CHAPTER 6

Planar Symmetries

As has been mentioned before, one of the most serious deficiencies in Euclid’s axiomatic
development of geometry was his failure to provide an explicit discussion of rigid
motions, despite the fact that they play an important role in several of his proofs,
beginning with that of Proposition 4 of Book 1. These transformations are not mentioned
in Hilbert’s axiomatization either, where they are replaced by several congruence axioms.
Other axiom systems, notably that of Mario Pieri (1860 - 1925), do refer to such motions
explicitly. The 19th century also witnessed the creation of many alternative geometries,
each with its own collection, or group, of rigid motions. This proliferation of geometries
called for their classification and in 1872 Felix Klein (1849 - 1925) promulgated his
Erlanger Program in which he suggested that they be classified by their groups of rigid
motions.

This chapter is devoted primarily to the classification of the rigid motions of the
Euclidean plane and the allied topic of planar symmetry. Some information is also

obtained about the rigid motions of the hyperbolic plane.
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6.1 TRANSLATIONS, ROTATIONS, AND FIXED POINTS

1. Translations, Rotations, and Fixed points

Informally speaking, a rigid motion of the plane is a transformation that does not alter the
distances between the points. More formally, a rigid motion is a function f of the plane

into itself such that for any two points P and Q

PQ — P/Q/ ,

where P' = f{P) and Q' = f{Q). The prototypical rigid motion is the translation that
“slides” the plane on itself so that all straight lines remain parallel to their original

positions. More precisely, given any two points A and B, the translation that carries A

onto B is denoted by 7,5 andif P is any point then

T45(P) = 0

where Q is the unique point such that AB = PQ, AB Il PQ, and the segments AB and
PQ are similarly directed. If P does not lie on AB then this, by virtue of Proposition

3.1.7, is tantamount to saying that the quadrilateral ABQP is a parallelogram. In Figure
6.1 7,p5(P;) = Q, forall i=1,2,3,4. Note that in this figure Pin is both parallel and

equal to Qin whenever i # jand hence 7, is indeed a rigid motion.
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6.1 TRANSLATIONS, ROTATIONS, AND FIXED POINTS

)

O

Py

Figure 6.1 A translation.

The same translation can be represented in many different ways. Thus, the

translation Typ of Figure 6.1 can also be denoted by TPI oy TP2Q2’ and so on. Two

rigid motions f and g are said to be equal provided that

fiP) = g(P) forall points P in the plane.

In other words, if the rigid motion is visualized as a physical movement of the plane, then
the intermediary stages of the motion are immaterial: all that matters are the final
positions of the points.

This chapter’s goal is the classification of all the rigid motions of the plane and
the most important tool in this text’s approach is the composition of rigid motions. The
reader is reminded that if f and g are functions of any set into itself, then their

composition g o f is a function of the same set into itself such that

g o fiP) = g(flP)) .

The identity transformation Id is defined by the equation
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6.1 TRANSLATIONS, ROTATIONS, AND FIXED POINTS

ld(P) = P  forevery point P

and has the property that for any rigid motion f,

fold =Idof = f

The operation of composition is associative in the sense that for any three such

functions f, g, and A,

(fog)oh=folgoh).

We begin with the composition of translations.

PROPOSITION 6.1.1. If A, B, C are any points of the plane, then

TeC ° TAB = TAC -

PROOF: Let P be any point of the plane and set (see Fig. 6.2)

P = 1,4(P) P' = 1(P) = Tgeo Tu5(P) .

It is necessary to show that P" = 7,c(P) . However, as was noted above, ABP'P and
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B
\ C

P//

P

Figure 6.2 The composition of translations.

BCP"P' are both parallelograms. It follows from Proposition 3.1.8 that AP and BP' are

equal to and parallel to BP' and CP'" respectively. Hence, by Proposition 3.1.7
ACP"P is a parallelogram and so P"" = 7,(P).

QED.
It follows from this proposition that the composition of any two translations is
itself a translation. For if f and g are any translations and P is any point, then we
could set P' = f(P), P"" = g(P') and conclude that
§of = Tpp °Tpp = Tppr,

The inverse f  of the rigid motion f is a rigid motion such that

ld.

Fof =f'of

. . -1
It is clear that for any two points A and B, Typ = Tp,-

Another type of rigid motion is the rotation. If C is any point of the plane and «

is some directed angle, then the rotation R, , is the rotation that moves the general
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6.1 TRANSLATIONS, ROTATIONS, AND FIXED POINTS

point P to the point P' = R, (P) where CP'=CP and £ P'CP = a (Fig.6.3).

Exercise

B

A

Figure 6.3 The rotation R, ,

1 calls for the formal proof of the rigidity of rotations. The point C is the pivot point of
the rotation Rc The angle o of the rotation is understood to be oriented, in the sense
that it can be either positive or negative, and the rotation accordingly proceeds either

counterclockwise or clockwise. Moreover, if n is any integer and = o+ n-360°, then

Rep=Re q- Consequently, in describing any rotation R. ., the angle will generally be
chosen so that 0 < &< 360°. Note that Rl , = R¢_,.
The composition of the rotations R~ , and R, B is clearly R- ., R but what

about the composition of R~ , with R B where C and D are distinct points? In order

to answer this natural question, it is first necessary to deal with the issue of identifying
rigid motions in general. The following sequence of propositions aims to answer the

question of

How much information is it necessary to have about a rigid motion before

we can say that it is known?

It will soon be seen that surprisingly little is needed.
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6.1 TRANSLATIONS, ROTATIONS, AND FIXED POINTS

PROPOSITION 6.1.2. Every rigid motion transforms straight lines into straight
lines.

