CHAPTER 5

Towards Projective
Geometry

Most mathematical disciplines encounter infinity and find it necessary to incorporate it
into their language. Euclidean geometry is no exception to this rule and this process
resulted in the beautiful structure known as projective geometry, which was first codified

by the Frenchman Ge rard Desargues (1591 - 1662).

1. Division of Line Segments

The taming of geometrical infinity begins with a careful examination of geometrical
ratios. Let r be a positive real number. If the point D on the line segment AB 1is such
that

AD
DB = " 0

Figure 5.1 Division points.
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it is said that D divides the segment AB internally in the ratio r. In Figure 5.1

AF 1 AG AH
FB =3 G =1 HB =3

On the other hand, if the point D lies on the straight line AB but falls outside the line

segment AB, and if Equation (1) holds again, then D divides the line segment AB

externally in the ratio r, or

AD
DB = T 2
In Figure 5.1
AD 1 AE 1 Al Al 3
DB = "2 EB = "3 B = 2 JB =2

Note that when -1 < r < 0 in Equation (2), AD must be shorter than DB so that A
lies between D and B (see Fig. 5.2). On the other hand, if » < -1 AD is longer than
DB and so B separates A and D. Exercise 16 contains more detailed information

regarding the dependence of the value of AD/DB on the position of D on the line AB .

-1 <AD/DB <0 0 < AD/DB < » - < AD/DB < -1
D A D B D
Figure 5.2

An alternative description of the relationship between the sign of a ratio and the
relative position of its points is obtained by thinking of the line segments in question as
directed segments. In that case the ratio AD/DB 1is positive or negative according as AD

and DB have the same or opposite directions.
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5.1 DIVISION OF LINE SEGMENTS

It is important to keep in mind that the assignment of signs to ratios applies only
in the case where the points A, B, D are collinear. If they are not collinear, then the ratio
AD/DB 1is always taken to be positive. Moreover, while this definition does implicitly
assume a choice of a unit of length, the actual value of the ratio AD/DB is independent
of the particular choice of unit since changing one's choice has the effect of multiplying
the lengths of AD and DB by the same factor which then disappears in the evaluation
of the ratio AD/DB.

It should be mentioned that Euclid did not exhibit any interest in external division
points. For that reason the correspondence between this chapter’s propositions and his is
somewhat tenuous.

The next proposition demonstrates that division points are unique.

PROPOSITION 5.1.1. Given two distinct points A and D and a real number r
<>
there exists at most one point D on AB such that AD/DB = r.

GIVEN: Two distinct points A and B; two points D, E on AB such that (Fig. 5.3)

AD _ AE
DB ~ EB

D E D E E D
A B

Figure 5.3 Uniqueness of division.

TO PROVE: D and E are identical.
PROOF: Let r be the common value of the ratio AD/DB and AE/EB. Suppose first
that r > 0. In this case both D and E are in between A and B. It follows from

Proposition 3.5.5 and the proportion
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5.1 DIVISION OF LINE SEGMENTS

AD AE
DB <~ EB
that
AD + DB AE + EB AB AB
DB = EB or DB ~ EB

Hence DB = EB and so, since D and E are both between A and B, they are
identical.

The resolution of the other cases correspondingto r < -1 ,r=-1, -1 <r < 0,
and r =0 are relegated to Exercises 1-3.

QED.

Before addressing the question of the existence of division points that yield

arbitrary ratios, rational divisions are examined.

PROPOSITION 5.1.2(V19). To divide a given segment, both internally and

externally in the ratio m/n, where m and n are two distinct positive integers.
GIVEN: Line segment AB, positive integers m, n (Fig.5.4).
TO CONSTRUCT: Points D and E on AB such that

AD m AE m
n “n -

DB~ EB =

CONSTRUCTION: Let AC'AB andlet A, A,, ..., A be a sequence of distinct

m+n

A . Let D be the intersection

m+n-1""m+n

points on AC suchthat AA, = A)A, = ... = A
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5.1 DIVISION OF LINE SEGMENTS

\

A D B

Figure 5.4 Constructing division points.

of AB with the straight line through A = that is parallel to BA, . . Turning to E, if

m < n, thenlet BC'AB andlet B, B,, ..., B, be a sequence of distinct points on BC
such that BB, = B,B, = .. = B, _,B,. Let E be the intersection of Z)B with the
straight line through B, that is parallel to AB, . The construction of E in the case m
> n 1is relegated to Exercise 4.

