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CHAPTER 5 
 

Towards Projective 
Geometry 

 
 

Most mathematical disciplines encounter infinity and find it necessary to incorporate it 

into their language.  Euclidean geometry is no exception to this rule and this process 

resulted in the beautiful structure known as projective geometry, which was first codified 

by the Frenchman Ge′  rard Desargues (1591 - 1662). 

 
1.  Division of Line Segments 

 

The taming of geometrical infinity begins with a careful examination of geometrical 

ratios.  Let  r  be a positive real number.  If the point  D  on the line segment  AB  is such 

that   

 

     
AD
DB   =  r     (1) 

 

 

 

 

Figure 5.1  Division points. 
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it is said that  D  divides the segment  AB  internally in the ratio  r.   In Figure 5.1 

 

  
AF
FB   =  

1
3   

AG
GB   =  1  

AH
HB   =  3 

 

On the other hand, if the point  D  lies on the straight line  

€ 

↔
AB  but falls outside the line 

segment  AB, and if Equation  (1)  holds again, then   D  divides the line segment  AB  

externally in the ratio   r,  or 

 

     
AD
DB      =     - r    (2) 

In Figure 5.1 

 

 
AD
DB   =  - 

1
2   

AE
EB   =  - 

1
3   

AI
IB   =  - 2  

AJ
JB   =  - 

3
2  

 

Note that when  -1  <  r  <  0  in Equation (2),  AD  must be shorter than  DB  so that  A  

lies between  D  and  B (see Fig. 5.2).  On the other hand, if  r  <  -1  AD is longer than  

DB  and so  B  separates  A  and  D.  Exercise 16  contains more detailed information 

regarding the dependence of the value of  AD/DB  on the position of  D  on the line  AB×    . 

 

 

Figure 5.2 

 

 An alternative description of the relationship between the sign of a ratio and the 

relative position of its points is obtained by thinking of the line segments in question as 

directed segments.  In that case the ratio  AD/DB  is positive or negative according as  AD  

and  DB  have the same or opposite directions. 
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 It is important to keep in mind that the assignment of signs to ratios applies only 

in the case where the points  A, B, D  are collinear.  If they are not collinear, then the ratio  

AD/DB  is always taken to be positive.  Moreover, while this definition does implicitly 

assume a choice of a unit of length,  the actual value of the ratio  AD/DB  is independent 

of the particular choice of unit since changing one's choice has the effect of multiplying 

the lengths of  AD  and  DB  by the same factor which then disappears in the evaluation 

of the ratio  AD/DB. 

 It should be mentioned that Euclid did not exhibit any interest in external division 

points.  For that reason the correspondence between this chapter’s propositions and his is 

somewhat tenuous. 

 The next proposition demonstrates that division points are unique. 

 

PROPOSITION 5.1.1.   Given two distinct points  A  and  D  and a real number  r  

there exists at most one point  D  on  

€ 

↔
AB  such that  AD/DB  =  r.  

GIVEN:   Two distinct points  A  and  B;  two points  D, E  on  AB  such that (Fig. 5.3) 

 

     
AD
DB      =     

AE
EB  

 

 

Figure 5.3  Uniqueness of division. 

 

TO PROVE:  D  and  E  are identical. 

PROOF:    Let  r  be the common value of the ratio  AD/DB  and  AE/EB.  Suppose first 

that  r > 0.  In this case both  D  and  E  are in between  A  and  B.  It follows from 

Proposition 3.5.5  and the proportion 
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AD
DB      =     

AE
EB  

that 

 

  
AD + DB

DB       =     
AE + EB

EB       or  
AB
DB      =     

AB
EB   . 

 

Hence  DB = EB  and so,  since  D  and  E  are both between  A  and  B,  they are 

identical. 

 The resolution of the other cases corresponding to  r  <  -1  , r = -1,   −1  <  r  <  0,  

and  r = 0  are relegated to Exercises 1-3. 

           Q.E.D. 

 

 Before addressing the question of the existence of division points that yield 

arbitrary ratios,  rational divisions are examined. 

 

PROPOSITION 5.1.2(VI.9). To divide a given segment, both internally and 

externally in the ratio  m/n,  where  m  and  n  are two distinct positive integers. 

GIVEN:  Line segment  AB,  positive integers  m, n  (Fig. 5.4). 

TO CONSTRUCT:  Points  D  and  E  on  AB  such that 

 

  
AD
DB      =     

m
n    

AE
EB      =     - 

m
n  . 

 

CONSTRUCTION:   Let  AC ' AB  and let   A1, A2, ..., Am+n  be a sequence of distinct 

points on  AC  such that  AA1  =  A1A2  =  ...  =  Am+n-1Am+n.  Let  D  be the intersection  
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Figure 5.4  Constructing division points. 

