 

A′B′  whose distances from  A′  and  B′  are respectively equal.  It follows that  f(P) = 

g(P).   

           Q.E.D. 

 

THEOREM 6.1.4.  If two rigid motions agree at three noncollinear points then they 

agree everywhere. 

PROOF:   Let  f  and  g  be two rigid motions that agree at the three noncollinear points  

A, B, C. By Proposition 6.1.3,  f  and  g  agree at every point on the straight lines  

€ 

↔
AB, 

€ 

↔
BC ,  and 

€ 

↔
AC .  If  P  is any point of the plane then there clearly exists a straight line 

through  P  that intersects the union of these three straight lines in some two distinct 

points  X  and  Y.  Since  f  and  g  agree at  X  and  Y,  it follows from Proposition 6.1.3 

that they must also agree at  P. 

           Q.E.D. 
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 Thus, in order to pin down a rigid transformation it suffices to know how it affects 

some triple of noncollinear points.   

 A fixed point of the transformation  f  is a point  P  such that 

 

f(P)  =  P . 

 

It is clear that the point  C  is a fixed point of the rotation  RC,α  and is in fact the only 

fixed point of that rotation.  It is equally clear that, with the exception of the identity, 

translations have no fixed points whatsoever.  On the other hand, every point is a fixed 

point of the identity.  The following corollary is an immediate consequence of Theorem 

6.1.4. 

 

COROLLARY 6.1.5.   If a rigid motion fixes three noncollinear points, then it must 

be the identity. 

           u 

 

EXERCISES 6.1 

 
1. Prove that every rotation is a rigid motion. 

2. Prove that every rigid motion transforms circles into circles. 
3. Prove that if  A, B, C  are any three points, then  τCA   

€ 

o  τBC   

€ 

o τAB  =  Id. 

4. Let  ΔABC  be a clockwise triangle with oriented interior angles  α, β, γ  at  A, B, C  respectively.  
Prove that  RC,2γ   

€ 

o  RB,2β   

€ 

o  RA,2α  =  Id. 

5. Complete the proof of Proposition 6.1.2 by providing the details for the case where  P  is on the 

infinite line  AB but outside the segment  AB. 
6. Let  A(a1, a2)  and  B(b1, b2)  be two points.  Explain why the transformation  f(P) = Q that takes 

the point  P(x, y)  to the point  Q(x′, y′)  where 

 
x′  =  x + b1 - a1 

y′  =  y + b2 - a2 
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 is in fact the translation  τAB. 

7. Let  α  be an angle.  Explain why the transformation  f(P) = Q  that maps the point  P(x, y)  to the 

point  Q(x′, y′)  where 

 

x′  =  x cos α - y sin α 

y′  =  x sin α + y cos α 

 
 is in fact the rotation  RO,α,  where  O  is the origin. 

8. Prove that rigid motions preserve angles.  In other words show that if  f  is a rigid motion and  m  

and  n  are straight lines that form an angle of measure  α,  then  f(m)  and  f(n)  are also straight 

lines that form an angle of measure  α. 

 

 

2. Reflections 
 

Given a straight line  m,  the reflection  ρm  is the transformation that fixes every point of  

m  and associates to each point  P  not on  m  the unique point  P′  such that  m  is the 

perpendicular bisector of  PP′ (see Fig. 6.5 and Exercise 28).  It follows directly from the 

definition that   ρm   

€ 

o ρm = Id  and hence  ρm−1 =  ρm.  This text’s classification of the  

 

 

Figure 6.5 

 

rigid motions is based on the fact that these reflections are the building blocks of all the 

rigid motions in the sense that every rigid motion can be expressed as the composition of 
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some reflections.  The next two propositions show that such is indeed the case for 

translations and rotations. 

 

PROPOSITION 6.2.1.  Let  m  and  n  be two parallel straight lines.  Let  AB  be a  

directed line segment that first intersects  m  and  then  n  and whose length is twice the 

distance between  A  and  B.  Then 

 

a) ρn   

€ 

o ρm  =  τAB , 

b) ρn   

€ 

o τAB  =  ρm , 

c) τAB   

€ 

o ρm  =  ρn . 

 

PROOF:   Let  P  be any point outside the infinite strip bounded by  m  and  n  such that 

the  

 

 

 

Figure 6.6 

 

distance from  P  to  m  is less than the distance between  m  and  n  (Fig. 6.6).  Set 

 

P′  =  ρm(P)    and    P′′  =  ρn(P′). 
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It is clear that  P, P′, and  P′′  are collinear and that    

 

PP′′  =  PP′ + P′P′′  =  2XP′ + 2P′Y  =  2XY 

 

=  twice the distance between  m  and  n. 

 

Hence 

 

   ρn+ ρm(P)  =  ρn(P′)  =  P′′  =  τPP”(P)    (1). 

 

Since it is easy to find three noncollinear positions of  P  that satisfy the constraints 

specified in the beginning of this proof, it follows that Equation  (1)  holds for three 

noncollinear points and hence, by Theorem 6.1.4,  ρm+ ρn = τPP” .  This completes the 

proof of part  a.  Parts  b  and  c  follow immediately, since 

 

ρn   

€ 

o τAB  =  ρn   

€ 

o (ρn   

€ 

o ρm)  =  (ρn   

€ 

o ρn)   

€ 

o ρm  =  Id   

€ 

o ρm  =  ρm , 

 

τAB   

€ 

o ρm  =  (ρn   

€ 

o ρm)   

€ 

o ρm  =  ρn   

€ 

o (ρm   

€ 

o ρm)  = ρn   

€ 

o Id  =  ρn .   

                    Q.E.D. 

 

 Conversely, given any translation  τAB,  there clearly exist two parallel straight 

lines that are perpendicular to  

€ 

↔
AB  and whose distance from each other equals half of  

AB.  By the above proposition,  either  τAB = ρm   

€ 

o  ρn  or  τAB = ρn   

€ 

o ρm    and in either 

case the arbitrary translation  τAB  has been expressed as the composition of two 

reflections.  This expression is, of course, not unique, since  m  can be any line that is 

perpendicular to   AB. 
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PROPOSITION 6.2.2.   Let  m  and  n  be two straight lines that intersect at a point  

A,  and let  α  be the counterclockwise angle from  m  to  n  at  A.  Then 

 

ρn   

€ 

o ρm  =  RA,2α . 

