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CHAPTER 3 
 

Non-Neutral Geometry 
 
 

 

This chapter's propositions differ from those of the previous one in that they depend on 

Postulate 5 for their validity.  Their proofs are therefore not valid in the context of non-

Euclidean geometry. 
 

1.  Parallelism 

 

The first of the non-neutral propositions is the converse of Proposition 2.3.35, the last 

proposition of the previous chapter. 

 

PROPOSITION 3.1.1(I.29).  A straight line falling on parallel straight lines makes 

the alternate angles equal to one another, the corresponding angles equal to one another, 

and the interior angles on the same side equal to two right angles. 

 

 

Figure 3.1 
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GIVEN:  Straight lines  AB || CD,  straight line  EF  intersecting  AB  and  CD  at  G  and  

H  respectively (Fig. 3.1).    

TO PROVE:  ∠ 1 =  ∠ 2,  ∠ 3  = ∠ 4,   ∠ 2 + ∠ 3  =   2  right angles. 

PROOF:  By contradiction.  Suppose  ∠ 1 and  ∠  2 are unequal.  Then it may be 

assumed without loss of generality that 

 

  ∠ 1   >     ∠ 2 

 ∴ ∠ 1  +  ∠ 3    >     ∠ 2 +  ∠ 3   

 but ∠ 1 +  ∠ 3   =     2  right angles   [PN 2.3.17] 

 ∴ 2  right angles     >     ∠ 2  +  ∠ 3 

 ∴ AB  and  CD   intersect    [PT 5] 

 

This however, contradicts the fact that  AB || CD  and so  ∠ 1 =  ∠ 2.  Moreover, 

 

  ∠ 1  +  ∠ 3     =     ∠ 2  +  ∠ 4     =     2  right angles [PN 2.3.17] 

 ∴ ∠ 3    =     ∠ 4       [CN 3] 

 and also ∠ 2  +  ∠ 3     =     2  right angles. 

           Q.E.D. 

 

 The following proposition provides an alternative and intuitively appealing 

characterization of parallel lines. 

 

PROPOSITION 3.1.2.  The locus of all points on one side of a straight line that are 

equidistant from it is a straight line. 

See Exercise 11. 
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EXERCISES 3.1A 

 
1. Prove that if two parallel straight lines are cut by a third line then the two bisectors of a pair of 

alternate interior angles are parallel to each other. 

2. Prove that if a straight line is perpendicular to one of two parallel straight lines then it is also 

perpendicular to the other one. 

3. Suppose  AB ⊥ KL  and  CD ⊥ MN  are all straight lines such that  KL || MN.  Prove that  AB || CD. 

4. Suppose  AB ⊥ KL  and  CD ⊥ MN  are all straight lines such that  KL ||/  MN.  Prove that  AB ||/  

CD. 

5. Prove that two angles whose sides are respectively parallel are either equal or supplementary  

6. Prove that two angles whose sides are respectively perpendicular are either equal or 

supplementary. 

7. In  Δ ABC,  AD  is the bisector of  ∠ BAC  and  E  is a point on  AC  such that  DE || AB.  Prove 

that  AE = DE. 

8. For a given  Δ ABC,  AD || BC  and  AD = AB.  Prove that  BD  bisects either the interior angle or 

the exterior angle at  B. 

9. Prove that if the points  A, B  are on the same side of the straight line  m  and  at the same distance 

from  m,  then  AB || m. 

10. Prove that if the points  A, B  are such that  AB || m,  then they are at the same distance from  m. 

11. Use the above two exercises to prove Proposition 3.1.2. 

12. Prove that the internal bisectors of each pair of angles of a triangle intersect. 

13. Given two distinct parallel lines, construct a straight line that is parallel to both and also 

equidistant from both. 

14. Comment on Proposition 3.1.1 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab;   d)  maxi. 

15. Comment on Proposition 3.1.2 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab;   d)  maxi. 

 

PROPOSITION 3.1.3(I.30). (Distinct) Straight lines parallel to the same straight 

line are also parallel to one another. 

GIVEN:  Distinct straight lines  AB || EF, CD || EF (Fig. 3.2). 

TO PROVE: AB || CD 
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Figure 3.2 

 

PROOF:  By contradiction.  Suppose  AB  and  CD  intersect in some point  I.  Join  I  to 

any point  J  of  EF.  Then 

 

  ∠ 1    =     ∠ 3     [PN 3.1.1,  AB || EF] 

  ∠ 2    =     ∠ 3     [PN 3.1.1,  CD || EF] 

 ∴  ∠ 1    =     ∠ 2     [CN 1] 

 

but this is impossible since the straight lines  AB  and  CD  are distinct.  Hence   AB || CD. 