 

of  AB  with the straight line through  Am  that is parallel to  BAm+n.  Turning to  E,  if   

m < n,  then let  BC ' AB  and let  B1, B2, ..., Bn  be a sequence of distinct points on  BC  

such that  BB1  =  B1B2  =  ...  =  Bn-1Bn.  Let  E  be the intersection of  

€ 

↔
AB  with the 

straight line through  Bn  that is parallel to  ABn-m.  The construction  of  E  in the case  m 

> n  is relegated to Exercise 4. 

PROOF:  It follows from Proposition 3.5.6  that 

 

   
AD
DB      =     

AAm
AmAm+n

      =     
mAA1
nAA1

      =     
m
n  

and 

   
AE
EB      =     

Bn-mBn
BnB       =     - 

mBB1
nBB1

      =     - 
m
n  . 

           Q.E.D. 

 

 It is intuitively clear that given any positive real number  r,  there is a point  D  

that divides  AB  internally in the ratio  r.  After all, one need simply choose a point  D  

on  AB  such that   

 

AD     =     
r

r + 1 AB 
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so that 

 

BD     =     AB  - AD     =      AB  -   
r

r + 1 AB     =     (1  -   
r

r + 1 )AB     =      
1

r + 1 AB 

 

and hence 

 
AD
DB      =     

r
1      =     r. 

 

This, however, is merely an existential statement.  The following proposition shows how 

this division point can be constructed within the framework of Euclid's Elements. 

   

PROPOSITION 5.1.3(VI.10).  To divide a given line segment both internally and 

externally in any given ratio ≠ 1. 

GIVEN:  Line segment  AB,  line segment  PQ  of length  a ≠  1 (Fig. 5.5). 

TO CONSTRUCT:  Points  D  and  E  such that    
AD
DB   =  a  and    

AE
EB   =  -a. 

CONSTRUCTION:  The construction of a point  E  is described for  a > 1 only, leaving 

the other cases to Exercises 5, 6.  On  AC 

€ 

⊥ AB  let  X, Y  be points such  that  AX  =  PQ 

and  XY  has unit length.  Let  E  be the intersection of  

€ 

↔
AB  with the straight line through  

X  that is parallel to  BY. 

 

 

Figure 5.5  An external division point. 
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PROOF:  By Proposition 3.5.6 

 

   
AE
EB      =     

AX
XY      =     - 

a
1      =     -a. 

           Q.E.D. 

 

 In the exceptional case where the ratio is  1, the internal division point is the 

midpoint which was already dealt with in Proposition 2.3.10, whereas the external 

division point does not exist (see Exercise 15).  An alternative method for dividing a line 

segment in a prespecified signed ratio is described in Exercises 3.5B.6-7.  The foregoing 

discussion is summarized by the following proposition. 

 

PROPOSITION 5.1.4.  Let  AB  be a straight line segment and   r  a real number 

different from  -1.  Then there is a unique point  D  on  

€ 

↔
AB  such that   

AD
DB   =  r. 

  

EXAMPLE 5.1.5.  To divide a line segment  AB   of Figure 5.6 in the ratio  - 2 . 

CONSTRUCTION: The number  2   is represented geometrically by the hypotenuse of 

an isosceles right triangle whose legs are  1  unit long.  The remainder of the construction 

follows the steps outlined in the proof of Proposition 5.1.1, again with  AX = PQ. 

 

     

Figure 5.6  An external division. 

 

EXERCISES 5.1 
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1. Prove Proposition 5.1.1 in the case  r < -1. 

2. Prove Proposition 5.1.1 in the case  -1 < r < 0. 

3. Discuss cases  r = 0, -1  of Proposition 5.1.1. 

4. Construct the point E in the case  m > n of Proposition 5.1.2. 

5. Prove Proposition  5.1.3  in the case  1 > a > 0. 
6. Discuss Proposition 5.1.3  in the case  a  = 1.  

7. Let  AB  be a line segment. 

 a) Divide  AB  internally in the ratio  4; 

 b) Divide  AB  internally in the ratio  1/4; 

 c) Divide  AB  externally in the ratio  4; 

 d) Divide  AB  externally in the ratio  1/4. 

8. Let  AB  be a line segment. 

 a) Divide  AB  internally in the ratio  5/3; 

 b) Divide  AB  internally in the ratio  3/5; 

 c) Divide  AB  externally in the ratio  5/3; 

d) Divide  AB  externally in the ratio  3/5. 

9. Let  AB  be a line segment and  n  a positive integer.  Divide  AB  into  n  equal segments 

(Proposition VI.9). 

10. Let  AB  and  PQ  be line segments and  X  a point on the straight line  PQ.  Divide  AB  in the 

ratio   
PX
XQ  (Proposition VI.10) .  (Hint: The construction is similar to that of PN 5.1.2 and PN 5.1.3.) 

11. Let  AB  be a line segment. 

 a) Divide  AB  internally in the ratio  5 ; 

 b) Divide  AB  internally in the ratio  1/ 5 ; 

 c) Divide  AB  externally in the ratio  5 ; 

 d) Divide  AB  externally in the ratio  1/ 5 . 