 

PROOF:    Let  P  be a point outside ∠ BAC = α (Fig. 6.7) but close enough to  m  so that  

P′ = ρm(P)  is inside the angle.  Set  P′′ = ρn(P′) = ρn   

€ 

o ρm(P).  Then  m  bisects  ∠ PAP′ 

and  n  bisects  ∠ P′AP′′.  Consequently, 

 

∠PAP′′  =  2 ∠ BAP′  +  2 ∠ P′AC  =  2α . 

 

Hence   

 

    RA,2α(P)  =  P′′  =  ρn   

€ 

o ρm(P)   (2).   

 

Since it is easy to find three noncollinear positions of  P  that satisfy the constraints 

specified in the beginning of this proof, it follows that Equation (2)  holds for three 

noncollinear points and hence, by Theorem 6.1.4,  ρn   

€ 

o ρm = RΑ,2α . 

           Q.E.D. 
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Figure 6.7  

 

 It was noted above that the composition of rotations that share their pivot points is 

a rotation about the same point but that the nature of the composition of rotations with 

distinct pivot points was unclear.  We are now ready to dispose of this and other similar 

issues. 

 

PROPOSITION 6.2.3.   Let  A  and  B  be two points and let  α  and  β  be two 

oriented angles.  Then the composition  RB,β    

€ 

o RA,α  is 

a) a translation if  α + β  is a multiple of  360o, 

b) a rotation  R⋅,α+β  if  α + β  is not a multiple of  360o. 

PROOF:  This is obvious if  A  and  B  are identical points as well as when either  α  or  β  

is zero.  It is therefore assumed that   A  and  B  are distinct, and neither  α  nor  β  is zero. 

Let  m =

€ 

↔
AB,  let  k  be the line through  A  such that the oriented angle from  k  to  m  is  

α/2,  let  n  be the line through  B  such that the oriented angle from  m to  n  is  β/2 (Fig. 

6.8).  Then, by the above proposition, 

 

 RB,β    

€ 

o RA,α  =  (ρn   

€ 

o ρm)   

€ 

o (ρm   

€ 

o ρk)  =  ρn   

€ 

o (ρm   

€ 

o ρm)   

€ 

o ρk  =  ρn   

€ 

o ρk  . 
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which is either a translation or a rotation, depending on whether the lines  k  and  n  are 

parallel or not.  However, these lines are parallel if and only if  α/2 + β/2  is a multiple of  

180o  which is of course equivalent  to  α + β  being a multiple of  360o.  Hence, by 

Proposition 6.2.1, the composition is a translation if  α + β  is a multiple of  360o.  When  

α + β  is not such a multiple, then, by Proposition 6.2.2, the composition is the rotation  

RX,α+β. 

           Q.E.D. 

 

 
 

Figure 6.8 

 

EXAMPLE 6.2.4.  Given any two points  A  and  B,  identify  RB,60o   

€ 

o  RA,60o.   

 It follows from Proposition 6.2.3  that this composition is a rotation RC,120o .  The 

pivot point  C  is located as follows:  Set (see Fig. 6.9) 

 

A′  =  RC,120o(A)  =  RB,60o   

€ 

o RA,60o(A)  =  RB,60o(A) . 

 

Then  C  is that unique point such that  Δ ACA′  is isosceles with vertex angle  ∠ ACA′ = 

120ο.  In other words,  C  is the center of the equilateral   Δ AA′B. 
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Figure 6.9 

 

PROPOSITION 6.2.5.   Let   R  be a rotation which is not the identity and let  τ  be 

a translation.  Then  both  R + τ  and  τ + R  are rotations with the same angle as  R. 

PROOF:   Suppose  R = RA,α ,  A′ = τ(A)  and let  B  be the midpoint of the segment  AA′ 

(Figure 6.10).  Let  k  and  m  be the lines through  B  and  A  respectively, that are  

   

 

Figure 6.10 

 

perpendicular to  AA′,  and let  n  be the line through  A  such that the oriented angle from  

n  to  m  is equal to  α/2.  Then   

 

τ   

€ 

o R  =  (ρk   

€ 

o ρm)   

€ 

o (ρm   

€ 

o ρn)  =  ρk   

€ 

o (ρm   

€ 

o ρm)   

€ 

o ρn  =  ρk   

€ 

o ρn ,  
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which is a rotation by angle  α  because  k  and  n,  when extended, intersect in an angle 

of  α/2. 

 The proof that  R + τ  is also a rotation is relegated to Exercise 25. 

           Q.E.D. 

 

EXAMPLE 6.2.6.   For the two given points  A  and  B of Figure 6.11  identify both  

τAB   

€ 

o RA,90o  and  RA,90o   

€ 

o τAB. 

 

Figure 6.11 

 

By Proposition 6.2.5  τAB   

€ 

o RA,90o  is a  90o  rotation such that    

 

τAB   

€ 

o RA,90o(A)  =  τAB(A) = B . 

 

It follows that the pivot point of  τAB   

€ 

o RA,90o  is that point  X  such that  Δ ABX  is an 

isosceles right triangle.  In other words,  τAB   

€ 

o RA,90o = RX,90o .  Similarly,  RA,90o   

€ 

o τAB  

is a  90o  rotation such that 

 

RA,90o   

€ 

o τAB(A)  =  RA,90o(B)  =  A′ . 

 

It follows that the pivot point of  RA,90o   

€ 

o τAB  is the point  Y  where  Δ AA′Y  is an 

isosceles right triangle.  In other words,  RA,90o   

€ 

o τAB = RY,90o.  Note that the two 
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compositions  τAB   

€ 

o RA,90o  and  RA,90o   

€ 

o τAB  are not equal.  In general, rigid motions do 

not commute. 

 

EXERCISES 6.2 

 
Identify the compositions of Exercises 1-18, where  ABCD is the square of Figure 6.12. 
1. RA,90o   

€ 

o  RB,90o  2. RB,90o   

€ 

o  RA,90o  3. RC,180o   

€ 

o  RA,90o 

4. RA,90o   

€ 

o  τBC  5. RA,90o   

€ 

o  τCA  6. τCA   

€ 

o RA,90o 

7. τBC   

€ 

o τBA  8. τBC   

€ 

o τAD  9. τDA   

€ 

o τBC 

10 RA,270o   

€ 

o RC,90o  11. RA,180o   

€ 

o RD,180o 12. RA,45o   

€ 

o  RC,135o 

13. RA,45o   

€ 

o  RB,45o  14. RA,60o   

€ 

o  RB,120o  15. RD,120o   

€ 

o  RC,120o 

16. RA,90o   

€ 

o  RB,30o  17. τAB   

€ 

o RA,60o  18. RB,60o   

€ 

o  τAB 

 
 

 

Figure 6.12 
 

19. Let  ΔABC  be a clockwise triangle with oriented interior angles  α, β, γ  at  A, B, C  respectively.  
Use Proposition 6.2.2 to prove that  RC,2γ   

€ 

o  RB,2β   

€ 

o  RA,2α  =  Id. 