PROOF: Let f be arigid motion, let m be a straight line with two distinct points A
and B onit, and set A" = ffA) and B’ = f{B) (Fig 6.4). If P is any point of m

between A

Figure 6.4

AP+ PB = AP + PB = AB = A'B'.
and B, and P' = f{P), then it follows from Proposition 2.3.25 that P’ is on the line
segment A'B’. A similar argument (Exercise 5) demonstrates that as long as P ison m
<>
then P’ is on the line A'B' even when P is not between A and B.
<>
Conversely, let P’ be any point of A'B' that lies on the line segment A'B.
Since A'B' = AB there is a unique point P of m such that
AP = A'P' and BP = B'P'.
If P" = f(P), then

A'P" = AP = A'P' and B'P" = BP = B'P'
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6.1 TRANSLATIONS, ROTATIONS, AND FIXED POINTS

<>
sothat P’ and P = f{P) must be identical. The same holds even when P’ ison A'B'
<>
but not between A’ and B'. This means that every point of A'B' is covered by some
<>
point of m. In other words, fim) = A'B'.

QED.

PROPOSITION 6.1.3. If two rigid motions agree on two distinct points then they
agree at every point of the straight line joining them.

PROOF: Let f and g be two rigid motions and A and B two distinct points such that
flA) = g(A) = A" and f(B)=g(B) = B'.

If P is any point of AB, then, by Proposition 6.1.2, f(P) and g(P) are both points of
A'B’ whose distances from A’ and B’ are respectively equal. It follows that f(P) =
g(P).

Q.E.D.

THEOREM 6.1.4. If two rigid motions agree at three noncollinear points then they
agree everywhere.

PROOF: Let f and g be two rigid motions that agree at the three noncollinear points
A, B, C. By Proposition 6.1.3, f and g agree at every point on the straight lines TB,
§>C , and X)C . If P is any point of the plane then there clearly exists a straight line
through P that intersects the union of these three straight lines in some two distinct
points X and Y. Since f and g agree at X and Y, it follows from Proposition 6.1.3
that they must also agree at P.

QED.
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6.1 TRANSLATIONS, ROTATIONS, AND FIXED POINTS

Thus, in order to pin down a rigid transformation it suffices to know how it affects
some triple of noncollinear points.

A fixed point of the transformation f is a point P such that

fir) = P.

It is clear that the point C is a fixed point of the rotation R , and is in fact the only

fixed point of that rotation. It is equally clear that, with the exception of the identity,
translations have no fixed points whatsoever. On the other hand, every point is a fixed
point of the identity. The following corollary is an immediate consequence of Theorem

6.14.

COROLLARY 6.1.5. Ifa rigid motion fixes three noncollinear points, then it must

be the identity.
u
EXERCISES 6.1
1. Prove that every rotation is a rigid motion.
Prove that every rigid motion transforms circles into circles.
3. Prove that if A, B, C are any three points, then Tea © Tge © Tag = Id.
4. Let AABC be a clockwise triangle with oriented interior angles o, 8, y at A, B, C respectively.
Prove that RC,Zy ° RB,Z/J’ ° RA,Za = Id.
5. Complete the proof of Proposition 6.1.2 by providing the details for the case where P is on the
infinite line AB but outside the segment AB.
6. Let A(a IX2) ) and B(b I b2 ) be two points. Explain why the transformation f{P) = Q that takes

the point P(x, y) to the point Q(x',y') where

X =x+b]—a]

y =y+by-a,
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6.1 TRANSLATIONS, ROTATIONS, AND FIXED POINTS

is in fact the translation Typ

7. Let a be an angle. Explain why the transformation f{P) = Q that maps the point P(x, y) to the

point Q(x',y") where

' .
X = XCoso-ySsino

Yy =xsina+ycosa

is in fact the rotation RO o where O is the origin.

8. Prove that rigid motions preserve angles. In other words show that if f is a rigid motion and m
and n are straight lines that form an angle of measure «, then f{m) and f{n) are also straight

lines that form an angle of measure o.

2. Reflections

Given a straight line m, the reflection p,, is the transformation that fixes every point of

m and associates to each point P not on m the unique point P’ such that m is the

perpendicular bisector of PP’ (see Fig. 6.5 and Exercise 28). It follows directly from the

definition that p, o p = Id and hence Ot = 0,,- This text’s classification of the

Figure 6.5

rigid motions is based on the fact that these reflections are the building blocks of all the

rigid motions in the sense that every rigid motion can be expressed as the composition of
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6.2 REFLECTIONS

some reflections. The next two propositions show that such is indeed the case for

translations and rotations.

PROPOSITION 6.2.1. Let m and n be two parallel straight lines. Let AB be a
directed line segment that first intersects m and then n and whose length is twice the

distance between A and B. Then

a) Pn °Pm = Tap >
b) Pn°TAB = P>

c) TAB ° P = Pn -

PROOF: Let P be any point outside the infinite strip bounded by m and n such that

the

Figure 6.6

distance from P to m is less than the distance between m and n (Fig. 6.6). Set

P =p (P) and P" = p(P).
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6.2 REFLECTIONS

It is clear that P, P',and P'' are collinear and that
PP" = PP' + P'P" = 2XP' + 2P'Y = 2XY
= twice the distance between m and n.

Hence

Put Pu(P) = py(P') = P = Tppo(P) (D).

Since it is easy to find three noncollinear positions of P that satisfy the constraints

specified in the beginning of this proof, it follows that Equation (1) holds for three

noncollinear points and hence, by Theorem 6.1.4, p, + p, = Tpp~ . This completes the

proof of part a. Parts b and ¢ follow immediately, since
Pn ° Tap = pno(pnopm) = (pnopn)opm = Idopm = Pm >

TuB © P = (P © Pp) © Py = Py ° (P © Py) =Py 01d = p,.
QED.