PROOF: It follows from Proposition 3.5.6 that

AD A4, mAA, m

DB ~ AmAm o nAA ] - n
and

‘E Bn_mBn mBB J m

EB ~ B B = " unBB 1 = T

QED.

It is intuitively clear that given any positive real number r, there is a point D
that divides AB internally in the ratio r. After all, one need simply choose a point D

on AB such that

r
AD = T[AB
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5.1 DIVISION OF LINE SEGMENTS

so that

r r 1
BD = AB -AD = AB—r+1AB = (1—r+1)AB = r+1AB

and hence

This, however, is merely an existential statement. The following proposition shows how

this division point can be constructed within the framework of Euclid's Elements.

PROPOSITION 5.1.3(V1.10). To divide a given line segment both internally and
externally in any given ratio = 1.
GIVEN: Line segment AB, line segment PQ of length a = 1 (Fig.5.5).

o AD AE
TO CONSTRUCT: Points D and E such that DB = @ and EB = -a

CONSTRUCTION: The construction of a point E is described for a > 1 only, leaving

the other cases to Exercises 5,6. On AC L AB let X, Y be points such that AX = PQ
<>

and XY has unit length. Let E be the intersection of AB with the straight line through

X that is parallel to BY.

P (0] A B E

Figure 5.5 An external division point.
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5.1 DIVISION OF LINE SEGMENTS

PROOF: By Proposition 3.5.6

AE
EB =

QED.

In the exceptional case where the ratio is 1, the internal division point is the
midpoint which was already dealt with in Proposition 2.3.10, whereas the external
division point does not exist (see Exercise 15). An alternative method for dividing a line
segment in a prespecified signed ratio is described in Exercises 3.5B.6-7. The foregoing

discussion is summarized by the following proposition.

PROPOSITION 5.1.4. Let AB be a straight line segment and r a real number

- AD
different from -1. Then there is a unique point D on AB suchthat [,p = r.

EXAMPLE 5.1.5. To divide a line segment AB of Figure 5.6 in the ratio -\/2 .
CONSTRUCTION: The number 2 is represented geometrically by the hypotenuse of
an isosceles right triangle whose legs are 1 unit long. The remainder of the construction

follows the steps outlined in the proof of Proposition 5.1.1, again with AX = PQ.

C
X
0
Y V2 1
A B E P 1
Figure 5.6 An external division.
EXERCISES 5.1
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5.1 DIVISION OF LINE SEGMENTS

1. Prove Proposition 5.1.1 in the case r < -1.

Prove Proposition 5.1.1 in the case -1 < r < 0.

Discuss cases r=0,-1 of Proposition 5.1.1.

Construct the point E in the case m > n of Proposition 5.1.2.

Prove Proposition 5.1.3 inthe case 1 >a> 0.

Discuss Proposition 5.1.3 in the case a =1.

~N N L bW

Let AB be a line segment.
a) Divide AB internally in the ratio 4;
b) Divide AB internally in the ratio 1/4;
c) Divide AB externally in the ratio 4;
d) Divide AB externally in the ratio 1/4.
8. Let AB be a line segment.
a) Divide AB internally in the ratio 5/3;
b) Divide AB internally in the ratio 3/5;
C) Divide AB externally in the ratio 5/3;
d) Divide AB externally in the ratio 3/5.
9. Let AB be a line segment and n a positive integer. Divide AB into n equal segments
(Proposition VI.9).
10. Let AB and PQ be line segments and X a point on the straight line PQ. Divide AB in the
ratio % (Proposition VI.10) . (Hint: The construction is similar to that of PN 5.1.2 and PN 5.1.3.)