12. Let  AB  be a line segment. 

 a) Divide  AB  internally in the ratio  3 ; 

 b) Divide  AB  internally in the ratio  1/ 3 ; 

 c) Divide  AB  externally in the ratio  3 ; 

 d) Divide  AB  externally in the ratio  1/ 3 . 

13. Let  AB  be a line segment. 

 a) Divide  AB  internally in the ratio  
1 + 5
2 + 3

  ; 

 b) Divide  AB  externally in the ratio   
1 + 5
2 + 3

  ; 
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 c) Divide  AB  externally in the ratio   
2 + 3
1 + 5

  ; 

 

14. Supply the details needed to complete the proof of Proposition 5.1.4. 

15. Let  AB  be a straight line segment.  Prove that there is no point  E  such that  AE/EB  =  -1. 

16. Prove that if  A = (0, 0),  B = (1, 0),  and  D = (x, 0)  in some Cartesian coordinate system,  then  

AD/DB  =  x/(1 - x). 

17. Comment on Proposition 5.1.1 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab;  d)  maxi. 

18. Comment on Proposition 5.1.4 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab;  d)  maxi. 

 
 

 
2.  Collinearity and Concurrence 

 

This section presents some key theorems that were added to the geometric lore over the 

centuries that followed the writing of The Elements.   They were selected for this text 

because they provide a natural transition to projective geometry. 

 The set of points  {P, Q, R}  is said to be a transversal of  Δ ABC  if these points 

are distinct from  A, B, C  and they fall on the straight lines  

€ 

↔
AB, 

€ 

↔
BC , and  

€ 

↔
AC  

respectively (see Fig. 5.7).   

 

 

Figure 5.7  Transversals. 
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PROPOSITION 5.2.1 (The Theorem of Menelaus).  Let  {P, Q, R}  be a transversal 

of  Δ ABC.  Then  P, Q, R  are collinear if and only if 

 

    
AP
PB  

BQ
QC  

CR
RA      =     -1        (1). 

 

GIVEN:  Δ ABC,  P  on  

€ 

↔
AB,  Q  on  

€ 

↔
BC ,  R  on  

€ 

↔
CA . (Fig. 5.8). 

 

TO PROVE:  P, Q, R  are collinear if and only if  
AP
PB  

BQ
QC  

CR
RA      =     -1. 

 

 

Figure 5.8 

 

PROOF:   Assume first that  P, Q, R  are collinear and let  m  be the straight line 

containing them.   Let  F, G, H  be points of the line  m  such that  AF, BG,  and  CH  are 

all perpendicular to  m.  Then each of the similarities below is justified by the observation 

that the triangles in question are all right-angled and each pair either shares an acute 

angle or else has vertically opposite acute angles: 

 

  Δ APF ∼ Δ BPG, Δ BQG ∼ Δ CQH, Δ CRH ∼ Δ ARF 

 

 ∴ 
AP
PB   =  ± 

AF
BG  ,  

BQ
QC   =  ± 

BG
CH  ,    

CR
RA   =  ± 

CH
AF       
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Since  m  does not pass through any of the vertices of  Δ ABC,  it cuts either  1  or  3  of 

its sides externally.  Consequently the product  

 

  
AP
PB  

BQ
QC  

CR
RA      =     (± 

AF
BG ) (± 

BG
CH  ) (± 

CH
AF  )    (2) 

 

contains an odd number of negative factors.  After the obvious cancellations are carried 

out only  -1  remains in the right hand side of Equation (2). 

 

 

Figure 5.9 

 

 Conversely, suppose  P, Q, R  are such that Equation (1)  holds (Fig. 5.9).  Set  R'  

=  PQ ∩ AC (see Exercise 17).  It follows from the first part of the proof that 

  

    
AP
PB  

BQ
QC  

CR'
R'A      =     -1  . 

 

In combination with Equation (1)  this yields 

 

    
CR
RA      =     

CR'
R'A   . 

 

By Proposition 5.1.4  R = R'  and so the points  P, Q, R  are collinear.   

           Q.E.D. 
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EXERCISES 5.2A 

 
1. Suppose a straight line  m  bisects side  AB  of Δ ABC, and cuts  BC   internally into two segments 

one of which is double the other.  Describe the two possible points where it intersects the 

(extended) third side. 

2. Use the Theorem of Menelaus to prove that the straight line joining the midpoints of two sides of a 

triangle is parallel to the third side. 

3. Prove that if each of the bisectors of a triangle's exterior angles intersects the opposite side, then 

the three intersection points are collinear. (Hint: Use Exercise 3.5B.6-7) 

4. Prove that if the bisector of one of the triangle's exterior angles intersects the opposite side then 

this intersection is collinear with the intersections of the bisectors of the interior angles at the other 

two vertices with the opposite sides. (Hint: Use Exercises 3.5B.6-7.) 