           Q.E.D. 

 

 Euclid begins his proof of this proposition by drawing a straight line  PQ  that 

intersects all the three given lines.  While intuitively plausible, the existence of such a 

line calls for a justification and Euclid's proof is therefore incomplete.  The need for such 

a justification is demonstrated by Figure 3.3 which exhibits three pairwise parallel 

hyperbolic geodesics such that no single geodesic intersects all three. 

 

 

 
 

Figure 3.3  Three hyperbolic parallel straight lines that  
are not intersected by the same hyperbolic straight line. 
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EXERCISES 3.1B 

 
1. If a straight line intersects one of two parallel straight lines (in only one point) then it also 

intersects the other one. 
2. Comment on Proposition 3.1.3 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab;   d)  maxi. 

 

 

PROPOSITION 3.1.4(I.31).  Through a given point to draw a straight line parallel 

to a given straight line. 

GIVEN:  Straight line  BC,  point  A  not on 

€ 

↔
BC  (Fig. 3.4). 

TO CONSTRUCT:  A straight line  AE  such that  AE || BC. 

 

 

Figure 3.4 

 

CONSTRUCTION:  Let  D  be any point on  BC  and draw  AD.  Construct  ∠ DAE  =   

∠ ADC [PN 2.3.28].  Then  AE  is the required straight line. 

PROOF: ∠ EAD     =     ∠ CDA    [Construction] 

 ∴ AE || BC      [PN 2.3.35] 

           Q.E.D. 

 

 The following proposition has supplanted Euclid's Postulate 5 in many texts 

where it is known as Playfair's Postulate.  Although this will not be demonstrated here, 

the two are in fact logically equivalent. 
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PROPOSITION 3.1.5(Playfair's Postulate). Through a point not on a given straight 

line there exists exactly one straight line that is parallel to the given line. 

See Exercises 1 and 2. 

 

Just like Postulate 5, Playfair's postulate does not hold in hyperbolic geometry.  Figure 

3.5 exhibits three distinct geodesics  p, q, r,  all of which contain the same point  P  and 

all of which are parallel to the same geodesic   m. 

 

 

Figure 3.5  A hyperbolic counterexample to Playfair's Postulate. 

 

 It is now possible to give a more precise definition of hyperbolic geometry.  This 

calls for negating Playfair’s postulate, which is equivalent to Postulate 5. In view of 

Proposition 2.3.7 the following postulate is the proper negation of Playfair’s postulate. 

 

  H (Hyperbolic). There exists a straight line that is parallel to two intersecting distinct 

straight lines. 

 

 Hyperbolic geometry is the geometry based on Euclid’s Postulates 1, 2, 3, 4, A, S 

and Postulate H. 
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PROPOSITION 3.1.6(I.32).  In any triangle, if one of the sides be produced, the 

exterior angle is equal to the two interior and opposite angles, and the three interior 

angles of the triangle are equal to two right angles. 

GIVEN:  Δ ABC,  side  BC  extended to  D  (Fig. 3.6). 

TO PROVE:  ∠ ACD     =     ∠ ABC  +  ∠ CAB, 

  ∠ ABC  +  ∠  BCA  +  ∠ CAB     =     2  right angles 

 

 

Figure 3.6 

 

PROOF:  Draw  CE || AB   [PN 3.1.4].  Then 

   ∠ 5    =     ∠ 2          [PN 3.1.1] 

  ∠ 6     =     ∠ 1          [PN 3.1.1] 

 ∴  ∠ 4    =    ∠ 2 +  ∠ 1      [CN 2] 

 ∴ ∠ 4  +  ∠  3     =     ∠ 1 +  ∠ 2 +  ∠ 3   [CN 2] 

 ∴ 2  right angles     =    ∠ 1 +  ∠ 2 +  ∠ 3   [PN 2.3.17] 

           Q.E.D. 

 

 Recall that according to Chapter 1,  the sum of the angles of every spherical 

triangle is greater than  180o [PN 1.1.5] whereas the sum of the angles of every 

hyperbolic triangle is less than  180o [PN 1.2.6]. 

 

EXERCISES 3.1C 
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1. Prove Proposition 3.1.5.  

2. Prove that in  Δ ABC  the bisector of the exterior angle at  A  is parallel to  BC  if and only 

if   AB = AC. 

3. Prove that a straight line that is parallel to one side of an isosceles triangle cuts off 

another isosceles triangle. (Note: There are two distinct cases to be considered here.) 

4. A straight line cuts off an isosceles triangle from a given isosceles triangle.  Prove that 

the straight line is parallel to one of the sides of the given isosceles triangle. 