11. Let AB be a line segment.
a) Divide AB internally in the ratio \/g ;
b) Divide AB internally in the ratio 1/\/3 ;
c) Divide AB externally in the ratio \/g ;
d) Divide AB externally in the ratio 1/\/3 .
12. Let AB be a line segment.
a) Divide AB internally in the ratio \/3 ;
b) Divide AB internally in the ratio 1/\/5 ;
c) Divide AB externally in the ratio \/3 ;
d) Divide AB externally in the ratio 1/\/5 .
13. Let AB be a line segment.
a) Divide AB internally in the ratio L+ \/g ;
2413
b) Divide AB externally in the ratio ﬂ ;
2413
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5.1 DIVISION OF LINE SEGMENTS

2+\/§ ]

c Divide AB externally in the ratio
. d 1445
14. Supply the details needed to complete the proof of Proposition 5.1 4.
15. Let AB be a straight line segment. Prove that there is no point E such that AE/EB = -1.
16. Prove that if A =(0,0), B=(1,0), and D = (x,0) in some Cartesian coordinate system, then

AD/DB = x/(I -x).

17. Comment on Proposition 5.1.1 in the context of the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.

18. Comment on Proposition 5.1.4 in the context of the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.

2. Collinearity and Concurrence

This section presents some key theorems that were added to the geometric lore over the
centuries that followed the writing of The Elements. They were selected for this text
because they provide a natural transition to projective geometry.

The set of points {P, Q, R} is said to be a transversal of A ABC if these points
are distinct from A, B, C and they fall on the straight lines TB, §>C , and X)C

respectively (see Fig. 5.7).

A B A
’ \

Figure 5.7 Transversals.

"
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5.2 COLLINEARITY AND CONCURRENCE

PROPOSITION 5.2.1 (The Theorem of Menelaus). Let {P, Q, R} be a transversal
of AABC. Then P, Q,R are collinear if and only if

ﬁ@ﬂ = -1 (D).

GIVEN: A ABC, P on AB, Q on BC, R on CA.(Fig.58).

) ) AP BQO CR
TO PROVE: P, Q, R are collinear if and only if PB @ RA = -1.

Figure 5.8

PROOF: Assume first that P, Q, R are collinear and let m be the straight line
containing them. Let F, G, H be points of the line m such that AF, BG, and CH are
all perpendicular to m. Then each of the similarities below is justified by the observation
that the triangles in question are all right-angled and each pair either shares an acute

angle or else has vertically opposite acute angles:

A APF ~ A BPG, A BQOG ~A CQOH, A CRH ~ A ARF

-+

AP AF BO BG CR CH
PB = *BG C = *CH RA = % AF
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5.2 COLLINEARITY AND CONCURRENCE

Since m does not pass through any of the vertices of A ABC, it cuts either 1 or 3 of

its sides externally. Consequently the product

AP BQ CR AF BG

PB OC RA = (*BG)(*cH ) (*aF ) )

contains an odd number of negative factors. After the obvious cancellations are carried

out only -1 remains in the right hand side of Equation (2).

R R

Figure 5.9

Conversely, suppose P, O, R are such that Equation (1) holds (Fig.5.9). Set R'
= PQ N AC (see Exercise 17). It follows from the first part of the proof that

AP BQ CR'

o7 e i = -l

PB QC RA ~—
In combination with Equation (1) this yields
CR R

RA =~ RA

By Proposition 5.1.4 R = R' and so the points P, O, R are collinear.
Q.ED.
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5.2 COLLINEARITY AND CONCURRENCE

EXERCISES 5.2A

Suppose a straight line m bisects side AB of A ABC, and cuts BC internally into two segments
one of which is double the other. Describe the two possible points where it intersects the
(extended) third side.

Use the Theorem of Menelaus to prove that the straight line joining the midpoints of two sides of a
triangle is parallel to the third side.

Prove that if each of the bisectors of a triangle's exterior angles intersects the opposite side, then
the three intersection points are collinear. (Hint: Use Exercise 3.5B.6-7)

Prove that if the bisector of one of the triangle's exterior angles intersects the opposite side then
this intersection is collinear with the intersections of the bisectors of the interior angles at the other
two vertices with the opposite sides. (Hint: Use Exercises 3.5B.6-7.)