20. Let  A1, A2, ... , An  be the clockwise successive vertices of a polygon with  n  sides.  If the interior 
angle at  Ai  is  αi,  Identify the composition  RA

n
,2α

n
o ... o RA

2
,2α

2
o RA

1
,2α

1
. 

21. Let  A1, A2, ..., An  be the midpoints of the successive sides of a polygon with  n sides.  Identify the 
composition   RA

n
,π o ... o RA

2
,π o RA

1
,π   if      

 a) n = 3     b)  n = 4  c)   n  is an arbitrary positive integer. 
22. Let  n  be an even integer and let  A1, A2, ..., An  be the successive vertices of a regular n-sided 

polygon, and let  mi  be the bisector of the interior angle at  Ai.  Identify the composition  ρm
n

o ...  o 

ρm
2
 o ρm

1
. 

23. Let  P  be any point on the straight line  m  and let  θ  be any angle.  Prove that both  RP,θ   

€ 

o  ρm  

and  ρm   

€ 

o  RP,θ  are  reflections.  What are their axes? 

24. Prove that if  P  is a point on the straight line  m  then  ρm   

€ 

o  RP,θ   

€ 

o ρm  =  RP,-θ .  
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25. Complete the proof of Proposition 6.2.5 by showing that  R + τ  is also a rotation with the same 

angle as  α. 
26. Let  ABCD  be a cyclic quadrilateral.  Identify the composition  ρDA   

€ 

o  ρCD   

€ 

o  ρBC   

€ 

o ρAB . 

27. Let  α  be an angle and let  m  be the straight line through the origin with inclination  α  to the 

positive  x  axis.  Explain why the transformation  f(P) = Q  that maps the point  P(x, y)  to the 

point  Q(x′, y′),  where 

 

x′  =  x cos 2α + y sin 2α 

y′  =  x sin 2α - y cos 2α 

 
 is in fact the reflection  ρm. 

28. Prove that every reflection is a rigid motion. 

 

 

3. Glide-reflections 

 

So far reflections have been used merely in order to explain how translations and 

rotations interact under compositions.  We now examine how these two types interact 

with reflections.  A special case of this issue was resolved by parts  b  and  c  of 

Proposition 6.2.1 wherein it was proved that the composition of a reflection with a 

translation whose direction is perpendicular to the direction of the translation is another 

reflection with an axis parallel to that of the given reflection.  The composition of a 

reflection with a rotation whose pivot point lies on the reflection’s axis is also a reflection 

(Exercise 6.2.23).  However, in general, the composition of either a translation or a 

rotation with a reflection forms a new kind of rigid motion. 

 Let  A  and  B  be two distinct points.  The composition  ρAB   

€ 

o τAB  is called a 

glide-reflection  and is denoted by  γAB.  It is easily seen that the reverse composition  

τAB   

€ 

o ρAB  also equals  γAB  and that the inverse of  γAB  is  γBA (Fig. 6.13).  In order to 

simplify the statements of some of the subsequent propositions, reflections will be 

considered as special cases of glide-reflections.  The line  

€ 

↔
AB  is called the axis of the 
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glide-reflection  γAB,  and it is easily seen that for any point  P  not on the axis  A,  the 

line segment joining  P  to  γAB(P)  is bisected by 

€ 

↔
AB (see Fig. 6.13 and Exercise 25). 

 

 

Figure 6.13 

 

PROPOSITION 6.3.1.   Let  τ  be any translation and  γ  any glide-reflection.  Then   

γ   

€ 

o τ  and  τ   

€ 

o γ  are both glide-reflections.   

PROOF:  Suppose  τ = τAB.   

 If  γ = ρAB ,  then clearly  γ   

€ 

o τ  =  τ   

€ 

o γ  =  γAB . 

 If  γ  =  ρm  where  m || AB  then there exist points  A′, B′  on  m  such that  τ  =  

τAB  =  τA′B′.  Consequently, by the previous argument,   

 

γ   

€ 

o τ  =  ρA′B′   

€ 

o τA′B′  =  γA′B′ =  τA′B′   

€ 

o ρA′B′  =  τ   

€ 

o γ. 

 

 If  γ  =  ρm  where  m ⊥ AB, then this proposition follows from Proposition 

6.2.1bc.   

 If  γ  =  ρm  where  m  is skew to  AB,  let  C  be a point such that  AC || m  and   
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Figure 6.14 

 

BC ⊥ m (Fig. 6.14).  By Proposition 6.1.1, 

 

γ   

€ 

o τ  =  ρm   

€ 

o τAB  =  ρm   

€ 

o (τCB   

€ 

o τAC)  =  (ρm   

€ 

o τCB)   

€ 

o τAC  . 

 

By Proposition 6.2.1b, there is a line  n  ⊥ BC  such that  ρm   

€ 

o τCB  =  ρn , and hence 

 

γ   

€ 

o τ  =  ρn   

€ 

o τAC, 

 

which, since n || AC,  is known to be a glide-reflection.  The proof that  τ   

€ 

o γ  is also a 

glide reflection is relegated to Exercise 23.   

 Finally, let  γ  be an arbitrary glide-reflection.  If  γ  =  γCD  =  ρCD   

€ 

o τCD  then, 

by Proposition 6.1.1, 

 

γ    

€ 

o τ  =  (ρCD   

€ 

o τCD)   

€ 

o τAB  =  ρCD   

€ 

o (τCD   

€ 

o τAB)  =  ρCD   

€ 

o τ 

 

for some translation  τ.  This, however, is known to be a glide-reflection.  The proof that   

τ   

€ 

o γ  is also a glide-reflection is relegated to Exercise 23. 

           Q.E.D. 

 

EXAMPLE 6.3.2.   Identify the compositions  γAD   

€ 

o τAB  and  τAB   

€ 

o γAD  where  

ABCD  is the square of Figure 6.15. 
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Figure 6.15 

 

By the previous proposition, these compositions are both glide-reflections.  Moreover, 

since   

 

γAD   

€ 

o τAB(A)  =  γAD(B)  =  B′ 

 

it follows that the axis of  γAD + τAB  must contain the midpoint  M  of the segment  AB′.  

