CHAPTER 3

Non-Neutral Geometry

This chapter's propositions differ from those of the previous one in that they depend on
Postulate 5 for their validity. Their proofs are therefore not valid in the context of non-

Euclidean geometry.

1. Parallelism

The first of the non-neutral propositions is the converse of Proposition 2.3.35, the last

proposition of the previous chapter.

PROPOSITION 3.1.1(1.29). A straight line falling on parallel straight lines makes
the alternate angles equal to one another, the corresponding angles equal to one another,

and the interior angles on the same side equal to two right angles.
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Figure 3.1
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3.1 PARALLELISM

GIVEN: Straight lines AB Il CD, straight line EF intersecting AB and CD at G and
H respectively (Fig. 3.1).

TOPROVE: £ 1= 22,43 =44, L2+ /3 = 2 right angles.

PROOF: By contradiction. Suppose £ 1 and £ 2 are unequal. Then it may be

assumed without loss of generality that

L1 > L2
L1+ 243 > L2+ /L3

but Z1+ £3 = 2 rightangles [PN 2.3.17]
2 rightangles > 242 + /3

AB and CD intersect [PT 5]

This however, contradicts the fact that ABIlCD andso 2 1= / 2. Moreover,

L1+ 243 = L2+ L4 = 2 rightangles [PN 2.3.17]
L3 = L4 [CN 3]
and also 42+ £3 = 2 rightangles.
QED.

The following proposition provides an alternative and intuitively appealing

characterization of parallel lines.

PROPOSITION 3.1.2. The locus of all points on one side of a straight line that are

equidistant from it is a straight line.

See Exercise 11.
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3.1 PARALLELISM

EXERCISES 3.1A

10.
11.
12.
13.

14.

15.

Prove that if two parallel straight lines are cut by a third line then the two bisectors of a pair of
alternate interior angles are parallel to each other.

Prove that if a straight line is perpendicular to one of two parallel straight lines then it is also
perpendicular to the other one.

Suppose AB L KL and CD 1 MN are all straight lines such that KL Il MN. Prove that AB Il CD.
Suppose AB L KL and CD 1 MN are all straight lines such that KL | MN. Prove that AB |
CD.

Prove that two angles whose sides are respectively parallel are either equal or supplementary
Prove that two angles whose sides are respectively perpendicular are either equal or
supplementary.

In A ABC, AD is the bisector of £ BAC and E is a point on AC such that DE Il AB. Prove
that AE = DE.

For a given A ABC, AD Il BC and AD = AB. Prove that BD bisects either the interior angle or
the exterior angle at B.

Prove that if the points A, B are on the same side of the straight line m and at the same distance
from m, then AB Il m.

Prove that if the points A, B are such that AB Il m, then they are at the same distance from m.
Use the above two exercises to prove Proposition 3.1.2.

Prove that the internal bisectors of each pair of angles of a triangle intersect.

Given two distinct parallel lines, construct a straight line that is parallel to both and also
equidistant from both.

Comment on Proposition 3.1.1 in the context of the following geometries:

a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.

Comment on Proposition 3.1.2 in the context of the following geometries:

a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.

PROPOSITION 3.1.3(1.30). (Distinct) Straight lines parallel to the same straight

line are also parallel to one another.

GIVEN: Distinct straight lines AB Il EF, CD |l EF (Fig. 3.2).

TO PROVE: AB Il CD
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3.1 PARALLELISM

Figure 3.2

PROOF: By contradiction. Suppose AB and CD intersect in some point /. Join [ to

any point J of EF. Then

/1 = /3 [PN 3.1.1, AB Il EF]
12 = /3 [PN 3.1.1, CD Il EF]
L1 = 22 [CN 1]

but this is impossible since the straight lines AB and CD are distinct. Hence AB Il CD.

Q.ED.

Euclid begins his proof of this proposition by drawing a straight line PQ that
intersects all the three given lines. While intuitively plausible, the existence of such a
line calls for a justification and Euclid's proof is therefore incomplete. The need for such
a justification is demonstrated by Figure 3.3 which exhibits three pairwise parallel

hyperbolic geodesics such that no single geodesic intersects all three.

AW AW

Figure 3.3 Three hyperbolic parallel straight lines that
are not intersected by the same hyperbolic straight line.
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3.1 PARALLELISM

EXERCISES 3.1B

1. If a straight line intersects one of two parallel straight lines (in only one point) then it also
intersects the other one.

2. Comment on Proposition 3.1.3 in the context of the following geometries:

a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.

PROPOSITION 3.1.4(1.31). Through a given point to draw a straight line parallel
to a given straight line.

GIVEN: Straight line BC, point A noton §>C (Fig.34).

TO CONSTRUCT: A straight line AE such that AE Il BC.

Figure 34

CONSTRUCTION: Let D be any point on BC and draw AD. Construct £ DAE =
£ ADC [PN 2.3.28]. Then AE is the required straight line.
PROOF: L EAD = L CDA [Construction]
AE I BC [PN 2.3.35]
QED.

The following proposition has supplanted Euclid's Postulate 5 in many texts

where it is known as Playfair's Postulate. Although this will not be demonstrated here,

the two are in fact logically equivalent.
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3.1 PARALLELISM

PROPOSITION 3.1.5(Playfair's Postulate). Through a point not on a given straight

line there exists exactly one straight line that is parallel to the given line.

See Exercises 1 and 2.

Just like Postulate 5, Playfair's postulate does not hold in hyperbolic geometry. Figure
3.5 exhibits three distinct geodesics p, g, r, all of which contain the same point P and

all of which are parallel to the same geodesic m.

. S

Figure 3.5 A hyperbolic counterexample to Playfair's Postulate.

It is now possible to give a more precise definition of hyperbolic geometry. This
calls for negating Playfair’s postulate, which is equivalent to Postulate 5. In view of

Proposition 2.3.7 the following postulate is the proper negation of Playfair’s postulate.

H (Hyperbolic). There exists a straight line that is parallel to two intersecting distinct

straight lines.

Hyperbolic geometry is the geometry based on Euclid’s Postulates 1,2, 3,4, A, S

and Postulate H.
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3.1 PARALLELISM

PROPOSITION 3.1.6(1.32). In any triangle, if one of the sides be produced, the
exterior angle is equal to the two interior and opposite angles, and the three interior
angles of the triangle are equal to two right angles.

GIVEN: A ABC, side BC extended to D (Fig. 3.6).

TO PROVE: L ACD = L ABC + L CAB,

L ABC + £ BCA + L CAB = 2 rightangles

D
Figure 3.6
PROOF: Draw CEIlAB [PN 3.1.4]. Then
LS5 = L2 [PN 3.1.1]
L6 = L1 [PN 3.1.1]
L4 = L2+ L1 [CN 2]
L4+ /L3 = L1+ L2+ 23 [CN 2]
2 rightangles = Z1+4+ £2+ /43 [PN 2.3.17]

Q.ED.
Recall that according to Chapter 1, the sum of the angles of every spherical
triangle is greater than 180° [PN 1.1.5] whereas the sum of the angles of every

hyperbolic triangle is less than 180° [PN 1.2.6].

EXERCISES 3.1C
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3.1 PARALLELISM

1. Prove Proposition 3.1.5.

2. Prove that in A ABC the bisector of the exterior angle at A is parallel to BC if and only
if AB=AC.

3. Prove that a straight line that is parallel to one side of an isosceles triangle cuts off

another isosceles triangle. (Note: There are two distinct cases to be considered here.)
4. A straight line cuts off an isosceles triangle from a given isosceles triangle. Prove that

the straight line is parallel to one of the sides of the given isosceles triangle.

