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CHAPTER 4 
 

Circles and Regular 
Polygons 

 
 

Circles and regular polygons are the subject of Books III and IV of The Elements.  

Euclid's abstract exposition of the interrelation of chords, arcs, and tangents lines is 

augmented with the computation of the circle's circumference and area. 

 

 
1.  The Neutral Geometry of the Circle 

 

Equal circles are circles that have equal radii.  A chord of a circle is a line segment that 

joins two of its points.  A diameter is a chord that contains the center of the circle.  An 

arc of a circle is a portion of the circle that joins two of its points.  Every chord 

determines two arcs of the circle.  Consequently, it takes at least three letters to denote an 

arc unambiguously and the two arcs of the circle of Figure 4.1 with endpoints  A  and  B  

should be denoted, properly speaking, by  arc(AEB)  and  arc(AFB).  Nevertheless, it is 

customary to label both of these arcs  arc(AB)  and to rely on the context for clarification.  

A segment of a circle is the portion between a chord and either of its arcs. A sector of a 

circle is the portion between two radii.  The arcs determined by a diameter are each called 

a semicircle.  That the two semicircles determined by a diameter are equal (in length) is a 
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proposition that Euclid mentions in Definition 17 (Chapter 2).  This observation is proved 

as part of Proposition 4.1.1 below.   

 

 

Figure 4.1

 

 A central angle of a circle is one both of whose sides are radii.  Every arc 

subtends a central angle that is either greater or less than  180o  according as the arc is 

greater or less than a semicircle.  Every chord subtends a central angle that is at most  

180o.   

 The following four propositions of Euclid's are established here with a single 

unified proof. 

 

PROPOSITION 4.1.1(III.26).  In equal circles equal central angles stand on equal 

arcs. 

PROPOSITION 4.1.1(III.27).  In equal circles central angles standing on equal 

arcs are equal to one another.  

PROPOSITION 4.1.1(III.28).  In equal circles equal chords cut off equal arcs, the 

greater equal to the greater and the less to the less. 

PROPOSITION 4.1.1(III.29).  In equal circles, equal arcs are subtended by equal 

chords. 
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GIVEN:  Equal circles centered at  E  and  E'  respectively.  Points  A, B  on the first 

circle and points  A', B'  on the second (Fig. 4.2). 

TO PROVE:  The following are equivalent: 

 1. arc(AB)   =   arc(A’B’) 

 2. AB     =     A'B' 

 3. ∠ AEB     =     ∠ A'E'B' 

 

 

Figure 4.2 

 

PROOF:  1  =>  2:  Since the given circles are equal, it is possible to apply the circle 

centered at  E  to that centered at  E'  so that  E  and  A  fall on  E'  and  A'  respectively,  

and arc AB  falls along  arc A'B'  .  The two arcs having equal lengths,  B  falls on  B'.  It 

follows from  PT 1  that the chord  AB  falls on  the chord  A'B'  and hence, by CN 4,  AB 

= A'B'. 

 

 2  =>  3:  Δ AEB  ≅  Δ A'E'B'   by  SSS  because 

     AB     =     A'B'   [Given] 

     AE     =     A'E'   [Given] 

     BE     =     B'E'   [Given] 

   ∴ ∠ AEB     =     ∠ A'E'B' 
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 3  =>  1:  Since  ∠ AEB  =  ∠ A'E'B'  it is possible to apply the first circle to the 

second so that  E  falls on  E'  and these angles coincide.  Since the circles have equal 

radii it follows that  arc AB  falls on  arc  A'B'.  Consequently these arcs have equal 

lengths. 

           Q.E.D. 

 

COROLLARY 4.1.2.  In a circle all the semicircles are equal to each other. 

See Exercise 1. 

 

PROPOSITION 4.1.3(III.3).  In a circle, a radius bisects a chord not through the 

center if and only if the radius and the chord are perpendicular to each other. 

See Exercise 2. 

 

EXERCISES 4.1A 

 
1. Prove Corollary 4.1.2. 

2. Prove Proposition 4.1.3. 

3. Prove that in a circle, a diameter is greater than any chord which is not a diameter. 

4. Prove that two chords of a circle are equal if and only if they are at equal distances from its center. 

(Exercise 2.3N.2 can be used to produce a neutral proof.) 

5. Prove that a circle cannot contain three collinear points (III.2) 

6. Prove that in a circle, the radius perpendicular to a chord bisects that chord's central angle and arc. 

7. Prove that in a circle two equal intersecting chords cut each other into respectively equal 

segments.  

8. Prove that of two unequal chords in a circle, the greater one is closer to the center. (This is 

Proposition III.15.  It can be easily proved on the basis of the Theorem of Pythagoras, but such a 

proof is would not be neutral.  Euclid's neutral proof is based on Proposition I.24 (Exercise 

2.3Q.5).) 
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9. Let  A  be a given point and  p  a circle centered at  C.  If the point  P  moves along the circle  p  

prove that the midpoint of  AP  describes a circle centered at the midpoint of  CA.  (See Exercises 

3.1D.7-8.  It is necessary to consider three cases, depending on the relative positions of  A  and  p.) 

10. Construct the midpoint of a given arc on a given circle. 

11. Given an arc of a circle, construct the center of the circle. 

12. Given points  A, B, C, D  construct a circle through  A  and  B  whose center is equidistant from  C  

and  D. 

13. Given a point  A  inside a circle, construct a chord that is bisected by  A.  Prove that this chord is 

the shortest of all the chords through  A. 

14. Given an angle  α  and a line segment  a,  construct a circle whose center is on one side of  α  and 

which cuts a segment equal to  a  on the other side. 

15. Given a circle  p  and a point  A  outside it,  construct a straight line through  A  which cuts the 

circle so that the segment from  A  to the circle equals the segment in the circle. (See Exercises 

3.1.D7-8.) 
16. Comment on Proposition 4.1.1 in the context of the following geometries: 

 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 

17. Comment on Proposition 4.1.3 in the context of the following geometries: 

 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 

 

 An infinitely extended straight line is said to be tangent to a circle if they have 

exactly one point in common, and that point is called their point of contact. 

 

PROPOSITION 4.1.4(III.16, 18).  If a straight line intersects a circle, then they are 

tangent if and only if the straight line is perpendicular to the radius through the point of 

contact. 

GIVEN:   Circle (C; CP), straight line  PT (Fig. 4.3). 

TO PROVE: PT  is tangent to  (C; CP)  if and only if  CP

€ 

⊥ PT. 
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Figure 4.3 

 

PROOF:  Suppose first that PT  is tangent to  (C; CP).  Hence,  if  Q  is any point of PT 

that is distinct from  P,  it must lie outside the circle so that  CP  <  CQ.  Consequently,  

CP 

€ 

⊥ PT [PN 2.3.24]. 

 Conversely, suppose that  CP

€ 

⊥ PT.  Then, by Proposition 2.3.24, for any point  Q  

of PT  that is distinct from  P,  CP  <  CQ.  Consequently no such point  Q  can lie on the 

circle  (C; CP)  and hence PT  is tangent to  it. 

           Q.E.D. 

 

EXERCISES 4.1B 

 

1. Suppose  S  and  T  are the contact points of the tangents to a circle from a point  P  outside it.  

Prove that  PS = PT. 

2. Prove that in a circle the contact points of two parallel tangents are the endpoints of a diameter. 

3. Prove that the straight line that joins the center of a circle to the intersection of two of its tangents 

bisects the angle between these tangents. 

4. Prove that for each side of the triangle there is a circle that is tangent to that side at one of its 

interior points and tangent to the other two sides at points on their extensions.  Construct these 

circles. (Use Exercise 3 above.) 

 

Two circles are said to be tangent if they intersect in exactly one point.  If one circle lies inside the other 

the tangency is said to be internal; otherwise it is external. 
5. Prove that if two circles are externally tangent then the line segment joining their centers contains 

the point of contact. (Hint:  Proceed by contradiction and examine the triangle formed by the 

centers and the contact point.) 
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6. Prove that if two circles are internally tangent then the line joining their centers contains the point 

of contact. 

7. Prove that if two circles are tangent to each other then they have a common tangent line at their 

point of contact.  

8. Prove that if two circles lie outside each other then they have four different common tangent lines. 

9. Let  m  and  n  be common tangents to unequal circles such that both circles lie inside one of the 

angles formed by these tangents.  Prove that the line joining the centers of the circles bisects this 

angle. 

10. Let  m  and  n  be common tangents to unequal circles such that the circles lie in vertically 

opposite angles formed by these tangents.  Prove that the line joining the centers of the circles 

bisects these angles.  
11. Given two circles with the same center and unequal radii, prove that all the chords of the larger 

circle that are tangent to the smaller circle have the same length. 