5. Let  ABCD  be a trapezoid in which the non-parallel sides  AB  and  CD intersect in the point  M  

and the diagonals intersect in the point  N.  Prove that the straight line  MN  bisects both of the 

sides  BC  and  AD.  (Hint:  Apply the Theorem of Menelaus to two different triangles.) 

6. Let  ABCD  be a trapezoid in which the non-parallel sides  AB  and  CD intersect in the point  M  

and let  N  be the midpoint of  AD.  Prove that if  P = BD ∩ CN  and  Q =  AD ∩ MP, then  AQ = 

2QD.    

7. Let  ABCD  be a trapezoid in which the non-parallel sides  AB  and  CD intersect in the point  M  

and  Q  divide AD  internally in the ratio of  2.  Prove that if  R = BD  ∩ CQ  and  S =  AD  ∩ 

MR,  then  AS = 3SD.   

8. Let  ABCD  be a trapezoid in which the non-parallel sides  AB  and  CD intersect in the point  M. 
(Figure 5.10).  Define  A1 = A,  B1 = B,   and, for each positive integer  n,  let  Bn+1  =  CAn  ∩ 

BD,  and let  An+1  =  MBn+1  ∩ AD.   Prove that,   DA  =  nDAn  for  n ≥ 1. 
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Figure 5.10 

 

9. Let  A', B', C'  be the respective midpoints of the sides  BC, CA, AB  of  Δ ABC.  If  P  =  AA' ∩ 

B'C'  and   Q  =  CP  ∩ AB  prove that  AB  = 3 AQ. 

10. Two distinct straight lines intersect the sides of Δ ABC in the transversals  P, Q, R  and  P', Q', R'  

respectively.  Show that the points  X  =  BC ∩ RP',  Y  =  CA ∩ PQ',  Z  =  AB ∩ QR’,  are 

collinear, provided they exist. (Hint: Apply the Theorem of Menelaus to  Δ ABC  with each of the 

transversals  {P, Q, R}, {P', Q', R'}, {Z, Q, R'}, {P, Q', Y}, { P', X, R,}.) 

11. Two equal segments  AE  and  AF  are taken on the sides  AB  and  AC  of  Δ ABC,  and  M  is the 

midpoint of  BC.  Show that if  G  =  AM  ∩ EF  then  AG/GF = AB/AC.  (Hint: Let  X = BC 

∩ EF.  Apply the Theorem of Menelaus to both  Δ BEX  and  Δ CFX  with the transversal  {A, G, 

M}.) 

12. The points  A, B, C, D  on the straight line  m  and  A', B', C', D'  on the straight line  n  are such 

that  AA', BB', CC',  DD'  are concurrent.  Prove that   
AB/BC
AD/DC    =   

A'B'/B'C'
A'D'/D'C'  .  

13. Show that if each of the tangents to the circumcircle of a triangle at the vertices of the triangle 

intersects the extended opposite side of the triangle, then the points of intersection are collinear. 

14. What happens to the theorem of Menelaus if  P, Q, R  are not distinct from  A, B, C? 

15. Let  p, q, r  be three circles of unequal radii each of which lies in the others' exterior.  Prove that 

the three intersections of the common external tangents of each pair of circles are collinear. 

16. Formulate and prove an analog of Exercise  15  that involves the intersections of common internal 

tangents. 

17. Explain why the point  R'  in the proof of part 2 of the Theorem of Menelaus exists. 
18.  Let  P, Q, R  be a spherical transversal of the spherical Δ ABC.  Prove that  P, Q, R  are 

spherically  collinear if and only if 
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sin AP
sin PB   

sin BQ
sin QB   

sin CR
sin RA      =     -1   

 (Note: Here  AP  denotes the length of the geodesic joining  A  and  P, etc.) 

19. Let  P, Q, R  be a hyperbolic transversal of the hyperbolic Δ ABC.  Prove that P, Q, R  are 

 hyperbolically collinear if and only if 

 

    
sinh AP
sinh PB   

sinh BQ
sinh QB    

sinh CR
sinh RA      =     -1 . 

20. Comment on Proposition 5.2.1 in the context of taxicab geometry.  

21. Comment on Proposition 5.2.1 in the context of maxi geometry. 

22(C). Use a computer application to verify the Theorem of Menelaus. 

 A Cevian of  Δ ABC  is a straight line that joins a vertex of the triangle to a point 

on the extended opposite side that is not a vertex. 

 

PROPOSITION 5.2.2 (The Theorem of Ceva). The three Cevians  AQ, BR, CP  of  

Δ ABC  are concurrent if and only if 

 

     
AP
PB  

BQ
QC  

CR
RA      =     1  . 

See Exercise 1. 

 

EXERCISES 5.2B 

 
1. Prove the Theorem of Ceva. (Hint: A Cevian forms two triangles with the sides of the given 

triangle.  Apply the Theorem of Menelaus to these two.  Prove the converse in the same indirect 

manner used to prove the converse part of the Theorem of Menelaus). 

Use the Theorem of Ceva to prove the statements below. 