Conversely, given any translation 7,p, there clearly exist two parallel straight

<>
lines that are perpendicular to AB and whose distance from each other equals half of
AB. By the above proposition, either 7,5, =p, o p, or T,z =p, ° p, and in either
case the arbitrary translation t,p has been expressed as the composition of two
reflections. This expression is, of course, not unique, since m can be any line that is

perpendicular to AB.
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6.2 REFLECTIONS

PROPOSITION 6.2.2. Let m and n be two straight lines that intersect at a point

A, and let o be the counterclockwise angle from m to n at A. Then
Pn ° Pm = RA,Za‘
PROOF: Let P be a point outside Z BAC = «a (Fig. 6.7) but close enough to m so that

P' = p, (P) is inside the angle. Set P = p (P')=p, o p, (P). Then m bisects £ PAP'

and n bisects £ P'AP". Consequently,

LPAP" =2/ BAP' + 2 £ P'AC = 2a.

Hence

Ryse(P) = P = p, o p,(P) 2.

Since it is easy to find three noncollinear positions of P that satisfy the constraints

specified in the beginning of this proof, it follows that Equation (2) holds  for  three

noncollinear points and hence, by Theorem 6.14, p o p =R, , .

QED.
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PH

Figure 6.7

It was noted above that the composition of rotations that share their pivot points is
a rotation about the same point but that the nature of the composition of rotations with
distinct pivot points was unclear. We are now ready to dispose of this and other similar

issues.

PROPOSITION 6.2.3. Let A and B be two points and let o and 3 be two

oriented angles. Then the composition Rp B ° Ry o s

a) a translation if o + 8 is a multiple of 360°,

b) a rotation R-,a+ﬁ if o+ 8 isnotamultiple of 360°.

PROOF: This is obvious if A and B are identical points as well as when either a or f
is zero. It is therefore assumed that A and B are distinct, and neither o nor S is zero.
Let m :TB, let k be the line through A such that the oriented angle from k to m is
a/2, let n be the line through B such that the oriented angle from mto n is (/2 (Fig.

6.8). Then, by the above proposition,

RB’ﬁ ORA’O[ = (pnopm)o(pmopk) = pno(pmopm)opk = pnopk .
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6.2 REFLECTIONS

which is either a translation or a rotation, depending on whether the lines k and n are
parallel or not. However, these lines are parallel if and only if &/2 + #/2 is a multiple of
180° which is of course equivalent to o +  being a multiple of 360°. Hence, by
Proposition 6.2.1, the composition is a translation if a + £ is a multiple of 360°. When
a+ P is not such a multiple, then, by Proposition 6.2.2, the composition is the rotation
R

X,a+p.

QED.

al2 + B2

Figure 6.8

EXAMPLE 6.2.4. Given any two points A and B, identify Ry sp0 © Ry s90-

It follows from Proposition 6.2.3 that this composition is a rotation R j5qo . The

pivot point C is located as follows: Set (see Fig. 6.9)
A’ = RC,1200(A) = RB,60{) ORA,60()(A) = RB,6OO(A) .

Then C is that unique point such that A ACA’ is isosceles with vertex angle £ ACA' =

120°. In other words, C is the center of the equilateral A AA'B.
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60°
60°

120°

A!

Figure 6.9

PROPOSITION 6.2.5. Let R be a rotation which is not the identity and let T be

a translation. Then both R + Tt and T+ R are rotations with the same angle as R.

PROOF: Suppose R=R, ,, A'=1(A) and let B be the midpoint of the segment AA’

(Figure 6.10). Let k and m be the lines through B and A respectively, that are

A/

al2

Figure 6.10

perpendicular to AA’, and let n be the line through A such that the oriented angle from

n to m isequal to o/2. Then

ToR = (P °0p) (O ©Pw) = P ° (P © Op) © Py = P ° Py s
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6.2 REFLECTIONS

which is a rotation by angle o because k and n, when extended, intersect in an angle
of al2.
The proof that R + 7 is also a rotation is relegated to Exercise 25.

Q.ED.

EXAMPLE 6.2.6. For the two given points A and B of Figure 6.11 identify both

TAB o RA,QOU Clnd RA,QOU o TAB.

Y
A A
X
B
Figure 6.11

By Proposition 6.2.5 7,5 © R A4.90° isa 90° rotation such that

Tap © Ry o00(A) = T4p(A) =B

It follows that the pivot point of 7,5 o R, gpo is that point X such that A ABX is an

isosceles right triangle. In other words, T,z © 4.90° = Ryxg00 - Similarly, R 4.90° © TAB

isa 90° rotation such that
RA,9OO o TAB(A) = RA,9OO(B) = A/ .

It follows that the pivot point of R, gqo © T4p is the point ¥ where A AA'Y is an

isosceles right triangle. In other words, R, gy © Tyup = Rygpo. Note that the two
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compositions T, p © '4.90° and R A4.90° © Typ are not equal. In general, rigid motions do

not commute.

EXERCISES 6.2

Identify the compositions of Exercises 1-18, where ABCD is the square of Figure 6.12.

1.
4.
7.
10

13.
16.

19.

20.

21.

22.

23.

24.

Ry 900 ° Rp gp° 2. Rp 900 © Ry 900 3. R 1800 © Ry 900
Rp 900 ° Tpe 5. Rp 90° ° Tca 6. Tea © Ry 900
T3C © TA 8. T3C © TAD 9. ™pA ° TBC
Rp 2700 © Regoe 11 R4 180° ° Rp 180° 12. Ry 450 © R 1350
Ry 450 © Rp 450 4. Ry 600 © Rp 1200 IS, Rpjg00 © R ga0°
RA,900 o RB,?)OO 17. ‘L’AB o RA,600 18. RB,600 o ‘L’AB

D c

A B

Figure 6.12

Let AABC be a clockwise triangle with oriented interior angles «, 3, y at A, B, C respectively.
Use Proposition 6.2.2 to prove that RC,Zy o RB,Z/J’ o RA,Za = Id.

Let Al, AZ, s An be the clockwise successive vertices of a polygon with n sides. If the interior

angle at A, is «a, Identify the composition R, 20 00 RAz’Zazo RA],Za]‘
n n

Let A|,A,, ..., A be the midpoints of the successive sides of a polygon with 7 sides. Identify the
n

gl A

composition R, _o..oR, _oR if
n 2 1

a) n=3 b) n=4 c) n is an arbitrary positive integer.
Let n be an even integer and let A], A2, ey An be the successive vertices of a regular n-sided

polygon, and let m, be the bisector of the interior angle at A.. Identify the composition p, o ... o
n

p op .
M

Let P be any point on the straight line m and let 6 be any angle. Prove that both R P.o° P
and p, © Rp g are reflections. What are their axes?