12. Construct a circle with a given radius tangent to a given line. 

13. Construct a circle with a given radius, tangent to a given line, and containing a given point. 

14. Construct a circle containing a given point and tangent to a given straight line at a given point on 

the line. 

15. Construct a circle that is tangent to two given parallel straight lines. 

16. Construct a circle that is tangent to two given parallel straight lines and contains a given point 

between them.  How many solutions are there? 

17. Construct a circle that is tangent to two intersecting straight lines. 

18. Construct a circle that is tangent to two given intersecting straight lines and contains a given point. 

19. Construct a circle that is tangent to two given parallel straight lines as well as to a given third line 

that intersects them. 

20. Given a circle  p  and a point  A construct a straight line containing  A  such that its segment inside  

p  has a given length. (Hint: See Exercise 11.) 

21. Construct a point such that the lengths of the tangents from it to two given circles are given. 
22. Comment on Proposition 4.1.4 in the context of the following geometries: 

 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 
 

 The following proposition was proved by Euclid in its entirety.  The proof offered 

in this text is incomplete in two ways.  In the first place, the argument is restricted to 

rational values of the ratios in question. Moreover, given an angle  ∠ ABC  and a positive 
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integer  m,  this argument makes use of the angle 

€ 

(∠ABC) /n  even though it has not been 

demonstrated that such an angle can be constructed within Euclid's system. 

 

PROPOSITION 4.1.5(VI.33).  In equal circles, central angles are proportional to 

the arcs on which they stand. 

GIVEN: Equal circles with centers  G  and  H  respectively (Fig. 4.4). 
 

TO PROVE: 

€ 

∠BGL
∠EHN

=
arc(BL)
arc(EN)  

 

 

Figure 4.4 

 

SUPPORTING ARGUMENT:  The argument is limited to the case where the given 

ratios are rational.  In other words, it is assumed that there exist positive integers  m  and  

n  such that 

   

  

€ 

∠BGL
∠EHN

=
m
n   

i.e.,
  

€ 

∠BGL
m

=
∠EHN
n  

 

Let  α  be an angle such that   

 

   

€ 

α =
∠BGL
m

=
∠EHN
n

.
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It follows that there exist points  B1, B2, ..., Bm-1   on  arc(BL)  and points  E1, E2, ..., En-1   

on  arc(EN)such that 

 

 ∠ BGB1     =     ∠ B1GB2     =     ...     =     ∠ Bm-1GL     =     ∠ EHE1     =      

 

 ∠ E1HE2     =     ...     =     ∠ En-1HN     =     α . 

 

Hence, by Proposition 4.1.1, 

 

  arc(BB1)     =     arc(B1B2)     =     ...     = arc(Bm-1L) 

 

  = arc(EE1)     =     arc(E1E2)     =     ...     = arc(Em-1L). 

 

If the common length of these arcs is denoted by  β,  then 

 

    

€ 

arc(BL)
arc(EN)

=
mβ
nβ

=
m
n

=
∠BGL
∠EHN     

           Q.E.D. 

 

 Proposition 4.1.5 was used by Eratosthenes (ca. 275 - 194 BC), director of the 

Alexandrian library, to obtain a remarkably accurate estimate of the circumference of the 

earth.  He knew that on the summer solstice the sun shone down at mid-day directly into 

a well in the city of Syene whereas in Alexandria, 5000 stadia to the north, the shadows 

indicated that the sun formed an angle of  1/50  of  360o (7.2o) with the vertical.  

Assuming that the sun is so far away that its rays can be considered to be parallel when 

they reach the earth (Fig. 4.5), he then used Proposition 4.1.5 to obtain the equation 
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circumference of earth
distance from Alexandria to Syene      =     

360o

7.20       =     50 

 

 

Figure 4.5 

 

from which he concluded that the circumference is  50⋅5000  =  250,000 stadia.  In order 

to make his answer divisible by  60  (probably because of the influence of the Babylonian 

sexagesimal number system) he adjusted this result to  252,000 stadia.  The standard 

stade  of the time had a length of  178.6 meters which converts his rounded estimate to  

45,007 km,  an overestimate of 12.3%, since the circumference of the earth is actually  

40,075 km. 

 

EXERCISES 4.1C 

 
1. A circle has circumference  10 ft.  Find the lengths of the arcs that subtend the following angles at 

the center of the circle: 

 a) 10
o
  b) 30

o
  c) 90

0
 

 d) 110
o
  e) 120

o
  f) 180

o 
2. A location on earth has latitude  25

o
 N.  Find its distance from the equator and from the North 

Pole. 

3. A location on earth has latitude  70
o
 N.  Find its distance from the equator and from the North 

Pole. 
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4. A location on earth has latitude  70
o
 S.  Find its distance from the equator and from the North 

Pole. 

5. A location on earth has latitude  70
o
 S.  Find its distance from the equator and from the North 

Pole. 

6. A location on earth lies  2000 km  north of the equator.  Find its latitude. 

7. A location on earth lies  1234 km  north of the equator.  Find its latitude. 

8. A location on earth lies  1000 km  south of the equator.  Find its latitude. 

9. A location on earth lies  617 km  south of the equator.  Find its latitude. 
10. Comment on Proposition 4.1.5 in the context of the following geometries: 

 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 

 
 

2.  The Non-Neutral Geometry of the Circle  
 

The next proposition is one of the most surprising in The Elements.  Unlike those 

appearing the previous section, its implications are quite unexpected. 

 

PROPOSITION 4.2.1(III.20).  In a circle, the angle at the center is double of the 

angle at the circumference, when the angles have the same arc as base. 

GIVEN:  Points A, B, C  on the circumference of a circle centered at  E (Fig. 4.6). 

TO PROVE:  ∠ BEC     =     2∠ BAC. 

 

Figure 4.6 
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PROOF:  It is necessary to distinguish three cases. 

 Case 1:  One of the sides of  ∠ BAC  contains the center  E. 

  ∠ BEC     =     ∠ BAC  +  ∠  ECA   [Exterior, PN 3.1.6] 

  ∠ BAC    =     ∠ ECA     [AE = EC, PN 2.3.5] 

 ∴ ∠ BEC     =     2 ∠ BAC 

 

 Case 2:  The center  E  lies in the interior of  ∠ BAC.   Let  F  be the other 

intersection of  AE×    with the circumference of the given circle.  Then, 

  ∠ 2    =     2 ∠ 1     [Case 1] 

  ∠ 4    =     2 ∠ 3     [Case 1] 

 ∴ ∠ BEC     =     2 ∠ BAC    [CN 2] 

     

 Case 3:  The center  E  lies outside of  ∠ BAC.   Let  F  be the other  intersection 

of  AE×    with the circumference of the given circle.  Then, 

  ∠ 2    =     2 ∠ 1     [Case 1] 

  ∠ 4    =     2 ∠ 3     [Case 1] 

 ∴ ∠ BEC     =     2 ∠ BAC    [CN 3] 

           Q.E.D. 

 

 Proposition 4.2.1 has several corollaries whose proofs are relegated to the 

exercises. 

 

PROPOSITION 4.2.2(III.21).  In a circle, the angles in the same segment are equal 

to one another. 

GIVEN:  Points  A, B, C, D  on the circumference of a circle such that  A  and  D  lie on 

 the same side of  BC  (Fig.4.7). 

TO PROVE:  ∠ BAC  =  ∠ BDC. 
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Figure 4.7 

 

PROOF:  See Exercise 1. 

 

 This proposition is somewhat counterintuitive.  Suppose the points  A  and  B  in 

Figure 4.8 are fixed whereas  P  slides clockwise around the circle occupying positions  

P1, P2, ..., P5  successively.  Proposition 4.2.2 implies that as long as the point  P  

remains in the interior of the upper (or longer)  arc(AB)  the angle  APB  retains a 

constant (acute) value.  When  P  passes through  A  or  B,  APB   is no longer an angle.  

Finally, when  P  is in the interior of the shorter (or lower) arc(AB)  the angle APB  

 

 

Figure 4.8  A discontinuous function. 

 

assumes a different (obtuse) value.  In other words, even though the point  P  moves in a 

continuous manner, ∠ APB  varies as a discontinuous function of the position of  P. 
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PROPOSITION 4.2.3(III.31).  In a circle, the angle subtended by a diameter from 

any point on the circumference is a right angle. 

See Exercise 2. 

