CHAPTER 4

Circles and Regular
Polygons

Circles and regular polygons are the subject of Books III and IV of The Elements.
Euclid's abstract exposition of the interrelation of chords, arcs, and tangents lines is

augmented with the computation of the circle's circumference and area.

1. The Neutral Geometry of the Circle

Equal circles are circles that have equal radii. A chord of a circle is a line segment that
joins two of its points. A diameter is a chord that contains the center of the circle. An
arc of a circle is a portion of the circle that joins two of its points. Every chord
determines two arcs of the circle. Consequently, it takes at least three letters to denote an
arc unambiguously and the two arcs of the circle of Figure 4.1 with endpoints A and B
should be denoted, properly speaking, by arc(AEB) and arc(AFB). Nevertheless, it is
customary to label both of these arcs arc(AB) and to rely on the context for clarification.
A segment of a circle is the portion between a chord and either of its arcs. A sector of a
circle is the portion between two radii. The arcs determined by a diameter are each called

a semicircle. That the two semicircles determined by a diameter are equal (in length) is a
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proposition that Euclid mentions in Definition 17 (Chapter 2). This observation is proved

as part of Proposition 4.1.1 below.

ez F

Figure 4.1

A central angle of a circle is one both of whose sides are radii. Every arc
subtends a central angle that is either greater or less than 180° according as the arc is

greater or less than a semicircle. Every chord subtends a central angle that is at most

(¢]

180".
The following four propositions of Euclid's are established here with a single

unified proof.

PROPOSITION 4.1.1(111.26). In equal circles equal central angles stand on equal
arcs.

PROPOSITION 4.1.1(111.27). In equal circles central angles standing on equal
arcs are equal to one another.

PROPOSITION 4.1.1(111.28). In equal circles equal chords cut off equal arcs, the
greater equal to the greater and the less to the less.

PROPOSITION 4.1.1(I11.29). In equal circles, equal arcs are subtended by equal

chords.
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4.1 THE NEUTRAL GEOMETRY OF THE CIRCLE

GIVEN: Equal circles centered at £ and E' respectively. Points A, B on the first
circle and points A', B' on the second (Fig. 4.2).
TO PROVE: The following are equivalent:

1. arc(AB) = arc(A’B’)

2. AB = A'B
3. L AEB = L AE'B
AB
B,/\A,
B E
A —
AB
Figure 4.2

PROOF: 1 => 2: Since the given circles are equal, it is possible to apply the circle
centered at E to that centered at E' so that £ and A fallon E' and A' respectively,
and arc AB falls along arc A'B' . The two arcs having equal lengths, B fallson B'. It
follows from PT 1 that the chord AB falls on the chord A'B' and hence, by CN 4, AB

=AB"

2 => 3: AAEB = AA'E'B' by SSS because

AB = AB [Given]

AE = AE [Given]

BE = BE [Given]
LAEB = LAEB
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4.1 THE NEUTRAL GEOMETRY OF THE CIRCLE

3 => 1: Since £ AEB = £ A'E'B' itis possible to apply the first circle to the

second so that E falls on E' and these angles coincide. Since the circles have equal

radii it follows that arc AB falls on arc A'B'. Consequently these arcs have equal

lengths.

QED.

COROLLARY 4.1.2. Ina circle all the semicircles are equal to each other.

See Exercise 1.

PROPOSITION 4.1.3(111.3). In a circle, a radius bisects a chord not through the

center if and only if the radius and the chord are perpendicular to each other.

See Exercise 2.

EXERCISES 4.1A

S

Prove Corollary 4.1.2.

Prove Proposition 4.1.3.

Prove that in a circle, a diameter is greater than any chord which is not a diameter.

Prove that two chords of a circle are equal if and only if they are at equal distances from its center.
(Exercise 2.3N.2 can be used to produce a neutral proof.)

Prove that a circle cannot contain three collinear points (II.2)

Prove that in a circle, the radius perpendicular to a chord bisects that chord's central angle and arc.

Prove that in a circle two equal intersecting chords cut each other into respectively equal
segments.

Prove that of two unequal chords in a circle, the greater one is closer to the center. (This is
Proposition III.15. It can be easily proved on the basis of the Theorem of Pythagoras, but such a

proof is would not be neutral. Euclid's neutral proof is based on Proposition 1.24 (Exercise

2.3Q.5).)
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4.1 THE NEUTRAL GEOMETRY OF THE CIRCLE

9. Let A be a given point and p a circle centered at C. If the point P moves along the circle p
prove that the midpoint of AP describes a circle centered at the midpoint of CA. (See Exercises

3.1D.7-8. It is necessary to consider three cases, depending on the relative positions of A and p.)

10. Construct the midpoint of a given arc on a given circle.

11. Given an arc of a circle, construct the center of the circle.

12. Given points A, B, C, D construct a circle through A and B whose center is equidistant from C
and D.

13. Given a point A inside a circle, construct a chord that is bisected by A. Prove that this chord is

the shortest of all the chords through A.

14. Given an angle o and a line segment a, construct a circle whose center is on one side of o and
which cuts a segment equal to a on the other side.

15. Given a circle p and a point A outside it, construct a straight line through A which cuts the

circle so that the segment from A to the circle equals the segment in the circle. (See Exercises

3.1.D7-8.)

16. Comment on Proposition 4.1.1 in the context of the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.

17. Comment on Proposition 4.1.3 in the context of the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.

An infinitely extended straight line is said to be tangent to a circle if they have

exactly one point in common, and that point is called their point of contact.

PROPOSITION 4.1.4(111.16, 18). If a straight line intersects a circle, then they are
tangent if and only if the straight line is perpendicular to the radius through the point of
contact.

GIVEN: Circle (C; CP), straight line PT (Fig.4.3).

TO PROVE: PT is tangent to (C; CP) if and only if CPL PT.
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4.1 THE NEUTRAL GEOMETRY OF THE CIRCLE

Figure 4.3

PROOF: Suppose first that PT is tangent to (C; CP). Hence, if Q is any point of PT
that is distinct from P, it must lie outside the circle so that CP < CQ. Consequently,
CP L PT[PN 2.3.24].

Conversely, suppose that CPL PT. Then, by Proposition 2.3.24, for any point Q
of PT that is distinct from P, CP < CQ. Consequently no such point Q can lie on the

circle (C; CP) and hence PT is tangent to it.

QED.
EXERCISES 4.1B
1. Suppose S and T are the contact points of the tangents to a circle from a point P outside it.
Prove that PS = PT.
2. Prove that in a circle the contact points of two parallel tangents are the endpoints of a diameter.
3. Prove that the straight line that joins the center of a circle to the intersection of two of its tangents
bisects the angle between these tangents.
4. Prove that for each side of the triangle there is a circle that is tangent to that side at one of its

interior points and tangent to the other two sides at points on their extensions. Construct these

circles. (Use Exercise 3 above.)

Two circles are said to be tangent if they intersect in exactly one point. If one circle lies inside the other

the tangency is said to be internal; otherwise it is external.

5. Prove that if two circles are externally tangent then the line segment joining their centers contains
the point of contact. (Hint: Proceed by contradiction and examine the triangle formed by the

centers and the contact point.)
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4.1 THE NEUTRAL GEOMETRY OF THE CIRCLE

Prove that if two circles are internally tangent then the line joining their centers contains the point
of contact.

Prove that if two circles are tangent to each other then they have a common tangent line at their
point of contact.