In addition, 

 

γAD   

€ 

o τAB(M)  =  γAD(P)  =  P′. 

 

It follows that  MP’  is the axis of  γAD   

€ 

o τAB  and in fact  γAD  

€ 

o τAB = γMP′. 

 Again,  

 

τAB   

€ 

o γAD(A)  =  τAB(D)  =  C 

 

and hence the axis of  τAB   

€ 

o γAD  contains the midpoint  P  of  AC.  In addition, 

 

τAB   

€ 

o γAD(P)  =  τAB(P′)  =  Q 

 

and hence  τAB   

€ 

o γAD  =  γPQ. 
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PROPOSITION 6.3.3.   Let  R  be any rotation and  γ  any glide-reflection.  Then 

both  γ   

€ 

o R  and  R   

€ 

o γ  are glide-reflections. 

PROOF:  Let  R  =  RA,α  and suppose first that  γ  =  ρk.  Let  m be the straight line 

through  A  that is parallel to  k, and let  n  be the straight line through  A  such that the 

oriented angle from  n  to  m  is  α/2 (Figure 6.16).  Then 

 

 

Figure 6.16 

 

γ   

€ 

o R  =  ρk   

€ 

o RA,α  =  ρk   

€ 

o (ρm   

€ 

o ρn)  =  (ρk   

€ 

o ρm)   

€ 

o ρn . 

 

Since  k || m  it follows from Proposition 6.2.1 that  ρk   

€ 

o ρm  is a translation and hence, by 

Proposition 6.3.1,   γ   

€ 

o R  =  (ρk   

€ 

o ρm)   

€ 

o ρn  is a glide-reflection. 

 If  γ   is the arbitrary glide-reflection τCD   

€ 

o ρCD  then   

 

γ   

€ 

o R  =  (τCD   

€ 

o ρCD)   

€ 

o RA,α  =  τCD   

€ 

o (ρCD   

€ 

o RA,α) . 

 

By the first part of the proof  ρCD   

€ 

o RA,α  is a glide-reflection and hence it follows from 

Proposition 6.3.1   that  γ   

€ 

o R  =  τCD   

€ 

o (ρCD   

€ 

o RA,α)   is also a glide-reflection. 

 The proof that  R   

€ 

o γ  is a glide reflection is relegated to Exercise 24. 

           Q.E.D. 

 

EXAMPLE 6.3.4.    Identify the composition  γAD   

€ 

o RA,90o  and  RA,90o   

€ 

o γAD  where  

ABCD  is the square of Figure 6.17. 
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Figure 6.17 

 

 By the previous proposition, both of these compositions are glide-reflections.  

Moreover, 

 

γAD   

€ 

o RA,90o(A)  =  γAD(A)  =  D 

 

so that the axis of this composition contains the midpoint  X  of  AD.  Since   

 

γAD   

€ 

o RA,90o(X)  =  γAD(X′)  =  Y , 

 

it follows that  γAD   

€ 

o RA,90o  =  γXY.  Similarly, 

 

RA,90o   

€ 

o γAD (A)  =  RA,90o(D)  =  Z 

 

so that the axis of this composition contains the midpoint  X′  of  AZ.  Since 

 

RA,90o   

€ 

o γAD (X′)  =  RA,90o(Y)  =  W , 

 

it follows that  RA,90o   

€ 

o γAD  =  γX′W . 
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PROPOSITION 6.3.5.   Let  γAB  and  γCD  be two glide-reflections.  The 

composition   γAB   

€ 

o γCD  is  

a) a translation if  AB || CD 

b) a rotation of angle 2α otherwise, where  α  is the oriented angle from  CD  to 

  AB. 

PROOF:  Note that 
 

γAB   

€ 

o γCD  =  (τAB   

€ 

o ρAB)   

€ 

o (ρCD   

€ 

o τCD)  =  τAB   

€ 

o (ρAB   

€ 

o ρCD)   

€ 

o τCD  

 

 =  τAB   

€ 

o f   

€ 

o τCD 

 

where, by Propositions 6.2.1-2,  f  is a translation if  AB || CD  and a rotation by angle  2α 

otherwise.  The desired results now follow from Proposition 6.1.1 in the first case and 

from Proposition 6.2.5 in the second case. 

           Q.E.D. 

 

EXAMPLE 6.3.6.   Identify the compositions  γAD   

€ 

o γAB  and  γAB   

€ 

o γCD  where  

ABCD  is the square of Figure 6.18. 

 

 

Figure 6.18 

 

By Proposition 6.3.5b,  γAD   

€ 

o γAB  is a  180o  rotation.  Since 
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γAD   

€ 

o γAB(A)  =  γAD(B)  =  B′ 

 

it follows that the pivot point of this rotation is the midpoint  M  of  AB′.  Hence  γAD 

  

€ 

oγAB  =  RM,180o.  By Proposition 6.3.5a,  γAB   

€ 

o γCD  is a translation.  Since 

 

γAB   

€ 

o γCD(C)  =  γAB(D)  =  D′ , 

 

it follows that  γAB   

€ 

o γCD  =  τCD′ . 

 

EXERCISES 6.3 

 
Identify the compositions of Exercises 1-18, where  ABCD  is the square of Figure 6.12. 
1. RD,90o   

€ 

o  γDC  2. γDC   

€ 

o RD,90o  3. RP,180o   

€ 

o γAB 

4. γAB   

€ 

o  RP,180o  5. τAB   

€ 

o γDC  6. γCD   

€ 

o τAB 

7. τAB   

€ 

o γBC  8. γBC   

€ 

o  τBA  9. γAD   

€ 

o γBC 

10. γAD   

€ 

o γCB  11. γBA   

€ 

o  γBC  12. γCB   

€ 

o  γBA 

13. γAC   

€ 

o  γBD  14. ρAD   

€ 

o  τAB  15. ρAD  

€ 

o RC,90o  

16. γCD   

€ 

o s γBC   

€ 

o γAB 17. γCD   

€ 

o τBC   

€ 

o γAB  18. τCD   

€ 

o γBC   

€ 

o τAB 

19. If  k, m, n  are the perpendicular bisectors of the sides  AB, BC, CA  of  Δ ABC  respectively, show 
that ρk   

€ 

o ρm   

€ 

o ρn  is a reflection.  What is the axis of this reflection? 