 

PROPOSITION 4.2.4(III.32) Let  AB  be a chord of a circle and let  

€ 

↔
AT   be any 

straight line at  A.  Then the line  

€ 

↔
AT  is tangent to the circle if and only if  ∠ TAB  is 

equal to the angle at the circumference subtended by the intercepted arc. 

GIVEN:  Circle  p  with chord  AB, straight line 

€ 

↔
AT , arc(AB) (Fig 4.9). 

TO PROVE: 

€ 

↔
AT  is tangent to  p  if and only if  ∠ TAB   equals the angle at the 

circumference of  p  subtended by arc(AB). 

PROOF:   Let  AD  be the diameter of the circle containing  A, and join  BD (Figure 4.9). 

 

 

Figure 4.9 

 

By Proposition 4.2.3  ∠ ABD = 90o.  Hence the following statements are all equivalent to 

each other: 

 

€ 

↔
AT  is tangent to the circle 

 ∠ DAT = 90o 

 ∠ 1  =  90o - ∠ 2 

 ∠ 1  =  ∠ 3 . 

           Q.E.D. 
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PROPOSITION 4.2.5(III.36-37).   Let  P  be a point outside a given circle  p  let  T  

be a point on  p,  and let  PAB  be a secant line with chord  AB.  Then  PT  is tangent to  p  

if and only if 

PA ⋅ PB  =  PT2 . 

 

 

Figure 4.10 

GIVEN:  Point   P  outside circle  p,  straight lines  PT  and  PAB  that intersect  p  in  T, 

 A, B  (Fig. 4.10). 

TO PROVE: PT is tangent to  p  if and only if   PA ⋅ PB  =  PT2 . 

PROOF:   The following statements are all equivalent to each other: 

 

 The line PT is tangent to  p 

 ∠ 1  =  ∠ 2;       [PN 4.2.4] 

 Δ TPA and Δ BPT  are similar to each other    [PN 3.5.7] 

 

 ∴  
 PA
PT    =  

PT
PB           

 ∴   PA ⋅ PB  =  PT2 . 

          Q.E.D.  

     

 A polygon is said to be cyclic if all of its vertices lie on a circle. 
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PROPOSITION 4.2.6(III.22).  The opposite angles of a cyclic quadrilateral are 

equal to  two  right angles.   

See Exercise 3. 

 

 

EXERCISES 4.2A 

 
1. Prove Proposition 4.2.2. 
2. Prove Proposition 4.2.3. 

3. Prove Proposition 4.2.6. 

4. Prove that in a circle parallel chords enclose equal arcs. 

5. Prove that if the quadrilateral ABCD is cyclic, then the exterior angle at  A  equals the interior 

angle at  C. 

6. In a circle the extensions of the chords AB  and  KL  intersect in a point  P  outside the circle.  

Prove that  ∠ AKP = ∠ LBP  and  ∠ BKP = ∠ LAP. 

7. In a circle the extensions of the chords AB  and  CD  intersect in a point  P  outside the circle.  

Prove that  PA⋅PB = PC⋅PD  (Proposition III.35).  

8. In a circle the chords  AB  and  CD  intersect in a point  P  inside the circle.  Prove that  PA⋅PB = 

PC⋅PD  (Proposition III.36).    
9. Prove that two equal and parallel chords in a circle constitute the opposite sides of a rectangle. 

10. Prove that if the hexagon ABCDEF is cyclic and the interior angles at  A  and  D  are equal, then  

BC || EF. 

11. In the cyclic quadrilateral ABCD,  AD = BC.  Prove that the interior angles at  A  and  B  are equal 

to each other (as are those at  C  and  D). 

12. Prove that the sum of the interior angles at  A, C  and  E  in the cyclic hexagon  ABCDEF  is four 

right angles. 

13*. Prove that if the perpendicular chords  AB  and  CD  of a circle intersect at the point  M (inside the 

circle) then the straight line through  M  that is perpendicular to  AD  bisects the chord  BC.  

14. Prove that every cyclic rhombus is a square. 
15. Prove that if  A  and  B  are two distinct points  and  D  is any other point on  AB  then the locus of 

all the points  P  in the plane such that  
AP
PB   =  

AD
DB   is a circle.  (This is the circle of Apollonius.) 

16. State and prove the converse of Proposition 4.2.6. 
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17. Given a line segment  AB, construct the circle which consists of all the points from which  AB  

subtends an angle of  90
o. 

18. Given a line segment  AB, construct the arc which consists of all the points from which  AB  

subtends an angle of  60
o. 

19. Given a line segment  AB, construct the arc which consists of all the points from which  AB  

subtends an angle of  120
o. 

20. Given a line segment  AB, construct the arc which consists of all the points from which  AB  

subtends an angle equal to a given angle α. 
21. Construct a triangle given the data: 
 a)   a, hb, hc  b)   a, ha, α  c)   a, ma, α   

 d)   a + b + c, ha, α. 

22. Construct a parallelogram given its two diagonals and one of its angles. 

23. Given line segment  AB  and  CD  and angles  α  and  β,  construct a point  P  such that  ∠ APB = 

α  and  ∠ CPD = β. 

24. In a given  ΔABC  construct a point  P  such that  ∠ APB = ∠ BPC = ∠ CPA.   
25. Comment on Proposition 4.2.1 in the context of the following geometries: 

 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 

26. Comment on Proposition 4.2.2 in the context of the following geometries: 

 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 

27. Comment on Proposition 4.2.3 in the context of the following geometries: 

 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 

28. Comment on Proposition 4.2.6 in the context of the following geometries: 

 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 

29(C). Use a computer application to verify the following propositions: a) 4.2.1  b)  4.2.2 

 c)  4.2.3b d)  4.2.4. 

 

 

 Three (or more) straight lines are said to be concurrent if they all contain the 

same point.  

 

PROPOSITION 4.2.7.  The three perpendicular bisectors of the sides of a triangle 

are concurrent. 
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GIVEN:  Δ ABC;  DD', EE', FF'  are the perpendicular bisectors of  AB, AC, and  

 BC respectively (Fig. 4.11). 

TO PROVE:  DD', EE', FF'  are concurrent. 

 

 

Figure 4.11 

 

PROOF:  Exercise 3.1A.4  guarantees that  DD'  and  EE' intersect in some point  M.  

Draw  AM, BM, CM.  Then 

  AM     =     BM      [PN 2.3.12] 

  AM     =     CM      [PN 2.3.12] 

 ∴ BM     =     CM      [CN 1] 

 ∴ M  is on the perpendicular bisector to  BC    [PN 2.3.13] 

           Q.E.D. 

 

 A circle is said to circumscribe a triangle if all of the triangle's vertices are on the 

circle.  Its center and radius are, respectively, the triangle’s circumcenter and 

circumradius. 

 

PROPOSITION 4.2.8(IV.5).  About a given triangle to circumscribe a circle. 

See Exercise 1. 
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PROPOSITION 4.2.9. The bisectors of the three interior angles of a triangle are 

concurrent. 

GIVEN:  Δ ABC,  AA', BB', CC'  are the bisectors of  ∠ BAC, ∠ ACB, ∠ ABC,  

respectively (Fig. 4.12). 

TO PROVE:  AA', BB', CC'  are concurrent. 

 

 

Figure 4.12 

 

PROOF:  Since 

 

  ∠ 1 +  ∠ 3    =     
1
2 (� 2 + � 4)      <     

1
2  180o   [PN 2.3.21] 

 

it follows from Postulate  5  that  BB'  and  CC'  intersect in some point  D.  Let  E, F  and  

G  be those points on  AB, BC,  CA respectively such that  DE 

€ 

⊥ AB,  DF 

€ 

⊥ BC,  and  

DG 

€ 

⊥ AC.   Then 

 

  DE    =     DF     =     DG    [PN 2.3.31] 

 ∴ DE     =     DG      [CN 1] 

 ∴ DA  bisects  ∠ BAC     [PN 2.3.32]  

         Q.E.D. 
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 A circle that lies in the interior of a triangle and is tangent to all of its sides is said 

to be inscribed in the triangle.  Its center and radius are, respectively, the triangle’s 

incenter and inradius. 

 

PROPOSITION 4.2.10(IV.4).  In a given triangle to inscribe a circle. 

See Exercise 2. 

 

EXERCISES 4.2B 

 
1. Prove Proposition 4.2.8. 
2. Prove that similar triangles have circumradii that are proportional to their sides. 
3. Prove Proposition 4.2.10. 
4. Prove that similar triangles have inradii that are proportional to their sides. 
5. Prove that the circumcenter of a right triangle is the midpoint of its hypotenuse. 

6. Prove that if the circumcenter of  Δ ABC  lies inside the triangle then the triangle is acute, if the 

center is on a side the triangle is right, and if the center is outside the triangle then the triangle is 

obtuse. 