Prove that if two circles lie outside each other then they have four different common tangent lines.
Let m and n be common tangents to unequal circles such that both circles lie inside one of the
angles formed by these tangents. Prove that the line joining the centers of the circles bisects this
angle.

Let m and n be common tangents to unequal circles such that the circles lie in vertically
opposite angles formed by these tangents. Prove that the line joining the centers of the circles
bisects these angles.

Given two circles with the same center and unequal radii, prove that all the chords of the larger
circle that are tangent to the smaller circle have the same length.

Construct a circle with a given radius tangent to a given line.

Construct a circle with a given radius, tangent to a given line, and containing a given point.
Construct a circle containing a given point and tangent to a given straight line at a given point on
the line.

Construct a circle that is tangent to two given parallel straight lines.

Construct a circle that is tangent to two given parallel straight lines and contains a given point
between them. How many solutions are there?

Construct a circle that is tangent to two intersecting straight lines.

Construct a circle that is tangent to two given intersecting straight lines and contains a given point.
Construct a circle that is tangent to two given parallel straight lines as well as to a given third line
that intersects them.

Given a circle p and a point A construct a straight line containing A such that its segment inside
p has a given length. (Hint: See Exercise 11.)

Construct a point such that the lengths of the tangents from it to two given circles are given.
Comment on Proposition 4.1 .4 in the context of the following geometries:

a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.

The following proposition was proved by Euclid in its entirety. The proof offered

in this text is incomplete in two ways. In the first place, the argument is restricted to

rational values of the ratios in question. Moreover, given an angle £ ABC and a positive
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4.1 THE NEUTRAL GEOMETRY OF THE CIRCLE

integer m, this argument makes use of the angle (LABC)/n even though it has not been

demonstrated that such an angle can be constructed within Euclid's system.

PROPOSITION 4.1.5(V1.33). In equal circles, central angles are proportional to
the arcs on which they stand.

GIVEN: Equal circles with centers G and H respectively (Fig. 4.4).

LBGL  arc(BL)
TO PROVE: ZEHN arc(EN)

B

B

B, N

B3 E3
B E E
4 . E 2

m=>5 n=4
Figure 44

SUPPORTING ARGUMENT: The argument is limited to the case where the given
ratios are rational. In other words, it is assumed that there exist positive integers m and

n such that

LBGL _LEHN

m n

/BGL m )
— ie.,
n

/EHN

Let a be an angle such that

. _ LBGL _LEHN

m n
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4.1 THE NEUTRAL GEOMETRY OF THE CIRCLE

It follows that there exist points B,B,, ..,B,, on arc(BL) and points E E, ..E

n-1

on arc(EN)such that

LBGB, = (BGB, = .. = LB GL = LEHE =

LEHE, = .. = LE HN = a.

Hence, by Proposition 4.1.1,

arc(BB1) = arc(B1Bp) = .. =arc(By,1L)

=arc(EE1) = arc(E1Ep) = ... =arc(Ey. 1D).

If the common length of these arcs is denoted by S, then

arc(BL) mf m /BGL
arc(EN) np n LEHN

Q.ED.

Proposition 4.1.5 was used by Eratosthenes (ca. 275 - 194 BC), director of the
Alexandrian library, to obtain a remarkably accurate estimate of the circumference of the
earth. He knew that on the summer solstice the sun shone down at mid-day directly into
a well in the city of Syene whereas in Alexandria, 5000 stadia to the north, the shadows
indicated that the sun formed an angle of 1/50 of 360° (7 .20) with the vertical.
Assuming that the sun is so far away that its rays can be considered to be parallel when

they reach the earth (Fig. 4.5), he then used Proposition 4.1.5 to obtain the equation
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4.1 THE NEUTRAL GEOMETRY OF THE CIRCLE

circumference of earth 360°
distance from Alexandria to Syene ~ ~ 790

S 790 4/ Alexandria
N 7.2° |
n

w

Figure 4.5

from which he concluded that the circumference is 50-5000 = 250,000 stadia. In order
to make his answer divisible by 60 (probably because of the influence of the Babylonian
sexagesimal number system) he adjusted this result to 252,000 stadia. The standard
stade of the time had a length of 178.6 meters which converts his rounded estimate to

45,007 km, an overestimate of 12.3%, since the circumference of the earth is actually

40,075 km.

EXERCISES 4.1C

1. A circle has circumference 10 ft. Find the lengths of the arcs that subtend the following angles at

the center of the circle:

a) 10° b) 30° ) 90°
d) 110° e) 120° f) 180°

2. A location on earth has latitude 25° N. Find its distance from the equator and from the North
Pole.

3. A location on earth has latitude 70° N. Find its distance from the equator and from the North
Pole.
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4.1 THE NEUTRAL GEOMETRY OF THE CIRCLE

4. A location on earth has latitude 70° S. Find its distance from the equator and from the North
Pole.

5. A location on earth has latitude 70° S. Find its distance from the equator and from the North

Pole.

A location on earth lies 2000 km north of the equator. Find its latitude.

A location on earth lies 1234 km north of the equator. Find its latitude.

A location on earth lies 1000 km south of the equator. Find its latitude.

o 0 9

A location on earth lies 617 km south of the equator. Find its latitude.
10. Comment on Proposition 4.1.5 in the context of the following geometries:

a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.

2. The Non-Neutral Geometry of the Circle

The next proposition is one of the most surprising in The Elements. Unlike those

appearing the previous section, its implications are quite unexpected.

PROPOSITION 4.2.1(111.20). In a circle, the angle at the center is double of the
angle at the circumference, when the angles have the same arc as base.

GIVEN: Points A, B, C on the circumference of a circle centered at E (Fig. 4.6).

TO PROVE: £ BEC = 2/ BAC.

X
Y.

B B F
Case 1 Case 2 Case 3

Figure 4.6
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4.2 THE NON-NEUTRAL GEOMETRY OF THE CIRCLE

PROOF: It is necessary to distinguish three cases.

Case 1: One of the sides of £ BAC contains the center E.

L BEC = LBAC + £ ECA [Exterior, PN 3.1.6]
L BAC = LECA [AE = EC,PN 2.3.5]
L BEC = 2/ BAC

Case 2: The center E lies in the interior of £ BAC. Let F be the other

intersection of AE with the circumference of the given circle. Then,

2 = 221 [Case 1]
L4 = 2.3 [Case 1]
/L BEC = 2/ BAC [CN 2]

Case 3: The center E lies outside of £ BAC. Let F be the other intersection

of AE with the circumference of the given circle. Then,

2 = 221 [Case 1]
/4 = 223 [Case 1]
/L BEC = 2/ BAC [CN 3]

QED.

Proposition 4.2.1 has several corollaries whose proofs are relegated to the

exercises.

PROPOSITION 4.2.2(111.21). In a circle, the angles in the same segment are equal

to one another.

GIVEN: Points A, B, C, D on the circumference of a circle such that A and D lie on
the same side of BC (Fig.4.7).

TO PROVE: £ BAC = £ BDC.
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4.2 THE NON-NEUTRAL GEOMETRY OF THE CIRCLE

Figure 4.7

PROOF: See Exercise 1.

This proposition is somewhat counterintuitive. Suppose the points A and B in
Figure 4.8 are fixed whereas P slides clockwise around the circle occupying positions
P, P, .. P; successively. Proposition 4.2.2 implies that as long as the point P
remains in the interior of the upper (or longer) arc(AB) the angle APB retains a
constant (acute) value. When P passes through A or B, APB 1is no longer an angle.