20. Let  A  and  B  be any two distinct points.  Prove that the composition  RB,180o   

€ 

o  ρAB   

€ 

o RA,180o   

is a glide-reflection and find its axis. 

21. Show that the composition of the reflections in the three angle bisectors of a triangle is a reflection 

whose axis is perpendicular to one of the triangle’s sides. 
22. Let  n  be an odd integer and let  A1, A2, ..., An  be the successive vertices of a regular n-sided 

polygon, and let  mi  be the bisector of the interior angle at  Ai.  Identify the composition  ρm
n

o ...  o 

ρm
2
 o ρm

1
. 

23. Complete the proof of Proposition 6.3.1.  

24. Complete the proof of Proposition 6.3.3. 
25. Prove that if  γAB  is a glide-reflection and  γAB(P) = P′,  then the axis  AB  contains the midpoint 

of  PP′.  
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26. Show that   ρk   

€ 

o ρm   

€ 

o  ρn  =  ρn   

€ 

o ρm   

€ 

o  ρk   whenever the lines  k, m, n  are either concurrent or 

 parallel. 

27. Show that the composition of an even number of glide-reflections is either a rotation or a 

 translation. 

28. Show that the composition of an odd number of glide-reflections is a glide reflection. 

 

 

4.  The Main Theorems 

 

 Enough tools are now available to demonstrate that there are no Euclidean rigid 

motions above and beyond those described above. 

 

PROPOSITION 6.4.1.   Suppose  Δ ABC ≅ Δ DEF.  Then there exists a sequence of 

no more than three reflections such that the composition of these reflections maps the 

points  A, B, C  onto the points  D, E, F  respectively. 

PROOF:  Suppose the two given triangles are identical, then the composition of two 

identical reflections will clearly accomplish the required task. 

 If the two triangles share exactly two vertices,  then it may be assumed that their 

relative position is described by Figure 6.19.  In that case  ρAB  itself constitutes the  

 

 

Figure 6.19 

 

required sequence of reflections.   
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 If the two triangles share exactly one vertex, say  A = D, let  M  be the midpoint 

of the segment  BE.  Then the reflection  ρAM  transforms  Δ ABC  into  Δ DEF′   that 

shares at least two vertices with  Δ DEF.  It follows from the previous argument that at 

most one more reflection will be required to transform  Δ DEF′  into  Δ DEF. 

 Finally, if the two triangles share no vertices, let  M  be the midpoint of the 

segment  AD.  The reflection  ρm  then transforms  Δ ABC into  Δ DE′F′  that shares at 

least one vertex with  Δ DEF.  By the above argument at most two more reflections will 

transform  Δ DE′F′  into  Δ DEF.  It follows that at most three reflections are required to 

transform  Δ ABC  into  Δ DEF. 

           Q.E.D. 

 

 The following is this chapter’s main theorem. 

 

THEOREM 6.4.2.   Every rigid motion is the composition of at most three 

reflections. 

PROOF:  Let  f  be a rigid motion,  let  A, B, C  be three noncollinear points, and set  A′ = 

f(A), B′ = f(B), C′ = f(C).  Since  Δ ABC ≅ Δ A′B′C′ , it follows from Proposition 6.4.1  

that there exist at most three reflections whose composition, say  g,  also transforms  A, B, 

C  onto  A′, B′, C′, respectively.  It follows from Theorem 6.1.4 that  f = g. 

           Q.E.D. 

 

 The following classification theorem is a consequence of the above. 

 

THEOREM 6.4.3.   Every rigid motion is either a translation, a rotation, or a glide-

reflection. 

PROOF:  The composition of no reflections is the identity which can be viewed is either 

a rotation  RA,0o  or a translation  τAA .  The composition of one reflection is a glide-
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reflection.  The composition of two reflections is, by Propositions 6.2.1-2, either a 

translation or a rotation.  It follows that the composition of three reflections is also the 

composition of a reflection with either a translation or a rotation, which, by Propositions 

6.3.1 and 6.3.3, is a glide-reflection. 

           Q.E.D. 

 
EXAMPLE 6.4.4   Let  f  and  g  be two rigid motions.  Prove that  g  is a reflection if 

and only if  f   

€ 

o  g   

€ 

o f-1  is a reflection. 

 Suppose first that  g  is a reflection.  By Theorem 6.4.3  f  is either a translation, a 

rotation, or a glide-reflection.  In the first two cases it follows from Proposition 6.3.1 and 

6.3.3 that  f   

€ 

o  g   

€ 

o  f-1  is also a glide-reflection.  The same conclusion can be drawn in the 

third case, if  f  is a glide-reflection, but this time Proposition 6.3.5  is also needed.  In 

order to show that  f   

€ 

o  g   

€ 

o  f-1  is a reflection it suffices to show that it has a fixed point.  

Let  P  be any fixed point of the reflection  g  and set  P′ = f(P).  Then 

 

f   

€ 

o  g   

€ 

o  f-1(P′)  = f   

€ 

o  g   

€ 

o  f-1   

€ 

o (f(P))  = f   

€ 

o  g(P)  =  f(P)  =  P′, 

 

so that  P′  is the requisite fixed point of  f   

€ 

o  g   

€ 

o  f-1. 

 Conversely, suppose  f   

€ 

o g   

€ 

o  f-1  is a reflection.  It then follows from the above 

that  g  is also a reflection because 

 

f-1   

€ 

o  (f   

€ 

o  g   

€ 

o  f-1)   

€ 

o  (f-1)-1  = f-1   

€ 

o  f   

€ 

o  g   

€ 

o  f-1   

€ 

o  f  =  g . 

 

 In conclusion we point out that the definitions of rotations and reflections as well 

as the proofs of Propositions 6.1.4, 6.4.1-2 are all neutral and hence they also hold for the 

hyperbolic plane.  In particular, Every rigid motion of the hyperbolic plane is the 

composition of at most three hyperbolic reflections.  These hyperbolic reflections will be 

described in the next chapter. 
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EXERCISES 6.4 

 
In the exercises below,  f   and  g  denote two rigid motions. 

1. Prove that  g  is a glide-reflection if and only if  f   

€ 

o   g   

€ 

o  f-1  is a glide-reflection. 

2. Prove that  g  is a rotation if and only if  f   

€ 

o  g   

€ 

o   f-1  is a rotation. 