7. Prove that the circumcenter of an acute triangle lies inside the triangle. 

8. Prove that the circumcenter of an obtuse triangle lies outside it. 
9. Prove that the area of the triangle equals the product of half its perimeter with the inradius. (Hint: 

Examine the three triangles formed by the center of the circle with the triangle's three sides.)   

10. In a given circle inscribe a triangle similar to a given triangle. 

11. Prove that the altitudes of the triangle are concurrent. (Hint: Through each vertex of the triangle 

draw a line parallel to the opposite side.  Then show that the altitudes in question are the 

perpendicular bisectors of the triangle formed by these parallels.) 

12. Comment on Proposition 4.2.7 in the context of the following geometries: 

 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 

13. Comment on Proposition 4.2.8 in the context of the following geometries: 

 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 

14. Comment on Proposition 4.2.9 in the context of the following geometries: 

 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 

15. Comment on Proposition 4.2.10 in the context of the following geometries: 

 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 
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16(C). Use a computer application to verify the following propositions:  a)  4.2.5  b)  4.2.7. 

 
3.  Regular Polygons 

 

A polygon is regular if all of its sides and all of its interior angles are equal.  The 

equilateral triangles are the regular triangles and they are the subject matter of 

Proposition 1 of Book I.  Squares are the regular quadrilaterals and they are constructed 

in Proposition 3.3.1. Book IV of The Elements is mostly concerned with the 

constructibility of other regular polygons and their inscription in circles. Regular 

hexagons are also easily constructed. 

 

PROPOSITION 4.3.1(IV.15).  In a given circle to inscribe a regular hexagon. 

GIVEN:  Circle  p = (O; r) (Fig. 4.13). 

TO CONSTRUCT:  Points  A, B, C, D, E, F  on  p  such that  ABCDEF  is a regular 

hexagon. 

   

 

Figure 4.13 

 

CONSTRUCTION:  Let  A  be an arbitrary point on the circle  p.  Let  B  be the 

intersection of an arc of radius  r  and  center  A  with  p.  Let  C  be the intersection of an 

arc of radius  r  and  center  B  with  p,  and let  D, E, F  be constructed in a similar 

manner.  Then  ABCDEF  is a regular hexagon. 



 4.3 REGULAR POLYGONS 

 4.22 

PROOF:   By construction  Δ AOB, Δ BOC, Δ COD, Δ DOE, and Δ EOF  are all 

equilateral so that  ∠ AOB = ∠ BOC = ∠ COD = ∠ DOE = ∠ EOF = 60o.  It follows that  

∠ FOA = 360o - 5⋅60o = 60o  and hence the isosceles  Δ FOA  is also equilateral.  Thus,  

FA = OA  and so each of the sides of  ABCDEF  has length  r.  It also follows that each of 

the interior angles of  ABCDEF  equals  120o.  Thus, ABCDEF  is a regular hexagon. 

           Q.E.D. 

 

 A slight variation on the construction of the regular hexagon yields the flower-like 

configuration of Figure 4.14. 

 

 

Figure 4.14 

 

 The construction of the regular pentagon is a considerably more difficult matter.  

Some of the technically demanding details are isolated in the following lemma.   Others 

were listed as exercises above. 

 

PROPOSITION 4.3.2(IV.10).  To construct an isosceles triangle having each of the 

angles at the base equal to double of the remaining one. 

TO CONSTRUCT:  Δ ABC  such that   ∠ ABC  =  ∠ ACB  =  2∠ BAC (Figure 4.15). 

CONSTRUCTION:  Let  AB  be an arbitrary line segment and let  D  be a point such that  

AB⋅BD  =  AD2  [PN 3.4.1].  Then the required  Δ ABC  is that triangle such that  AC = 

AB  and  BC = AD [PN 2.3.27]. 

 



 4.3 REGULAR POLYGONS 

 4.23 

 

Figure 4.15 

 

PROOF:   By construction,  BC2  =  AD2  =  AB⋅BD.  It therefore follows that from 

Proposition 4.2.5  that  BC  is tangent to the circle  p  that circumscribes  Δ ACD.  Hence, 

  ∠ 1     =     ∠ 2      [PN 4.2.4] 

 ∴ ∠ 3    =     ∠ 1  + ∠ 4   =     ∠ 2  + ∠ 4    =     ∠ 5   =    ∠ 6 

 ∴ DC     =     BC      =     AD 

 ∴ ∠ 1     =     ∠ 4     =     
1
2  ∠ 3   =     

1
2  ∠ 6     =     

1
2  ∠ 5  

           Q.E.D.     

 

 If the smallest of the angles of the triangle of Proposition 4.3.2  is denoted by  x,  

then the other two angles are each  2x  and so, by Proposition  3.1.6, 

 

   1800     =     x  +  2x  +  2x     =     5x 

 

from which it follows that  x = 36o.  Hence the following corollaries hold. 

 

PROPOSITION 4.3.3.  To construct angles of  36o  and  72o. 
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We are now ready to construct the regular pentagon. 

 

PROPOSITION 4.3.4(IV.11).  In a given circle to inscribe a regular pentagon. 

GIVEN:  Circle  p = (O; r) (Fig. 4.16). 

TO CONSTRUCT: Points  A, B, C, D, E  on  p  such that  ABCDE  is a regular 

pentagon. 

CONSTRUCTION:  At the center O  of the circle construct five non-overlapping central 

angles of  72o [PN 4.3.3].  Label the successive intersections of their sides with  the circle 

A, B, C, D, E.  Then  ABCDE  is the required pentagon. 

 

 

Figure 4.16 

 

PROOF:  The five constructed isosceles triangles are all congruent by SAS.  It follows 

that the five sides  AB, BC, CD, DE,  and EA  are all equal.  Moreover, the base angles of 

these triangles are  
1
2 (180o - 72o)   =  54o  each and hence all of the pentagon's interior 

angles are equal (to  108o  each). 

           Q.E.D. 

 

 Euclid took the trouble to prove that the regular 15-sided polygon is constructible 

(Exercise 3).  It is reasonable to suppose that this was his way of pointing out that there is 
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an interesting question to be pondered here. Namely, for which integers  n  can the 

regular n-sided polygon be constructed?  It has already been shown above that this is 

possible for  n = 3, 4, 5, 6.  Some more such n  can be easily produced by simply 

doubling the number of sides of any constructible regular polygon (see Exercises 1, 2, 4).  

However, this does not answer the question for such numbers  as  7, 9, 11, 13, 14, 17, ... .  

The surprising intricacy of the construction of the pentagon indicates that such polygons 

might pose an even greater challenge.  This problem continued to excite the interest of 

mathematicians after Euclid, but no progress was made for over 2000 years until the 

young Gauss  demonstrated the constructibility of the 17-sided polygon in 1796.  

Actually, he did much more.  Using the newly emergent theory of complex numbers 

Gauss proved that a regular p-sided polygon can be constructed for every prime integer  p  

that has the form  22n
 + 1 for some nonnegative integer n.  These include the values 

 

 220
 + 1     =     21 + 1     =     3, 221

 + 1     =     22 + 1     =     5, 

 

 222
 + 1     =     24 + 1     =     17, 223

 + 1     =     28 + 1     =     257, 

 

 224
 + 1     =     216 + 1     =     65,537. 

 

Curiously,  the next number in this sequence, namely  225
 + 1  =  232 + 1  =  

4,294,967,297  fails to be a prime since it can be factored as  641⋅6,700,417 ,  a fact that 

had already been noted by Euler over fifty years earlier.  The same is true for all the 

numbers of this form for  n = 6, 7, ..., 16 and several other values including  n = 1945.  In 

fact, it is not known whether there are any more primes  p  that can be expressed in this 

form above and beyond the five listed above. 

 Gauss completely resolved the issue of the constructibility of regular polygons as 

follows. 
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PROPOSITION 4.3.5.  It is possible to construct (in the sense defined by Euclid) a 

regular g-gon (g ≥ 3) if and only if the factorization of  g  into primes has the form 

 

     g     =     2kp1p2...pm 

 

where  m ≥ 0  and  p1, p2, ..., pm  are distinct primes each of which has the form  22n  
+ 1. 

 

 Thus,  the regular  2040-gon is constructible because  2040 = 23
⋅3⋅5⋅17  whereas 

the regular  28-sided  and  100-sided polygons are not constructible because  28  =  22
⋅7  

and  100 =  22
⋅52. 