Prove that if P is a point on the straight line m then p, o RP, 9° Py = RP,- 9-
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25. Complete the proof of Proposition 6.2.5 by showing that R + T is also a rotation with the same
angle as a.

26. Let ABCD be a cyclic quadrilateral. Identify the composition pp 4 © Pcp © Ppc © Pap -

27. Let a be an angle and let m be the straight line through the origin with inclination o to the

positive x axis. Explain why the transformation f{P) = Q that maps the point P(x, y) to the

point Q(x',y'), where

x' = xcos2a+ysin2a

y' = xsin2a-ycos 2a

is in fact the reflection p, .

28. Prove that every reflection is a rigid motion.

3. Glide-reflections

So far reflections have been used merely in order to explain how translations and
rotations interact under compositions. We now examine how these two types interact
with reflections. A special case of this issue was resolved by parts b and c of
Proposition 6.2.1 wherein it was proved that the composition of a reflection with a
translation whose direction is perpendicular to the direction of the translation is another
reflection with an axis parallel to that of the given reflection. The composition of a
reflection with a rotation whose pivot point lies on the reflection’s axis is also a reflection
(Exercise 6.2.23). However, in general, the composition of either a translation or a

rotation with a reflection forms a new kind of rigid motion.

Let A and B be two distinct points. The composition p,p © T,p s called a
glide-reflection and is denoted by y,p. It is easily seen that the reverse composition

Typ © Pyp alsoequals y,p and that the inverse of y,p is yp, (Fig. 6.13). In order to

simplify the statements of some of the subsequent propositions, reflections will be

<>
considered as special cases of glide-reflections. The line AB 1is called the axis of the
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6.3 GLIDE-REFLECTIONS

glide-reflection y,p, and it is easily seen that for any point P not on the axis A, the

line segment joining P to y,p(P) is bisected by AB (see Fig. 6.13 and Exercise 25).

Tap (P)

A B /

P

7,5(Q)

Figure 6.13

PROPOSITION 6.3.1. Let v be any translation and y any glide-reflection. Then

yo T and T o y are both glide-reflections.

PROOF: Suppose 7= 7,p.
If y=pup,thenclearly yo7 = 7oy = y,p.
If y = p, where m Il AB then there exist points A’, B" on m such that 7 =

T,p = Typ- Consequently, by the previous argument,

VeT = Pap°Tap = Yap = Tap °Pap = T°T-

If y = p, where m L AB, then this proposition follows from Proposition

6.2.1bc.
If y = p, where m isskew to AB, let C be a point such that AC Il m and

" B

/

A C
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Figure 6.14

BC 1 m (Fig. 6.14). By Proposition 6.1.1,

YOT = Py oTap = Py (T © Tac) = (P ° Tcp) © Tac -

By Proposition 6.2.1b, there is a line n L BC such that p, o 7~ = p, ,and hence

yo‘[j:pno”[,'AC,

which, since n Il AC, is known to be a glide-reflection. The proof that 7 o y is also a

glide reflection is relegated to Exercise 23.

Finally, let y be an arbitrary glide-reflection. If y = y-p = pcp © Tcp then,

by Proposition 6.1.1,

Y °T = (Pcp ° Tcp) ° Tap = Pcep ° (Tep ° Tap) = Pep ° T

for some translation 7. This, however, is known to be a glide-reflection. The proof that
T o y is also a glide-reflection is relegated to Exercise 23.

Q.ED.

EXAMPLE 6.3.2. Identify the compositions Y, o T, and Tyg © Y4, Where

ABCD is the square of Figure 6.15.
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P! 0,
B, D C
M L] PO
A B
Figure 6.15

By the previous proposition, these compositions are both glide-reflections. Moreover,

since

Yap © Tap(A) = Y4p(B) = B’

it follows that the axis of y,, + 7,5 must contain the midpoint M of the segment AB'.

In addition,

YaD ©° TAB(M) = VAD(P) = P.

It follows that MP’ is the axis of y,, o T,p and infact y o T,p = ¥)p-

Again,

Typ © Yap(A) = 74p(D) = C

and hence the axis of 7,5 o 74, contains the midpoint P of AC. In addition,

Tyg © Yap(P) = TAB(P’) =0

and hence T4p5 © y4p = Ypo-
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PROPOSITION 6.3.3. Let R be any rotation and y any glide-reflection. Then

both y o R and R o y are glide-reflections.
PROOF: Let R = R, , and suppose first that y = p,. Let m be the straight line

through A that is parallel to k, and let n be the straight line through A such that the

oriented angle from n to m is o/2 (Figure 6.16). Then

Figure 6.16

yoR = pkoRA,a: pko(pmopn) = (pkopm)opn‘

Since kIl m it follows from Proposition 6.2.1 that p, o p, is a translation and hence, by
Proposition 6.3.1, yo R = (p, ° p,) o p, is a glide-reflection.

If y is the arbitrary glide-reflection 7p, o p-p then

veR = (Tcp ° Pep) ° Rpq = Tep © (Pep ° Ry -

By the first part of the proof p-p o R, , is a glide-reflection and hence it follows from

Proposition 6.3.1 that y o R = T ° (pcp © Ry ) 18 also a glide-reflection.

The proof that R o y is a glide reflection is relegated to Exercise 24.

QED.

EXAMPLE 6.34. Identify the composition 5, © Ry ggo and Ry ggo © Y4, where

ABCD is the square of Figure 6.17.
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D Y C
w
. X
zZ X
A B
Figure 6.17

By the previous proposition, both of these compositions are glide-reflections.