5. In an isosceles  Δ ABC,  a line perpendicular to the base  BC  intersects AB  and  AC  in 

the points  D  and  E  respectively.  Prove that  Δ ADE  is also isosceles. 

6. In  Δ ABC,  ∠ BAC = 90
o
 and  ∠ ACB = 30

o
.  Prove that  BC = 2AB.  

7. In  Δ ABC,  ∠ ABC = 60
o
  and  BC = 2AB.  Prove that  Δ ABC  is a right triangle. 

8. Prove that in a right triangle the angle between the altitude to the hypotenuse and one of 

the legs equals the angle opposite that leg. 

9. Let  D  be that point on side  BC  of  Δ ABC  such that  AD  is the bisector of  ∠ BAC.  

Prove that  ∠  ADC  is half the sum of the interior angle at  B  and the exterior angle at  C. 

10. Prove that in  Δ ABC  the bisectors of the interior angle at  B  and the exterior angle at  A  

form an angle that is half the interior angle at  C. 

11. Prove that in  Δ ABC  the angle bisector and the altitude at  A  form an angle that is half 

the difference between the interior angles at  B  and  C. 

12. Prove that in a right  Δ ABC  the bisector of  ∠ ABC,  the altitude to the hypotenuse  BC,  

and the side  AC  form an isosceles triangle. 

13. The point  D  on the hypotenuse  BC  of the right isosceles  Δ ABC  is such that  BD = 

AB.  Prove that  ∠ BAD = 67.5
o
. 

14. Prove that if the diagonals of quadrilateral  ABCD  are equal and the sides  AB = CD,  

then  AD || BC. 

15. Prove that the sum of the interior angles of a quadrilateral is  360
o
. 

16. Prove that in quadrilateral ABCD the bisectors of the interior angles at  A  and  B  form an 

angle that is half the sum of the interior angles at  C  and  D,  and, if the bisectors of the interior 

angles at  A  and  C  intersect, they form an angle that is half the difference between the angles at  

B  and  D. 

 
A polygon is said to be convex if all of its diagonals fall in its interior. 

17. Prove that the sum of the interior angles of a convex  n-sided polygon is  (n - 2)180
o
.  

18. Prove that the sum of the interior angles of an arbitrary n-sided polygon is  (n - 2)180
o
.  

(Go ahead and use the difficult to prove fact that every polygon has a diagonal that lies completely 
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inside it.) 

19. Prove that the number of acute interior angles of a convex polygon cannot exceed  3. 

20. Prove that the sum of the exterior angles of a convex polygon is  360
o
.  (Try to prove this 

without making use of Exercise 17 above). 

21. Construct  ΔABC  given the data  a, A, B. 

22. Construct an isosceles triangle given one of its angles and one of its sides. 

23. Construct  ΔABC  given the data  a, b + c, A. 

24. Construct  ΔABC  given the data  b + c, A, B. 

25. Comment on Proposition 3.1.4 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab;   d)  maxi. 

26. Comment on Proposition 3.1.5 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab;   d)  maxi. 

27. Comment on Proposition 3.1.6 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab;   d)  maxi. 

28. Explain why there are no rectangles in spherical geometry. 

29. Explain why there are no rectangles in hyperbolic geometry. 

30. Are there rectangles in taxicab geometry? 

31. Are there rectangles in maxi geometry? 
32. The following method for trisecting an arbitrary angle is credited to Archimedes.  If that 

attribution is correct he must have been aware of its shortcomings as a construction in the sense of 

Euclid. 

  Let  α  be a given angle with vertex  A.  (Fig. 3.7)  Draw a circle of radius  AB = AC.  On 

a ruler mark two points  D  and  E  such that  DE = AB = AC and place the ruler on the page so 

that the point  E  falls on the extension of  AB,  the point  D  falls on the circle  (A; AB)  and the 

ruler also passes through the point  C.  Prove the following assertions 

 a) ∠ ADC = ∠ ACD (= β) 

 b) ∠ AED = ∠ EAD (= γ) 

 c) α = 3γ,  or  γ = α/3 

 

 
Figure 3.7  An angle "trisection". 
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 Explain why this "trisection"  of  α  does not meet Euclid's standards for a construction. 

33. Criticize the following "neutral proof" of Playfair's Postulate, offered by Proclus (410-485):  "I say 

that if any straight line cuts one of two parallels, it will cut the other also.  For let  AB, CD  be 

parallel and let  EFG  cut  AB [at  F, with  G  between  AB  and  CD];  I say that it will cut  CD  

also.  For, since BF, FG  are two straight lines from one point  F,  they have, when produced 

indefinitely, a distance greater than any magnitude, so that it will be greater than the interval 

between the parallels.  Whenever, therefore, they are at a distance from one another greater than 

the distance between the parallels,  FG  will cut  CD." 