 

EXERCISES 4.3 

 
1. Prove that the regular octagon is constructible . 

2. Prove that the regular decagon is constructible. 

3. Prove that the regular 15-sided polygon is constructible (Proposition IV.16). 

4. Let  g  be a positive integer.  Prove that if the regular g-sided polygon is constructible, so is the 

regular 2g-sided polygon. 

5. Let  p  and  q  be two prime integers.  Prove that if the regular p-sided and q-sided polygons are 

constructible so is the regular pq-sided polygon. 

6. Let  g  and  h  be relatively prime integers such that the regular g-sided and h-sided polygons can 

be constructed.  Prove that the regular gh-sided polygon can be constructed. 
7. Let  g, h > 1  be integers such that  h  is an integer multiple of  g.  Prove that if the regular h-sided 

polygon is constructible so is the regular g-sided polygon. 
8. Use a calculating device to prove that 2

26
 + 1  is not a prime integer. 

9. For which  n = 3, 4, ..., 100  is the regular n-gon constructible? 

10.  For which  n = 101, 102, ..., 200  is the regular n-gon constructible? 
11. Comment on Proposition 4.3.1 in the context of the following geometries: 

 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 

12. Comment on Proposition 4.3.2 in the context of the following geometries: 
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 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 

13. Comment on Proposition 4.3.4 in the context of the following geometries: 

 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 

14. Show that in taxicab geometry equilateral triangles are not necessarily equiangular.  Can all three 

of the angles of an equilateral taxicab triangle be distinct? 

15(C). Perform the construction of Proposition 4.3.1 using a computer application. 

 
4.  Circle Circumference and Area 

 

 

The fundamental observation that the circumference of a circle is proportional to its 

diameter (and hence also its radius) goes back several millennia BC.  Surprisingly, Euclid 

says nothing on this topic in The Elements. 

 

PROPOSITION 4.4.1.  Circumferences of circles are proportional to their radii. 

GIVEN:  Circles  p1 = (O1; r1) and  p2  = (O2; r2)  of circumferences  c1  and  c2  

respectively (Fig. 4.17). 

TO PROVE: 
c1
c2

   =  
r1
r2

  

 

 

Figure 4.17 

 

SUPPORTING ARGUMENT:   It follows from Proposition 4.3.1  that it is possible to 

inscribe a regular hexagon in each of the given circles.  By repeatedly bisecting the 
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central angles subtended by the sides of the polygons it is possible to inscribe in each 

circle  pi,  i = 1, 2,  a regular  n-sided polygon of side, say, ai,n  where  n  is an integer of 

the form  3⋅2m.  It is clear that ∠ B1O1C1 =  ∠ B2O2C2 =  360o/n .  Since    Δ O1B1C1  

and  Δ O2B2C2 are isosceles they must be equiangular [PN 3.1.6] and hence they are 

similar [PN 3.5.7].  In other words, the sides of the inscribed polygons are proportional to 

the radii.  Making the reasonable assumption that for large  n  the difference between the 

circumferences of each circle and that of its inscribed polygon is negligible, it follows 

that 

 

     

€ 

c1
c2

=
na1,n
na2,n

=
a1,n
a2,n

=
r1
r2    , 

           Q.E.D.  

 

 An alternate supporting argument that makes use of calculus is described in 

Exercise 1. 

 It follows from the above proposition that if  c  and  r  denote the circumference 

and radius of an arbitrary circle,  then the ratio 

 

      
c
r  

 

has a constant value, say  α.  This constant number can be used to restate the above 

proposition in the following form. 

 

PROPOSITION 4.4.2.  There is a number  α   such that if  c  and  r  are respectively 

the circumference and radius of any circle,  then   c  =  αr. 

           [] 
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 The numerical value of  α  is, of course, of interest, and will be estimated at  the 

end of this section.  Next, the area of the circle is examined.  The following proposition 

was proved by Euclid using the Method of Exhaustion  which was the Greeks' version of 

the integral calculus.  This method was developed by Euclid's predecessor Eudoxus 

whom Archimedes (287 – 212 B.C.) credits with this and other similar propositions. 

 

PROPOSITION 4.4.3(XII.2).  The areas of circles are proportional to the squares 

of their radii. 

GIVEN:    Circles  p1 = (O1; r1) and  p2  = (O2; r2)  of areas  A1  and  A2   respectively 

(Fig 4.17). 

TO PROVE:    
A1
A2

   =  
r

2
1

r
2
2
   . 

SUPPORTING ARGUMENT:  It follows from Proposition VI.19 (Exercise 3.5E.10)  

that the areas of Δ O1B1C1  and  Δ O2B2C2  are proportional to the squares of the radii  r1  

and  r2.  Making the reasonable assumption that for large  n  the difference between the 

areas of each circle and that of its inscribed polygon is negligible, it follows that 

 
A1
A2

      =     
n(Δ O1B1C1)
n(Δ O2B2C2)     =      

Δ O1B1C1
Δ O2B2C2

      =     
r

2
1

r
2
2
  

           Q.E.D. 

 

 An alternate supporting argument makes use of calculus (see Exercise 2). 

 

 It follows from the above proposition that if  A  and  r  denote the area and radius 

of an arbitrary circle,  then the ratio 

 
A
r2  
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has a constant value, say  π.  This number can be used to restate the above proposition in 

the following form. 

 

PROPOSITION 4.4.4.  There is a number  π   such that if  A  and  r  are the area 

and radius respectively, of any circle,  then   A  =  πr2. 

 

 The numerical value of  π  is, of course, of interest, but the relationship between  

α   and  π   needs to be addressed first.  The discovery of this relationship is attributed by 

Proclus to Archimedes. 

 

PROPOSITION 4.4.5.  The proportionality constants of the circumference and area 

of a circle are related by the equation  α = 2π. 

SUPPORTING ARGUMENT:  Suppose the circle  p  is divided into  n  equal  sectors  

 

 

Figure 4.18 

 

each of which has a central angle of  3600/n,  and let  OBD be a typical sector (Fig. 4.18).  

If  n  is large it may be assumed that  OBD  is a triangle with altitude  OC = r.  Applying 

Proposition 3.2.5 it follows that this triangle has area  r.arc(BD)/2.   Hence the circle  p  

has area 

 



 4.4 CIRCLE CIRCUMFERENCE AND AREA 
 

 4.31 

€ 

A = n r
2
arc(BD) = c r

2
= (αr) r

2
=
α
2
r2

. 

 

It now follows from Proposition 4.4.4  that   π  =  
α
2     or   α  =  2π. 

           Q.E.D. 

 

COROLLARY 4.4.6.  The circumference of a circle of radius  r  is  2πr. 

 

 

Figure 4.19 

 

 An alternate supporting argument for Proposition 4.4.5 can be based on Figure 

4.19.  Imagine that the circle of radius  r  on the left is filled with circular strands.  Cut 

the circle along the vertical dashed radius and straighten out all the strands as indicated 

until they form an isosceles triangle (that its sides are straight follows from Proposition 

4.4.2).  It follows from Proposition 3.2.5 that the area of this triangle, and hence also the 

area of the circle,  is     

 

A  =  (circumference ⋅ r)/2     =    cr/2  =  αr⋅r/2  =  (α/2)r2, 

 

and the rest of the argument proceeds as before. Appealing as this argument is, it is 

fraught with logical perils which are discussed in Exercise 21. 
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 Yet another alternative argument in support Proposition 4.4.5  calls for slicing the 

circle into an even number of equal sectors and rearranging these to form the near-

parallelogram at the top of Figure 4.20.  As the number of sectors increases to infinity the  

 

 

Figure 4.20 

 

near-parallelogram converges to the rectangle below it, whose area is clearly   

 

A  =  (half circumference)r  =  cr/2  =  αr⋅r/2  =  (α/2)r2 .  

 

 The procedure of successive approximations used in Proposition 4.4.1 also yields 

a method for obtaining numerical estimates of the constant of proportion  π.  This was 

first carried out by Archimedes and constitutes the first of a long (and still ongoing) 

series of scientific estimations of  π.  Let  an  denote the length of the chord  AB  which is 

one side of the regular n-gon inscribed in a circle of radius  1 (Fig. 4.21).  If  C  is the 

midpoint of the corresponding arc(AB),  then the chord AC  has length  a2n.  Two  
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Figure 4.21 

 

applications of the Theorem of Pythagoras then yield 

 

 a
2 
2n      =     AC2     =     AD2  +  DC2     =     (

an
2  )2  +  (OC  -  OD)2      

 

 =      (
an
2  )2   +   (1  -  OA2  -  AD2 )

2
     

 

 =      (
an
2  )2  +   (1  -  1  -  (an/2)2 )

2
 

 

 =      (
an
2  )2  +  (1  -  2 1  -   (

an
2 )

2   +  1  -   (
an
2  )2) 

 

 =     2  -  4  -  a
2
n  . 