3. Prove that  g  is a translation if and only if  f   

€ 

o   g   

€ 

o  f-1  is a translation. 

4. Is it true that  g  is a reflection if and only if  f   

€ 

o  g   

€ 

o  f-1  is a reflection?  Justify your answer. 

5. Prove that  f   

€ 

o  g  is a glide-reflection if and only if g   

€ 

o   f  is a glide-reflection. 

6. Prove that  f   

€ 

o  g  is a rotation if and only if g   

€ 

o  f  is a rotation. 

7. Prove that  f   

€ 

o  g  is a translation if and only if g   

€ 

o   f  is a translation. 

8. Is it true that f   

€ 

o   g  is a reflection if and only if g   

€ 

o   f  is a reflection?  Justify your answer? 

9. Is it true that f   

€ 

o  g  is a translation if and only if both  f  and  g  are translations?  Justify your 

answer. 

10. Is it true that f   

€ 

o   g  is a rotation if and only if both  f  and  g  are rotations?  Justify your answer. 

11. Is it true that f   

€ 

o  g  is a reflection if and only if both f and g  are reflections?  Justify your answer. 

 
 

5.  Symmetries of Polygons 
 

 

A (mathematical) symmetry of a figure  Φ  is a rigid motion  f  such that   

 

     f(Φ)    =    Φ . 

 

Thus, the square of Figure 6.20 possesses the symmetries  ρd, ρe, ρm, and  ρn. 
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Figure 6.20  Some symmetries of the square. 

 

This is the mathematical formalization of the more intuitive observation that the square is 

symmetrical about its diagonals and about the lines joining the midpoints of its opposite 

sides.  However, the mathematical definition of symmetry is broader than the common 

usage of the term.  If  C  denotes the geometrical center of the square then the rotations  

RC,90o,  RC,180o,  RC,270o  (see Fig. 6.21) all rotate the square back onto itself and so they 

too constitute mathematical symmetries, even though they wouldn't be recognized as 

symmetries by the proverbial person in the street.  The identity rigid motion  Id  is 

another  

 

 

Figure 6.21  More symmetries of the square. 

 

such symmetry.  The set of all the symmetries of a figure is called its symmetry group or 

just group.  Thus, the symmetry group of the square is 

 

   {Id, ρd, ρe, ρm, ρn ,RC,90o,  RC,180o,  RC,270o}  

 

By definition, every plane figure  Φ   has a symmetry group that contains at least the 

identity motion  Id.  The isosceles triangle of Figure 6.22 has  {Id, ρv}  as its symmetry 

group whereas that of the equilateral triangle of Figure 6.23 is  {Id, ρd, ρe, ρf, RC,120o, 

RC,240o}. 
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 Figure 6.22 The symmetries of an   Figure 6.23  The reflections of  
      isosceles triangle.    an equilateral triangle.  

 

 While figures of finite extent cannot have either translations or glide-reflections 

as their symmetries, infinitely extended figures do admit such symmetries and a variety 

of interesting examples will be discussed in the next two sections.  This section, however, 

is concerned with finite figures only and for the symmetries of such polygons there is a 

useful algebraic description that is obtained by restricting attention to the action of the 

symmetry on the polygon's vertices.  This action is described by means of the positions 

occupied by the vertices.  Thus, if the positions occupied by the four vertices of the 

square are labeled 1, 2, 3, 4  respectively (Fig. 6.24), then any symmetry  f  of the square  

can be thought of as a  

 

 

Figure 6.24  The symmetries of the square. 

 

function 

f: {1, 2, 3, 4} → {1, 2, 3, 4} 
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where, for each  i = 1, 2, 3, 4,    f(i)  denotes the new position of the vertex that was, prior 

to the execution of  f,  in position  i.  Accordingly (see Appendix F),  the eight 

symmetries of the square have the following permutation representations: 

 

 Id     =      (1)(2)(3)(4)   ρd      =      (1 3)(2)(4) 

 ρe      = (1)(2 4)(3)   ρm =      (1 2)(3 4) 

 ρn     =     (1 4)(2 3)   RC,90o      =     (1 2 3 4) 

 RC,180o    = (1 3)(2 4)   RC,270o    =     (1 4 3 2) 

 

Note that this involves some abuse of notation as the same symbol  f  is being used to 

denote both the symmetry as it acts on the whole plane and its restriction to the vertices 

alone.  This will lead to no difficulties and obviates the need for a new notation. 

 Mathematicians and physical scientists have a great interest in groups of 

symmetries of solids in spaces of an arbitrary number of dimensions and their 

classifications.  The composition operation plays an important role in the classification of 

both the rigid motions of the plane and the symmetry groups. The advantage of the 

permutation representations is that they allow for an algebraic representation of 

composition.  Thus,  since  ρe  =  (1)(2 4)(3)  and  ρm  =  (1 3)(2 4)  it follows that 

 

 ρeoρm     =     (1)(2 4)(3)o(1 3)(2 4)     =     (1 3)(2)(4)     =     ρd 

 

and since  RC,90o  =  (1 2 3 4)  it follows that 

 

 ρmoRC,90o     =     (1)(2 4)(3)o(1 2 3 4)     =     (1 4)(2 3)     =     ρn. 

 

Similarly, the composition of the reflection  ρ14  =  (1)(2 6)(3 5)(4)  and the rotation   

RC,-60o   =  (1 6 5 4 3 2),  both symmetries of the regular hexagon of Figure 6.25, is   
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 ρ14oRC,-60o    =    (1)(2 6)(3 5)(4)o(1 6 5 4 3 2)    =    (1 2)(3 6)(4 5)    =    ρm. 

 

 

 

Figure 6.25  Symmetries of the regular hexagon 

 

EXERCISES 6.5 
1. Write down the symmetry groups of the following figures:   

 a) the rectangle with unequal sides;  b) the regular pentagon; 

 c) the regular hexagon;   d) the regular heptagon; 

 e) the regular octagon. 