Moreover,

Yap © Ragpo(A) = v4p(A) = D

so that the axis of this composition contains the midpoint X of AD. Since

Yap ° A’900(X) = VAD(X’) =Y,

it follows that y,, © Ry gpo = ¥xy. Similarly,

RA,90() o }/AD (A) = RA,QO{)(D) = Z

so that the axis of this composition contains the midpoint X' of AZ. Since

RA,QOU o J/AD (X’) = RA,QO{)(Y) = W,
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PROPOSITION 6.3.5. Let y,z and yq, be two glide-reflections. The
Composition  Y,p © Yop IS
a) a translation if AB Il CD
b) a rotation of angle 2o otherwise, where o is the oriented angle from CD to
AB.
PROOF: Note that

YaB ° Yep = (Tap © Pap) © (Pep © Tep) = Tup © (Pap © Pep) © Tep

= TygofeoTep

where, by Propositions 6.2.1-2, f is a translation if AB |l CD and a rotation by angle 2«
otherwise. The desired results now follow from Proposition 6.1.1 in the first case and
from Proposition 6.2.5 in the second case.

QED.

EXAMPLE 6.3.6. Identify the compositions v, © v4p and Yap © Yop Where

ABCD is the square of Figure 6.18.

B D C
M
A B
D
Figure 6.18

By Proposition 6.3.5b, y,5 o 74p isa 180° rotation. Since
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Yap © Yap(A) = Vap(B) = B’

it follows that the pivot point of this rotation is the midpoint M of AB'. Hence y,,

°Yap = RM,ISOO' By Proposition 6.3.5a, y,p © Yp 18 a translation. Since

Yag © Ycp(C) = v4p(D) = D,

it follows that y4p ° Yep = Tcp -

EXERCISES 6.3

Identify the compositions of Exercises 1-18, where ABCD is the square of Figure 6.12.

1.
4.
7.

10.
13.
16.

19.

20.

21.

22.

23.

24.
25.

Rp oo © 'pe 2. "pe ° Rpooe 3. Rp 180° ° 7B

YaB © Rp 180° 5. Tag ° 'DC 6. Yep © TAB

Tap ° YBC 8. YBc ° TBA 9. YAD ° VBC

YaD ° YcB 11 YBA ° YBC 12. YcB ° "BA

Yac ° YBD 4. pap°Typ 15, pap° Regpe
17. 18.

Yep © S 7Bc © YaB Yep ° TBC ° YaB Tcp ° VBc ° TAB

If k, m, n are the perpendicular bisectors of the sides AB, BC, CA of A ABC respectively, show
that o, o p_ © p  isareflection. What is the axis of this reflection?

Let A and B be any two distinct points. Prove that the composition RB,180° °psp °R A.180°

is a glide-reflection and find its axis.
Show that the composition of the reflections in the three angle bisectors of a triangle is a reflection

whose axis is perpendicular to one of the triangle’s sides.
Let n be an odd integer and let Al, Az’ ey An be the successive vertices of a regular n-sided

polygon, and let m, be the bisector of the interior angle at A.. Identify the composition p, o ... o
n

p op .
M

Complete the proof of Proposition 6.3.1.

Complete the proof of Proposition 6.3.3.
Prove that if y,p is a glide-reflection and y,p(P) = P', then the axis AB contains the midpoint

of PP,
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6.3 GLIDE-REFLECTIONS

26. Show that p, o p ©°p, = p, °p, ©p, wheneverthe lines k, m, n are either concurrent or
parallel.

27. Show that the composition of an even number of glide-reflections is either a rotation or a
translation.

28. Show that the composition of an odd number of glide-reflections is a glide reflection.

4. The Main Theorems

Enough tools are now available to demonstrate that there are no Euclidean rigid

motions above and beyond those described above.

PROPOSITION 6.4.1. Suppose A ABC = A DEF. Then there exists a sequence of

no more than three reflections such that the composition of these reflections maps the
points A, B, C onto the points D, E, F respectively.

PROOF: Suppose the two given triangles are identical, then the composition of two
identical reflections will clearly accomplish the required task.

If the two triangles share exactly two vertices, then it may be assumed that their

relative position is described by Figure 6.19. In that case p,p itself constitutes the

F
Figure 6.19

required sequence of reflections.
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If the two triangles share exactly one vertex, say A = D, let M be the midpoint

of the segment BE. Then the reflection p,,, transforms A ABC into A DEF' that

shares at least two vertices with A DEF. It follows from the previous argument that at
most one more reflection will be required to transform A DEF' into A DEF.

Finally, if the two triangles share no vertices, let M be the midpoint of the

segment AD. The reflection p, then transforms A ABC into A DE'F' that shares at

least one vertex with A DEF. By the above argument at most two more reflections will
transform A DE'F’ into A DEF. It follows that at most three reflections are required to
transform A ABC into A DEF.

QED.

The following is this chapter’s main theorem.

THEOREM 64.2. Every rigid motion is the composition of at most three
reflections.

PROOF: Let f be arigid motion, let A, B, C be three noncollinear points, and set A" =
flA), B' = fiB), C' = fl(C). Since A ABC = A A’'B'C' , it follows from Proposition 6.4.1
that there exist at most three reflections whose composition, say g, also transforms A, B,
C onto A', B, C', respectively. It follows from Theorem 6.1.4 that f = g.

Q.ED.

The following classification theorem is a consequence of the above.

THEOREM 6.4.3. Every rigid motion is either a translation, a rotation, or a glide-
reflection.

PROOF: The composition of no reflections is the identity which can be viewed is either

a rotation R, jo or a translation 7,, . The composition of one reflection is a glide-
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reflection. The composition of two reflections is, by Propositions 6.2.1-2, either a
translation or a rotation. It follows that the composition of three reflections is also the
composition of a reflection with either a translation or a rotation, which, by Propositions
6.3.1 and 6.3.3, is a glide-reflection.

QED.