Let ABCD be a trapezoid in which the non-parallel sides AB and CD intersect in the point M
and the diagonals intersect in the point N. Prove that the straight line MN bisects both of the
sides BC and AD. (Hint: Apply the Theorem of Menelaus to two different triangles.)

Let ABCD be a trapezoid in which the non-parallel sides AB and CD intersect in the point M
and let N be the midpoint of AD. Prove thatif P=BD N CN and Q = AD N MP, then AQ =
20D.

Let ABCD be a trapezoid in which the non-parallel sides AB and CD intersect in the point M
and Q divide AD internally in the ratio of 2. Prove thatif R =BD N CQ and S= AD N
MR, then AS = 3SD.

Let ABCD be a trapezoid in which the non-parallel sides AB and CD intersect in the point M.
(Figure 5.10). Define A; = A, B; = B, and, for each positive integer n, let B, , = CA, N

BD, and let An+1 = MB N AD. Prove that, DA = nDAn for n=1.

n+l1
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5.2 COLLINEARITY AND CONCURRENCE

M
B,=B ¢
B,
B3
B, \
A=A A, A Ap Apg b
Figure 5.10

9. Let A', B, C' be the respective midpoints of the sides BC, CA, AB of AABC. If P = AA'N
B'C' and Q = CP N AB prove that AB =3 AQ.

10. Two distinct straight lines intersect the sides of A ABC in the transversals P, Q,R and P', Q', R’
respectively. Show that the points X = BCNRP', Y = CANPQ', Z = ABNQR’, are
collinear, provided they exist. (Hint: Apply the Theorem of Menelaus to A ABC with each of the
transversals {P, O, R},{P', O, R"},{Z, O,R},{P, Q" Y};,{P,X,R})

11. Two equal segments AE and AF are taken on the sides AB and AC of A ABC, and M is the
midpoint of BC. Show thatif G = AM () EF then AG/GF = AB/AC. (Hint: Let X = BC
N EF. Apply the Theorem of Menelaus to both A BEX and A CFX with the transversal {A, G,
M3} )

12. The points A, B, C, D on the straight line m and A', B', C', D' on the straight line n are such

AB/BC A'B/B'C'
that AA', BB', CC', DD' are concurrent. Prove that AD/DC = ADUDC' -

13. Show that if each of the tangents to the circumcircle of a triangle at the vertices of the triangle

intersects the extended opposite side of the triangle, then the points of intersection are collinear.

14. What happens to the theorem of Menelaus if P, Q, R are not distinct from A, B, C?

15. Let p, g, r be three circles of unequal radii each of which lies in the others' exterior. Prove that

the three intersections of the common external tangents of each pair of circles are collinear.

16. Formulate and prove an analog of Exercise 15 that involves the intersections of common internal

tangents.

17. Explain why the point R' in the proof of part 2 of the Theorem of Menelaus exists.

18. Let P, O, R be a spherical transversal of the spherical A ABC. Prove that P, O, R are

spherically collinear if and only if
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5.2 COLLINEARITY AND CONCURRENCE

sin AP sin BQ sin CR
sin PB sin QB sin RA

-1

(Note: Here AP denotes the length of the geodesic joining A and P, etc.)
19. Let P, O, R be a hyperbolic transversal of the hyperbolic A ABC. Prove that P, O, R are

hyperbolically collinear if and only if

sinh AP sinh BQ sinh CR

sinh PB sinh QB sinhRA ~ -1
20. Comment on Proposition 5.2.1 in the context of taxicab geometry.
21. Comment on Proposition 5.2.1 in the context of maxi geometry.

22(C). Use a computer application to verify the Theorem of Menelaus.

A Cevian of A ABC is a straight line that joins a vertex of the triangle to a point

on the extended opposite side that is not a vertex.

PROPOSITION 5.2.2 (The Theorem of Ceva). The three Cevians AQ, BR, CP of

A ABC are concurrent if and only if

AP BQ CR
PBOCRA = 1
See Exercise 1.
EXERCISES 5.2B
1. Prove the Theorem of Ceva. (Hint: A Cevian forms two triangles with the sides of the given

triangle. Apply the Theorem of Menelaus to these two. Prove the converse in the same indirect
manner used to prove the converse part of the Theorem of Menelaus).