34. Criticize the following "proof" of the fact that the sum of the interior angles of a triangle is  180
o.  

Let  ABC  be a given triangle let  d  be a line segment that lies on the straight line  AB  with its 

center at  A.  Slide  d  along  AB  until  its center  falls on  B  and then rotate it through the exterior 

of the triangle, about  B  as a pivot, until it falls along side  BC.  Next slide  d  along  BC  until its 

center reaches  C  and rotate it about  C  as a pivot through the exterior of the triangle until it falls 

along  CA.  Finally, slide  d  along  CA  until its center reaches  A  and rotate it about  A  as pivot 

so that it comes into its initial position.  If the triangle's interior angles are  α, β, γ,  then the 

segment  d  has been rotated successively by the angles  180
o
 - β, 180

o
 - γ, and  180

o
 - α  before it 

returned to its original position.  Consequently  (180
o
 - β) + (180

o
 - γ) + (180

o
 - α)  =  360

o
  from 

which it follows that  α + β + γ = 180
o
. 

35(C). Perform the construction of Proposition 3.1.4 using a computer application. 

36(C). Use a computer application to verify Proposition 3.1.6. 

 

 Euclid's statement of the following proposition is awkward and so it appears here 

in a paraphrased form. 

 

PROPOSITION 3.1.7(I.33).  A quadrilateral in which two opposite sides are both 

equal and parallel to each other is a parallelogram. 

GIVEN:   Straight line segments  AB || CD,  AB = CD (Fig. 3.8). 

TO PROVE:  AC || BD,  AC = BD. 
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Figure 3.8 

 

PROOF:   Draw  BD, BC, AC.  Then  Δ ABC ≅ Δ DCB   by  SAS  because 

   AB     =     DC  [Given] 

   ∠ 1     =     ∠ 2 [Alternating angles, AB || CD, PN 3.1.1] 

   BC     =     CB 

 ∴ AC     =     DB 

 and ∠ 4     =     ∠ 3 

 ∴ ΑC || BD   [Equal alternating angles, PN 2.3.34] 

           Q.E.D. 

 

 

PROPOSITION 3.1.8(I.34).  If both pairs of opposite sides of a quadrilateral are 

parallel to one another, then they as well as the opposite angles are equal to one another, 

and the diameter bisects the area. 

GIVEN:  Quadrilateral ACDB,   AB || CD,   AC || BD. 

TO PROVE:  AB = CD,   AC = BD,    ∠ CAB = ∠ BDC,   ∠ ABD = ∠ DCA,    

        Δ ABC = Δ DCB  =  
1
2   ABDC. 
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Figure 3.9 

 

PROOF:  Δ ABC ≅ Δ DCB  by  ASA  because 

   ∠ 5    =     ∠ 6  [Alternating angles, AB || CD, PN 3.1.1] 

   BC     =     CB 

   ∠ 7    =     ∠ 8  [Alternating angles, AC || DB, PN 3.1.1] 

 ∴ AB     =     CD,      AC     =     BD,  ∠ 3    =     ∠ 4            

  Δ ABC    =     Δ DCB     =     
1
2   ABDC      

 Also ∠ 1    =     ∠ 2   [CN 2] 

           Q.E.D. 

 

 

EXERCISES 3.1D 

 
1. Both pairs of opposite sides of a quadrilateral are equal to each other. Prove that the quadrilateral 

is a parallelogram. 

2. Both pairs of opposite angles of a quadrilateral are equal to each other. Prove that the quadrilateral 

is a parallelogram. 

3. Prove that the diagonals of a parallelogram bisect each other. 

4. Prove that if the diagonals of a quadrilateral bisect each other then it is a parallelogram. 

5. Prove that a parallelogram is a rectangle if and only if its diagonals are equal to each other. 

6. Prove that a parallelogram is a rhombus if and only if its diagonals are perpendicular to each other.  

7. Prove that the line segment joining the midpoints of two sides of a triangle is parallel to the third 

side and equals half its length. 
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8. The midpoint of side  AB  of  Δ ABC  is  D  and  E  is a point of  AC  such that  DE || BC. Prove 

that  AE = EC  and  DE  =  BC/2.   

9. Prove that the midpoints of the four sides of a quadrilateral are the vertices of a parallelogram. 

10. Prove that each of two medians of a triangle is divided by their intersections into two segments 

one of which is double the other. 

11. Prove that the three medians of a triangle all pass through one point.   

12*. Point  E  in the interior of square ABCD is such that  ∠ ABE = ∠ BAE = 15
o
.  Prove that  Δ CDE  

is equilateral. 