Finally, when P is in the interior of the shorter (or lower) arc(AB) the angle APB

Figure 4.8 A discontinuous function.

assumes a different (obtuse) value. In other words, even though the point P moves in a

continuous manner, Z APB varies as a discontinuous function of the position of P.
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4.2 THE NON-NEUTRAL GEOMETRY OF THE CIRCLE

PROPOSITION 4.2.3(111.31). In a circle, the angle subtended by a diameter from

any point on the circumference is a right angle.

See Exercise 2.

PROPOSITION 4.2.4(111.32) Let AB be a chord of a circle and let AT be any
straight line at A. Then the line TT is tangent to the circle if and only if £ TAB is

equal to the angle at the circumference subtended by the intercepted arc.

GIVEN: Circle p with chord AB, straight line AT, arc(AB) (Fig 4.9).
TO PROVE: AT is tangent to p if and only if £ TAB equals the angle at the

circumference of p subtended by arc(AB).

PROOF: Let AD be the diameter of the circle containing A, and join BD (Figure 4.9).

%)

.

D B

Figure 4.9

By Proposition 4.2.3 £ ABD = 90°. Hence the following statements are all equivalent to
each other:

<>
AT 1is tangent to the circle

/ DAT = 90°
/1=90°-22
/1=12.3.

QED.
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4.2 THE NON-NEUTRAL GEOMETRY OF THE CIRCLE

PROPOSITION 4.2.5111.36-37). Let P be a point outside a given circle p let T
be a point on p, and let PAB be a secant line with chord AB. Then PT is tangent to p
if and only if

PA -PB = PTZ .

Figure 4.10

GIVEN: Point P outside circle p, straight lines PT and PAB that intersect p in 7,
A, B (Fig.4.10).
TO PROVE: PT is tangent to p if and only if PA -PB = PT2 .

PROOF: The following statements are all equivalent to each other:

The line PT is tangent to p

L1 =212 [PN 4.2.4]
A TPA and A BPT are similar to each other [PN 3.5.7]
PA _PT
PT ~— PB
PA -PB = P72 .
Q.ED.

A polygon is said to be cyclic if all of its vertices lie on a circle.
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4.2 THE NON-NEUTRAL GEOMETRY OF THE CIRCLE

PROPOSITION 4.2.6(111.22). The opposite angles of a cyclic quadrilateral are

equal to two right angles.

See Exercise 3.

EXERCISES 4.2A

1. Prove Proposition 4.2.2.

2. Prove Proposition 4.2.3.

3. Prove Proposition 4.2.6.

4. Prove that in a circle parallel chords enclose equal arcs.

5. Prove that if the quadrilateral ABCD is cyclic, then the exterior angle at A equals the interior
angle at C.

6. In a circle the extensions of the chords AB and KL intersect in a point P outside the circle.
Prove that £ AKP =/ LBP and £ BKP = / LAP.

7. In a circle the extensions of the chords AB and CD intersect in a point P outside the circle.
Prove that PA-PB = PC-PD (Proposition II1.35).

8. In a circle the chords AB and CD intersect in a point P inside the circle. Prove that PA-PB =
PC-PD (Proposition 111.36).

9. Prove that two equal and parallel chords in a circle constitute the opposite sides of a rectangle.

10. Prove that if the hexagon ABCDEF is cyclic and the interior angles at A and D are equal, then
BC I EF.

11. In the cyclic quadrilateral ABCD, AD = BC. Prove that the interior angles at A and B are equal
to each other (as are those at C and D).

12. Prove that the sum of the interior angles at A, C and E in the cyclic hexagon ABCDEF is four
right angles.

13*. Prove that if the perpendicular chords AB and CD of a circle intersect at the point M (inside the
circle) then the straight line through M that is perpendicular to AD bisects the chord BC.

14. Prove that every cyclic rhombus is a square.

15. Prove that if A and B are two distinct points and D is any other point on AB then the locus of
all the points P in the plane such that % = % is a circle. (This is the circle of Apollonius.)

16. State and prove the converse of Proposition 4.2.6.
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4.2 THE NON-NEUTRAL GEOMETRY OF THE CIRCLE

17. Given a line segment AB, construct the circle which consists of all the points from which AB
subtends an angle of 90°.

18. Given a line segment AB, construct the arc which consists of all the points from which AB
subtends an angle of 600.

19. Given a line segment AB, construct the arc which consists of all the points from which AB
subtends an angle of 1200.

20. Given a line segment AB, construct the arc which consists of all the points from which AB
subtends an angle equal to a given angle o.

21. Construct a triangle given the data:
a) a,hy, h, b) a,h,a ¢) am,a
d a+b+ch,a

22. Construct a parallelogram given its two diagonals and one of its angles.

23. Given line segment AB and CD and angles o and f3, construct a point P such that £ APB =
a and £ CPD = .

24. In a given AABC construct a point P such that £ APB =/ BPC = £ CPA.

25. Comment on Proposition 4.2.1 in the context of the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.

26. Comment on Proposition 4.2.2 in the context of the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.

27. Comment on Proposition 4.2.3 in the context of the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.

28. Comment on Proposition 4.2.6 in the context of the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.

29(C). Use a computer application to verify the following propositions: b) 422

c) 423b d) 42.4.

Three (or more) straight lines are said to be concurrent if they all contain the

same point.

PROPOSITION 4.2.7. The three perpendicular bisectors of the sides of a triangle

are concurrent.
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4.2 THE NON-NEUTRAL GEOMETRY OF THE CIRCLE

GIVEN: A ABC; DD', EE', FF' are the perpendicular bisectors of AB, AC, and

BC respectively (Fig. 4.11).
TO PROVE: DD', EE', FF' are concurrent.

C

Figure 4.11

PROOF: Exercise 3.1A4 guarantees that DD' and EE' intersect in some point M.

Draw AM, BM, CM. Then

AM = BM [PN 2.3.12]

AM = CM [PN 2.3.12]

BM = CM [CN 1]

M is on the perpendicular bisector to BC [PN 2.3.13]
QED.

A circle is said to circumscribe a triangle if all of the triangle's vertices are on the

circle. Its center and radius are, respectively, the triangle’s circumcenter and

circumradius.

PROPOSITION 4.2.8(1V.5). About a given triangle to circumscribe a circle.

See Exercise 1.
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4.2 THE NON-NEUTRAL GEOMETRY OF THE CIRCLE

PROPOSITION 4.2.9. The bisectors of the three interior angles of a triangle are

concurrent.
GIVEN: A ABC, AA', BB', CC' are the bisectors of 2~ BAC, L ACB, / ABC,
respectively (Fig. 4.12).

TO PROVE: AA' BB', CC' are concurrent.

B C

Figure 4.12

PROOF: Since

L1+ 23 = 3([2+04) < 3 180° [PN 2.321]

it follows from Postulate 5 that BB' and CC' intersect in some point D. Let E, F and
G be those points on AB, BC, CA respectively such that DE L AB, DF L BC, and

DG 1 AC. Then

DE = DF = DG [PN 2.3.31]

DE = DG [CN 1]

DA bisects £ BAC [PN 2.3.32]
QED.
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4.2 THE NON-NEUTRAL GEOMETRY OF THE CIRCLE

A circle that lies in the interior of a triangle and is tangent to all of its sides is said

to be inscribed in the triangle. Its center and radius are, respectively, the triangle’s

incenter and inradius.

PROPOSITION 4.2.10(1V 4). In a given triangle to inscribe a circle.