5. In an isosceles A ABC, a line perpendicular to the base BC intersects AB and AC in
the points D and E respectively. Prove that A ADE is also isosceles.

6. In AABC, Z BAC=90" and £ ACB=30". Prove that BC = 2AB.

7. In AABC, L ABC = 60° and BC =2AB. Prove that A ABC is a right triangle.

8. Prove that in a right triangle the angle between the altitude to the hypotenuse and one of

the legs equals the angle opposite that leg.

9. Let D be that point on side BC of A ABC such that AD is the bisector of 2 BAC.
Prove that £ ADC is half the sum of the interior angle at B and the exterior angle at C.

10. Prove that in A ABC the bisectors of the interior angle at B and the exterior angle at A
form an angle that is half the interior angle at C.

11. Prove that in A ABC the angle bisector and the altitude at A form an angle that is half
the difference between the interior angles at B and C.

12. Prove that in a right A ABC the bisector of £ ABC, the altitude to the hypotenuse BC,
and the side AC form an isosceles triangle.

13. The point D on the hypotenuse BC of the right isosceles A ABC is such that BD =
AB. Prove that £ BAD =67.5 .

14. Prove that if the diagonals of quadrilateral ABCD are equal and the sides AB = CD,
then AD |l BC.

15. Prove that the sum of the interior angles of a quadrilateral is 360°.

16. Prove that in quadrilateral ABCD the bisectors of the interior angles at A and B form an

angle that is half the sum of the interior angles at C and D, and, if the bisectors of the interior
angles at A and C intersect, they form an angle that is half the difference between the angles at

B and D.

A polygon is said to be convex if all of its diagonals fall in its interior.
17. Prove that the sum of the interior angles of a convex n-sided polygon is (n - 2)1800.
18. Prove that the sum of the interior angles of an arbitrary n-sided polygon is (n - 2)1800.

(Go ahead and use the difficult to prove fact that every polygon has a diagonal that lies completely
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23.
24.
25.

26.

27.

28.
29.
30.
31.
32.

3.1 PARALLELISM

inside it.)
19. Prove that the number of acute interior angles of a convex polygon cannot exceed 3.
20. Prove that the sum of the exterior angles of a convex polygon is 360" (Try to prove this

without making use of Exercise 17 above).
21. Construct AABC given the data a, A, B.
22. Construct an isosceles triangle given one of its angles and one of its sides.
Construct AABC given the data a, b + c, A.
Construct AABC given the data b + ¢, A, B.
Comment on Proposition 3.1.4 in the context of the following geometries:
a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.
Comment on Proposition 3.1.5 in the context of the following geometries:
a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.
Comment on Proposition 3.1.6 in the context of the following geometries:
a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.
Explain why there are no rectangles in spherical geometry.
Explain why there are no rectangles in hyperbolic geometry.
Are there rectangles in taxicab geometry?
Are there rectangles in maxi geometry?
The following method for trisecting an arbitrary angle is credited to Archimedes. If that
attribution is correct he must have been aware of its shortcomings as a construction in the sense of
Euclid.
Let o be a given angle with vertex A. (Fig.3.7) Draw a circle of radius AB = AC. On
a ruler mark two points D and E such that DE = AB = AC and place the ruler on the page so
that the point E falls on the extension of AB, the point D falls on the circle (A; AB) and the

ruler also passes through the point C. Prove the following assertions

a) L ADC =L ACD (= p)
b) L AED = L EAD (=)
c) a=3y, or y=a/3

Figure 3.7 An angle "trisection".

39



33.

34.

35(C).

36(C).

3.1 PARALLELISM

Explain why this "trisection" of o does not meet Euclid's standards for a construction.

Criticize the following "neutral proof" of Playfair's Postulate, offered by Proclus (410-485): "I say
that if any straight line cuts one of two parallels, it will cut the other also. For let AB, CD be
parallel and let EFG cut AB [at F,with G between AB and CD]; I say that it will cut CD
also. For, since BF, FG are two straight lines from one point F, they have, when produced
indefinitely, a distance greater than any magnitude, so that it will be greater than the interval
between the parallels. Whenever, therefore, they are at a distance from one another greater than
the distance between the parallels, FG will cut CD."

Criticize the following "proof" of the fact that the sum of the interior angles of a triangle is 1800.
Let ABC be a given triangle let d be a line segment that lies on the straight line AB with its
center at A. Slide d along AB until its center falls on B and then rotate it through the exterior
of the triangle, about B as a pivot, until it falls along side BC. Next slide d along BC until its
center reaches C and rotate it about C as a pivot through the exterior of the triangle until it falls
along CA. Finally, slide d along CA until its center reaches A and rotate it about A as pivot
so that it comes into its initial position. If the triangle's interior angles are ¢, f, y, then the
segment d has been rotated successively by the angles 180° - B, 180° - y, and 180° - & before it
returned to its original position. Consequently (1800 -p+ (1800 -y) + (1800 -a) = 360" from

which it follows that a + 8+ y= 180 .
Perform the construction of Proposition 3.1.4 using a computer application.

Use a computer application to verify Proposition 3.1.6.

Euclid's statement of the following proposition is awkward and so it appears here

in a paraphrased form.

PROPOSITION 3.1.7(1.33). A quadrilateral in which two opposite sides are both

equal and parallel to each other is a parallelogram.

GIVEN: Straight line segments AB | CD, AB = CD (Fig. 3.8).

TO PROVE: ACIIBD, AC = BD.
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3.1 PARALLELISM

Figure 3.8
PROOF: Draw BD, BC, AC. Then A ABC =A DCB by SAS because

AB = DC [Given]
L1 = 422 [Alternating angles, AB Il CD, PN 3.1.1]
BC = CB

AC = DB

and 244 = /L3
AC I BD [Equal alternating angles, PN 2.3.34]

QED.

PROPOSITION 3.1.8(1.34). If both pairs of opposite sides of a quadrilateral are
parallel to one another, then they as well as the opposite angles are equal to one another,
and the diameter bisects the area.

GIVEN: Quadrilateral ACDB, ABIICD, AC I BD.

TO PROVE: AB = CD, AC =BD, / CAB=/ BDC, / ABD =/ DCA,
AABC=ADCB =3 ~ ABDC.
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3.1 PARALLELISM

Figure 3.9
PROOF: A ABC =A DCB by ASA because
L5 = L6 [Alternating angles, AB Il CD, PN 3.1.1]
BC = (B
LT = L8 [Alternating angles, AC Il DB, PN 3.1.1]
AB = CD, AC = BD, L3 = L4
1
AABC = ADCB = 3 ABDC
Also 21 = /2 [CN 2]
QED.
EXERCISES 3.1D
1. Both pairs of opposite sides of a quadrilateral are equal to each other. Prove that the quadrilateral
is a parallelogram.
2. Both pairs of opposite angles of a quadrilateral are equal to each other. Prove that the quadrilateral

is a parallelogram.

Prove that the diagonals of a parallelogram bisect each other.

Prove that if the diagonals of a quadrilateral bisect each other then it is a parallelogram.
Prove that a parallelogram is a rectangle if and only if its diagonals are equal to each other.

Prove that a parallelogram is a rhombus if and only if its diagonals are perpendicular to each other.

<N N L B W

Prove that the line segment joining the midpoints of two sides of a triangle is parallel to the third

side and equals half its length.
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18.
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20.

21.

22.

23.

3.1 PARALLELISM

The midpoint of side AB of AABC is D and E is a point of AC such that DE Il BC. Prove
that AE = EC and DE = BC/2.

Prove that the midpoints of the four sides of a quadrilateral are the vertices of a parallelogram.
Prove that each of two medians of a triangle is divided by their intersections into two segments
one of which is double the other.

Prove that the three medians of a triangle all pass through one point.