2. Identify the following compositions of the symmetries of the square of Figure 6.23.  Describe 

them both geometrically and with permutation representations. 
 a) ρmoρe  b) (RC,90o)oρm  c) ρnoρe 

 d) ρeoρd  e) ρmoRC,180o  f) ρnoRC,180o 
 g) (RC,180o)oρe h) (RC,90o)oRC,180o i) ρeoRC,180o 

3. Identify the following compositions of the symmetries of the regular hexagon of Figure 6.24.  

Describe them both geometrically and with permutation representations. 
 a) ρmoρ14   b) (RC,60o)oρm  c) ρ14oρ36 

 d) ρ25oρm   e) ρmoRC,180o  f) ρmoRC,120o 
 g) (RC,240o)oρ25  h) (RC,-60o)oRC,180o i) ρ14oRC,180o  

 
 

6.  Frieze Patterns 
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A frieze pattern is a one dimensional repeating figure. More formally, a frieze pattern is 

generated by a finite figure  Φ, called a block,  and a translation τ.  The pattern itself 

consists of the union of all the figures 

 

..., τ-2(Φ),  τ-1(Φ),  Φ,  τ(Φ),  τ2(Φ),  ...  . 

 

where  τn denotes  n  applications of  τ  and  τ-n  denotes  n  applications of  τ-1.  These 

frieze patterns are the mathematical idealization of such decorative designs as borders 

used to accent wallpapers and trim sewn or printed around a cloth (Fig. 6.26).  However, 

unlike their physical manifestations, frieze patterns are understood to extend indefinitely 

in both directions, just like a straight line.    

 The frieze pattern created by the repetition of a block  Φ  is denoted by  ℘(Φ)  

and it inherits some of the symmetries of  Φ  (see Exercises 1-3).  This observation, 

however, does not account for all the symmetries of the frieze pattern  ℘(Φ).  By 

definition, every such pattern possesses its generating translation  τ  as a symmetry, since 

this translation shifts the infinitely extended pattern onto itself.  In the case of the block  

Φ1   of Figure 6.27,  the frieze pattern has no other symmetries, and so its symmetry 

group is denoted by  Γ1 = < τ >.   
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Figure 6.26   Chinese ornamental friezes.  Reprinted from The Grammar of Chinese 

Ornament, by Owen Jones,  with the permission of Studio Editions. 
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Figure 6.27  A frieze pattern with 
symmetry group  Γ1 = < τ > .   

 

 Block  Φ2   of Figure 6.28 possesses the symmetry  ρh  (h for horizontal) which is 

of course also a symmetry of its frieze pattern.  In addition, this pattern also necessarily  

 

 

 

Figure 6.28  A frieze pattern with 
symmetry group  Γ2 = < τ, ρh, γ > . 

 

possesses the composite glide-reflection  γ  =  ρhoτ  as a symmetry.  This frieze's 

symmetry group is denoted by   Γ2 = < τ, ρh, γ >.  The symmetry  ρv  of  Φ3  of Figure 

6.29 results in a multitude of symmetries of the frieze  ℘(Φ3)  which are all essentially 

identical.   It 

 

 

Figure 6.29  A frieze pattern with 
symmetry group  Γ3 = < τ, ρv > . 
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should be noted however, that this frieze pattern possesses an additional symmetry, 

namely the reflection  ρv',  which has no counterpart in the generating block Φ3.  Because 

of its similarity to  ρv,  the symmetry  ρv'  is not listed in the symmetry group  Γ3 = < τ, ρv 

>  of this pattern. Such an additional reflection could not have appeared with the 

horizontal reflection of Φ2, but similar "accidental" symmetries can arise in other cases, 

as will be seen below.  The symmetry   RC,180o   of the block  Φ4   of Figure 6.30  results 

 

 

 

Figure 6.30  A frieze pattern with 
symmetry group  Γ4 = < τ, R >  . 

 

in the symmetries  R = RC,180o    of the frieze pattern.  Once again the frieze pattern has 

the additional symmetry  RC′,180o.  This frieze pattern's symmetry group is   Γ4 = < τ, R >.  

The block  Φ5  of Figure 6.31 possesses all three of the above symmetries, as does the 

generated frieze pattern.  Its symmetry group is Γ5  =  < τ, ρh, ρv, R, γ >.  Just like  Γ2,   

 

 

 

Figure 6.31  A frieze pattern with symmetry 
 group  Γ5  =  < τ, ρh, ρv, R, γ > . 
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the next two patterns of Figure 6.32 and Figure 6.33  have symmetry groups Γ6  =  

< τ, γ >   and  Γ7  =  < τ, γ, R, ρv >   that contain glide reflections.  However, unlike the 

glide-reflection of   Γ2,  those of   Γ6  and   Γ7   do not have their component translation 

and reflection in the group.   

 

 

Figure 6.32  A frieze pattern with 
symmetry group  Γ6  =  < τ, γ > . 

 
 

 

 

Figure 6.33  A frieze pattern with 
symmetry group  Γ7  =  < τ, γ, R, ρv > . 

 

 The following theorem, attributed to Paul Niggli (1888 – 1953), states that the 

foregoing is a complete list of all the possible types of symmetry groups that frieze 

patterns can possess. 

 

PROPOSITION 6.6.1 (P. Niggli, 1926).  Every frieze pattern has a symmetry group 

that is identical with one of the groups  Γ1 = < τ > , Γ2 = < τ, ρh, γ > ,  

Γ3 = < τ, ρv > , Γ4 = < τ, R > , Γ5  =  < τ, ρh, ρv, R, γ >, Γ6  =  < τ, γ > ,  

Γ7  =  < τ, γ, R, ρv > . 

 

EXERCISES 6.6 
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1. If the block  Φ’s  frieze pattern  ℘(Φ)  has a horizontal symmetry,  must   Φ  necessarily have a 

horizontal symmetry? 

2. If the block Φ’s  frieze pattern  ℘(Φ)  has a vertical symmetry,  must   Φ  necessarily have a 

vertical symmetry? 

3. If the block Φ’s  frieze pattern  ℘(Φ)  has a rotational symmetry,  must   Φ  necessarily have a 

rotational symmetry? 
 

Identify the groups of the following frieze patterns. 

 

4.    5.     

 

6.    7.    

 

8.    9.    

 

10.    11.    

 

12.    13.    

 

14.    15.    

 

16.    17.    

 

18.    19.    
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20.    21.    

 

22.    23.    

 

24.    25.       

 

26.    27.    

 
 

 

7.  Wallpaper Designs 

 

Wallpaper designs are the two dimensional analogs of frieze patterns.  More technically,  

let  ℘  be the frieze pattern generated by a block  Φ  and a translation  τ. If  τ*  is another 

translation whose direction is not parallel to that of  τ,  then the union of the figures 

 

..., τ*-2(℘), τ*-1(℘),  ℘,  τ*(℘),  τ*2(℘),  ... 