13. In  Δ ABC,  AB = AC,  and  D, E, F  are  points on the interiors of sides  BC, AB, AC  respectively,  

such that  DE ⊥ AB  and  DF ⊥ AC.  Prove that the value of  DE + DF  is independent of the 

location of  D.  

14. Prove that the three segments joining the midpoints of the three sides of a triangle divide it into 

four congruent triangles.  

15. Prove that three parallel straight lines that cut off equal line segments on one straight lines also cut 

off equal line segments on every straight line that intersects them (Hint:  Through the middle 

intersection point on one straight line draw a line parallel to the other straight line.) 

16. A trapezoid is a quadrilateral two of whose sides are parallel.  Prove that the line segment joining 

the midpoints of the non-parallel sides of a trapezoid is parallel to the other two sides and equals 

half the sum of their lengths  
17. Construct angles of the following magnitudes 

 a)   60
o  b)   30

o
  c)   120

o 
 d)   75

o
.  

18. Through a given point construct a straight line such that its portion between two given parallel 

straight lines is equal to a given line segment. 

19. Let  A  be a point in the interior of an angle.  Construct a straight line whose segment between the 

sides of the angle has  A  as its midpoint.  

20. A pair of parallel straight lines is intersected by another pair of parallel straight lines.  Through a 

given point construct another straight line on which the two given pairs cut off equal line 

segments. 

21. Given an angle, determine the locus of all the points the sums of whose distances from the sides of 

the angle equals a given magnitude.  

22. In a given  ΔABC  construct points  M  on  AB  and  N  on  BC  such that  BM + NC = MN   and  

MN || BC. 
23. Construct  Δ ABC  given the data 
 a)   a, ha, β  b)   a, ha, hb  c)   a, hb, α 

 d)   hb, hc, α  e)   hb, mc, α  f)   α, hc, b + c 

 g)   a + b + c, β, γ h)   a + b + c, β, ha. 
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24. Construct a parallelogram given: 

 a)   two adjacent sides and the included angle; 

 b)   two adjacent sides and a diagonal; 

 c)   two adjacent sides and the distance between two opposite sides; 

 d)   a side and the two diagonals; 

 e)   the diagonals and the angles between them. 

25. Construct a rectangle given one side and the diagonal. 

26. Construct a rhombus given: 

 a)   its side and one of its angles; 

 b)   its side and one diagonal. 

 c)   both diagonals. 

27. Construct a square given: 

 a)   its side;  b)   its diagonals. 

28. Construct  Δ ABC  given the data: 
 a)   a, c, mb;  b)   a, ha, mb . 

29. Comment on Proposition 3.1.7 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab;   d)  maxi. 

30. Comment on Proposition 3.1.8 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab;   d)  maxi. 

  

 
 

2.  Area 

 

Euclid defined the concept of area by means of axioms that he called Common Notions.  

This axiomatic approach is customary today as well, although the specific axioms are 

different from those used by Euclid.  The modern approach to area stipulates that a 

certain unit of length, called unit has been chosen.  The square the length of whose side is 
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Figure 3.10 

 

1  unit (Fig. 3.10) is denoted by  unit square or unit2  and serves as the unit for measuring 

areas.  It is then assumed that area is a measurement of figures that satisfies the three 

properties (or axioms) listed below: 

 

UNIT:   The unit square has area  1  unit2. 

 

ADDITIVITY: If a figure is divided by a line into two subfigures, then the   

   area of the figure equals the sum of the areas of the subfigures. 

 

INVARIANCE: Congruent figures have equal areas. 

 

 Loosely speaking, the additivity and invariance axioms were stated by Euclid as 

Common Notions 2  and  4  respectively.  The unit axiom, however, has no analog in 

Euclid's system.  As a consequence, Euclid's Elements contains no proposition that 

computes areas explicitly.  Instead, Euclid made comparative statements such as  

 

parallelograms on equal bases and between the same parallels are equal  

 

and  

 

if a parallelogram have the same base with a triangle and be in the same 

parallels, the parallelogram is double the triangle.   

 

This has the theoretical advantage of dispensing with units and the practical disadvantage 

of not answering the reasonable question of what is the area of a rectangle of dimensions  
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3  and  5  stadia?  Greek mathematicians did of course make use of units and could 

resolve such questions with ease.  It is just that Euclid, for reasons that can only be 

guessed at, and that in the author's opinion were probably esthetic, decided to develop his 

geometry without any units whatsoever. 