See Exercise 2.

EXERCISES 4.2B

1. Prove Proposition 4.2.8.

2. Prove that similar triangles have circumradii that are proportional to their sides.

3. Prove Proposition 4.2.10.

4. Prove that similar triangles have inradii that are proportional to their sides.

5. Prove that the circumcenter of a right triangle is the midpoint of its hypotenuse.

6. Prove that if the circumcenter of A ABC lies inside the triangle then the triangle is acute, if the
center is on a side the triangle is right, and if the center is outside the triangle then the triangle is
obtuse.

7. Prove that the circumcenter of an acute triangle lies inside the triangle.

8. Prove that the circumcenter of an obtuse triangle lies outside it.

9. Prove that the area of the triangle equals the product of half its perimeter with the inradius. (Hint:
Examine the three triangles formed by the center of the circle with the triangle's three sides.)

10. In a given circle inscribe a triangle similar to a given triangle.

11. Prove that the altitudes of the triangle are concurrent. (Hint: Through each vertex of the triangle
draw a line parallel to the opposite side. Then show that the altitudes in question are the
perpendicular bisectors of the triangle formed by these parallels.)

12. Comment on Proposition 4.2.7 in the context of the following geometries:

a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.

13. Comment on Proposition 4.2.8 in the context of the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.

14. Comment on Proposition 4.2.9 in the context of the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.

15. Comment on Proposition 4.2.10 in the context of the following geometries:

a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.
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4.2 THE NON-NEUTRAL GEOMETRY OF THE CIRCLE

16(C). Use a computer application to verify the following propositions: a) 425 b) 42.7.

3. Regular Polygons

A polygon is regular if all of its sides and all of its interior angles are equal. The
equilateral triangles are the regular triangles and they are the subject matter of
Proposition 1 of Book I. Squares are the regular quadrilaterals and they are constructed
in Proposition 3.3.1. Book IV of The Elements is mostly concerned with the
constructibility of other regular polygons and their inscription in circles. Regular

hexagons are also easily constructed.

PROPOSITION 4.3.1(1V.15). In a given circle to inscribe a regular hexagon.
GIVEN: Circle p =(O; r) (Fig. 4.13).
TO CONSTRUCT: Points A, B, C, D, E, F on p such that ABCDEF is a regular

hexagon.

B
C

VAYA

E F

Figure 4.13

CONSTRUCTION: Let A be an arbitrary point on the circle p. Let B be the
intersection of an arc of radius r and center A with p. Let C be the intersection of an
arc of radius r and center B with p, and let D, E, F be constructed in a similar

manner. Then ABCDEF is a regular hexagon.
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4.3 REGULAR POLYGONS

PROOF: By construction A AOB, A BOC, A COD, A DOE, and A EOF are all
equilateral so that £ AOB =4 BOC =4 COD = £ DOE = £ EOF = 60°. It follows that
£ FOA =360° - 5:60° = 60° and hence the isosceles A FOA is also equilateral. Thus,
FA = OA and so each of the sides of ABCDEF has length r. It also follows that each of
the interior angles of ABCDEF equals 120°. Thus, ABCDEF is a regular hexagon.
Q.ED.

A slight variation on the construction of the regular hexagon yields the flower-like

configuration of Figure 4.14.

Figure 4.14

The construction of the regular pentagon is a considerably more difficult matter.
Some of the technically demanding details are isolated in the following lemma. Others

were listed as exercises above.

PROPOSITION 4.3.2(1V.10). To construct an isosceles triangle having each of the
angles at the base equal to double of the remaining one.

TO CONSTRUCT: A ABC suchthat £ ABC = £ ACB = 2/ BAC (Figure 4.15).
CONSTRUCTION: Let AB be an arbitrary line segment and let D be a point such that
ABBD = AD’ [PN 3.4.1]. Then the required A ABC is that triangle such that AC =

AB and BC = AD [PN 2.3.27].
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Figure 4.15

PROOF: By construction, BC® = AD> = ABBD. It therefore follows that from

Proposition 4.2.5 that BC is tangent to the circle p that circumscribes A ACD. Hence,

L1 = 42 [PN 4.2.4]
3 = L1+/44 = /L2+/44 = L5 = L6
DC = BC = AD
1 1 1
Ll = L4 = 243 = 246 = 245
Q.ED.

If the smallest of the angles of the triangle of Proposition 4.3.2 is denoted by x,

then the other two angles are each 2x and so, by Proposition 3.1.6,

from which it follows that x = 36°. Hence the following corollaries hold.

PROPOSITION 4.3.3. To construct angles of 36° and 72°.
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We are now ready to construct the regular pentagon.

PROPOSITION 4.3.4(1V.11). In a given circle to inscribe a regular pentagon.
GIVEN: Circle p =(0O; r) (Fig.4.16).

TO CONSTRUCT: Points A, B, C, D, E on p such that ABCDE 1is a regular
pentagon.

CONSTRUCTION: At the center O of the circle construct five non-overlapping central
angles of 72° [PN 4.3.3]. Label the successive intersections of their sides with the circle

A,B,C,D, E. Then ABCDE is the required pentagon.

Figure 4.16

PROOF: The five constructed isosceles triangles are all congruent by SAS. It follows

that the five sides AB, BC, CD, DE, and EA are all equal. Moreover, the base angles of

1
these triangles are 7 (180°-72°) = 54° each and hence all of the pentagon's interior

angles are equal (to 108° each).

QED.

Euclid took the trouble to prove that the regular 15-sided polygon is constructible

(Exercise 3). It is reasonable to suppose that this was his way of pointing out that there is
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an interesting question to be pondered here. Namely, for which integers n can the
regular n-sided polygon be constructed? It has already been shown above that this is
possible for n = 3,4, 5, 6. Some more such n can be easily produced by simply
doubling the number of sides of any constructible regular polygon (see Exercises 1,2, 4).
However, this does not answer the question for such numbers as 7,9, 11,13,14,17, ....
The surprising intricacy of the construction of the pentagon indicates that such polygons
might pose an even greater challenge. This problem continued to excite the interest of
mathematicians after Euclid, but no progress was made for over 2000 years until the
young Gauss demonstrated the constructibility of the 17-sided polygon in 1796.
Actually, he did much more. Using the newly emergent theory of complex numbers
Gauss proved that a regular p-sided polygon can be constructed for every prime integer p

on L .
that has the form 2~ + 1 for some nonnegative integer n. These include the values

0 1
2 41 = 2'41 = 3, 2 +1 = 2’41 = 5,
22 4 23 8
27+1 = 2 +1 = 17, 2°+1 = 241 = 257,
4
22 +1 = 241 = 65537,
: : : 23 32
Curiously, the next number in this sequence, namely 2= + 1 = 27 + 1 =

4,294.967,297 fails to be a prime since it can be factored as 641:6,700,417 , a fact that
had already been noted by Euler over fifty years earlier. The same is true for all the
numbers of this form for n =6, 7, ..., 16 and several other values including n = 1945. In
fact, it is not known whether there are any more primes p that can be expressed in this
form above and beyond the five listed above.

Gauss completely resolved the issue of the constructibility of regular polygons as

follows.
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PROPOSITION 4.3.5. It is possible to construct (in the sense defined by Euclid) a

regular g-gon (g = 3) if and only if the factorization of g into primes has the form

k
g = 2pwpyp,

n
where m =20 and p, p,, ..., p,, are distinct primes each of which has the form 2% 41,

Thus, the regular 2040-gon is constructible because 2040 = 2°:3:5-17 whereas

the regular 28-sided and 100-sided polygons are not constructible because 28 = 2°7

and 100 = 2%5°%.