Use the Theorem of Ceva to prove the statements below.

2. Prove that the three medians of the triangle are concurrent.

3. Prove that the bisectors of the three interior angles of a triangle are concurrent. (See Exercise
3.5B.6.)

4. Prove that the bisector of an interior angle of A ABC and the bisectors of the exterior angles at the

other two vertices are concurrent. (See Exercise 3.5B.7.)
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10.

11.

12.

13.

14.

15.
16.
17.

18.
19.

20.
21.

22(C).

5.2 COLLINEARITY AND CONCURRENCE

Prove that in a triangle, the Cevians through the points of contact of the inscribed circle are
concurrent.

Prove that the three altitudes of every triangle are concurrent. Be sure that your proof also works
for obtuse triangles. (Hint: Each of the three altitude "divides" the triangle into two triangles and
some of these six triangles are similar.)

Suppose AD, BE, CF are concurrent Cevians of A ABC and the circle through D, E, F
intersects the sides BXC , C>’<A , A% again in the points D', E', F'. Prove that the Cevians AD',
BE', CF"' are also concurrent.

Let AD, BE, CF be three concurrent Cevians of A ABC. Then the points BXC N EF , Cfé\ N
DXF s A% N EXD are collinear.

Formulate and prove a converse to Exercise 8.

Two parallelograms ABCD and AB'C'D' have a common angle at A . Prove that the lines BXD ',
B>'<D , C>'<C are concurrent.

If equilateral triangles BCA', CAB', ABC' are described externally on the sides of A ABC, then
the lines A7 ', BB ', CXC "are concurrent.

If A", B", C" are the centers of the equilateral triangles of the previous exercise, then the lines
A)fé\ B)I(Q CXC ” are concurrent.

In the quadrilateral ABCD, E = AC NBD, F = AD NBC, G = AB NCD, and

H = AB N EXF . Prove that AH/HB = - AG/GB. Does your proof depend on whether E is
inside or outside ABCD? Does it remain valid even if the cyclic ordering of the vertices of the
given quadrilateral is not A, B, C, D?

State and prove (using spherical trigonometry) a spherical version of the Theorem of Ceva. (Hint:
See Exercise 5.2A.18.)

Use Exercise 14 to prove that the spherical medians of a spherical triangle are concurrent.

Use Exercise 14 to prove that the spherical angle bisectors of a spherical triangle are concurrent.
State and prove (using hyperbolic trigonometry) a hyperbolic version of the Theorem of Ceva.
(Hint: See Exercise 5.2A.19.)

Use Exercise 17 to prove that the hyperbolic medians of a hyperbolic triangle are concurrent.

Use Exercise 17 to prove that the hyperbolic angle bisectors of a hyperbolic triangle are
concurrent.

Comment on Proposition 5.2.2 in the context of taxicab geometry.

Comment on Proposition 5.2.2 in the context of maxi geometry.

Use a computer application to verify the Theorem of Ceva.
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5.2 COLLINEARITY AND CONCURRENCE

PROPOSITION 5.2.3 (The Theorem of Pappus). If {A, B, C} and {A',B',C"} are
two sets of collinear points, then the points X)B' N TB, TC' N TC, ?C‘ N ?C, are
also collinear (provided these intersection points all exist).

See Exercise 1.

PROPOSITION 5.2.4 (The Theorem of Desargues). For any A ABC and A A‘B C,

<S> € <>

the lmes AA', BB', CC' are concurrent if and only zfthe pomts AB ﬂ A'B' BCm B'C'

AC N A'C' are collinear. (provided the intersections AA' ﬂBB', BB' ﬂCC', CC'
<> <> <> <> <> <> <>
NAA', ABn A'B', BCNnB'C', AC n A'C" all exist).

See Exercises 2, 3.

PROPOSITION 5.2.5 (The Theorem of Pascal). The intersections of the three pairs

of opposite sides of a cyclic hexagon are collinear (provided these intersections all exist).

See Exercise 4.