Point E in the interior of square ABCD is such that £ ABE = £ BAE = 15°. Prove that A CDE
is equilateral.

In AABC, AB = AC, and D, E, F are points on the interiors of sides BC, AB, AC respectively,
such that DE 1 AB and DF L AC. Prove that the value of DE + DF is independent of the
location of D.

Prove that the three segments joining the midpoints of the three sides of a triangle divide it into
four congruent triangles.

Prove that three parallel straight lines that cut off equal line segments on one straight lines also cut
off equal line segments on every straight line that intersects them (Hint: Through the middle
intersection point on one straight line draw a line parallel to the other straight line.)

A trapezoid is a quadrilateral two of whose sides are parallel. Prove that the line segment joining
the midpoints of the non-parallel sides of a trapezoid is parallel to the other two sides and equals
half the sum of their lengths

Construct angles of the following magnitudes

a) 60° b) 30° o 120° d 75 .

Through a given point construct a straight line such that its portion between two given parallel
straight lines is equal to a given line segment.

Let A be a point in the interior of an angle. Construct a straight line whose segment between the
sides of the angle has A as its midpoint.

A pair of parallel straight lines is intersected by another pair of parallel straight lines. Through a
given point construct another straight line on which the two given pairs cut off equal line
segments.

Given an angle, determine the locus of all the points the sums of whose distances from the sides of

the angle equals a given magnitude.

In a given AABC construct points M on AB and N on BC such that BM + NC = MN and

MN I BC.

Construct A ABC given the data

a) a, ha, J5] b) a, ha, hb c) a, hb’ o

d) hb’ hc, o e) hb’ m. o f) o, hC, b+c
g a+b+c By h) a+b+c, ph,
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25.
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30.
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Construct a parallelogram given:

a) two adjacent sides and the included angle;

b) two adjacent sides and a diagonal;

¢) two adjacent sides and the distance between two opposite sides;

d) aside and the two diagonals;

e) the diagonals and the angles between them.

Construct a rectangle given one side and the diagonal.

Construct a rhombus given:

a) its side and one of its angles;

b) its side and one diagonal.

c) both diagonals.

Construct a square given:

a) its side; b) its diagonals.

Construct A ABC given the data:

a) a,c, my; b) a, ha’ my, .

Comment on Proposition 3.1.7 in the context of the following geometries:
a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.

Comment on Proposition 3.1.8 in the context of the following geometries:

a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.

2. Area

Euclid defined the concept of area by means of axioms that he called Common Notions.

This axiomatic approach is customary today as well, although the specific axioms are

different from those used by Euclid. The modern approach to area stipulates that a

certain unit of length, called unit has been chosen. The square the length of whose side is

unit 2

unit
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3.2 AREA

Figure 3.10

1 unit (Fig. 3.10) is denoted by unit square or unit” and serves as the unit for measuring
areas. It is then assumed that area is a measurement of figures that satisfies the three

properties (or axioms) listed below:

UNIT: The unit square has area 1 unit’.

ADDITIVITY: If a figure is divided by a line into two subfigures, then the

area of the figure equals the sum of the areas of the subfigures.
INVARIANCE: Congruent figures have equal areas.
Loosely speaking, the additivity and invariance axioms were stated by Euclid as
Common Notions 2 and 4 respectively. The unit axiom, however, has no analog in

Euclid's system. As a consequence, Euclid's Elements contains no proposition that

computes areas explicitly. Instead, Euclid made comparative statements such as

parallelograms on equal bases and between the same parallels are equal

and

if a parallelogram have the same base with a triangle and be in the same

parallels, the parallelogram is double the triangle.

This has the theoretical advantage of dispensing with units and the practical disadvantage

of not answering the reasonable question of what is the area of a rectangle of dimensions
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3 and 5 stadia? Greek mathematicians did of course make use of units and could
resolve such questions with ease. It is just that Euclid, for reasons that can only be
guessed at, and that in the author's opinion were probably esthetic, decided to develop his
geometry without any units whatsoever.

Propositions 3.2.1 and 3.2.2 below are the explicit modern day analogs of Euclid's
I35 (PN 3.23). They give explicit formulas for the areas of rectangles and
parallelograms. Their complete proofs unfortunately contain elements that are beyond
the scope of this text. Specifically, one runs into the difficulty inherent in proving
propositions regarding line segments with irrational (non-fractional) lengths. These
difficulties were first encountered by the Greeks in the sixth century BC and eventually
surmounted by Eudoxus two hundred years later. Euclid's book did incorporate
Eudoxus's treatment of irrational numbers, but it would be impractical to expound this
theory here. Instead, a mere supporting argument for the fact that the area of a rectangle
is given by the product of the lengths of its sides is offered. It is customary in today's
high school geometry textbooks to circumvent these difficulties by stating this formula as
yet another axiom, the Rectangle Axiom. In the author's opinion this is a misguided
solution to a pedagogical problem since it opens up the possibility of stating many other
interesting and non-trivial geometrical facts as axioms, even when elementary and

convincing, albeit logically incomplete, arguments are available.

PROPOSITION 3.2.1. If a rectangle has dimensions a units and b units then it
has area ab unit’.

GIVEN: "ABCD with sides a, b.

TO PROVE: Area of 'ABCD = ab unit’.

SUPPORTING ARGUMENT: If a and b are positive integers then a rectangle of

dimensions a and b can be divided into ab unit squares by means of straight lines that
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are parallel to its sides (Fig. 3.11). Consequently, by the Additivity Property, the given

)
rectangle has area ab unit .

a=3 Area unit = 1 unit2 = 1

Area of rectangle = 15 unit2

Figure 3.11

Similarly, if a rectangle has dimensions a = 1/m and b = 1/n for some positive
integers m and n, then the unit square can be divided into mn copies of the given
rectangle all of which, by the Invariance Property, have the same area (Fig. 3.12). Hence

the given rectangle has area

.2
1 unit

L 't2 = b unit2
mn m pn uni = a

S |-

1/3

1/4

Area of rectangle = 1/12 unit2

1 unit 2

Figure 3.12
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Next, if a rectangle has dimensions a = m/n and b = p/q where m, n, p, q are

all positive integers, then it can be decomposed into mp rectangles each of which has

. . 1 | . .
dimensions ;; and j (Fig.3.13) . Since each of these latter rectangles is now known to

have area 7,

unitz, it follows from the Additivity Property that the given rectangle has

arca

m .2 .2
n unit = gagbunit .

QIS

1
mp(n q ) unit =

/4

1/4

5/6 1/6

Area = 1/24 unit?

Area of rectangle = 35/24 unit?

Figure 3.13

This verifies the proposition for all rectangles with fractional dimensions. As was
mentioned above, the extension of this formula to rectangles with arbitrary real

dimensions lies beyond the scope of this text. QED.

An altitude of a parallelogram is any line segment cut off by two opposite sides
from a straight line that is perpendicular to both of them. It follows from Proposition
3.1.2 that all the altitudes joining the same pair of opposite sides of a parallelogram have

equal length.

PROPOSITION 3.2.2. The area of a parallelogram with base b units and altitude

.. .2
h units is bh unit" .
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GIVEN: ABCD with base b and altitude h (Fig. 3.14).
TO PROVE: Area of =~ ABCD = bh unit’.

Figure 3.14

PROOF: In the given parallelogram draw AE' CD and BF 'CD with E, F on CD.
Thus, ABFE is a rectangle with area bh unit’. Since A ADE = A BCF it follows that

they have the same area, and hence, by the Additivity Property,

ABCD = ABFE = bhunit.

Q.ED.

Euclid's version of Propositions 3.2.1 and 3.2.2 is now stated together with his

proof as well as another proof that is more consistent with modern pedagogy.