 Propositions 3.2.1 and 3.2.2 below are the explicit modern day analogs of Euclid's 

I.35 (PN 3.2.3).  They give explicit formulas for the areas of rectangles and 

parallelograms.  Their complete proofs unfortunately contain elements that are beyond 

the scope of this text.  Specifically, one runs into the difficulty inherent in proving 

propositions regarding line segments with irrational (non-fractional) lengths.  These 

difficulties were first encountered by the Greeks in the sixth century BC and eventually 

surmounted by Eudoxus two hundred years later.  Euclid's book did incorporate 

Eudoxus's treatment of irrational numbers, but it would be impractical to expound this 

theory here.  Instead, a mere supporting argument for the fact that the area of a rectangle 

is given by the product of the lengths of its sides is offered.  It is customary in today's 

high school geometry textbooks to circumvent these difficulties by stating this formula as 

yet another axiom, the Rectangle Axiom.  In the author's opinion this is a misguided 

solution to a pedagogical problem since it opens up the possibility of stating many other 

interesting and non-trivial geometrical facts as axioms, even when elementary and 

convincing, albeit logically incomplete, arguments are available. 

 

PROPOSITION 3.2.1.  If a rectangle has dimensions  a  units  and  b  units  then it 

has area  ab unit2. 

GIVEN: `ABCD  with sides  a, b. 

TO PROVE:  Area of `ABCD  =  ab  unit2. 

SUPPORTING ARGUMENT:  If  a  and  b  are positive integers then a rectangle of 

dimensions  a  and  b  can be divided into  ab  unit squares  by means of straight lines that 
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are parallel to its sides (Fig. 3.11).  Consequently, by the Additivity Property, the given 

rectangle has area  ab unit2. 

 

 

 

Figure 3.11  

 

 Similarly, if a rectangle has dimensions  a = 1/m   and  b = 1/n  for some positive 

integers  m  and  n,  then the unit square can be divided into  mn  copies of the given 

rectangle all of which, by the Invariance Property, have the same area (Fig. 3.12).  Hence 

the given rectangle has area  

 

  
1 unit2

mn       =     
1
m  

1
n  unit2     =     ab unit2 

 

1/4

1/3

1

1

1 unit

Area of rectangle  =  1/12  unit2

2  

Figure 3.12 
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 Next, if a rectangle has dimensions  a = m/n  and  b = p/q   where  m, n, p, q  are 

all positive integers, then it can be decomposed into  mp  rectangles each of which has  

dimensions  
1
n   and  

1
q (Fig. 3.13) .  Since each of these latter rectangles is now known to 

have area  
1

nq   unit2,  it follows from the Additivity Property that the given rectangle has 

area    

 

  mp(
1
nq ) unit2      =     

m
n   

p
q  unit2     =     ab unit2 . 

 
7/4

5/6 1/6

1/4

Area of rectangle =  35/24 unit

Area  =  1/24 unit

2

2

 

Figure 3.13 

 

 This verifies the proposition for all rectangles with fractional dimensions.  As was 

mentioned above, the extension of this formula to rectangles with arbitrary real 

dimensions lies beyond the scope of this text.     Q.E.D. 

 

 An altitude of a parallelogram is any line segment cut off by two opposite sides 

from a straight line that is perpendicular to both of them.  It follows from Proposition 

3.1.2 that all the altitudes joining the same pair of opposite sides of a parallelogram have 

equal length. 

 

PROPOSITION 3.2.2.  The area of a parallelogram with base  b units  and  altitude  

h units is  bh  unit2. 
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GIVEN:  ABCD  with base  b  and altitude  h  (Fig. 3.14). 

TO PROVE:  Area of  ABCD  =  bh  unit2. 

 

 

Figure 3.14 

 

PROOF:  In the given parallelogram draw  AE ' CD  and  BF 'CD  with  E, F  on  CD.   

Thus,  ABFE  is a rectangle with area  bh  unit2.  Since  Δ ADE ≅ Δ BCF  it follows that 

they have the same area, and hence, by the Additivity Property, 

 

    ABCD     =      ABFE     =     bh unit2. 

           Q.E.D. 

 

 Euclid's version of Propositions 3.2.1 and 3.2.2  is now stated together with his 

proof as well as another proof that is more consistent with modern pedagogy. 

 

PROPOSITION 3.2.3(I.35).  Parallelograms which are on the same base and in the 

same parallels are equal to one another. 

GIVEN:   ABCD  and    EBCF  such that  A, D, E, F  are collinear (Fig. 3.15). 

TO PROVE:  ABCD =    EBCF. 
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Figure 3.15 

 

PROOF (Euclid):  Since   AD  =  BC  =  EF  [PN 34],  it follows from CN  2   that    

AE  = DF.    Then  Δ BAE     ≅     Δ  CDF   by  SAS  because 

   AE     =     DF   [See above] 

   ∠ 1   =     ∠ 2   [Corresp. angles, AB || DC, PN 3.1.1] 

   AB     =     DC   [Parallelogram ABCD, PN 3.1.8] 

 ∴ Δ EAB     =     Δ FDC 

 ∴ ABGD     =     EGCF   [Subtract  Δ DGE, CN 3] 

 ∴ ABCD     =      EBCF  [Add  Δ GBC, CN 2] 

           Q.E.D. 