 

is the wallpaper design W(Φ)  generated by  Φ, τ, and τ*  (see Figures 6.34-35).  As their 

name implies, such designs are the mathematical patterns that underlie the repeating 

decorative artworks illustrated in Figure 6.36.  Unlike the carpets and walls that carry 

these artworks, the mathematical wallpaper designs extend ad infinitum in all the 

directions of the plane. 

 It is clear that both  τ  and  τ*  are symmetries of the wallpaper design they 

generate.  As was the case for frieze patterns, the generated design W(Φ)  may possess 
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further symmetries that are not present in  Φ.  In contrast with the seven different groups 

of symmetries of frieze patterns, there are seventeen different possibilities for the 

symmetry groups of wallpaper designs.  These, together with their labels are exhibited 

below.  The presence of reflectional and glide-reflectional symmetries is denoted by a 

dashed line with a label of either  ρ (for reflection)  or  γ  (for glide-reflection).  The 

centers of rotational symmetries are denoted by the symbols  ◊  (180o),  Δ (120o),  h 

(90o),   (60o).  The following table lists the salient symmetry characteristics of each 

design.   A rotation through an angle of  360o/n  is said to have order  n.  A glide-

reflection is said to be non-trivial if its component translation and reflection are not 

symmetries of the pattern. 

 The symbols  p1, pgg, p31m, ...  are used to denote both a type of wallpaper 

design and its symmetry group.  This is known as the crystallographic notation for the 

symmetry groups.  If the second character in this symbol is an integer, it is the highest 

order of all the rotations in that group.  The significance of the other characters is too 

complicated to explain here.  
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Figure 6.34  A wallpaper design 
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Figure 6.35 
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a b

c d  

Figure 6.36   Middle-eastern ornamental designs.   
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 The following is the two dimensional analog of Proposition 6.6.1. 

 

PROPOSITION 6.7.1.  There are exactly seventeen wallpaper symmetry groups. 

 

 The characteristics of the wallpaper designs that correspond to these groups are  

displayed in the table below.  The table itself is then followed by Figures 6.37, 6.38, 6.39  

which display one illustration for each of these groups. 

 Proposition 6.7.1 was first discovered in 1891 by Evgraf Stepanovich Fedorov 

(1853-1919),  thirty five years before Niggli stated and proved its 1-dimensional analog 

on frieze groups (Proposition 6.6.1).  Curiously, this work had been preceded by 

Fedorov's and Arthur Scho.. nflies's (1853-1928) independent classifications of the 230 

crystallographic groups, these being the 3-dimensional analogs of the wallpaper groups.  

It has since then been established that there are exactly 4783  classes of such groups in 4-

dimensional space.  For spaces of more than four dimensions it is only known that the 

number of such symmetry groups is finite. 
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Recognition Chart for Wallpaper Symmetry Groups 
(From Doris Schattschneider's article) 

 
 Highest        Non-Trivial 
 order of        Glide  Helpful 
Type rotation      Reflections Reflections Distinguishing Properties 
 
p1      1        no        no   

p2      2        no        no 

pm      1        yes        no 

pg      1        no        yes 

cm      1        yes        yes 

pmm      2        yes        no 

pmg      2        yes        yes  parallel reflection axes 

pgg      2        no        yes 

cmm      2        yes        yes  perpendicular reflection axes 

p4      4        no        no 

p4m      4        yes        yes  4-fold centers on reflection axes 

p4g      4        yes        yes  4-fold centers not on reflection 
       axes 

p3      3        no        no 

p3m1        3        yes        yes  all 3-fold centers on reflection 
       axes 

p31m      3        yes        yes  not all 3-fold centers on 
       reflection axes 

p6      6        no        no 

p6m      6        yes        yes 
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Figure 6.37 



 6.7 WALLPAPER DESIGNS 

 6.49 

 

Figure 6.38 
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Figure 6.39 
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EXERCISES 6.7 

 
Determine the crystallographic symbol of each of the wallpaper designs of Exercises 1-34.  In each case  
a) display a rotation of the highest order; 
b) denote the presence of a glide-reflection by drawing its axis with an accompanying  γ;  
c) denote the presence of a reflection by drawing its axis with an accompanying  ρ; 
d) avoid redundancy by only drawing only one axis in any direction; 
e) in case you have to choose between  a  ρ  and  a  γ,  display the  γ. 
 

1.  2.  3.  
 

4.  5.  6.  
 

7.  8.  9.  
 

10.  11.  12.  
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13.  14.  15.  
 

16.  17.  18.  
 

19.  20.  21.  
 

22.  23.  24.  
 

25.  26.  27.  
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28.  29.  30.  
 

31.  32.  33.  
 

34.  
 
 
 

 
CHAPTER REVIEW EXERCISES 
 
1. If  f  is any rigid motion and  τ  is any translation, identify  τ   

€ 

o  f   

€ 

o τ
-1

. 

2. If  f  is any rigid motion and  R  is any rotation, identify  R   

€ 

o  f   

€ 

o R
-1

. 

3. If  f  is any rigid motion and  ρ  is any reflection, identify  ρ   

€ 

o  f   

€ 

o ρ
-1

. 
4. Identify the symmetry groups of the frieze patterns in Figure 6.26. 

5. Identify the symmetry groups of the wallpaper designs in Figure 6.36. 
6. Are the following statements true or false in Euclidean geometry?  Justify your answers. 

a) The composition of two rigid motions is a rigid motion. 

b) The composition of two translations is a translation. 

c) The composition of two rotations is a rotation. 

d) The composition of two reflections is a reflection. 
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e) The composition of two glide-reflections is never a glide-reflection. 

f) The only rigid motion that fixes three distinct points is the identity. 

g) Every geometrical figure has at least one symmetry. 

h) There exist only seven frieze patterns. 

i) The frieze patterns have only seven pairwise distinct frieze pattern symmetry groups. 

j) There exist only seventeen wallpaper designs. 

k) There exist only seventeen distinct wallpaper symmetry groups. 

l) Every frieze pattern has a translation in its symmetry group. 

m) For each  n = 1, 2, 3, 4, 6  there is a wallpaper design which has a rotation of order  n  and 

a non-trivial glide-reflectional symmetry. 

n) For each  n = 1, 2, 3, 4, 6  there is a wallpaper design which has a rotation of order  n  and 

no non-trivial glide-reflectional symmetries. 

o) The inverse of every rigid motion is a rigid motion of the same type. 

 

 
 
 
 
 