PROPOSITION 3.2.3(1.35). Parallelograms which are on the same base and in the
same parallels are equal to one another.

GIVEN: ABCD and EBCF suchthat A, D, E, F are collinear (Fig. 3.15).

TO PROVE: ABCD = EBCF.

3.19



3.2 AREA

Figure 3.15

PROOF (Euclid): Since AD = BC = EF [PN 34], it follows from CN 2 that
A CDF by SAS because
[See above]

=

AE =DF. Then A BAE

AE = DF
L1 = /L2 [Corresp. angles, AB Il DC, PN 3.1.1]
AB = DC [Parallelogram ABCD, PN 3.1.8]
AEAB = AFDC
ABGD = EGCF [Subtract A DGE, CN 3]
ABCD = EBCF [Add A GBC,CN 2]
QED.

Euclid's proof of Proposition 3.2.3 is incomplete (albeit easily fixed) because it

depends on the relative position of the points A, D, E, F on their common line (Exercise
12).

PROOF (modern):

Figure 3.16

Draw HJ perpendicular to AD and BC (Fig. 3.16). It then follows from PN 3.2.2 that

~ABCD = BC-HJ = ~EBCF.
QED.
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PROPOSITION 3.2.4(1.36). Parallelograms which are on equal bases and in the
same parallels are equal to one another.

See Exercise 1.

The area of the triangle will be given the same dual treatment as that of the

rectangle. First the modern formula is offered.

PROPOSITION 3.2.5. The area of a triangle with base b units and altitude h

. .2
units is bh/2 unit" .

Figure 3.17

PROOF: Through the vertices B and C of A ABC draw straight lines parallel to AC
and AB respectively, and let their intersection be D (Fig. 3.17). It is clear that ACDB

is a parallelogram and hence, by Proposition 3.1.8,

bh )
AABC = ACDB = Bl unit .

N —

QED.

Next comes Euclid's version.
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PROPOSITION 3.2.6(1.37). Triangles which are on the same base and in the same
parallels are equal to one another.

GIVEN: AABC,A DBC, ADIIBC (Fig.3.18).

TO PROVE: A ABC = A DBC.

A D
E F
B C
Figure 3.18

PROOF: Let E be the intersection of AD with the straight line through B parallel to

AC and let F be the intersection of AD with the straight line through C parallel to
BD [PN 3.1.4]. Then

AEBC = DBCF [PN 3.2.2]
AABC = 3 - AEBC [PN 3.1.8]
ADBC = 3 - DBCF [PN 3.1.8]
AABC = ADBC

QED.

PROPOSITION 3.2.7(1.38). Triangles which are on equal bases and in the same
parallels are equal to one another.

See Exercise 2.

PROPOSITION 3.2.8(1.39). Equal triangles which are on the same base and on the

same side are also in the same parallels
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GIVEN: AABC=ADBC, A and D are on the same side of BC.

TO PROVE: AD Il BC.

Figure 3.19

PROOF: By contradiction. Suppose AD and BC are not parallel and let E be the
intersection of BD with the straight line through A parallel to BC. Then

AABC = AEBC [PN 3.2.6]

AEBC < ADBC [CN 5]

AABC < ADBC

This, however, contradicts the give equality of the two triangles. Hence AD Il BC.

QED.

PROPOSITION 3.2.9(1.40). Equal triangles which are on equal bases and on the

same side are also in the same parallels.

According to Heath, Proposition 3.2.9 is an interpolation into The Elements by a

later geometer (Exercise 2).

PROPOSITION 3.2.10(1.41). If a parallelogram have the same base with a triangle

and be in the same parallels, the parallelogram is double of the triangle.

See Exercise 2.
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There is no analog of Proposition 3.2.5 for the area of a general quadrilateral. In
practice, any such quadrilateral can be divided into triangles by means of a diagonal and
then the area of each of the parts can be evaluated by means of Proposition 3.2.5. A
similar procedure can be used to dissect any polygon, regardless of the number of its
sides, into triangles.

Neither Euclid's nor the modern approach to areas are applicable to spherical
geometry. Both of these approaches rely heavily on the notion of parallelism, and the
sphere has no parallel geodesics. Thus, another approach is required in order to develop
a theory of spherical areas. As spherical polygons can also be dissected into spherical
triangles, it suffices to provide a formula for the latter.

It is clear that any two lunes of the same angle o on the same sphere can be
made congruent by a series of rotations of that sphere. Consequently, every two such
lunes have the same area. This, in turn, implies that the area of a lune is proportional to
its angle. Since the lune of angle 2s radians has area 4.7[R2 (the sphere’s total surface

area) the following lemma is obtained.

LEMMA 3.2.11. On a sphere of radius R the area of a lune of angle o radians is

2 .2
2R unit.

The following theorem was first discovered by the Flemish mathematician Albert

Girard (1595-1632). The proof presented here is due to Euler.

PROPOSITION 3.2.12. On a sphere of radius R the area of the spherical
triangle ABC with angles of radian measures a, 3,7y, is (o+ P+ y-— Jt)R2 unit’.
GIVEN: Spherical A ABC with interior angles «, 3, y (measured in radians).

TO PROVE: AABC = (a+ B+ y-mR unit .
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Figure 3.20

PROOF: Let A’, B, C’ be the respective antipodes of A, B, C (Fig. 3.20). Draw the

great circles that contain the geodesic segments AB, BC, and CA.

The hemisphere in

front of the great circle BCB'C’ is thereby divided into four spherical triangles ABC,
AB'C’, AB'C, ABC’, whose areas are denoted, respectively, by r,.T,,T,1,.

From the construction it follows that the spherical A A’‘BC is congruent to the A

AB'C’ of area T,. Hence,

T] + T2
Similarly,

T] + T3
and
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T, + T, = lune 7.
Consequently,
2T, = lunea + lune g+ lune y - (T, + T, + T; + T

= Qa+ 2B + 2y - 20R unit’

and the statement of the theorem now follows immediately.

QED.

EXERCISES 3.2A

1. Prove Proposition 3.2.4.

2. Use Proposition 3.2.5 to prove
a) Proposition 3.2.6; b) Proposition 3.2.7; ¢) Proposition 3.2.8;
d) Proposition 3.2.9; e) Proposition 3.2.10.

3. One of the triangle's sides is divided into n equal segments and the division points are joined to
the opposite vertex. Prove that the triangle is divided into n equal parts.

4. Prove that the area of the trapezoid equals the product of half the sum of its parallel sides with the
distance between them.

5. Prove that the diagonals of a parallelogram divide it into four equal triangles.

6. Prove that the line segment joining the midpoints of two sides of a triangle cuts off a triangle that
is equal to one fourth of the original triangle.

7. Prove that the parallelogram formed by the midpoints of the sides of a quadrilateral equals one
half of that quadrilateral.

8. Prove that the triangle’s medians divide it into six equal triangles

9. The diagonals of a quadrilateral divide it into four equal triangles. Prove that the quadrilateral is a
parallelogram.
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10. Prove that if the point P lies in the interior of ABCD then the parallelogram equals twice the
sum of A ABP and A CDP.

11. Each of the sides AB, BC, CA of an equilateral triangle is extended by their common length to
points D, E, F, respectively, all in the same sense. Prove that A DEF =7A ABC.

12. Complete Euclid's proof of Proposition 3.2.3.

Both the taxicab and maxi areas of a figure are defined to equal its Euclidean area.

13. Comment on Propositions 3.2.1,3.2.2, and 3.2.5 in the context of taxicab geometry.
14. Comment on Proposition 3.2.3,3.2.4, and 3.2.6-10 in the context of taxicab geometry.
15. Comment on Propositions 3.2.1,3.2.2, and 3.2.5 in the context of maxi geometry.