EXERCISES 4.3

1. Prove that the regular octagon is constructible .

2. Prove that the regular decagon is constructible.

3. Prove that the regular 15-sided polygon is constructible (Proposition IV.16).

4. Let g be a positive integer. Prove that if the regular g-sided polygon is constructible, so is the
regular 2g-sided polygon.

5. Let p and g be two prime integers. Prove that if the regular p-sided and g-sided polygons are
constructible so is the regular pg-sided polygon.

6. Let g and & be relatively prime integers such that the regular g-sided and %-sided polygons can
be constructed. Prove that the regular gh-sided polygon can be constructed.

7. Let g, h> 1 be integers such that 4 is an integer multiple of g. Prove that if the regular A-sided
polygon is constructible so is the regular g-sided polygon.

8. Use a calculating device to prove that 2 ° + 1 is not a prime integer.

9. For which n=3,4, ...,100 is the regular n-gon constructible?

10. For which n =101, 102, ...,200 is the regular n-gon constructible?

11. Comment on Proposition 4.3.1 in the context of the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.

12. Comment on Proposition 4.3.2 in the context of the following geometries:
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a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.
13. Comment on Proposition 4.3 .4 in the context of the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.
14. Show that in taxicab geometry equilateral triangles are not necessarily equiangular. Can all three

of the angles of an equilateral taxicab triangle be distinct?

15(C). Perform the construction of Proposition 4.3.1 using a computer application.

4. Circle Circumference and Area

The fundamental observation that the circumference of a circle is proportional to its
diameter (and hence also its radius) goes back several millennia BC. Surprisingly, Euclid

says nothing on this topic in The Elements.

PROPOSITION 4.4.1. Circumferences of circles are proportional to their radii.

GIVEN: Circles p; = (O; ry) and p, = (0,; ry) of circumferences ¢, and c,

respectively (Fig. 4.17).

€ 'y
TO PROVE: c = r

Figure 4.17

SUPPORTING ARGUMENT: It follows from Proposition 4.3.1 that it is possible to

inscribe a regular hexagon in each of the given circles. By repeatedly bisecting the
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central angles subtended by the sides of the polygons it is possible to inscribe in each

circle p, i=1,2, aregular n-sided polygon of side, say, a, where n is an integer of
the form 3-2". It is clear that £ B,0,C, = £ B,0,C, = 360°/n . Since A 0,B,C,

and A O,B,C, are isosceles they must be equiangular [PN 3.1.6] and hence they are

similar [PN 3.5.7]. In other words, the sides of the inscribed polygons are proportional to
the radii. Making the reasonable assumption that for large n the difference between the

circumferences of each circle and that of its inscribed polygon is negligible, it follows

that
¢ _na, 4, n
G, Nay, G,, h
QED.
An alternate supporting argument that makes use of calculus is described in
Exercise 1.

It follows from the above proposition that if ¢ and r denote the circumference

and radius of an arbitrary circle, then the ratio

has a constant value, say «. This constant number can be used to restate the above

proposition in the following form.

PROPOSITION 4.4.2. There is a number o. such that if ¢ and r are respectively

the circumference and radius of any circle, then ¢ = ar.

[l
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The numerical value of « is, of course, of interest, and will be estimated at the
end of this section. Next, the area of the circle is examined. The following proposition
was proved by Euclid using the Method of Exhaustion which was the Greeks' version of
the integral calculus. This method was developed by Euclid's predecessor Eudoxus

whom Archimedes (287 — 212 B.C.) credits with this and other similar propositions.

PROPOSITION 4.4.3(X11.2). The areas of circles are proportional to the squares

of their radii.

GIVEN: Circles p, =(Oy;ry)and p, =(0,;r,) ofareas A, and A, respectively

(Fig 4.17).
AL
TOPROVE: 7~ = 5 .

SUPPORTING ARGUMENT: It follows from Proposition VI.19 (Exercise 3.5E.10)

that the areas of A O,B,C, and A O,B,C, are proportional to the squares of the radii r,

and r,. Making the reasonable assumption that for large n the difference between the

areas of each circle and that of its inscribed polygon is negligible, it follows that

2
A, nmAO0BC)  AOBC, i
A4, T n(A0B,C,) T A0B,C, T 2

Q.ED.

An alternate supporting argument makes use of calculus (see Exercise 2).

It follows from the above proposition that if A and r denote the area and radius

of an arbitrary circle, then the ratio

Nl\)|>
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has a constant value, say s. This number can be used to restate the above proposition in

the following form.

PROPOSITION 4.4.4. There is a number m such thatif A and r are the area

. : . 2
and radius respectively, of any circle, then A = nr .

The numerical value of s is, of course, of interest, but the relationship between
a and m needs to be addressed first. The discovery of this relationship is attributed by

Proclus to Archimedes.

PROPOSITION 4.4.5. The proportionality constants of the circumference and area
of a circle are related by the equation o = 2.

SUPPORTING ARGUMENT: Suppose the circle p is divided into n equal sectors

o

0 360°/n

Figure 4.18

each of which has a central angle of 3600/n, and let OBD be a typical sector (Fig. 4.18).
If n is large it may be assumed that OBD is a triangle with altitude OC = r. Applying
Proposition 3.2.5 it follows that this triangle has area r-arc(BD)/2. Hence the circle p

has area
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A=nLtarc(BD)=cL =(ar)L =%
2 2 2 2

a
It now follows from Proposition 4.4.4 that 7 = 5 or a = 2w

QED.

COROLLARY 4.4.6. The circumference of a circle of radius r is 2mar.

O

Figure 4.19

An alternate supporting argument for Proposition 4.4.5 can be based on Figure
4.19. Imagine that the circle of radius r on the left is filled with circular strands. Cut
the circle along the vertical dashed radius and straighten out all the strands as indicated
until they form an isosceles triangle (that its sides are straight follows from Proposition
4.4.2). It follows from Proposition 3.2.5 that the area of this triangle, and hence also the

area of the circle, is

A = (circumference - r)/2 = c¢rl2 = art/2 = (al2)r,

and the rest of the argument proceeds as before. Appealing as this argument is, it is

fraught with logical perils which are discussed in Exercise 21.
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Yet another alternative argument in support Proposition 4.4.5 calls for slicing the
circle into an even number of equal sectors and rearranging these to form the near-

parallelogram at the top of Figure 4.20. As the number of sectors increases to infinity the

Half-circumference

Half-circumference

Half-circumference

Half-circumference

Figure 4.20

near-parallelogram converges to the rectangle below it, whose area is clearly

A = (half circumference)r = cr/2 = ar+/2 = (a/2)r* .

The procedure of successive approximations used in Proposition 4.4.1 also yields
a method for obtaining numerical estimates of the constant of proportion . This was

first carried out by Archimedes and constitutes the first of a long (and still ongoing)

series of scientific estimations of s. Let a, denote the length of the chord AB which is

one side of the regular n-gon inscribed in a circle of radius 1 (Fig. 4.21). If C is the

midpoint of the corresponding arc(AB), then the chord AC has length a, . Two
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Figure 4.21

applications of the Theorem of Pythagoras then yield

a
@, = AC = AD’ + DC = (F) + (OC - ODY

a 2
) + (1 -NOA> - AD”)
a 2
)+ (1 -1 - (as2))

a a a
2 2 n 2
= -2\ -G
= 2-\4-aq.