2. Prove that the three medians of the triangle are concurrent. 

3. Prove that the bisectors of the three interior angles of a triangle are concurrent. (See Exercise 

3.5B.6.) 

4. Prove that the bisector of an interior angle of  Δ ABC  and the bisectors of the exterior angles at the 

other two vertices are concurrent. (See Exercise 3.5B.7.) 
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5. Prove that in a triangle, the Cevians through the points of contact of the inscribed circle are 

concurrent. 

6. Prove that the three altitudes of every triangle are concurrent.  Be sure that your proof also works 

for obtuse triangles. (Hint: Each of the three altitude "divides" the triangle into two triangles and 

some of these six triangles are similar.) 

7. Suppose  AD, BE, CF  are concurrent Cevians  of  Δ ABC  and the circle through  D, E, F  

intersects the sides  BC
×

 , CA
×

 , AB
×     again in the points  D', E', F'.  Prove that the Cevians  AD', 

BE', CF'  are also concurrent. 

8. Let  AD, BE, CF  be three concurrent Cevians of  Δ ABC.  Then the points  BC
×

  ∩ EF
×

 ,  CA
×

   ∩ 

DF
×

 ,  AB
×

  ∩ ED
×

   are collinear. 

9. Formulate and prove a converse to Exercise 8. 

10. Two parallelograms  ABCD  and  AB'C'D'  have a common angle at  A . Prove that the lines  BD
×

 ', 

B'D
×

 , C'C
×

   are concurrent. 

11. If equilateral triangles  BCA', CAB', ABC'  are described externally on the sides of  Δ ABC,  then 

the lines  AA
×

 ', BB
×

 ', CC
×

 ' are concurrent. 

12. If  A", B", C"  are the centers of the equilateral triangles of the previous exercise, then the lines   

AA
×

 ”, BB
×

 ”, CC
×

 ” are concurrent. 

13. In the quadrilateral  ABCD,  E  =  AC
×

  ∩ BD
×

 ,  F  =  AD
×

  ∩BC
×

 ,  G  =  AB
×

  ∩ CD
×

 ,    and   

 H  =  AB
×

  ∩ EF
×

 .  Prove that   AH/HB  =  - AG/GB.  Does your proof depend on whether  E  is 

inside or outside  ABCD?  Does it remain valid even if  the cyclic ordering of the vertices of the 

given quadrilateral is not  A, B, C, D? 

14. State and prove (using spherical trigonometry) a spherical version of the Theorem of Ceva. (Hint:  

See Exercise 5.2A.18.) 

15. Use Exercise 14 to prove that the spherical medians of a spherical triangle are concurrent. 

16. Use Exercise 14 to prove that the spherical angle bisectors of a spherical triangle are concurrent. 

17. State and  prove (using hyperbolic trigonometry) a hyperbolic version of the Theorem of Ceva.  

(Hint:  See Exercise 5.2A.19.) 

18. Use Exercise 17 to prove that the hyperbolic medians of a hyperbolic triangle are concurrent. 

19. Use Exercise 17 to prove that the hyperbolic angle bisectors of a hyperbolic triangle are 

concurrent. 
20. Comment on Proposition 5.2.2 in the context of taxicab geometry. 

21. Comment on Proposition 5.2.2 in the context of maxi geometry. 

22(C). Use a computer application to verify the Theorem of Ceva. 
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PROPOSITION 5.2.3 (The Theorem of Pappus).  If  {A, B, C}  and  {A', B', C'}  are 

two sets of collinear points,  then the points 

€ 

↔
AB' ∩ 

€ 

↔
A'B , 

€ 

↔
AC' ∩ 

€ 

↔
A'C , 

€ 

↔
BC'  ∩ 

€ 

↔
B'C ,  are 

also collinear (provided these intersection points all exist). 

See Exercise 1. 

 
PROPOSITION 5.2.4 (The Theorem of Desargues).  For any  Δ ABC  and  Δ A'B'C', 
the lines  

€ 

↔
AA', 

€ 

↔
BB' , 

€ 

↔
CC' are concurrent if and only if the points 

€ 

↔
AB ∩ 

€ 

↔
A'B' , 

€ 

↔
BC∩

€ 

↔
B'C', 

€ 

↔
AC  ∩ 

€ 

↔
A'C' are collinear. (provided the intersections 

€ 

↔
AA' ∩

€ 

↔
BB' ,  

€ 

↔
BB'  ∩

€ 

↔
CC',  

€ 

↔
CC' 

∩

€ 

↔
AA',  

€ 

↔
AB ∩ 

€ 

↔
A'B' , 

€ 

↔
BC∩

€ 

↔
B'C' , 

€ 

↔
AC  ∩ 

€ 

↔
A'C''  all exist). 

See  Exercises 2, 3. 

 

PROPOSITION 5.2.5 (The Theorem of Pascal).  The intersections of the three pairs 

of opposite sides of a cyclic hexagon are collinear (provided these intersections all exist). 