16. Comment on Proposition 3.2.3,3.2.4, and 3.2.6-10 in the context of maxi geometry.

Euclid’s Propositions 1.42-45 are of limited interest. They are included here only

in order to facilitate the later discussion of the Golden Ratio (Proposition 3.4.1).

PROPOSITION 3.2.13(142). To construct, in a given rectilineal angle, a
parallelogram equal to a given triangle.

See Exercise 1.

The above proposition is an example of a conversion which consists of the
construction of a polygon II', of some prespecified nature, that is equal to a given

polygon I1.

PROPOSITION 3.2.14(143). In any parallelogram the complements of the
parallelograms about the diagonal are equal to one another.

GIVEN: ABCD, K is a point on the diagonal AC, BGKE, KFDH (Fig.
3.21).

TO PROVE: BGKE = KFDH.
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Figure 3.21

PROOQOF: See Exercise 2.

PROPOSITION 3.2.15(1.44). To a given straight line to apply, in a given rectilineal
angle, a parallelogram equal to a given triangle.

See Exercise 3.

PROPOSITION 3.2.16(1.45). To construct, in a given rectilineal angle, a

parallelogram equal to a given rectilineal figure.

See Exercise 4.

EXERCISES 3.2B

[

Prove Proposition 3.2.13.

Prove Proposition 3.2.14.

Prove Proposition 3.2.15.

Prove Proposition 3.2.16.

Convert a given parallelogram into a rectangle with the same base.

Convert a given parallelogram into a rhombus with the same base.

Convert a given parallelogram into another parallelogram with the same base and a given angle.

Convert a given parallelogram into a triangle with the same base and a given angle.

.\DOO\]O\UI-PU)[\)

Convert a given triangle into a right triangle with the same base.

H
@

Convert a given triangle into an isosceles triangle with the same base.

[
—_

Convert a given triangle into another triangle with the same base and a given angle.
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12. Bisect the area of a parallelogram by means of a straight line that is parallel to a given straight
line.
13. Given AABC, construct a point O in its interior such that the triangles AOB, BOC, COA all have

equal areas.

3. The Theorem of Pythagoras

The Theorem of Pythagoras was discovered independently by several cultures and has
been given more different proofs than any other theorem. It is considered by many
mathematicians to be the most important of all theorems, and has the dubious distinction
of being misquoted in the classic movie The Wizard of Oz and of being the subject of

popular jokes. It will be presented following an easy lemma.

PROPOSITION 3.3.1(1.46). On a given straight line to describe a square.
GIVEN: Line segment AB (Fig. 3.22).
TO CONSTRUCT: ©1ABCD.

E
D C
VAN
1 3
A 4
A B
Figure 3.22

CONSTRUCTION: Draw EA L AB [PN23.11] and let D on AE be such that AD

= AB. Let C be the intersection of the straight lines through B and D that are parallel
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to AD and AB respectively [PN 3.1.4]. Then quadrilateral ABCD is the required
square.

PROOF: By construction, ABCD is a parallelogram. Since AB = AD it follows that
AB = AD = DC = CB. It remains to show that all of the angles of ABCD are right

angles. However,

L1+ £2 = 2 rightangles [PN 3.1.1]
472 = rightangle [£ 11is aright angle]
43 = L4 = rightangle [PN 3.1.8]

QED.

PROPOSITION 3.3.2(1.47, The Theorem of Pythagoras). In right-angled triangles

the square on the side subtending the right angle is equal to the squares on the sides
containing the right angle.

GIVEN: A ABC, £ BAC =right angle, 1 ABFG, 7 ACKH, 1 BCED (Fig. 3.23).

TO PROVE: "BCED = T1ABFG + T ACKH.
H
G K
A
F
Bl [|m c
D L E
Figure 3.23
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PROOF: Let L, M be the respective intersections of the straight lines DE and BC
with the straight line through A parallel to BD and CE [PN 3.1.4]. Note that
the points G, A, C are collinear [£ GAB + LBAC =
2 right angles, PN 2.3.18]
the points B, A, H are collinear [£ HAC + LBAC =
2 right angles, PN 2.3.18]

A ABD = A FBC by SAS because

BD = BC [Sides of the same square]
LABD = L FBC [Both equal £ ABC + right angle]
AB = FB [Sides of the same square]
AABD = AFBC
BDIM =7T1ABFG [Doubles of equal triangles,
PN 3.2.10]

A similar argument yields the equation CELM =71ACKH and hence

'BCED = BDILM + CELM =T1ABFG +T1ACKH
QED.

Two other proofs of this theorem are now sketched out.

If a and b are the legs and ¢ is the hypotenuse of a right triangle then the
square of side a + b can be dissected in the two ways depicted in Figure 3.24. The
dissection of I calls for no explication. That of II requires a proof that the interior
quadrilateral labeled as c2 is indeed a square (see Exercise 8). However, once these
dissections are granted, it is clear from Figure 3.24 that @ +b = ¢. This proof is

attributed to the Chinese mathematician Chou-pei Suan-ching who lived circa 250 B.C.
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Figure 3.24

The next proof is due to the Indian mathematician Bhaskara (1114-1185). The square of

side ¢ can be dissected in the manner depicted in Figure 3.25. It then follows that

ab
¢ = 4% +(@@-b = 2ab+d -2ab+ b = d + b,

(a-b)?

Figure 3.25

Yet another proof of the Theorem of Pythagoras in indicated in Exercise 17. This one is

due to president James Garfield (1831-1881).

The Theorem of Pythagoras has a converse.
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PROPOSITION 3.3.3(1.48). Ifin a triangle the square on one of the sides be equal
to the squares on the remaining two sides of the triangle, the angle contained by the
remaining two sides is right.

See Exercise 9.

. 22 2. . . .
Since 3"+ 4 =5" it follows that any triangle whose sides have lengths 3 units,
4 units, and 5 units is necessarily a right triangle. So is the triangle whose sides have

lengths 5,12, 13. Triples of integers a, b, ¢ such that

are known as Pythagorean triples, but the interest in such triples precedes Pythagoras by
over a thousand year. The Babylonian tablet PLIMPTON 322, dated between 1900 and
1600 BC contains fifteen Pythagorean triples the largest of which consists of 12709,
13500, and 18541. Although it is highly unlikely that the Babylonians found these
numbers by trial and error, it is not known what method they used to generate these
triples. Not surprisingly, the earliest method for generating Pythagorean triples appears
in Euclid's The Elements. Lemma 1 to Proposition 29 of Book X states thatif m > n

are any positive integers, then

(2mn)2 + (mz—nz)z = (n12+r12)2

(Exercise 13) so that 2mn, m2 - nZ, m2 + n2 form a Pythagorean triple. For example,
ythag P P

m=235 and n=4 yield the triple

(254 + (52-42)2 = (52+42)2

or
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40° + 9 = 41%

Pierre Fermat (16017 - 1665) took it for granted that Euclid's method can be used

to generate all the Pythagorean triples and this fact was proven by Euler a hundred years

later. Specifically, Euler proved that if a, b, ¢ are numbers whose only common divisor

is 1 and which constitute a Pythagorean triple, then there exists a pair of relatively prime

integers m, n such that

{a,b,c} = {2mn, m2 - n2, m2 + nZ}.

All other Pythagorean triple of course proportional to these.

EXERCISES 3.3A

10.