EXAMPLE 6.4.4 Let f and g be two rigid motions. Prove that g is a reflection if
and only if fo g o fl is a reflection.
Suppose first that g is a reflection. By Theorem 6.4.3 f is either a translation, a

rotation, or a glide-reflection. In the first two cases it follows from Proposition 6.3.1 and
6.3.3 that fo g o f! isalso a glide-reflection. The same conclusion can be drawn in the
third case, if f is a glide-reflection, but this time Proposition 6.3.5 is also needed. In
order to show that fo g o f1 is areflection it suffices to show that it has a fixed point.

Let P be any fixed point of the reflection g and set P’ =f(P). Then
fogo fUP) =fo go flo(fiP) =fo gP) = iP) = P,

so that P’ is the requisite fixed point of fo g o f1l.
Conversely, suppose f o g o fl is areflection. It then follows from the above

that g is also a reflection because

Flo (Fogo oy =flo fogo flof=g.

In conclusion we point out that the definitions of rotations and reflections as well
as the proofs of Propositions 6.1.4, 6.4.1-2 are all neutral and hence they also hold for the
hyperbolic plane. In particular, Every rigid motion of the hyperbolic plane is the
composition of at most three hyperbolic reflections. These hyperbolic reflections will be

described in the next chapter.
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EXERCISES 6.4

In the exercises below, f and g denote two rigid motions.

1. Prove that g is a glide-reflection if and only if fo g o f1 isa glide-reflection.

Prove that g is a rotation if and only if fo g o f1 is a rotation.

Prove that g is a translation if and only if f o g o f! is a translation.

Is it true that g is a reflection if and only if f o g o f! isareflection? Justify your answer.
Prove that f o g is a glide-reflection if and only if g © f is a glide-reflection.

Prove that f o g is arotation if and only if g © f is a rotation.

Prove that f o g is a translation if and only if g © f is a translation.

Is it true that f o g is a reflection if and only if g © f is a reflection? Justify your answer?

O 0 9 N B~ W

Is it true that f o g 1is a translation if and only if both f and g are translations? Justify your
answer.

10. Is it true that f o g is a rotation if and only if both f and g are rotations? Justify your answer.

11. Is it true that f o g is a reflection if and only if both fand g are reflections? Justify your answer.

5. Symmetries of Polygons

A (mathematical) symmetry of a figure @ is arigid motion f such that

fi®o) = @.

Thus, the square of Figure 6.20 possesses the symmetries o, o,, p,, and p, .
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Figure 6.20 Some symmetries of the square.

This is the mathematical formalization of the more intuitive observation that the square is
symmetrical about its diagonals and about the lines joining the midpoints of its opposite
sides. However, the mathematical definition of symmetry is broader than the common
usage of the term. If C denotes the geometrical center of the square then the rotations
R g00s Re1g00s Reoqgo (see Fig. 6.21) all rotate the square back onto itself and so they
too constitute mathematical symmetries, even though they wouldn't be recognized as
symmetries by the proverbial person in the street. The identity rigid motion Id is

another

N

Figure 6.21 More symmetries of the square.

such symmetry. The set of all the symmetries of a figure is called its symmetry group or

just group. Thus, the symmetry group of the square is

Ud, Py Py Py Py R g2 Re 1300 Re 70}

By definition, every plane figure @ has a symmetry group that contains at least the

identity motion Id. The isosceles triangle of Figure 6.22 has {Id, p } as its symmetry
group whereas that of the equilateral triangle of Figure 6.23 is {ld, p, p,, Pp R 1200,

Rc,240"}'
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/ e
v C
/] d
Figure 6.22 The symmetries of an Figure 6.23 The reflections of
isosceles triangle. an equilateral triangle.

While figures of finite extent cannot have either translations or glide-reflections
as their symmetries, infinitely extended figures do admit such symmetries and a variety
of interesting examples will be discussed in the next two sections. This section, however,
is concerned with finite figures only and for the symmetries of such polygons there is a
useful algebraic description that is obtained by restricting attention to the action of the
symmetry on the polygon's vertices. This action is described by means of the positions
occupied by the vertices. Thus, if the positions occupied by the four vertices of the
square are labeled 1, 2, 3,4 respectively (Fig. 6.24), then any symmetry f of the square

can be thought of as a

1 2

Figure 6.24 The symmetries of the square.

function

f{1,2,3,4} = {1,2,3,4}
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where, foreach i=1,2,3,4, f(i) denotes the new position of the vertex that was, prior
to the execution of f, in position i. Accordingly (see Appendix F), the eight

symmetries of the square have the following permutation representations:

ld = (DH@2)(3)(4) Pg = 1324
P, = (H24H3) Py = 1234
p, = (1423 Regp = (1234)
Reyge = (13)24) Reyoe = (1432)

Note that this involves some abuse of notation as the same symbol f is being used to
denote both the symmetry as it acts on the whole plane and its restriction to the vertices
alone. This will lead to no difficulties and obviates the need for a new notation.
Mathematicians and physical scientists have a great interest in groups of
symmetries of solids in spaces of an arbitrary number of dimensions and their
classifications. The composition operation plays an important role in the classification of
both the rigid motions of the plane and the symmetry groups. The advantage of the

permutation representations is that they allow for an algebraic representation of

composition. Thus, since p, = (1)(24)(3) and p, = (13)(24) it follows that

PP, = (DHEZHBA3H2Z4) = A = p,

and since RC,900 = (1234) it follows that

PuRege = (DEHGW1234) = (14H23) = p,

Similarly, the composition of the reflection p,, = (1)(2 6)(3 5)(4) and the rotation

R o0 = (1654 32), both symmetries of the regular hexagon of Figure 6.25, is
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PrgeRe g0 = (D2 6)35)He(165432) (12)36)45) = p,.

4 5

Figure 6.25 Symmetries of the regular hexagon

EXERCISES 6.5
1. Write down the symmetry groups of the following figures:
a) the rectangle with unequal sides; b) the regular pentagon;
c) the regular hexagon; d) the regular heptagon;
e) the regular octagon.
2. Identify the following compositions of the symmetries of the square of Figure 6.23. Describe

them both geometrically and with permutation representations.