See Exercise 4. 

  

 Each of the above three propositions ends with an annoying parenthetical 

qualification that, at a higher level, turns out to be unnecessary.  An elegant 

reinterpretation of the elements of geometry will be offered in the next section which 

indicates how such nuisances can be evaded.  

 

EXERCISES 5.2C 

 
1. Prove the Theorem of Pappus. 

2. Prove the first half of the Theorem of Desargues: For any  Δ ABC  and  Δ A'B'C',  if the lines  

€ 

↔
AA', 

€ 

↔
BB' , 

€ 

↔
CC'   are concurrent then the points  P  =  

€ 

↔
AB ∩ 

€ 

↔
A'B' ',  Q  =  

€ 

↔
BC∩ 

€ 

↔
B'C' , R  =  

€ 

↔
AC  ∩ 

€ 

↔
A'C''  are collinear. 

3. Prove the second half of the Theorem of Desargues:  For any  Δ ABC  and  Δ A'B'C',  the lines  

€ 

↔
AA', 

€ 

↔
BB' , 

€ 

↔
CC'  are concurrent if the points   

€ 

↔
AB ∩ 

€ 

↔
A'B' ,   

€ 

↔
BC∩ 

€ 

↔
B'C' ,  

€ 

↔
AC  ∩ 

€ 

↔
A'C''  are 

collinear. 

4. Prove the Theorem of Pascal. 
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5. Comment on Proposition 5.2.3 in the context of the following geometries: 

 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 

6. Comment on Proposition 5.2.4 in the context of the following geometries: 

 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 

7. Comment on Proposition 5.2.5 in the context of the following geometries: 

 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 

8(C). Use a computer application to verify a)  the Theorem of Menelaus  

 b)  the Theorem of Desargues  c)  the Theorem of Pascal. 

9. Draw nine points in the plane so that ten triples of these points are collinear. 
 
 

3.  The Projective Plane 
 
 

It is well known that parallel lines look as though they meet in a "vanishing point" or at a 

"point at infinity".  The edges of a long straight road look like they meet at a point on the 

horizon, as do adjacent railway tracks.  This illusion is further supported by the fact that 

in the representation of such a scene on a canvas or in a photograph, the said edges do 

indeed meet in the plane of the representation.  These suggestive and informal 

observations were turned by Desargues into a formal and fertile geometrical discipline, 

called projective geometry,  in the mid-seventeenth century.  Over the centuries this 

direct descendent of Euclidean geometry acquired great depth and applicability and 

became an integral part of the mainstream of mathematical evolution.  We will now 

explain how mathematicians converted the informal phrase "meet at infinity" into a 

formally correct statement. 

 An ordinary point is a point of the Euclidean plane.  An ordinary line is a straight 

line of the Euclidean plane.  The set of all the ordinary lines parallel to the ordinary line  

m  is the ideal point  or point at infinity or the vanishing point   ℑm (Fig. 5.11).  If  m  is 

any ordinary line then  the extended line  m* consists of all the points of  m  together with  
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ℑm;  In other words,  m* = m ∪ {ℑm}.  The ideal line  or line at infinity  Λ  consists of the 

set of all the ideal points.  A projective point is either an ordinary or an ideal point.  The 

projective plane consists of all the projective points.  A projective line is either an 

extended line or the ideal line.  

 

 

Figure 5.11  Three ideal points. 

 

The assignment of only a single ideal point to a straight line may seem counterintuitive 

and it is commonly argued that since every line extends to infinity in two directions, each 

of those directions should receive its own vanishing, or ideal, point.  This misconception 

is reinforced by the observation that when one looks along the aforementioned railroad 

tracks first in one direction and then in the opposite, the tracks seem to meet in two 

"different" ideal points.  It is important to remember, however, that the vanishing point 

depends on the observer's point of view.  In other words, the above "two" vanishing 

points are merely two different manifestations of the same ideal point.  Figure 5.12  

indicates that there are in fact not only two but infinitely many such manifestations. 

 

 

Figure 5.12  Five views of the same vanishing point. 
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 The geometry of the projective plane is very rich and elegant.  Some of this 

elegance can be seen in the next two basic propositions. 

 

PROPOSITION 5.3.1.  Every two distinct projective points are contained in exactly 

one projective line. 

GIVEN:  Projective points  P /=  Q . 

TO PROVE:  There exists exactly one projective line that contains both  P  and  Q. 

PROOF:  Case 1:  P  and  Q  are both ordinary points.  In this case  P  and  Q  are 

contained in exactly one ordinary line  m = 

€ 

↔
PQ .  Hence they are contained in exactly one 

extended line  m*.  Since both are ordinary points they are not contained in the ideal line.  

Thus  P  and  Q  are contained in exactly one projective line. 