Which of the following triples of numbers are the lengths of the sides of a right triangle:
a) 7,10,15 b) 5,12,13
c) 203750, 364056, 417194 d) 57302, 491714, 650463

2
Show that an equilateral triangle of side a has area # .
An isosceles right triangle has a hypotenuse of length ¢. Compute its other sides and its area.
A right triangle has an angle of 30° and a hypotenuse of length 1. Compute its other sides and its
area.
Compute the area of a rhombus whose sides equal 13 and one of whose diagonals has length 10.
Compute the area of a parallelogram whose sides have lengths 11 and 8 and one of whose
angles is 45°.
The diagonals and one side of a parallelogram have lengths 30, 16, 17, respectively. Prove that
it is a rhombus and compute its area.
Show that the interior quadrilateral in Dissection II of Figure 3.24 is indeed a square of area c2.
Prove Proposition 3.3.3.
Find the error in the following "proof" of the "proposition" that every triangle is isosceles:

GIVEN: A ABC
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TO PROVE: AB = AC

Figure 3.26

PROOF: Let N be the intersection of the bisector of £ ABC and the perpendicular bisector of
side BC, M the midpoint of BC, and ND ' AB, NE'AC. Then

ND = NE [PN 2.3.33]
AD = AE [Pythagoras]

Also BN = CN [PN 2.3.14]
BD = CE [Pythagoras]
AB = AC [CN 2]

QE.D.
Given a square of side a, construct a square of double its area.
Given a square of side a and a positive integer n, construct a square whose area equals n times
that of the given square.
Construct a square whose area equals the sum of three given squares.
Use algebra to prove that Euclid's method does indeed generate Pythagorean triples.
Assume that a line segment of length 1 inch is given. Prove that line segments of the following
lengths can be constructed.
a) \/E inch b) \/5 inch c) \/g inch
d) \/1_1 inch, where n is any positive integer e) 1/\/5 inch .
Find two non-congruent isosceles triangles whose sides have integer lengths and whose perimeters

and areas are equal.

Prove the Theorem of Pythagoras by applying Exercise 3.2A .4 to Figure 3.27.
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b a

Figure 3.27
18(C). Perform the construction of Proposition 3.3.1 using a computer application.

19(C). Use a computer application to verify the Theorem of Pythagoras.
Both spherical and hyperbolic geometry have their own versions of the Theorem

of Pythagoras. Their proofs follow directly from the appropriate trigonometries

(Exercises 1, 3).

PROPOSITION 3.3.4(The spherical Theorem of Pythagoras). If the spherical A

ABC has a right angle at C, then

COS ¢ = COS a cos b.

PROPOSITION 3.3.5(The hyperbolic Theorem of Pythagoras). If the hyperbolic A

ABC has a right angle at C, then

cosh ¢ = cosh a cosh b.

EXERCISES 3.3D

1. Derive the spherical Theorem of Pythagoras from Proposition 1.1.2.
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2. Find the length of the hypotenuses of the three spherical isosceles right triangles whose legs have
lengths 1, .1, .01 respectively. Compare the answers to the lengths of the hypotenuses of the three
Euclidean isosceles right triangles both of whose legs have lengths 1, .1, .01 respectively.

3. Derive the hyperbolic Theorem of Pythagoras from Propositions 1.2.2.

4. Find the length of the hypotenuses of the three hyperbolic right triangles whose legs have lengths
1, .1, 01 respectively. Compare the answers to the lengths of the hypotenuses of the three
Euclidean triangles both of whose legs have lengths 1, .1, .01 respectively.

5. Is there a taxicab version of the Theorem of Pythagoras?

6. Is there a maxi version of the Theorem of Pythagoras?

4. Consequences of the Theorem of Pythagoras
(optional)

Book II of Euclid's Elements contains a variety of consequences of the Theorem of
Pythagoras of which only a sample are presented here. The first of these is tantamount to
a construction of the Golden Ratio. This proposition will be used later in the construction

of the regular pentagon.

PROPOSITION 3.4.111.6). To cut a given line segment so that the rectangle
contained by the whole and one of the segments is equal to the square on the remaining
segment.

GIVEN: Line segment AB (Fig. 3.28).

TO CONSTRUCT: A point C on AB such that AB-BC = AC” .

C
Figure 3.28
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1
CONSTRUCTION: At B construct BD'AB and BD =35 AB. Join AD, let E be the

point on AD such that DE = DB and let C be the point on AB such that AC = AE.
Then C is the required point.

PROOF: Set AB = 2a. Then DE = BD = a and

AC = AE = AD-DE = N@af+d -a = @5 -Da
so that

AC = (B-1Dd = -5 +1)d = 6-2n5)
and

ABBC = AB(AB-AC) = AB(AB - AE) = AB[AB - (AD - DE)] =

2a2a - Sa-a)] = 23 -5)d = AC

QED.
In the context of the above proposition, the common value 7 of the ratios
BC AC AD-DE  (J5-1a \5-1
AC =~ AB = AB = 2a = D) = 0.618..

is called the Golden Ratio. While of demonstrated mathematical interest, this quantity
has also been the subject of much nonsensical speculation. Typical of this latter variety is
an article that reports that the average ratio of the height of a man's navel off the ground
to his height equals the Golden ratio.

The following two propositions constitute Euclid's analog of the modern day Law

of Cosines. Their proofs are relegated to the exercises.

PROPOSITION 3.4.2(11.12). In obtuse-angled triangles the square on the side

subtending the obtuse angle is greater than the squares on the sides containing the obtuse
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angle by twice the rectangle contained by one of the sides about the obtuse angle, namely
that on which the perpendicular falls, and the straight line cut off outside by the
perpendicular towards the obtuse angle.

GIVEN: A ABC, 2 BAC > rightangle, CD'AB (Fig.3.29).

TOPROVE: BCC = AB’ + AC® + 2AB-AD.
C
D A B
Figure 3.29

PROOF: See Exercise 2.

PROPOSITION 3.4.3(11.13). In acute-angled triangles the square on the side
subtending the obtuse angle is greater than the squares on the sides containing the obtuse
angle by twice the rectangle contained by one of the sides about the obtuse angle, namely
that on which the perpendicular falls, and the straight line cut off within by the

perpendicular towards the acute angle.

GIVEN: A ABC, + BAC < rightangle, CD'AB (Fig.3.30).
TOPROVE: BC° = AB’ + AC® - 2AB-AD.
C
AT p B
Figure 3.30

3.39



3.4 CONSEQUENCES OF THE THEOREM OF PYTHAGORAS

PROOF: See Exercise 3.

EXERCISES 34A

1. Explain the relation of Proposition 3.4.2 to the Law of Cosines of the trigonometry of the
Euclidean plane.

2. Prove Proposition 3.4.2.

3. Explain the relation of Proposition 3.4.3 to the Law of Cosines of the trigonometry of the
Euclidean plane.

4. Prove Proposition 3.4.3.

Assuming a unit length and a segment of length r units, the next proposition
deals with the construction of a line segment of length \/—r units. The statement that
appears here is weaker than that of Euclid's, but it is sufficient for this text's purposes and

obviates the need for the omitted Proposition 1.45. Euclid's version appears in Exercise 2.

PROPOSITION 3.4.4(11.14). To construct a square equal to a given rectangle.
GIVEN: BCDE (Fig.3.31).
TO CONSTRUCT: Line segment EH such that EH’ = " BCDE.

Figure 3.31

CONSTRUCTION: If BE = ED then BE is the required line segment. Otherwise, it

may be assumed without loss of generality that BE > ED. Extend BE to F so that EF
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= DE and let G be the midpoint of BF. Let H be an intersection of the straight line
through E perpendicular to BF with the circle (G; BG). Then EH is the required line

segment.