D PP, b (Regplop, ) PP,
d) PPy €) PR, 180° D ProRc 1800
2 (Re,1500)0Pe D) (Re,000)0R 1500 ) PeoRe 180°
3. Identify the following compositions of the symmetries of the regular hexagon of Figure 6.24.

Describe them both geometrically and with permutation representations.

a) PP 14 b) (Re 600)oPy, c) P14°P36
d) P250P,, €) PpoRC 180° f) PpoRc 1200
g (Re 240°)0P25 h) (Re,.0°)oR ¢ 150 D P14°Rc 180°

6. Frieze Patterns
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A frieze pattern is a one dimensional repeating figure. More formally, a frieze pattern is
generated by a finite figure @, called a block, and a translation 7. The pattern itself

consists of the union of all the figures
-2 -1 2
oy T (D), T (D), D, (D), T (D), ... .

where 7" denotes n applications of 7 and 7" denotes n applications of 7', These
frieze patterns are the mathematical idealization of such decorative designs as borders
used to accent wallpapers and trim sewn or printed around a cloth (Fig. 6.26). However,
unlike their physical manifestations, frieze patterns are understood to extend indefinitely
in both directions, just like a straight line.

The frieze pattern created by the repetition of a block @ is denoted by @ (D)
and it inherits some of the symmetries of @ (see Exercises 1-3). This observation,
however, does not account for all the symmetries of the frieze pattern @ (®). By
definition, every such pattern possesses its generating translation 7 as a symmetry, since
this translation shifts the infinitely extended pattern onto itself. In the case of the block

D

. of Figure 6.27, the frieze pattern has no other symmetries, and so its symmetry

group is denoted by I} =< 7>.
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===

5]

EI

Figure 6.26 Chinese ornamental frie

Ornament, by Owen

Jon

s. Reprinted from The Grammar of Chinese

es, with the permis of Studio Editio
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e

Figure 6.27 A frieze pattern with
symmetry group I} =<7>.

Block @, of Figure 6.28 possesses the symmetry o, (h for horizontal) which is

of course also a symmetry of its frieze pattern. In addition, this pattern also necessarily

Figure 6.28 A frieze pattern with
symmetry group I, =<1, p0,,7>.

possesses the composite glide-reflection y = p,,t as a symmetry. This frieze's
symmetry group is denoted by I, =<7, p,, y>. The symmetry p, of @; of Figure

6.29 results in a multitude of symmetries of the frieze @ (®;) which are all essentially

identical. It

DS
v v v
9 (@,) >< v

Figure 6.29 A frieze pattern with
symmetry group I;=<71, 0, >.
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should be noted however, that this frieze pattern possesses an additional symmetry,

namely the reflection p ,, which has no counterpart in the generating block @,. Because
of its similarity to p , the symmetry o, is not listed in the symmetry group I;,=<71, o,
> of this pattern. Such an additional reflection could not have appeared with the
horizontal reflection of D,, but similar "accidental" symmetries can arise in other cases,

as will be seen below. The symmetry R g0 of the block @, of Figure 6.30 results

C C C P

Figure 6.30 A frieze pattern with
symmetry group I, =<7, R> .

in the symmetries R = R g,0 of the frieze pattern. Once again the frieze pattern has
the additional symmetry R  q;0. This frieze pattern's symmetry groupis I, =<7, R >.
The block @y of Figure 6.31 possesses all three of the above symmetries, as does the

generated frieze pattern. Its symmetry groupis I's = <1, p,, o, R, y>. Justlike I,

1 | | | ™~
7@ | | | —

Figure 6.31 A frieze pattern with symmetry
group Iy = <7,0,p0, R v>.

6.38
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the next two patterns of Figure 6.32 and Figure 6.33 have symmetry groups I, =
<t,y> and I; = <71, R, p,> that contain glide reflections. However, unlike the

glide-reflection of I, those of I and I, do not have their component translation

and reflection in the group.

ALY

Figure 6.32 A frieze pattern with
symmetry group I, = <7T,y>.

Ay

Figure 6.33 A frieze pattern with
symmetry group I, = <7T,%, R, p, >.

The following theorem, attributed to Paul Niggli (1888 — 1953), states that the
foregoing is a complete list of all the possible types of symmetry groups that frieze

patterns can possess.

PROPOSITION 6.6.1 (P. Niggli, 1926). Every frieze pattern has a symmetry group
that is identical with one of the groups I'/=<1>,1,=<T1, 0, 7>,
F3:<T,pv>,F4:<r,R>,F5 = <r,ph,pV,R,y>,F6 =<T7>,

I'=<tyRp,>.

EXERCISES 6.6
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1. If the block @’s frieze pattern @ (®) has a horizontal symmetry, must @ necessarily have a
horizontal symmetry?

2. If the block @’s frieze pattern @ (®) has a vertical symmetry, must @ necessarily have a
vertical symmetry?

3. If the block @’s frieze pattern £ (®) has a rotational symmetry, must @ necessarily have a

rotational symmetry?

Identify the groups of the following frieze patterns.

, OXOXOXOX . AVAVAVAV
NVOVEVEVE  COCCC
» COCOCOCO ,, VYoV
» PEDEDEDD |, PIPZLTPE
A > O]

N N N N
16. \ \ \ \ 17.

18. 19.
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20. 21.

NZNZNZ N7 N N N NN
, CCCCCCCC . 00000000

» AAAAAAAA L NNNNNNNIN

7. Wallpaper Designs

Wallpaper designs are the two dimensional analogs of frieze patterns. More technically,
let & be the frieze pattern generated by a block @ and a translation 7. If 7* is another

translation whose direction is not parallel to that of 7, then the union of the figures

@) (9), 9. THP), TP,

is the wallpaper design W(®) generated by @, 7, and 7* (see Figures 6.34-35). As their
name implies, such designs are the mathematical patterns that underlie the repeating
decorative artworks illustrated in Figure 6.36. Unlike the carpets and walls that carry
these artworks, the mathematical wallpaper designs extend ad infinitum in all the
directions of the plane.