Case 2:  P is ordinary  and  Q  is ideal, say  Q = ℑn (Fig. 5.13). Let  m  be that ordinary 

line that belongs to  Q  and contains  P.  Then the extended line  m*  contains both  P   

 

 

Figure 5.13 

 

and  ℑm  =  ℑn  =  Q.  If  p*  is any extended line that contains both  P  and  Q = ℑn,  

then, by definition,  p  is an ordinary line that contains  P  and is parallel to  n.  Thus, by 

Playfair's Postulate,  p = m  and so  p* = m*.  Since the ideal line  Λ  consists of ideal 

points only,  it cannot contain  P.  Thus,  the points  P  and  Q  are contained in exactly 

one projective line. 
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Case 3:   P  and  Q  are both ideal points.  Both  P  and  Q  are in the ideal line  Λ.  Since 

each extended line contains only one ideal point no extended line contains both  P  and  

Q.  Hence there is exactly one projective line that contains both  P  and  Q. 

                  Q.E.D.  

 

PROPOSITION 5.3.2.  Every two distinct projective lines intersect in exactly one  

projective point. 

GIVEN:  Two distinct projective lines. 

TO PROVE:  There is exactly one projective point  P  on both of these lines. 

PROOF:  It follows from Proposition 5.3.1 that any two distinct projective lines can 

intersect in at most one point.  Hence it suffices to show that every two projective lines 

intersect. 

 Case 1:  The two lines are both extended Euclidean lines, say  m*  and  n*.  If   

m || n  then  ℑm  =  ℑn  and so  m*  and  n*  intersect in this common ideal point.  

Otherwise, m*  and  n*  intersect in the ordinary point  m ∩ n   

 Case 2:  One of the straight lines is the ideal line  Λ  and the other is an extended 

line  m*.  In this case both of the projective lines contain the point  ℑm. 

           Q.E.D. 

 

 Despite the fact that the projective plane incorporates points that are seemingly 

infinitely far away, it is possible to extend the notion of the ratio of lengths of ordinary 

segments to some cases that involve ideal points in a very fruitful way.  The following 

conventions are needed to accomplish this task. 

 

RATIO CONVENTIONS.   Let  A, B, C, D, E, F, G, H  be projective points.  The 

equations below hold in the sense that if any term has a numerical value, then all 

the others have the same numerical value. 
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1. If  A, B  are ordinary points and  C is any ideal point,,  then  
AC
CB   =  -1. 

 

2. 
AB
CD      =     

BA
DC  

 

3. 
AB
CD  

EF
GH      =     

AB
GH  

EF
CD      =     

EF
CD  

AB
GH      =     

EF
GH  

AB
CD       

 

4. If  A, B, C, D  are ordinary points such that  AB||CD,  then  
AB
CD   is assigned a 

negative or positive value according as the line segments  AC  and  BD  do or do 

not intersect (see Fig. 5.14). 

  

 

Figure 5.14 

 

 It turns out that many interesting theorems of Euclidean geometry are valid in the 

projective plane as well.  Moreover the projective point of view has the advantage of 

converting annoying exceptions to Euclidean theorems into interesting propositions.  This 

is illustrated by a reexamination of the powerful Theorem of Menelaus in the projective 

plane.  In the figures below ideal points are represented by three short parallel line 

segments that indicate the entire family of parallel lines that constitute that ideal point. 

 

PROPOSITION 5.3.3. The Theorem of Menelaus is also valid when one of the 

transversal points is ideal.  
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A

P

B C

R

Q
 

Figure 5.15 

 

GIVEN: Ordinary  Δ ABC  with transversal  {P, Q, R}  where  P  and  R  are ordinary  

and  Q  is ideal (Fig. 5.15). 

TO PROVE:  The points  P, Q, R  are collinear if and only if  
AP
PB   

BQ
QC   

CR
RA   =  -1. 

PROOF:  Suppose  P, Q, R  are collinear, then  PR || BC  and so it follows from 

Proposition 3.5.6  that   

 

  
AP
PB      =     

AR
RC      =     

RA
CR    

 

 ∴ 
AP
PB  

BQ
QC  

CR
RA       =     

BQ
QC      =     -1. 

 

Conversely,  if   
AP
PB  

BQ
QC  

CR
RA    =  -1,  then   

AP
PB  

CR
RA    =  1  so that   

AP
PB   =  

AR
RC   .  It 

follows from Proposition 3.5.6  that  PR || BC  and hence  P, Q, R  are collinear. 

           Q.E.D. 

 

PROPOSITION 5.3.4.  The Theorem of Menelaus is also valid when one of the 

triangle's vertices is ideal. 

GIVEN:  Projective  Δ ABC  with A  ideal  and  B  and  C  ordinary, and ordinary 

transversal  {P, Q, R} (Fig. 5.16). 