PROOF: By the Theorem of Pythagoras,

EH' = GH - GE = (GH+ GE)GH-GE) = (BG + GE)(GF - GE)

= BEEF = BEED = BCDE .
QED.
An alternative proof of the equation EH = BEEF appears in Exercise 3.5C.16.
EXERCISES 34B
1. Assume that a line segment of length 1 inch is given. Construct a line segment whose length is:
4
a) \/g inch b) \/ﬁ inch c) \/5 inch
4 4

d) \6 inch e) V11 inch

2. Prove Euclid's Proposition II.14: To construct a square equal to a given polygon.

5. Proportion and Similarity

Euclid's definition of proportion is too intricate for the context and purpose of this text.
Instead, a shortcut provided by the real number system is used. Recall Euclid's tacit
assumption that all geometrical figures have an aspect of size or magnitude. Thus, lines,

regions, solids, and angles, have lengths, areas, volumes, and angular measure
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respectively. If two figures of the same types have sizes a and b (relative to some

unit), it is said that their ratio is the real number % . The numbers a, b, c, ... are said
to be proportional to the numbers a', b', ¢!, ... provided that

a b

a T b T ¢ =

The next five propositions set up some algebraic preliminaries. The first of these

is, of course, none other than the Distributive Law and so requires no proof. The rest are

basic observations regarding proportions.

PROPOSITION 3.5.1(V.1). If m,a, b, c, are any numbers, then

ma + mb + mc + ... = mfa+ b+ c+ ..)

are proportional to a', b', c', ... then

PROPOSITION 3.5.2(V.12). If a,b,c, ...

a+b+c+ ..

a b c
a ~ b T ¢ T T a+b +c+ ..
L a b c
GIVEN au = bl = C' =
~a b C a+ b+ c+
TOPROVE al = bl = C‘ = = al + bl + Cl +
. a b <
PROOF: Let £k = ad = b = & = e Then
a = ka', b = kb, c = kc,
a+ b+ c+ = ka' + kb' + kc' + = k(a + b+ c +
a+ b+ c+ a b c
= k = a| = b' = C' =
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Q.ED.
a b a a'
PROPOSITION 3.5.3(V.16). L = p fandonlyif 3 =3
See Exercise 8.
b -a' b-b'
PROPOSITION 3.54(V.17). If & =7 then “ =~
See Exercise 9.
b ' b+b
PROPOSITION 3.55(V.18). If = = 3 then - =~

See Exercise 10.

EXERCISES 3.5A

In Exercises 1-7 prove the stated equalities on the basis of the assumption that a, b, c, d are proportional

to a,b',c'd

a 4a -3b + 2¢c +7d

1. 4 = 4a'3b'+2¢' + 7d
2 2 2 2 2
a_ 4a -3b + 2c¢ +7d
2. 2 = T 2 2 2 2
a' 4a" -3b" + 2¢" + 7d'

2 2 2 2
a \/a +2b -3¢ +5d

3. To=
a 2 2 2 2
\/a' +2b" -3c" +5d'
a a-b+’-d
4_!3 =" 13 13 13
a a -b"+c"-d
a+3b c+3d
> a-3b = c-3d
a-3c b-3d
6. a+3c ~b+3d
2 2 2 2
a +3d c +3b
7. 2 2 =2 2
a -3d c -3b
8. Prove Proposition 3.5.3.
9. Prove Proposition 3.5 4.
10. Prove Proposition 3.5.6.
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PROPOSITION 3.5.6(V1.2). If a straight line meets two sides of a triangle, then it
is parallel to the third side if and only if it cuts them into proportional segments.

GIVEN: A ABC, points D and E on AB and CD respectively (Fig.3.32).

AD _ AE
TO PROVE: 1. If DE Il BC then DB = EC
AD AE
2. If DB = EC then DE Il BC.

Figure 3.32

Proof of 1: Join CD and BE. Then, since DE |l BC

ABDE = ACDE [PN 3.2.6]
AADE = AADE

AABE = AACD [CN 2]
AABE ~ AACD

AADE =~ AADE

Let £EG and DH be altitudes of A ADE. Then it follows from the above that

AB-GE _AC-DH

AD-GE AE-DH [PN 3.2.5]

AB AC

AD = AE

DB EC

> = aF [PN 3.5.4]
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AD  AE
DB ~ EC
Proof of 2: Using the same construction as above, it is only necessary to reverse the

order of the steps of the above argument (Exercise 1).

Q.ED.

The proof of the above theorem depends superficially on the additional

assumption that the point D lies between A and B. Exercises 15-17 rectify this minor

flaw.

EXERCISES 3.5B

1. Complete the proof of Proposition 3.5.6.

2. Prove that the straight line that bisects one side of a triangle and is parallel to a second side also
bisects the third side.

3. Use Proposition 3.5.6 (twice) to prove that the line segment joining the midpoints of two sides of
the triangle is parallel to the third side and equals half its length.

4. The point K is on the side AB of A ABC, points L, M are on side AC, so that KL Il BM and

AL AM

KM I BC. Prove that AM = AC -

5. Point O is not on any of the sides of A ABC or their extensions, and K, L, M are on OA, OB,
OC respectively so that KL Il AB and LM |l BC. Prove that KM Il AC.

6. Prove that if D is any point on the side BC of A ABC, then AD bisects the interior angle at A
if and only if % = g_g

7. Prove that if E is any point on the extension of side BC of A ABC, then AE bisects the exterior
angle at A if and only if % = % .

8. Prove that if the straight lines m, m,, ..., m, are all parallel to one side of a triangle and they cut
off equal segments on a second side, then they also cut off equal segments on the third side.

9. Divide a given line segment into three equal parts.

10. Let n be a given positive integer. Divide a given line segment into n equal parts.

11. Let m and n be given positive integers. Divide a given line segment into two parts whose ratio
is m/n.

12. Let a, b, ¢ be three given line segments. Divide a into two parts whose ratio equals b/c.

345



13.

14.

15.

16.

17.
18.

19.

20.

21.

22.
23.

24(C).

3.5 PROPORTION AND SIMILARITY

Let a, b, ¢ be three given line segments. Construct a line segment x such that

a X
Let a, b be two given line segments. Construct a line segment x such that PR

Show that the proof of Proposition 3.5.6 still holds, with minor modifications, when A lies in
between B and D.

Show that the proof of Proposition 3.5.6 still holds, with minor modifications, when B lies in
between A and D.

Does the proof of Proposition 3.5.6 require any other corrections?

Comment on Proposition 3.5.6 in the context of the following geometries:

a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.

Use the spherical trigonometry formulas to experiment with comparing the length of the line
joining the midpoints of two sides of a spherical triangle with that of the third side (see Exercise 2
above). Form a conjecture regarding the relative sizes of these two geodesic segments.

Use the hyperbolic trigonometry formulas to experiment with comparing the length of the line
joining the midpoints of two sides of a hyperbolic triangle with that of the third side (see Exercise
2 above). Form a conjecture regarding the relative sizes of these two geodesic segments..
Comment on Exercise 19 in the context of taxicab geometry.

Comment on Exercise 19 in the context of maxi geometry.

Construct A ABC given the following data: a) a, ny,m, b) m,, my,m..

Use a computer application to verify part 1 of Proposition 3.5.6.

Similar polygons are those whose corresponding angles are equal and whose

corresponding sides are proportional. Congruent triangles are similar (Exercise 2) and

the relation of similarity is transitive (Exercise 3). If A ABC and A DEF are similar

this is denoted by A ABC ~ A DEF where it is implicit that A, B, C correspond to D,

E, F respectively, as was the case for congruent triangles. The next proposition is known

as the AAA similarity theorem.

PROPOSITION 3.5.7(V1.4). Equiangular triangles are similar.