 

 Euclid's proof of Proposition 3.2.3 is incomplete (albeit easily fixed) because it 

depends on the relative position of the points  A, D, E, F  on their common line (Exercise 

12). 

 

PROOF (modern):   

 

Figure 3.16 

 

Draw  HJ perpendicular to AD and  BC (Fig. 3.16).  It then follows from PN 3.2.2 that   

~ABCD = BC⋅HJ =  ~EBCF. 

           Q.E.D. 
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PROPOSITION 3.2.4(I.36).  Parallelograms which are on equal bases and in the 

same parallels are equal to one another. 

See Exercise 1. 

 

 The area of the triangle will be given the same dual treatment as that of the 

rectangle.  First the modern formula is offered. 

 

PROPOSITION 3.2.5.  The area of a triangle with base  b  units and altitude  h  

units is  bh/2  unit2. 

 

 

Figure 3.17 

 

PROOF:   Through the vertices  B  and  C  of  Δ ABC  draw straight lines parallel to  AC  

and  AB  respectively, and let their intersection be  D  (Fig. 3.17).  It is clear that  ACDB  

is a parallelogram and hence, by Proposition 3.1.8, 

 

  Δ ABC      =     
1
2   ACDB     =     

bh
2    unit2. 

           Q.E.D. 

 

 Next comes Euclid's version. 
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PROPOSITION 3.2.6(I.37).  Triangles which are on the same base and in the same 

parallels are equal to one another. 

GIVEN:  Δ ABC, Δ DBC,   AD || BC  (Fig. 3.18). 

TO PROVE:  Δ ABC = Δ DBC. 

 

 

Figure 3.18 

  

PROOF:  Let  E  be the intersection of  

€ 

↔
AD  with the straight line through  B  parallel to  

AC  and let  F  be the intersection of   

€ 

↔
AD  with the straight line through  C  parallel to  

BD [PN 3.1.4].  Then 

 

   AEBC     =      DBCF     [PN 3.2.2] 

  Δ ABC     =     
1
2   AEBC     [PN 3.1.8] 

  Δ DBC     =     
1
2   DBCF     [PN 3.1.8] 

 ∴ Δ ABC     =     Δ DBC 

           Q.E.D. 

 

PROPOSITION 3.2.7(I.38).  Triangles which are on equal bases and in the same 

parallels are equal to one another. 

See Exercise 2. 

 

PROPOSITION 3.2.8(I.39).  Equal triangles which are on the same base and on the 

same side are also in the same parallels  
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GIVEN:  Δ ABC = Δ DBC,     A  and  D  are on the same side of  BC. 

TO PROVE:  AD || BC. 

 

 

Figure 3.19 

 

PROOF:  By contradiction.  Suppose  AD  and  BC  are not parallel and let  E  be the 

intersection of  BD  with the straight line through  A  parallel to  BC.  Then 

  Δ ABC     =     Δ EBC    [PN 3.2.6] 

  Δ EBC    <     Δ DBC    [CN 5] 

 ∴ Δ ABC     <     Δ DBC   

 

This, however, contradicts the give equality of the two triangles.  Hence  AD || BC. 

           Q.E.D. 

 

PROPOSITION 3.2.9(I.40).  Equal triangles which are on equal bases and on the 

same side are also in the same parallels. 

 

 According to Heath, Proposition 3.2.9 is an interpolation into The Elements by a 

later geometer (Exercise 2). 

 

PROPOSITION 3.2.10(I.41).  If a parallelogram have the same base with a triangle 

and be in the same parallels, the parallelogram is double of the triangle. 

See Exercise 2. 
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 There is no analog of Proposition 3.2.5 for the area of a general quadrilateral.  In 

practice, any such quadrilateral can be divided into triangles by means of a diagonal and 

then the area of each of the parts can be evaluated by means of Proposition 3.2.5.  A 

similar procedure can be used to dissect any polygon, regardless of the number of its 

sides, into triangles. 

 Neither Euclid's nor the modern approach to areas are applicable to spherical 

geometry.  Both of these approaches rely heavily on the notion of parallelism, and the 

sphere has no parallel geodesics.  Thus, another approach is required in order to develop 

a theory of spherical areas.  As spherical polygons can also be dissected into spherical 

triangles, it suffices to provide a formula for the latter. 