TO PROVE:  The points  P, Q, R  are collinear if and only if  
AP
PB   

BQ
QC   

CR
RA   =  -1. 
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Q B C

A

P

R

 

Figure 5.16 

 

Since  BP  and  CR  intersect in the ideal point  A,  it follows that  BP || CR.  Hence, if  P, 

Q, R  are collinear, then it follows from the similarity of  Δ QBP  and  Δ QCR  and the 

above ratio conventions that 
 

  
BQ
QC    =   

PB
CR      

    

 ∴ 
AP
PB  

BQ
QC  

CR
RA      =     

AP
RA  

BQ
QC  

CR
PB     =      (-1)1     =     -1. 

 

Conversely,  if  
AP
PB  

BQ
QC  

CR
RA    =  -1,  then it follows from the value  

AP
RA   =  -1  that 

 

  
BQ
QC   

CR
PB      =     1 

 

 or 
BQ
QC      =      

PB
CR  

 But ∠ QBP     =     ∠ QCR    [PN 3.1.1] 

 ∴ Δ QBP ∼ Δ QCR     [PN 3.5.9] 

 ∴ ∠ BQP     =     ∠ CQR 

 ∴ P, Q, R  are collinear. 

           Q.E.D. 

 

EXERCISES 5.3  
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1. Interpret and prove the Theorem of Ceva in the case where the vertex A  is ideal and all the other 

points are ordinary. 

2. Interpret and prove the Theorem of Ceva in the case where the transversal point  P  is ideal and all 

the other points are ordinary. 

3. Interpret and prove the Theorem of Ceva in the case where the transversal points  P  and  Q  are 

ideal and all the other points are ordinary. 

4. Interpret and prove the Theorem of Pappus in the case where exactly one of the given intersection 

points is ideal and all the other points are ordinary. 

5. Interpret and prove the Theorem of Pappus in case where two or more of the given intersections 

are ideal and all the other points are ordinary. 

6. Interpret and prove the Theorem of Pascal in the case where exactly one of the given intersection 

points is ideal and all the other points are ordinary. 

7. Interpret and prove the Theorem of Pascal in the case where two or more of the given intersection 

points are ideal and all the other points are ordinary. 

8. Interpret and prove the first half of the Theorem of Desargues in the case where one of the given 

intersection points is ideal and all the other points are ordinary. 

9. Interpret and prove the first half of the Theorem of Desargues in the case where two or more of the 

given intersection points are ideal and all the other points are ordinary. 

10. Discuss ideal points in the context of the following geometries: 

 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 

 

CHAPTER REVIEW EXERCISES 

 
In Exercises 1-5 all the points and lines are ordinary. 
1. Prove that if the straight line  m  intersects the sides  

€ 

↔
AB , 

€ 

↔
BC , 

€ 

↔
CD , 

€ 

↔
DA  of quadrilateral  

ABCD  in the points  P, Q, R, S  respectively,  then   
AP
PB  

BQ
QC  

CR
RD  

DS
SA   =  1. 

2. Show that the converse of Exercise 1 is false. 
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3. Generalize the Theorem of Menelaus  to arbitrary polygons. 

4*. If  all the sides of hexagon  ABCDEF  are tangent to the same circle in its interior, then the three 

diagonals joining its opposite vertices are concurrent. (Theorem of Brianchon). 

5. A parallel to the side  BC  of  Δ ABC  meets  AB  in  B'  and  AC  in  C'.  Prove that  BC'  and  B'C  

intersect on the median to  BC. 

6. Divide a given line segment in the ratios  ± 2 / 3   and   ± 3 / 2  

7. Interpret and prove Exercise 1 if  P  is ideal and all the other points are ordinary. 

8. Interpret and prove Exercise 1 if  A  is ideal and all the other points are ordinary. 

9. Interpret and prove Exercise 5  if the vertex  A  is ideal. 

10. Are the following statements true or false?  Justify your answers. 

a) Given two distinct points  C  and  D,  there exists exactly one point  X  on  

€ 

↔
CD   such 

that  CX/XD = 3. 

b) Given two distinct points  C  and  D,  there exists exactly one point  X  on  

€ 

↔
CD   such 

that  CX/XD = -3. 

c) Given two distinct points  C  and  D,  there exists exactly one point  X  on  

€ 

↔
CD   such 

that  CX/XD = -1. 

d) Given two distinct points   C  and  D,  there exists exactly one point  X  on  

€ 

↔
CD   such 

that  CX/XD = π . 

e) Given two distinct points   C  and  D,  it is possible to construct (in the sense of The 

Elements) a point  X  on  

€ 

↔
CD   such that  CX/XD = π . 

f) Given any three distinct points  P, Q, R,  there exists  Δ ABC  such that  AQ, BR, CP  are 

concurrent Cevians for that triangle. 

g) In the projective plane, every three ideal points are collinear. 

h) In the projective plane, every two ideal lines intersect. 

i) In the projective plane, every two projective lines intersect. 

j) In the projective plane every ideal point lies on some extended line. 

k) Playfair’s postulate holds in the projective plane. 

l) If  C  and  D  are two ordinary points of the projective plane  and  r  is a real number, then 

there is exactly one point  X  on  CD
×

   such that  CX/XD = r. 
 