Hence,

PROPOSITION 4.4.7. If a, denotes the length of the regular polygon with n

sides that is inscribed in a circle of radius 1, then
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[ 2
a,, = 2-\4-a,

Since the length of the side of the inscribed regular hexagon equals the radius, it

follows that ag = 1 and so

N2 -V4-1 = ~N2-+3 = 5176380902...

dip =
a,, = \/2—m = VZ-m
= 2610523844...
vy = N2-\a-@ 2B
= Va\heNze s = 1308062585,
g = \/2 - \/2 V24243 = 0654381656....

Since the length of any arc exceeds that of its chord (another one of those reasonable
assumptions), the circumference of the circle exceeds that of any inscribed polygon. As

the circle of radius 1 has circumference 2 it follows that for each positive integer n,

and in particular

> 48ay, = 3.14103195089... .
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To obtain upper bounds for the value of 7 Archimedes examined regular n-gons
whose sides were tangent to the circle. Suppose a regular n-gon is inscribed in a circle of
radius 1 and at each of the vertices a straight line tangent to the circle is constructed. It is

easily verified that the resulting polygon surrounding the circle is also a regular n-gon of

Figure 4.22 Comparing a circumscribed polygon
with an inscribed one.

side, say, b, (Fig.4.22). The side b, can be estimated by showing that (see Exercise 9)

2 2\ 4 +b, - 2)
by = \/3 and b,, = b ().
Alternately, the figure above can be used to show that
2a,
b, =
\/ 4 - ai
This givesus by, = .0654732208... and hence
96by,
To< 3 = 3.1427145996... .
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Archimedes did not have the decimal number system at his disposal and he had to work
within the much more cumbersome systems that were then current. Using some of the
quite complicated methods for the estimation of square roots by means of fractions that

were then known he was able to show that

6336 10
48agy > —1 > 3731 (= 3.1408..)
20173
and
14688 1
48bye < —_71 < 37 (= 3.1428.)
46735

Thus, Archimedes proved that

PROPOSITION 44.8. 337 < 7 < 3 .

This section and chapter conclude with a discussion of some paradoxes and

problems regarding the areas of circles. Consider Figure 4.23 where A ABC is both

right and

B a C

Figure 4.23

isosceles with legs of length a and hypotenuse of length a\[2 . The outside arc is a

semicircle with diameter AB and radius a\[2/2 whereas the inside arc is a quarter-
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circle centered at C with radius a. Regions bounded between two such arcs are called
lunes (but these are different from the spherical lunes). Note that the area of this lune is

the difference between the entire figure and the quartercircle centered at C. Thus,

area of lune = area of semicircle + area of AABC - area of quartercircle
I a2, & ' _ ad o m a
= 2™ ) +2 -4 = 4 *t2 -4 = 2

= areaof A ABC.

This surprising equation is due to Hippocrates of Chios. A similar equation appears in
Exercise 10. There are two unexpected aspects to this equation. First, the area of the
lune, whose boundary consists of circular arcs, turns out to have an expression that is free
of m. Second, this curvilinear figure has the same area as a triangle. This leads naturally
to the question of whether it is possible to construct a triangle, or a square, for that matter,
whose area equals that of a given circle (the simplest of all the curvilinear regions). The
operative word here is construct. It is clear that any circle of radius r has the same area
as a square of side r\/?t The difficulty lies in constructing r\/?t within the framework
of Euclidean geometry. This problem drew the attention of many mathematicians and
non-mathematicians both in classical times and during the subsequent two and a half
millennia. Although many individuals dedicated their lives to the solution of this
problem, and some even deluded themselves into believing they had discovered the
construction, all their efforts were in fact wasted. In 1882 the German mathematician C.
L. Ferdinand von Lindemann (1852-1939) proved a theorem which had the following

corollary amongst many others:
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Given a line segment a it is impossible to construct (in the
sense of The Elements) a square whose area equals that of

the circle of radius a.

EXERCISES 44A

10.

b

A [ 2
The length of the graph of the function y = fix) for a=x<b is f I+ f" dx . Use this

a
formula to prove Proposition 4.4.1.

Use calculus to prove Proposition 4.4.3.

Using 3.14 for the value of w, in a circle of radius 10" find the length of the arc and the area of a
sector determined by a central angle of

a) 60° b) 20° ) 90° d) 100°

e) 180" f) 230°.

Compute the radical expressions for a 192 and 17192 and use them (and a calculator) to obtain

decimal bounds of the value of .

Compute the radical expressions for A3g4 and b38 4 and use them (and a calculator) to obtain

decimal bounds of the value of .

Compute the radical expressions for a768 and b768 and use them (and a calculator) to obtain

decimal bounds of the value of 7.

Compute the radical expressions for a;s3¢ and b;s3 and use them (and a calculator) to obtain
decimal bounds of the value of 7.

Prove Equations (1).

Prove that of two circular arcs joining two given points, the one with the longer radius has shorter
length.

Semicircles are constructed on the sides of a right A ABC (Fig. 4.24). Prove that the sum of the

areas of the two lunes I and II equals the area of A ABC.

Figure 4.24
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12.
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14.

15.

16.

17.

18.

19.

20.

21.

4.4 CIRCLE CIRCUMFERENCE AND AREA

Show that the circumference of a circle of spherical radius » on a sphere of radius R is 2zR sin

(r/R).

2
Show that the area of a spherical circle of spherical radius r on a sphere of radius R is 2zaR [1 -

cos (r/R)].

Comment on Proposition 4.4.1 in the context of the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.
Comment on Proposition 4.4.2 in the context of the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.
Comment on Proposition 4.4.3 in the context of the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.
Comment on Proposition 4.4.4 in the context of the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.
Comment on Proposition 4.4.5 in the context of the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.
Comment on Proposition 4.4.6 in the context of the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.
Comment on Proposition 4.4.7 in the context of the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.
Comment on Proposition 4.4.8 in the context of the following geometries:

a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.

Explain the following paradox. Suppose the method that was used to convert a circle into a
triangle (see paragraph following Proposition 4.4.6) is applied to the same square ABCD in two
different manners - first by slicing from a corner to the center and second by slicing from the
middle of a side to the center (Fig. 4.25). The two triangles so obtained have their bases equal to
the perimeter of the square but their altitudes are clearly different. Why are two triangles of

different areas obtained?

4.39



4.4 CIRCLE CIRCUMFERENCE AND AREA

Figure 4.25

4.5 Impossible Constructions (Mostly)

Part of the legacy that the Greek mathematicians passed on to their successors was a
collection of construction problems they could not resolve by ruler and compass alone.
While most of these problems have already been discussed (Sections 2.3 and 4.3), it
might be a good idea to reexamine this topic here in order to provide a better perspective

on its outcome. We begin by listing the specific construction problems in question.

1. To divide a given angle into three equal parts.
2. To construct a regular n-gon for each integer n = 3.
3. To construct a square whose area equals that of a given circle.