Each of the above three propositions ends with an annoying parenthetical
qualification that, at a higher level, turns out to be unnecessary. An elegant
reinterpretation of the elements of geometry will be offered in the next section which

indicates how such nuisances can be evaded.

EXERCISES 5.2C
1. Prove the Theorem of Pappus.
2. Prove the first half of the Theorem of Desargues: For any A ABC and A A'B C, 1f the lines

IS I = I

AA', BB', CC'" are concurrent then the points P = AB N A'B" 0 = BC(‘I B'C' R =
<> <>
AC N A'C'"" are collinear.

3. Prove the second half of the Theorem of Desargues For any A ABC and A A'B'C', the lines

<S> > <>

<> <> <> <>
AA', BB', CC" are concurrent if the points AB N A'B' BCn B'C', ACn A'C" ar

collinear.

4. Prove the Theorem of Pascal.
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5.2 COLLINEARITY AND CONCURRENCE

5. Comment on Proposition 5.2.3 in the context of the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.

6. Comment on Proposition 5.2.4 in the context of the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.

7. Comment on Proposition 5.2.5 in the context of the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.

8(C).  Use a computer application to verify a) the Theorem of Menelaus
b) the Theorem of Desargues c) the Theorem of Pascal.

9. Draw nine points in the plane so that ten triples of these points are collinear.

3. The Projective Plane

It is well known that parallel lines look as though they meet in a "vanishing point" or at a
"point at infinity". The edges of a long straight road look like they meet at a point on the
horizon, as do adjacent railway tracks. This illusion is further supported by the fact that
in the representation of such a scene on a canvas or in a photograph, the said edges do
indeed meet in the plane of the representation. These suggestive and informal
observations were turned by Desargues into a formal and fertile geometrical discipline,
called projective geometry, in the mid-seventeenth century. Over the centuries this
direct descendent of Euclidean geometry acquired great depth and applicability and
became an integral part of the mainstream of mathematical evolution. We will now
explain how mathematicians converted the informal phrase "meet at infinity" into a
formally correct statement.

An ordinary point is a point of the Euclidean plane. An ordinary line is a straight
line of the Euclidean plane. The set of all the ordinary lines parallel to the ordinary line

m is the ideal point or point at infinity or the vanishing point 3 (Fig.5.11). If m is

any ordinary line then the extended line m* consists of all the points of m together with
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5.3 THE PROJECTIVE PLANE

3, In other words, m* =m U {3, }. The ideal line or line at infinity A consists of the

set of all the ideal points. A projective point is either an ordinary or an ideal point. The

projective plane consists of all the projective points. A projective line is either an

%n
—————
\
P
S
—

~
~p

extended line or the ideal line.

m

o~
m “Sn

24

Figure 5.11 Three ideal points.

The assignment of only a single ideal point to a straight line may seem counterintuitive
and it is commonly argued that since every line extends to infinity in two directions, each
of those directions should receive its own vanishing, or ideal, point. This misconception
is reinforced by the observation that when one looks along the aforementioned railroad
tracks first in one direction and then in the opposite, the tracks seem to meet in two
"different" ideal points. It is important to remember, however, that the vanishing point
depends on the observer's point of view. In other words, the above "two" vanishing
points are merely two different manifestations of the same ideal point. Figure 5.12

indicates that there are in fact not only two but infinitely many such manifestations.

~NXU A S

Figure 5.12 Five views of the same vanishing point.
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5.3 THE PROJECTIVE PLANE

The geometry of the projective plane is very rich and elegant. Some of this

elegance can be seen in the next two basic propositions.

PROPOSITION 5.3.1. Every two distinct projective points are contained in exactly
one projective line.

GIVEN: Projective points P # Q .

TO PROVE: There exists exactly one projective line that contains both P and Q.
PROOF: Case 1: P and Q are both ordinary points. In this case P and Q are
contained in exactly one ordinary line m = <I;)Q. Hence they are contained in exactly one
extended line m*. Since both are ordinary points they are not contained in the ideal line.
Thus P and Q are contained in exactly one projective line.