It is clear that both 7 and t* are symmetries of the wallpaper design they

generate. As was the case for frieze patterns, the generated design W(®) may possess
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further symmetries that are not present in @. In contrast with the seven different groups
of symmetries of frieze patterns, there are seventeen different possibilities for the
symmetry groups of wallpaper designs. These, together with their labels are exhibited
below. The presence of reflectional and glide-reflectional symmetries is denoted by a
dashed line with a label of either p (for reflection) or y (for glide-reflection). The
centers of rotational symmetries are denoted by the symbols () (180%), A (1209, h
(900), O (600). The following table lists the salient symmetry characteristics of each
design. A rotation through an angle of 360°/n is said to have order n. A glide-
reflection is said to be non-trivial if its component translation and reflection are not
symmetries of the pattern.

The symbols pl, pgg, p3Im, ... are used to denote both a type of wallpaper
design and its symmetry group. This is known as the crystallographic notation for the
symmetry groups. If the second character in this symbol is an integer, it is the highest
order of all the rotations in that group. The significance of the other characters is too

complicated to explain here.
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- C
VO AOAOAOy

Figure 6.34 A wallpaper design
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JONV UV U NV U NV L

NN "N /NN /N NN /N

-
JONV UV UV U NV L

A

)OO OO OO0 00

ey ) O OO OO OO C

)OO OO OO0 00

NN "N /NN NN /N

Figure 6.35
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The following is the two dimensional analog of Proposition 6.6.1.

PROPOSITION 6.7.1. There are exactly seventeen wallpaper symmetry groups.

The characteristics of the wallpaper designs that correspond to these groups are
displayed in the table below. The table itself is then followed by Figures 6.37, 6.38, 6.39
which display one illustration for each of these groups.

Proposition 6.7.1 was first discovered in 1891 by Evgraf Stepanovich Fedorov
(1853-1919), thirty five years before Niggli stated and proved its 1-dimensional analog
on frieze groups (Proposition 6.6.1). Curiously, this work had been preceded by
Fedorov's and Arthur Scho nflies's (1853-1928) independent classifications of the 230
crystallographic groups, these being the 3-dimensional analogs of the wallpaper groups.
It has since then been established that there are exactly 4783 classes of such groups in 4-
dimensional space. For spaces of more than four dimensions it is only known that the

number of such symmetry groups is finite.
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Recognition Chart for Wallpaper Symmetry Groups
(From Doris Schattschneider's article)

Highest Non-Trivial
order of Glide Helpful

Type rotation Reflections  Reflections  Distinguishing Properties

pl 1 no no

p2 2 no no

pm 1 yes no

P8 1 no yes

cm 1 yes yes

pmm 2 yes no

pmg 2 yes yes parallel reflection axes

P88 2 no yes

cmm 2 yes yes perpendicular reflection axes

p4 4 no no

pdm 4 yes yes 4-fold centers on reflection axes

pig 4 yes yes 4-fold centers not on reflection
axes

p3 3 no no

p3mli 3 yes yes all 3-fold centers on reflection
axes

p31lm 3 yes yes not all 3-fold centers on
reflection axes

p6 6 no no

poém 6 yes yes
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6.7 WALLPAPER DESIGNS

EXERCISES 6.7

Determine the crystallographic symbol of each of the wallpaper designs of Exercises 1-34. In each case
a) display a rotation of the highest order;

b) denote the presence of a glide-reflection by drawing its axis with an accompanying y;
c) denote the presence of a reflection by drawing its axis with an accompanying p;
d) avoid redundancy by only drawing only one axis in any direction;
e) in case you have to choose between a p and a y, display the y.
AU AUAUA J J \/ \/‘
ST 3 I VU
5 O OO AL AR LY YS VS Y
WRRYRYA [Us dsds U
:><><><><: M 8T A,
:> Q9 C sY'INY'INY'INY’IN\ ’?/\L?/\L?/\L?/\L
SAESYSYS
1. 5‘ 0 0 0 C 2 &MHMHMHML* 3 </'/</'/</'/</'/
A% KK NN
Y B
VY'YV § X Ty Y
AV, RS R
DT e Y ]
MRS IS SINEN
4. N /N /NN L 5. { L <L~ 6. = I
Y ey [REEE
VO SSSSS Totetole
INAISAY e 58881
NIl LS ASANANN] %
ISAISAY e XXX
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28. 29.
31. 32.
34.

CHAPTER REVIEW EXERCISES

—_

A R

a)
b)
¢)
d)

If f is any rigid motion and 7 is any translation, identify 7 o f o 1:_].
If f is any rigid motion and R is any rotation, identify R o f o R_].
If f is any rigid motion and p is any reflection, identify p o f o p_].
Identify the symmetry groups of the frieze patterns in Figure 6.26.

. Identify the symmetry groups of the wallpaper designs in Figure 6.36.

Are the following statements true or false in Euclidean geometry? Justify your answers.

The composition of two rigid motions is a rigid motion.
The composition of two translations is a translation.
The composition of two rotations is a rotation.

The composition of two reflections is a reflection.
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The composition of two glide-reflections is never a glide-reflection.

The only rigid motion that fixes three distinct points is the identity.

Every geometrical figure has at least one symmetry.

There exist only seven frieze patterns.

The frieze patterns have only seven pairwise distinct frieze pattern symmetry groups.
There exist only seventeen wallpaper designs.

There exist only seventeen distinct wallpaper symmetry groups.

Every frieze pattern has a translation in its symmetry group.

Foreach n=1,2,3,4,6 there is a wallpaper design which has a rotation of order » and
a non-trivial glide-reflectional symmetry.

Foreach n=1,2,3,4,6 there is a wallpaper design which has a rotation of order n and
no non-trivial glide-reflectional symmetries.

The inverse of every rigid motion is a rigid motion of the same type.
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