4. To construct a cube whose volume is double that of a given cube.

The reader will recall that Cartesian coordinates were invented for the purpose of
expressing geometrical problems in the language of algebra. Since construction problems
are geometrical, this applies to them as well. Some of this relation between geometry and
algebra has already been pointed out. If a and b are the lengths of two given line
segments, then it is possible to construct line segments of lengths a + b (Exercise
23A3) and a - b (Proposition 2.3.3). Assuming a to be a unit length, Exercise
3.5B.13 shows how, given segments of lengths b and ¢, it is possible to construct a

segment of length bc. Assuming ¢ to be a unit length, the same exercise can be used to
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construct, for any given segments of lengths a and b, a segment of length a/b. Finally,
assuming b to have unit length, Exercise 3.5B.14 can be used to construct, for any given
segment of length a, a line segment of length Va. Thus, the four arithmetical
operations, as well as the taking of square roots, can be mimicked by ruler and compass
constructions.

The Cartesian coordinate system can be used to argue that the power of ruler and
compass constructions cannot be extended beyond these five algebraic operations. To do
this, it is first necessary to formalize some notions. A configuration is a set of points,
straight lines and circles. An elementary ruler and compass construction is any of the

following five operations.

1. Draw the line joining two given points;

2. Draw a circle with a given center and radius;

3. Find the intersection of two given straight lines;

4. Find the intersection of a given circle and a given straight line;
5. Find the intersection of two given circles.

A configuration T is said to be constructible from configuration § provided every
element of 7T can be obtained from the elements of S by a succession of elementary
ruler and compass constructions. In particular, note that every construction problem
stipulates a given configuration and aims at the derivation of a desired configuration.

Assume now that a Cartesian coordinate system has been chosen to which all the

configurations below are referred. The numerical aspects of the point (x, y) are x and
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y. The numerical aspects of the straight line with equation ax + by + ¢ =0 are a, b,
and, c. The numerical aspects of the circle with equation x2 + y2 + ax + by + ¢ =0 are
a,b,and c.

A real number r is said to be a Hippasian function of the set § provided it is
obtainable from the elements of S and the rational numbers by rational operations and
extractions of real square roots (this terminology honors Hippasus of Metapontum, the

discoverer of the irrationality of v2). For example, the numbers below are all Hippasian

functions of the set S = {m, 3V2, e}.

£n+3e 3/ —43/e
e 2-32" \lo+42

3

5

The Hippasian numbers are those that are obtainable from the rational numbers

alone by the rational operations and the extractions of real square roots. In fact, this is
tantamount to saying that they are obtainable from the number 1 by the said operations.

The numbers below are all Hippasian numbers.

3 /+ 3 \/1+w/_
Szl 3 5+w/35 54+435-+13

The following theorem formalizes the intuitively plausible connection between

constructibility and Hippasian functions.
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THEOREM 4.5.1. If configuration T is constructible from configuration S then the
numerical aspects of T are Hippasian functions of the numerical aspects of S.

OUTLINE OF PROQOF: Suppose configuration 7" is obtained from configuration S by
the elementary construction (i), where i=1,2,3,4,5. If i =35, for example, let the two

given circles have equations

2 +y2+ax+by+c=0 and 2+y2+akx+by+c’'=0

By Exercise 5, the intersection point of these two circles, if it exists, has coordinates
which are Hippasian functions of a, b, ¢, a’, b’, ¢’. The proof of the cases i=1,2,3,4
is similar (see Exercises 1-4) and we conclude that if 7" is constructible from § by any
ruler and compass operations, then the numerical aspects of T are obtainable from those

of S in the desired manner. Q.ED.

We note in passing that the converse of Theorem 4.5.1 is also valid, albeit
somewhat harder to prove. As this converse is not needed for the proof of the
impossibilities below, it is relegated to Exercise 6.

The strategy for demonstrating the non-feasibility of a ruler and compass
construction calls for demonstrating that the numerical aspects of the desired
configuration are not Hippasian functions of those of the given configuration. Matters
can, and will be, simplified below by setting things up so that the numerical aspects of the
given data are either integers or Hippasian numbers, and hence it will suffice to show that

the desired configuration has a non-Hippasian number as one of its numerical aspects
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The following unproven proposition provides an easily applied criterion for

recognizing non-Hippasian numbers. It is found, in a more general form, in many

undergraduate modern algebra texts.

PROPOSITION 4.5.2. Let x be a real solution of the equation

ax3 + bx?2 + cx +d =0, (D)

where a, b, c, d are integers. Then x is Hippasian if and only if this equation has a

rational solution. u

Unlike the above proposition, the next one is found in many precalculus texts and

is easily proven (Exercise 7).

PROPOSITION 4.5.3 (The Rational Zeros Theorem). Let

P(x) = a X"+ a, X1 + + ... + a;x + ayp,

where all the a;‘s are integers. If p/q is a rational number in lowest terms such that

P(plq) = 0,

then p is a factor of ay and q is a factor of a,, . u
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The four construction problems of antiquity are now reexamined one at a time.

The simplest of these turns out to be the doubling of the cube.

DOUBLING THE CUBE: If it were possible to double a given cube by ruler and

compass constructions, then it would certainly be possible to construct a cube of volume
2. The length of the side of such a cube would be 3v2 and it would have to be a

Hippasian number. However, 3V2 is clearly a solution of the equation

B3-2=0 )

and hence, by Proposition 4.5.2, this equation would have to have a rational solution, say
p/q in lowest terms. By Proposition 4.5.3 p must be a factor of 2 and ¢ a factor of 1.
Hence p/q must be one of the numbers =1/1, = 2/1 none of which, by Exercise 9, is a
solution of the Equation (2). Thus, the supposed feasibility of a ruler and compass

doubling of the cube has lead to a contradiction and we conclude that

The cube cannot be doubled by ruler and compass alone.

ANGLE TRISECTION: We next argue that there is no method for trisecting angles by
ruler and compass alone. Suppose, to the contrary, that such a method exists and is used
to trisect the 60° angle of an equilateral triangle whose side has unit length. Here it may

be supposed that the given configuration consists of the three points O(0, 0), A(0, 1),
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B(1/2, V3/2) (Fig. 4.26) all of whose numerical aspects are Hippasian numbers. The
hypothetical construction yields an angle of 20° that may be placed at the origin with
one side on the x-axis (Fig.4.26). The (constructible) intersection P of this angle’s
other side with the circle (O; 1) has coordinates (cos 209, sin 20°) and hence it follows
from Theorem 4.5.1 that cos 20° 1is a Hippasian function of Hippasian numbers.
Consequently, cos 20° is a Hippasian number. We now go on to obtain an analog of

Equation (2). If x =cos 20°, then, by Exercise 8,

1/2 =cos 60° = 4 cos320°- 3 cos 200 = 4x3 - 3x

and hence

8x3—-6x—-1=0. 3)

By Proposition 4.5.2, this equation has a rational solution, say p/q, where p and g are

integers. By Proposition 4.5.3, p/q must be one of the fractions

+1,+1/2,«1/4, «1/8

none of which, by Exercise 10, is a root of Equation (3). Thus, the assumption of the

feasibility of a ruler and compass method for trisecting angles has resulted in a

contradiction, and hence
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There is no method for trisecting angles by ruler and compass alone.

60°
20°

Figure 4.26

REGULAR n-GONS: Whether or not a regular n-gon is constructible by ruler and

compass turns out to depend on the value of n. In general, such a polygon can be
constructed if and only if an angle of 360°/n can be constructed. When this angle is
placed at the origin with one side on the x-axis, the other side intersects the circle (O; 1)
in the point (cos 360°/n, sin 360°/n). By Theorem 4.5.1 and Exercise 18, this general
ruler and compass construction is feasible if and only if cos 360°/n is a Hippasian
number. We now show that there is no ruler and compass construction for the regular 7-
gon. Set A = 360°/7 and x = cos 360°/7. If such a method existed, then x would be a
Hippasian number. However, by Exercises 8 and 12,

cos 3A = 4cos3A —3cosA = 4x3 - 3x

cos4A = 8cos?A-8cos2A+1 = 8x*—8x2+ 1.
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Since 3A +4A = 360° it follows that cos 3A = cos 4A and hence

453 —3x = 8x4-8x2 + 1

8x*—4x3-8x2+3x+1 =0

(x=1)(8x3+4x2—4x-1) = 0.