Case 2: P is ordinary and Q isideal, say Q = S“n (Fig. 5.13). Let m be that ordinary

line that belongs to QO and contains P. Then the extended line m* contains both P

P
n m
0= “(\Sm = Sn
Figure 5.13
and 3 = 3 = Q. If p* is any extended line that contains both P and Q = J ,

then, by definition, p is an ordinary line that contains P and is parallel to n. Thus, by
Playfair's Postulate, p = m and so p* = m*. Since the ideal line A consists of ideal
points only, it cannot contain P. Thus, the points P and Q are contained in exactly

one projective line.
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5.3 THE PROJECTIVE PLANE

Case 3: P and Q are both ideal points. Both P and Q are in the ideal line A. Since
each extended line contains only one ideal point no extended line contains both P and

Q. Hence there is exactly one projective line that contains both P and Q.

Q.ED.

PROPOSITION 5.3.2. Every two distinct projective lines intersect in exactly one
projective point.

GIVEN: Two distinct projective lines.

TO PROVE: There is exactly one projective point P on both of these lines.

PROOF: It follows from Proposition 5.3.1 that any two distinct projective lines can
intersect in at most one point. Hence it suffices to show that every two projective lines
intersect.

Case 1: The two lines are both extended Euclidean lines, say m* and n*. If

mlln then J = J andso m* and n* intersect in this common ideal point.

Otherwise, m* and n* intersect in the ordinary point m M n
Case 2: One of the straight lines is the ideal line A and the other is an extended

line m*. In this case both of the projective lines contain the point J .

QED.

Despite the fact that the projective plane incorporates points that are seemingly
infinitely far away, it is possible to extend the notion of the ratio of lengths of ordinary
segments to some cases that involve ideal points in a very fruitful way. The following

conventions are needed to accomplish this task.

RATIO CONVENTIONS. Let A, B,C,D,E, F, G, H be projective points. The

equations below hold in the sense that if any term has a numerical value, then all

the others have the same numerical value.
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5.3 THE PROJECTIVE PLANE

AC
1. If A, B are ordinary points and C is any ideal point,, then cB =1
AB BA
2. ¢t = DC
AB EF AB EF EF AB EF AB
3 CDGH = GHCD = CDGH = GHCD

AB
4. If A, B, C, D are ordinary points such that ABIICD, then CD s assigned a

negative or positive value according as the line segments AC and BD do or do

not intersect (see Fig. 5.14).

Z N

Figure 5.14

Q
Il

It turns out that many interesting theorems of Euclidean geometry are valid in the
projective plane as well. Moreover the projective point of view has the advantage of
converting annoying exceptions to Euclidean theorems into interesting propositions. This
is illustrated by a reexamination of the powerful Theorem of Menelaus in the projective
plane. In the figures below ideal points are represented by three short parallel line

segments that indicate the entire family of parallel lines that constitute that ideal point.

PROPOSITION 5.3.3. The Theorem of Menelaus is also valid when one of the

transversal points is ideal.
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5.3 THE PROJECTIVE PLANE

7\

B C

Q
Il

Figure 5.15

GIVEN: Ordinary A ABC with transversal {P, O, R} where P and R are ordinary
and Q isideal (Fig.5.15).

. L .. AP BQ CR
TO PROVE: The points P, Q, R are collinear if and only if 7p OC RA = -1.

PROOF: Suppose P, Q, R are collinear, then PR Il BC and so it follows from

Proposition 3.5.6 that

AP AR RA

PB = RC ~ CR

AP BQ CR BO

PBOCRA = oc = L

.. AP BQ CR AP CR AP AR
Conversely, if PB OC RA = -1, then pg pa = 1| sothat pg = R . It

follows from Proposition 3.5.6 that PRIl BC and hence P, Q, R are collinear.

Q.ED.

PROPOSITION 5.3.4. The Theorem of Menelaus is also valid when one of the
triangle's vertices is ideal.
GIVEN: Projective A ABC with A ideal and B and C ordinary, and ordinary

transversal {P, O, R} (Fig.5.16).