 

Hence, 

 

PROPOSITION 4.4.7.  If  an  denotes the length of the regular polygon with  n  

sides that is inscribed in a circle of radius  1,  then 
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   a2n     =     2  -  4  -  a
2
n    

            

 Since the length of the side of the inscribed regular hexagon equals the radius, it 

follows that  a6 = 1 and so 

 

 a12     =     2  -  4 - 1      =     2  -  3     =     .5176380902... 

   

 a24     =     2  -  4  -  (2  -  3)      =     2  -  2  +  3  

       =     .2610523844... 

 

 a48     =     2  -  4  -  (2  -  2  +  3)      

 

   =     2  -  2  +  2  +  3      =     .1308062585... 

 

 a96     =     2  -  2  +  2  +  2  +  3      =     .0654381656... . 

 

Since the length of any arc exceeds that of its chord (another one of those reasonable 

assumptions), the circumference of the circle exceeds that of any inscribed polygon.  As 

the circle of radius  1  has circumference  2π  it follows that for each positive integer  n, 

 

      π     >     
nan
2   

 

and in particular 

 

    π     >     48a96     =     3.14103195089... . 
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 To obtain upper bounds for the value of  π  Archimedes examined regular n-gons 

whose sides were tangent to the circle.  Suppose a regular n-gon is inscribed in a circle of 

radius 1 and at each of the vertices a straight line tangent to the circle is constructed.  It is 

easily verified that the resulting polygon surrounding the circle is also a regular n-gon of  

 

 
 

Figure 4.22  Comparing a circumscribed polygon 
with an inscribed one. 

 

side, say,  bn  (Fig. 4.22).  The side  bn  can be estimated by showing that  (see Exercise 9) 

 

 b6     =       
2
3        and   b2n     =     

2( 4 + b
2
n  -  2)

bn
         (1) .  

 

Alternately, the figure above can be used to show that  

 

    bn     =     
2an

4 - a
2
n

  . 

 

This gives us   b96   =   .0654732208...   and  hence 

 

   π     <    
96b96

2       =     3.1427145996... . 
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Archimedes did not have the decimal number system at his disposal and he had to work 

within the much more cumbersome systems that were then current.  Using some of the 

quite complicated methods for the estimation of square roots by means of fractions that 

were then known he was able to show that 

 

   48a96     >     
6336
2017

1
4
      >     3

10
71     (=     3.1408...)  

and 

   48b96     <     
14688
4673

1
2
      <     3

1
7     (=     3.1428...)    . 

 

Thus, Archimedes proved that 

 

 

PROPOSITION 4.4.8.   310
71      <     π     <     3

1
7   . 

 

 This section and chapter conclude with a discussion of some paradoxes and 

problems regarding the areas of circles.  Consider Figure 4.23 where  Δ ABC  is both 

right and  

 

 

Figure 4.23 

 

isosceles with legs of length  a  and hypotenuse of length  a 2 .  The outside arc is a 

semicircle with diameter  AB  and radius  a 2 /2  whereas the inside arc is a quarter-
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circle centered at  C  with radius  a.  Regions bounded between two such arcs are called 

lunes (but these are different from the spherical lunes).  Note that the area of this lune is 

the difference between the entire figure and the quartercircle centered at  C.  Thus, 

   

 

 area of lune   =     area of semicircle  +  area of  ΔABC  -  area of quartercircle 

 

  =     
1
2 π(

a 2
2  )2  +  

a2

2    -  
πa2

4       =     
πa2

4     +  
a2

2    -  
πa2

4        =     
a2

2        

 

         =     area of Δ ABC. 

 

This surprising equation is due to Hippocrates of Chios. A similar equation appears in 

Exercise 10.  There are two unexpected aspects to this equation.  First, the area of the 

lune, whose boundary consists of circular arcs, turns out to have an expression that is free 

of  π.  Second, this curvilinear figure has the same area as a triangle.  This leads naturally 

to the question of whether it is possible to construct a triangle, or a square, for that matter, 

whose area equals that of a given circle (the simplest of all the curvilinear regions).  The 

operative word here is construct.  It is clear that any circle of radius  r  has the same area 

as a square of side  r π .  The difficulty lies in constructing  r π   within the framework 

of Euclidean geometry.  This problem drew the attention of many mathematicians and 

non-mathematicians both in classical times and during the subsequent two and a half 

millennia.  Although many individuals dedicated their lives to the solution of this 

problem, and some even deluded themselves into believing they had discovered the 

construction, all their efforts were in fact wasted.  In 1882 the German mathematician C. 

L. Ferdinand von Lindemann (1852-1939) proved a theorem which had the following 

corollary amongst many others: 
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Given a line segment  a  it is impossible to construct (in the 

sense of The Elements)  a square whose area equals that of 

the circle of radius  a. 

 

   

EXERCISES 4.4A 

1. The length of the graph of the function  y = f(x)  for  a ≤ x ≤ b  is  ⌡
⌠

a

b

1 + f '
2
 dx  .  Use this 

formula to prove Proposition 4.4.1. 

2. Use calculus to prove Proposition 4.4.3. 

3. Using 3.14 for the value of  π, in a circle of radius  10"  find the length of the arc and the area of a 

sector determined by a central angle of 

 a) 60
o
  b) 20

o
  c) 90

o
  d) 100

o
 

 e) 180
o
  f) 230

o
. 

4. Compute the radical expressions for  a192  and  b192  and use them  (and a calculator) to obtain 

decimal bounds of the value of  π. 
5. Compute the radical expressions for  a384  and  b384 and use them  (and a calculator) to obtain 

decimal bounds of the value of  π. 
6. Compute the radical expressions for  a768  and  b768  and use them  (and a calculator) to obtain 

decimal bounds of the value of  π. 
7. Compute the radical expressions for  a1536  and  b1536  and use them  (and a calculator) to obtain 

decimal bounds of the value of  π. 

8. Prove Equations (1). 

9. Prove that of two circular arcs joining two given points, the one with the longer radius has shorter 

length. 

10. Semicircles are constructed on the sides of a right Δ ABC  (Fig. 4.24).  Prove that the sum of the 

areas of the two lunes  I  and  II  equals the area of  Δ ABC.  

 

 
Figure 4.24 
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11. Show that the circumference of a circle of spherical radius  r  on a sphere of radius  R  is  2πR sin 

(r/R). 

12. Show that the area of a spherical circle of spherical radius  r  on a sphere of radius  R  is  2πR
2
[1 - 

cos (r/R)]. 

13. Comment on Proposition 4.4.1 in the context of the following geometries: 

 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 

14. Comment on Proposition 4.4.2 in the context of the following geometries: 

 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 

15. Comment on Proposition 4.4.3 in the context of the following geometries: 

 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 

16. Comment on Proposition 4.4.4 in the context of the following geometries: 

 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 

17. Comment on Proposition 4.4.5 in the context of the following geometries: 

 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 

18. Comment on Proposition 4.4.6 in the context of the following geometries: 

 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 

19. Comment on Proposition 4.4.7 in the context of the following geometries: 

 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 

20. Comment on Proposition 4.4.8 in the context of the following geometries: 

 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 

21. Explain the following paradox.  Suppose the method that was used to convert a circle into a 

triangle (see paragraph following Proposition 4.4.6)  is applied to the same square ABCD  in two 

different manners - first by slicing from a corner to the center and second by slicing from the 

middle of a side to the center (Fig. 4.25).  The two triangles so obtained have their bases equal to 

the perimeter of the square but their altitudes are clearly different.  Why are two triangles of 

different areas obtained? 
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Figure 4.25 
 
 

4.5 Impossible Constructions (Mostly) 

 

Part of the legacy that the Greek mathematicians passed on to their successors was a 

collection of construction problems they could not resolve by ruler and compass alone.  

While most of these problems have already been discussed (Sections 2.3 and 4.3), it 

might be a good idea to reexamine this topic here in order to provide a better perspective 

on its outcome.  We begin by listing the specific construction problems in question. 