However, cos 360°/7 = 1 and hence

8x3+4x2—4x-1=0.

It follows from Proposition 4.5.3 that the only possible rational solutions of this equation

are again =1, =1/2, =1/4, £1/8. Since, by Exercise 10, none of these is a solution, it

follows from Proposition 4.5.2 that cos 360°/7 is not a Hippasian number and hence no

such method for constructing regular 7-gons can exist.

According to Exercise 11, cos 360°/5 is a Hippasian number and so the regular

pentagon is indeed constructible, as demonstrated in Proposition 4.3.4. As was

mentioned above, the regular 17-gon is also constructible and hence cos 360°/17 must

also be a Hippasian number. In fact, it is known to equal

116 +17 /16 + (1/16)4/34 =217
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(U817 + 3T =34 - 217 — 2434 + 2417 .

SQUARING THE CIRCLE: To square a circle of unit radius is tantamount to
constructing a line segment of length a = Vr. As it happens, neither m nor Vm are the
solutions of any equation of form (1). In fact, it was proven by Lindemann that there
exists no polynomial P(x) with integer coefficients of any degree such that either z or
Vv are solutions of P(x) = 0. Since every Hippasian number is known to be the solution

of such an equation, it follows that vt is not a Hippasian number and hence

It is impossible to square a circle by ruler and compass alone.

EXERCISES 4.5

1. Show that the straight line joining the points (a, b) and (a’, b’) has equation
b’-b)x+(@a-a’y+@b-ab’) = 0.
2. Show that the circle with center (a, b) and radius r has equation
2+ y2 + (-2a)x + (-2b)y + (a2 + b2 - r2) = 0.
3. Show that if the two lines with equations ax+by+c¢ = 0 and ax+ b’y + ¢’ = 0 intersect, then
their point of intersection has coordinates ((bc’- b'c)/(ab’- a'b),(a’c —ac’)/(ab' - a'b)).
4. Show that if the line with equation ax + by + ¢ = 0 and the circle with equation x2 + y2 + a’x + b’y +
¢’ = 0 intersect, then their points of intersection have coordinates x = (-B = VBZ - 4AC)/(2A) and y
= (-ax—c)/b where A=a?+b%, B = 2ac +ab?—abb’, and C = c?-bb'c + b

5. Show that if the two circles with equations x2 + y2 + ax+by + ¢ = 0 and x> +y2 +ax+ by + ¢

= 0 intersect, then their points of intersection have coordinates x = (-B = VB? — 4AC)/(24) and
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14.

15.

16.
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IMPOSSIBLE CONSTRUCTIONS

y = (-a’x—c")/b” where A=a”?+b"”2, B =2a"c"+ab?-ab’b,C=c?-b"b
and a"=a-a’,b"=b-b’,c"=c-c".
State and prove the converse of Theorem 4.5.1.
Prove Proposition 4.5.3.
Prove that cos 3A = 4 cos’A- 3cos A .
Verify that none of the numbers =1/1, £2/1, is a solution of the equation x3-2=0.
Verify that none of the numbers =1/1, =1/2, x1/4,+1/8 is a solution of the equation
8x3-6x—-1 = 0.
Prove that if x = cos 72° then 4x%+2x—1 = 0.
Prove that cos 4A = 8 cos*A - 8 cos?A + 1.
Prove that it is impossible to construct a regular 9-gon by ruler and compass alone.
Prove that it is impossible to triple a cube by ruler and compass alone.
Prove that it is impossible to halve a cube by ruler and compass alone.
Prove that the following numbers are not Hippasian:
a) V5 b) 2 +3V5 c) 1/(2-3V7)

Is it possible to construct an angle of 1°?

1"

c +c

b

18. Let A be any number. Explain why sin A is a Hippasian number if and only if cos A is a Hippasian

number.
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CHAPTER REVIEW EXERCISES

9%,

10.

11.

12.

13.

14.

15%.

Circle p intersects two concentric circles. Prove that the arcs of p cut off by the two circles are
equal.

Prove that if each of the sides of a square is extended in both directions by the length of the radius
of the circle that circumscribes the square, one obtains the vertices of a regular octagon.

Two circles, centered at C and D respectively, intersect at a point A. Prove that if PAQ is the
"double chord" that is parallel to CD, then PQ =2CD.

The area of the annular region bounded by two concentric circles equals that of a circle whose
diameter is a chord of the greater circle that is tangent to the smalller one.

In a circle, a diameter bisects the angle formed by two intersecting chords. Prove that the chords
are equal.

Prove that every equiangular polygon all of whose sides are tangent to the same circle is regular.
Through the center of a circle passes a second circle of greater radius and their common tangents
are drawn. Prove that the chord joining the contact points of the greater circle is tangent to the
smaller circle.

Prove that every cyclic equilateral pentagon is regular.

Three circles through the point O and of radius r intersect pairwise in the additional points A,
B, C. Prove that the circle circumscribed about A ABC also has radius r.

Prove that in the regular hexagon ABCDEF the diagonals AC and AE cut the diagonal BF into
three equal segments.

Each of the sides of a cyclic quadrilateral is the chord of a new circle. Prove that the other four
intersection points of these new circles also form a cyclic quadrilateral.

A circle of radius r is inscribed in A ABC in which £ ACB is aright angle. Prove that a + b =
c+2r.

The chord AB of a circle of radius 1 has the property that if the circle is folded along AB so as
to bring AB's arc into the circle, then the arc passes through the center of the circle. Compute the
lengths of the chord AB and its arc.

In a given AABC construct a point whose distances from the sides of the triangle are proportional
to three given line segments.

Through the midpoint M of a chord PQ of a circle, any other chords AB and CD are drawn;
chords AD and BC meet PQ atpoints X and Y. Prove that M is the midpoint of XY. (This is

the notorious Butterfly Problem.)
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The points of intersection of the adjacent trisectors of any triangle are the vertices of an equilateral

triangle. (This is known as Morley's Theorem.)

Are the following statements true or false? Justify your answers.

a)
b)

c)
d)
€)

The Greeks believed that the world is flat.

The area of a plane Euclidean figure whose perimeter is composed of circular arcs must
involve s in its expression.

The Greeks knew that 7 =3.14.

If two sectors have equal angles, then their arcs are proportional to their radii.

Given a line segment a, it is impossible to construct (in the sense of The Elements) a
square whose area equals that of the circle of radius a.

Given a line segment a, it is impossible to construct (in the sense of The Elements) an
equilateral triangle whose area equals that of the circle of diameter a.

Of two equal chords in unequal circles, the one in the larger circle lies further from the
center.

The diameter is the circle’s longest chord.

It is possible to construct a regular 340-sided polygon (in the sense of The Elements).

It is possible to construct a regular 140-sided polygon (in the sense of The Elements).

In a circle, all the angles subtended by a chord are equal to each other.

In a circle, arcs are proportional to their chords.

Every circle has only one center.

Every circle has only one tangent line.

If two chords of a circle bisect each other, then they are both diameters.
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