. o .. AP BQ CR
TO PROVE: The points P, Q, R are collinear if and only if pp OC RA = -1.
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5.3 THE PROJECTIVE PLANE

/77 A
R
P
0 B ‘c
Figure 5.16

Since BP and CR intersect in the ideal point A, it follows that BP Il CR. Hence, if P,
0O, R are collinear, then it follows from the similarity of A QBP and A QCR and the

above ratio conventions that

BO _ PB

OC = CR
AP BO CR AP BQ CR
PBOCRA = RAoQCcPB = (DI = -L

AP BQO CR ] AP
Conversely, if PB @ RA = -1, then it follows from the value RA = -1 that

BQ CR
oc pB = !

BQ PB
or OC ~ CR

But ZQBP = L QCR [PN 3.1.1]
A OBP ~ A QCR [PN 3.5.9]
L BOP = L CQR
P, O, R are collinear.

QED.

EXERCISES 5.3
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10.

5.3 THE PROJECTIVE PLANE

Interpret and prove the Theorem of Ceva in the case where the vertex A is ideal and all the other
points are ordinary.

Interpret and prove the Theorem of Ceva in the case where the transversal point P is ideal and all
the other points are ordinary.

Interpret and prove the Theorem of Ceva in the case where the transversal points P and Q are
ideal and all the other points are ordinary.

Interpret and prove the Theorem of Pappus in the case where exactly one of the given intersection
points is ideal and all the other points are ordinary.

Interpret and prove the Theorem of Pappus in case where two or more of the given intersections
are ideal and all the other points are ordinary.

Interpret and prove the Theorem of Pascal in the case where exactly one of the given intersection
points is ideal and all the other points are ordinary.

Interpret and prove the Theorem of Pascal in the case where two or more of the given intersection
points are ideal and all the other points are ordinary.

Interpret and prove the first half of the Theorem of Desargues in the case where one of the given
intersection points is ideal and all the other points are ordinary.

Interpret and prove the first half of the Theorem of Desargues in the case where two or more of the
given intersection points are ideal and all the other points are ordinary.

Discuss ideal points in the context of the following geometries:

a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.

CHAPTER REVIEW EXERCISES

In Exercises 1-5 all the points and lines are ordinary.

1.

2.

<> <> <> <>
Prove that if the straight line m intersects the sides AB, BC, CD, DA of quadrilateral

. . . AP BQ CR DS
ABCD in the points P, Q, R, S respectively, then PB @ RD SA = 1.

Show that the converse of Exercise 1 is false.
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CHAPTER REVIEW

Generalize the Theorem of Menelaus to arbitrary polygons.

If all the sides of hexagon ABCDEF are tangent to the same circle in its interior, then the three

diagonals joining its opposite vertices are concurrent. (Theorem of Brianchon).

A parallel to the side BC of A ABC meets AB in B' and AC in C'. Prove that BC' and B'C

intersect on the median to BC.

Divide a given line segment in the ratios :\/5 /\/5 and :\/5 /\/E

Interpret and prove Exercise 1 if P is ideal and all the other points are ordinary.

Interpret and prove Exercise 1 if A is ideal and all the other points are ordinary.

Interpret and prove Exercise 5 if the vertex A is ideal.

Are the following statements true or false? Justify your answers.

a)

b)

)

d)

€)

g)
h)

),
k)
)

Given two distinct points C and D, there exists exactly one point X on
that CX/XD = 3.
Given two distinct points C and D, there exists exactly one point X on
that CX/XD =-3.
Given two distinct points C and D, there exists exactly one point X on
that CX/XD =-1.
Given two distinct points C and D, there exists exactly one point X on

that CX/XD = .

such

such

such

such

Given two distinct points C and D, it is possible to construct (in the sense of The

<>

Elements) apoint X on CD such that CX/XD = 7.

Given any three distinct points P, O, R, there exists A ABC such that AQ, BR, CP are

concurrent Cevians for that triangle.

In the projective plane, every three ideal points are collinear.

In the projective plane, every two ideal lines intersect.

In the projective plane, every two projective lines intersect.

In the projective plane every ideal point lies on some extended line.

Playfair’s postulate holds in the projective plane.

If C and D are two ordinary points of the projective plane and r is a real number, then

there is exactly one point X on CXD such that CX/XD =r.
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