 

1. To divide a given angle into three equal parts. 

2. To construct a regular n-gon for each integer  n ≥ 3. 

3. To construct a square whose area equals that of a given circle. 

4. To construct a cube whose volume is double that of a given cube. 

 

 The reader will recall that Cartesian coordinates were invented for the purpose of 

expressing geometrical problems in the language of algebra.  Since construction problems 

are geometrical, this applies to them as well.  Some of this relation between geometry and 

algebra has already been pointed out.  If  a  and  b  are the lengths of two given line 

segments, then it is possible to construct line segments of lengths  a + b  (Exercise 

2.3A.3)  and  a – b (Proposition 2.3.3).  Assuming  a  to be a unit length, Exercise 

3.5B.13 shows how, given segments of lengths  b  and  c,  it is possible to construct a 

segment of length  bc.  Assuming  c  to be a unit length,  the same exercise can be used to 
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construct, for any given segments of lengths  a  and  b,  a segment of length  a/b.  Finally, 

assuming  b  to have unit length, Exercise 3.5B.14 can be used to construct, for any given 

segment of length  a,  a line segment of length  √a.  Thus, the four arithmetical 

operations, as well as the taking of square roots, can be mimicked by ruler and compass 

constructions. 

 The Cartesian coordinate system can be used to argue that the power of ruler and 

compass constructions cannot be extended beyond these five algebraic operations.  To do 

this, it is first necessary to formalize some notions. A configuration is a set of points, 

straight lines and circles.  An elementary ruler and compass construction is any of the 

following five operations. 

 

1. Draw the line joining two given points; 

2.  Draw a circle with a given center and radius; 

3.        Find the intersection of two given straight lines; 

4.        Find the intersection of a given circle and a given straight line; 

5.        Find the intersection of two given circles. 

 

A configuration  T  is said to be constructible from configuration  S  provided every 

element of  T  can be obtained from the elements of  S  by a succession of elementary 

ruler and compass constructions. In particular, note that every construction problem 

stipulates a given configuration and aims at the derivation of a desired configuration. 

Assume now that a Cartesian coordinate system has been chosen to which all the 

configurations below are referred.  The numerical aspects of the point  (x, y)  are   x  and  
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y.  The numerical aspects of the straight line with equation   ax + by + c = 0  are  a, b, 

and, c.  The numerical aspects of the circle with equation  x2 + y2 + ax + by + c = 0  are  

a, b, and c. 

      A real number  r  is said to be a Hippasian function of the set  S  provided it is 

obtainable from the elements of  S  and the rational numbers by rational operations and 

extractions of real square roots (this terminology honors Hippasus of Metapontum, the 

discoverer of the irrationality of  √2).   For example, the numbers below are all Hippasian 

functions of the set  S = {π, 3√2, e}. 

 

    

€ 

1, 3
5
, 2
3

e
, π + 3e
2 − 23

, 3 π − 4 e3

10 + 23  

 

The Hippasian numbers are those that are obtainable from the rational numbers 

alone by the rational operations and the extractions of real square roots.  In fact, this is 

tantamount to saying that they are obtainable from the number  1  by the said operations.  

The numbers below are all Hippasian numbers. 

 

    

€ 

1, 3
5
,− 2, 2 + 2 + 3 , 1+ 2

5 + 35 − 13
.
 

 

 The following theorem formalizes the intuitively plausible connection between 

constructibility and Hippasian functions. 
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THEOREM 4.5.1.    If configuration  T  is constructible from configuration  S  then the 

numerical aspects of  T  are Hippasian functions of the numerical aspects of  S. 

OUTLINE OF PROOF:  Suppose configuration  T  is obtained from configuration  S  by 

the elementary construction  (i),  where  i = 1, 2, 3, 4, 5.  If  i = 5, for example, let the two 

given circles have equations 

 

x2 + y2 + ax + by + c = 0  and  x2 + y2 + a′x + b′y + c′ = 0 

 

By Exercise 5, the intersection point of these two circles, if it exists, has coordinates 

which are Hippasian functions of  a, b, c, a′, b′, c′ . The proof of the cases  i = 1, 2, 3, 4  

is similar (see Exercises 1-4) and we conclude that if  T  is constructible from  S  by any 

ruler and compass operations, then the numerical aspects of  T  are obtainable from those 

of  S  in the desired manner.        Q.E.D. 

  

 We note in passing that the converse of Theorem 4.5.1 is also valid, albeit 

somewhat harder to prove.  As this converse is not needed for the proof of the 

impossibilities below, it is relegated to Exercise 6. 

 The strategy for demonstrating the non-feasibility of a ruler and compass 

construction calls for demonstrating that the numerical aspects of the desired 

configuration are not Hippasian functions of those of the given configuration.  Matters 

can, and will be, simplified below by setting things up so that the numerical aspects of the 

given data are either integers or Hippasian numbers, and hence it will suffice to show that 

the desired configuration has a non-Hippasian number as one of its numerical aspects 
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 The following unproven proposition provides an easily applied criterion for 

recognizing non-Hippasian numbers.  It is found, in a more general form, in many 

undergraduate modern algebra texts. 

 

PROPOSITION 4.5.2.     Let  x  be a real solution of the equation  

 

ax3 + bx2 + cx + d = 0,    (1) 

 

 where  a, b, c, d  are integers.  Then  x  is Hippasian if and only if this equation has a 

rational solution.         u 

 

 Unlike the above proposition, the next one is found in many precalculus texts and 

is easily proven (Exercise 7). 

 

PROPOSITION 4.5.3 (The Rational Zeros Theorem).    Let 

 

P(x)  =  anxn+ an-1xn-1  +   +  …  +  a1x  +  a0 , 

 

where all the  ai‘s are integers.  If  p/q  is a rational number in lowest terms such that 

 

P(p/q)  =  0, 

 

then  p  is a factor of  a0  and  q  is a factor of  an .     u 
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 The four construction problems of antiquity are now reexamined one at a time.   

The simplest of these turns out to be the doubling of the cube. 

 

DOUBLING THE CUBE:   If it were possible to double a given cube by ruler and 

compass constructions, then it would certainly be possible to construct a cube of volume  

2.  The length of the side of such a cube would be  3√2  and it would have to be a 

Hippasian number.  However, 3√2  is clearly a solution of the equation   

 

x3 – 2 = 0    (2) 

 

and hence, by Proposition 4.5.2,  this equation would have to have a rational solution, say  

p/q  in lowest terms.  By Proposition 4.5.3  p  must be a factor of  2  and  q  a factor of  1.   

Hence p/q  must be one of the numbers   ±1/1, ± 2/1  none of which, by Exercise 9,  is a 

solution of the Equation (2).  Thus, the supposed feasibility of a ruler and compass 

doubling of the cube has lead to a contradiction and we conclude that  

 

The cube cannot be doubled by ruler and compass alone. 

 

ANGLE TRISECTION:   We next argue that there is no method for trisecting angles by 

ruler and compass alone.  Suppose, to the contrary, that such a method exists and is used 

to trisect the 60o  angle of an equilateral triangle whose side has unit length.  Here it may 

be supposed that the given configuration consists of the three points  O(0, 0),  A(0, 1), 
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B(1/2,  √3/2)  (Fig. 4.26) all of whose numerical aspects are Hippasian numbers.  The 

hypothetical construction yields an angle of  20o  that may be placed at the origin with 

one side on the  x-axis  (Fig. 4.26).  The (constructible) intersection  P  of this angle’s 

other side with the circle  (O; 1)  has coordinates  (cos 20o, sin 20o)  and hence it follows 

from Theorem 4.5.1 that  cos 20o  is a Hippasian function of Hippasian numbers.  

Consequently, cos 20o  is a Hippasian number.  We now go on to obtain an analog of 

Equation (2).  If  x = cos 20o,  then, by Exercise 8,   

 

1/2  = cos 60o   =  4 cos3 20o -  3 cos 20o  =  4x3 – 3x 

 

and hence 

 

8x3 – 6x – 1 = 0 .    (3) 

 

By Proposition 4.5.2, this equation has a rational solution, say  p/q,  where  p  and q  are 

integers.  By Proposition 4.5.3,  p/q  must be one of the fractions 

 

±1, ±1/2, ±1/4, ±1/8 

 

none of which, by Exercise 10, is a root of Equation (3).  Thus, the assumption of the 

feasibility of a ruler and compass method for trisecting angles has resulted in a 

contradiction, and hence  
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There is no method for trisecting angles by ruler and compass alone. 

 

 

Figure 4.26 

 

REGULAR  n-GONS:    Whether or not a regular  n-gon is constructible by ruler and 

compass turns out to depend on the value of  n.  In general, such a polygon can be 

constructed if and only if an angle of  360o/n  can be constructed.  When this angle is 

placed at the origin with one side on the x-axis, the other side intersects the circle (O; 1)  

in the point  (cos 360o/n, sin 360o/n).  By Theorem 4.5.1 and Exercise 18, this general 

ruler and compass construction is feasible if and only if  cos 360o/n   is a Hippasian 

number.  We now show that there is no ruler and compass construction for the regular 7-

gon.  Set   A  =  360o/7  and  x = cos 360o/7.  If such a method existed, then x would be a 

Hippasian number.   However, by Exercises 8 and 12,  

 

cos 3A  =   4cos3A – 3cosA  =  4x3 – 3x 

cos 4A  =  8 cos4A - 8 cos2A + 1  =  8x4 – 8x2 + 1. 
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Since  3A + 4A  =  360o  it follows that  cos 3A = cos 4A  and hence 

 

4x3 – 3x  =  8x4 – 8x2 + 1 

 

8x4 – 4x3 - 8x2 + 3x + 1  =  0 

 

(x – 1)( 8x3 + 4x2 – 4x – 1)  =  0 . 