GIVEN: AABC,ADEF + ABC =/, DEF, £ ACB=/, DFE, [ BAC=/, EDF

(Fig. 3.33)
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3.5 PROPORTION AND SIMILARITY

JAB_BC _ AC

z X

Figure 3.33

PROOF: If any side of A ABC equals the corresponding side of A DEF then the two
triangles are congruent [ASA] . Hence it may be assumed without loss of generality that
AB < DE. Let G be a point in the interior of DE such that DG = AB. Let H be the

intersection of the straight line parallel to EF through G with DF. Then

GE HF
DE DF

However, A ABC =A DEF by ASA because

2 = 12 [Both equal £ 3]
AB = DG [Construction]
L1 = /L4 [Given]
AC = DH
AB DG DH _ AC
DE ~— DE ~ DF ~ DF

BC AC

A similar argument can be used to prove that Tr = pr

QED.
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3.5 PROPORTION AND SIMILARITY

The following similarity theorems are known as the SSS and SAS similarity

theorems, not to be confused with the SSS and SSA congruence theorems, and their

proofs are relegated to Exercises 5 and 6 respectively.

PROPOSITION 3.5.8(VL.5). If two triangles have their sides proportional then the

triangles are similar.

PROPOSITION 3.5.9(V1.6). Iftwo triangles have one angle equal to one angle and

the sides about those angles are proportional, then the triangles are similar.

In view of the fact that the sum of the angles of every Euclidean triangle is 180°,

it follows that the conclusion of Proposition 3.5.7 holds even when only two of the angles

of one triangle are known to be equal to the corresponding angles of the other triangle.

EXERCISES 3.5C

o e Y, T

10.

Complete the proof of Proposition 3.5.7.

Prove that congruent triangles are similar.

Prove that if A ABC is similar to A A'B'C' and A A'B'C' is similar to A A"B"C", then A ABC
is similar to A A"B"C".

Prove Proposition 3.5.8.

Prove Proposition 3.5.9.

Prove that in similar triangles corresponding altitudes are proportional to corresponding sides.
Prove that in similar triangles corresponding medians are proportional to corresponding sides.
Prove that in similar triangles the corresponding angle bisectors are proportional to the
corresponding sides.

Prove that the areas of similar triangles are proportional to the squares of their corresponding
sides.

Prove that the areas of similar polygons are proportional to the squares of their corresponding

sides (VI.19).
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

3.5 PROPORTION AND SIMILARITY

Three parallel straight lines cut the straight lines m and n in the points A, B, C, and K, L, M.
AB KL

respectively. Prove that BC = IM -

In ~ ABCD the straight line BKLM cuts the diagonal AC in the point K and the (possibly
KM

BK
extended) sides AD and CD in the points L and M respectively. Prove that XL = BK

In ~ABCD the straight line BKN cuts the (possibly extended) sides CD and AD in the points

. AD _ CK
K and N respectively. Prove that DN = KD

Prove that the intersection point of two of a triangle's altitudes divides them so that the product of
each altitude's segments equals the product of the other's segments.

Prove Euclid's Proposition VI.8: If in a right triangle a perpendicular be drawn from the right
angle to the opposite side, then the triangles so formed are similar to each other and to the given
triangle.

Prove Euclid's Proposition VI.13: The square of the altitude to the hypotenuse of a right triangle
equals the product of the segments it determines on the hypotenuse.

Prove Euclid's Proposition VI.31: If similar polygons are constructed on the sides of a right
triangle, then the polygon on the hypotenuse equals the sum of the polygons on the other two
sides.

Describe the locus of all the points whose distances from the sides of a given angle have a ratio
equal to that of two given line segments.

Given an angle and a point A inside it, construct through A a straight line whose portion
between the sides of the angle is divided by A into segments whose ratio equals that of two given
line segments.

Given an angle and a point A inside it, find a point P on one side of the angle whose distance
from A equals its distance from the other side of the angle. (How many solutions are there?)
Prove that the perimeters of similar triangles are proportional to their corresponding sides.

Prove that the perimeters of similar polygons are proportional to their corresponding sides.

A straight line through the intersection of the diagonals of a trapezoid is parallel to its parallel
sides. Prove that the segment between the non-parallel sides is bisected by the intersection of the
diagonals.

Prove that in a trapezoid the line joining the midpoint of one of the parallel sides to the
intersection of the diagonals bisects both the parallel sides.

Prove that in a trapezoid which is not a parallelogram the straight line joining the intersection of
the diagonals to the intersection of the non-parallel sides bisects both the parallel sides.

Comment on Proposition 3.5.7 in the context of the following geometries:

a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.
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CHAPTER REVIEW

CHAPTER REVIEW EXERCISES

10.

11.

12.

13.

14%,

15.

Let P be a point in the interior of the equilateral A ABC. Prove that the sum of the perpendicular
segments from P to the sides of the triangle is constant.

The diagonals of a trapezoid cut each other into segments that are proportional to the parallel sides
of the trapezoid.

Suppose the non-parallel sides of a trapezoid are equal. Prove the following.

i) The two angles adjacent to the same base are equal.
ii) The diagonals are equal.
iii) The diagonals intersect in a point that lies on the straight line joining the

midpoints of the unequal sides.
iv) The diagonals divide each other into respectively equal segments.
V) The midpoints of the four sides form a rhombus.
Find a simple expression for the angle between two of a triangle's angle bisectors.
A straight line through the vertex of a triangle divides it into two triangles that are similar to each
other and to the original triangle. Prove that the given triangle is a right triangle.
In ~ ABCD a straight line parallel to AB intersects AD, AC, and BC in the points P, O, R
respectively. Prove that A APR=A AQD.
In AABC, m,=BC/2. Prove that £ CAB is aright angle.
In AABC, £ BAC = 2 £ ABC. Prove that a2 =bb +c).
In ~ABCD M and N are the midpoints of the opposite sides AB and CD. Prove that the
straight lines DM and BN divide the diagonal AC into three equal segments.
Suppose that £ ACB of A ABC is obtuse and the perpendicular bisectors to AC and BC
intersect AB in the points D and E respectively. Prove that ZDCE = 2(£ ACB - 900).
From a point on the base of an isosceles triangle straight lines parallel to the triangle's other sides
are drawn. Prove that the perimeter of the parallelogram thus formed is independent of the
position of the point on the base.
Prove that the bisectors of the two angles formed by the opposite pairs of sides of a convex
quadrilateral intersect in angle that equals half the sum of two opposite angles of the quadrilateral.
Prove that the median and the altitude to the hypotenuse of a right triangle form an angle that
equals the difference of the triangle's other two angles.
In AABC, AB = AC, E and D are on the sides AB and AC respectively, and ZABD = 200,
£CBD=60", ZBCE=50",and ZACE=30". Find ZEDB.
Are the following statements true or false? Justify your answers.

a) Playfair’s postulate is valid in neutral geometry.
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b)

d)
€)

g)
h)

),
k)
)

CHAPTER REVIEW

Playfair’s postulate is valid in Euclidean geometry.

Playfair’s postulate is valid in spherical geometry.

Playfair’s postulate is valid in hyperbolic geometry.

Playfair’s postulate is valid in taxicab geometry.

If in a quadrilateral one pair of opposite sides are equal, as are one pair of opposite
angles, then the quadrilateral is a parallelogram.

There is a Euclidian right triangle with sides 287, 816, 865.

There is a neutral right triangle with sides 287, 816, 865.

There is a spherical right triangle with sides 287, 816, 865.

There is a hyperbolic right triangle with sides 287, 816, 865.

There is a taxicab right triangle with sides 287, 816, 865.

If the corresponding sides of two triangles are proportional then so are their
corresponding angles.

Equiangular triangles are similar.

The corresponding sides of equiangular quadrilaterals are proportional.

If the corresponding angles of two quadrilaterals on the surface of a sphere are equal,
then so are their areas.

Equiangular quadrilaterals are similar.
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