 

However,  cos 360o/7 ≠ 1  and hence 

 

8x3 + 4x2 – 4x – 1 = 0 . 

 

It follows from Proposition 4.5.3  that the only possible rational solutions of this equation 

are again ±1, ±1/2, ±1/4, ±1/8.  Since, by Exercise 10, none of these is a solution, it 

follows from Proposition 4.5.2 that  cos 360o/7  is not a Hippasian number and hence no 

such method for constructing regular 7-gons can exist. 

 According to Exercise 11,  cos 360o/5  is a Hippasian number and so the regular 

pentagon is indeed constructible, as demonstrated in Proposition 4.3.4.  As was 

mentioned above, the regular 17-gon is also constructible and hence  cos 360o/17  must 

also be a Hippasian number.  In fact, it is known to equal 

 

 

€ 

−1/16 + 17 /16 + (1/16) 34 − 2 17  
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€ 

−(1/8) 17 + 3 17 − 34 − 2 17 − 2 34 + 2 17 . 

 

SQUARING THE CIRCLE:   To square a circle of unit radius is tantamount to 

constructing a line segment of length  a = √π.  As it happens,  neither  π  nor  √π  are the 

solutions of any equation of form (1).  In fact, it was proven by Lindemann that there 

exists no polynomial  P(x)  with integer coefficients of any degree such that either  π  or  

√π  are solutions of  P(x) = 0.  Since every Hippasian number is known to be the solution 

of such an equation, it follows that  √π  is not a Hippasian number and hence 

 

It is impossible to square a circle by ruler and compass alone. 

 

EXERCISES 4.5 

1. Show that the straight line joining the points  (a, b)  and  (a′, b′)  has equation 

(b′ - b)x + (a – a′)y + (a′b – ab′)  =  0. 

2. Show that the circle with center  (a, b)  and radius  r  has equation 

x2 + y2 + (-2a)x + (-2b)y + (a2 + b2 - r2)  =  0. 

3. Show that if the two lines with equations  ax + by + c  =  0  and  a′x + b′y + c′  =  0  intersect,  then 

their point of intersection has coordinates  ((bc′ - b′c)/(ab′ - a′b), (a′c – ac′)/(ab′ - a′b)). 

4. Show that if the line with equation  ax + by + c  =  0  and the circle with equation x2 + y2 + a′x + b′y + 

c′  =  0  intersect, then their points of intersection have coordinates  x  =  (-B ± √B2 – 4AC)/(2A)  and  y  

=  (-ax – c)/b    where  A = a2 + b2,  B  =  2ac + a′b2 – abb′,  and  C = c2 - bb′c + c′b2. 

5. Show that if the two circles with equations x2 + y2 + ax + by + c  =  0  and x2 + y2 + a′x + b′y + c′  

=  0  intersect, then their points of intersection have coordinates x  =  (-B ± √B2 – 4AC)/(2A)  and  
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y  =  (-a″x – c″)/b″    where  A = a″2 + b″2,  B  =  2a″c″ + a′b″2 – a″b″b′, C = c″2 – b″b′c″ + c′b″2  

and  a″ = a – a′, b″ = b – b′, c″ = c – c′. 

6*. State and prove the converse of Theorem 4.5.1. 

7. Prove Proposition 4.5.3. 

8. Prove that cos 3A   =  4 cos3A -  3 cos A . 

9.       Verify that none of the numbers  ±1/1, ±2/1,  is a solution of the equation  x3 – 2  =  0. 

10.       Verify that none of the numbers  ±1/1, ±1/2, ±1/4, ±1/8  is a solution of the equation  

 8x3 - 6x – 1  =  0. 

11.        Prove that if  x  =  cos 72o  then  4x2 + 2x – 1  =  0. 

12.       Prove that cos 4A  =  8 cos4A - 8 cos2A + 1. 

13.       Prove that it is impossible to construct a regular 9-gon by ruler and compass alone. 

14.        Prove that it is impossible to triple a cube by ruler and compass alone. 

15.        Prove that it is impossible to halve a cube by ruler and compass alone. 

16.        Prove that the following numbers are not Hippasian: 

a)   3√5  b)  2 + 3√5    c)  1/(2 - 3√7) 

17. Is it possible to construct an angle of  1o? 

18. Let  A  be any number.  Explain why sin A  is a Hippasian number if and only if cos A  is a Hippasian 

number. 
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CHAPTER REVIEW EXERCISES 
 

1. Circle  p  intersects two concentric circles.  Prove that the arcs of  p  cut off by the two circles are 

equal.  

2. Prove that if each of the sides of a square is extended in both directions by the length of the radius 

of the circle that circumscribes the square, one obtains the vertices of a regular octagon. 

3. Two circles, centered at  C  and  D  respectively, intersect at a point  A.  Prove that if  PAQ  is the 

"double chord" that is parallel to  CD,  then  PQ = 2CD. 

4. The area of the annular region bounded by two concentric circles equals that of a circle whose 

diameter is a chord of the greater circle that is tangent to the smalller one. 

5. In a circle, a diameter bisects the angle formed by two intersecting chords.  Prove that the chords 

are equal. 

6. Prove that every equiangular polygon all of whose sides are tangent to the same circle is regular. 

7. Through the center of a circle passes a second circle of greater radius and their common tangents 

are drawn.  Prove that the chord joining the contact points of the greater circle is tangent to the 

smaller circle. 

8. Prove that every cyclic equilateral pentagon is regular. 

9*. Three circles through the point  O  and of radius  r  intersect pairwise in the additional points  A, 

B, C.  Prove that the circle circumscribed about  Δ ABC  also has radius  r.  

10. Prove that in the regular hexagon ABCDEF the diagonals  AC  and  AE  cut the diagonal  BF  into 

three equal segments. 

11. Each of the sides of a cyclic quadrilateral is the chord of a new circle.  Prove that the other four 

intersection points of these new circles also form a cyclic quadrilateral. 

12. A circle of radius  r  is inscribed in  Δ ABC  in which  ∠ ACB  is a right angle.  Prove that  a + b = 

c + 2r. 

13. The chord  AB  of a circle of radius  1  has the property that if the circle is folded along  AB  so as 

to bring  AB's  arc into the circle, then the arc passes through the center of the circle.  Compute the 

lengths of the chord  AB  and its arc. 

14. In a given  ΔABC  construct a point whose distances from the sides of the triangle are proportional 

to three given line segments. 
15*. Through the midpoint  M  of a chord  PQ  of a circle, any other chords  AB  and  CD  are drawn; 

chords  AD  and  BC  meet  PQ  at points  X  and  Y.  Prove that  M  is the midpoint of  XY. (This is 

the notorious Butterfly Problem.) 
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16*. The points of intersection of the adjacent trisectors of any triangle are the vertices of an equilateral 

triangle. (This is known as Morley's Theorem.) 
17. Are the following statements true or false? Justify your answers. 

a) The Greeks believed that the world is flat. 

b) The area of a plane Euclidean figure whose perimeter is composed of circular arcs must 

involve  π  in its expression. 

c) The Greeks knew that  π = 3.14. 

d) If two sectors have equal angles, then their arcs are proportional to their radii. 

e) Given a line segment a,  it is impossible to construct (in the sense of The Elements) a 

square whose area equals that of the circle of radius  a. 

f) Given a line segment a,  it is impossible to construct (in the sense of The Elements) an 

equilateral triangle whose area equals that of the circle of diameter  a. 

g) Of two equal chords in unequal circles, the one in the larger circle lies further from the 

center. 

h) The diameter is the circle’s longest chord. 

i) It is possible to construct a regular 340-sided polygon (in the sense of The Elements). 

j) It is possible to construct a regular 140-sided polygon (in the sense of The Elements). 

k) In a circle, all the angles subtended by a chord are equal to each other. 

l) In a circle, arcs are proportional to their chords. 

m) Every circle has only one center. 

n) Every circle has only one tangent line. 

o) If two chords of a circle bisect each other, then they are both diameters. 