 It is clear that any two lunes of the same angle  α  on the same sphere can be 

made congruent by a series of rotations of that sphere.  Consequently, every two such 

lunes have the same area.  This, in turn, implies that the area of a lune is proportional to 

its angle.  Since the lune of angle  2π  radians has area  4πR2 (the sphere’s total surface 

area) the following lemma is obtained. 

 

LEMMA 3.2.11.  On a sphere of radius  R  the area of a lune of angle  α radians  is  

2αR2 unit2. 

            

 The following theorem was first discovered by the Flemish mathematician Albert 

Girard (1595-1632).  The proof presented here is due to Euler. 

 

PROPOSITION 3.2.12.  On a sphere of radius  R  the area of the spherical   

triangle ABC  with angles of radian measures  α, β, γ,   is   (α +  β +  γ − π)R2 unit2. 

GIVEN:  Spherical Δ ABC  with interior angles  α, β, γ  (measured in radians). 

TO PROVE:  Δ ABC  =  (α +  β +  γ − π)R2 unit2. 
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Figure 3.20 

 

PROOF:  Let  A′, B′, C′  be the respective antipodes of  A, B, C  (Fig. 3.20).  Draw the 

great circles that contain the geodesic segments  AB, BC, and  CA.    The hemisphere in 

front of the great circle  BCB′C′  is thereby divided into four spherical triangles  ABC,  

AB′C′,  AB′C,  ABC′,  whose areas are denoted, respectively,  by  T1 ,T2 , T3 ,T4 . 

 From the construction it follows that the spherical Δ A′BC  is congruent to the Δ 

AB′C′  of area  T2.  Hence,  

 

    T1  +  T2 = lune α 

Similarly, 

 

    T1  +  T3 = lune  β 

 

and 
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    T1  +  T4  = lune  γ. 

 

Consequently, 

 

 

 2 T1 = lune α  +  lune  β  +  lune  γ   -  (T1  +  T2  +  T3  +  T4) 

 

  =        (2α  +  2β  +  2γ  -  2π)R2 unit2 

 

and the statement of the theorem now follows immediately. 

           Q.E.D. 

 

 

EXERCISES 3.2A 

 
1. Prove Proposition 3.2.4. 

2. Use Proposition 3.2.5 to prove  

 a)  Proposition 3.2.6; b)  Proposition 3.2.7; c)  Proposition 3.2.8;  

 d)  Proposition 3.2.9; e)  Proposition 3.2.10. 

3. One of the triangle's sides is divided into  n  equal segments and the division points are joined to 

the opposite vertex.  Prove that the triangle is divided into  n  equal parts. 

4. Prove that the area of the trapezoid equals the product of half the sum of its parallel sides with the 

distance between them. 

5. Prove that the diagonals of a parallelogram divide it into four equal triangles. 

6. Prove that the line segment joining the midpoints of two sides of a triangle cuts off a triangle that 

is equal to one fourth of the original triangle.  

7. Prove that the parallelogram formed by the midpoints of the sides of a quadrilateral equals one 

half of that quadrilateral. 

8. Prove that the triangle’s medians divide it into six equal triangles 

9. The diagonals of a quadrilateral divide it into four equal triangles.  Prove that the quadrilateral is a 

parallelogram. 
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10. Prove that if the point  P  lies in the interior of ABCD  then the parallelogram equals twice the 

sum of Δ ABP  and  Δ  CDP. 

11. Each of the sides  AB, BC, CA  of an equilateral triangle is extended by their common length to 

points  D, E, F,  respectively, all in the same sense.  Prove that  Δ DEF = 7Δ ABC. 

12. Complete Euclid's proof of Proposition 3.2.3. 

 

Both the taxicab and maxi areas of a figure are defined to equal its Euclidean area. 

13. Comment on Propositions 3.2.1, 3.2.2, and 3.2.5 in the context of taxicab geometry. 

14. Comment on Proposition 3.2.3, 3.2.4, and 3.2.6-10  in the context of taxicab geometry. 

15. Comment on Propositions 3.2.1, 3.2.2, and 3.2.5 in the context of maxi geometry. 

16. Comment on Proposition 3.2.3, 3.2.4, and 3.2.6-10  in the context of maxi geometry. 
 

 Euclid’s Propositions I.42-45 are of limited interest.  They are included here only 

in order to facilitate the later discussion of the Golden Ratio (Proposition 3.4.1).   

 

PROPOSITION 3.2.13(I.42).  To construct, in a given rectilineal angle, a 

parallelogram equal to a given triangle. 

See Exercise 1. 

 

 The above proposition is an example of a conversion which consists of the 

construction of a polygon  Π' , of some prespecified nature, that is equal to a given 

polygon  Π. 

 

PROPOSITION 3.2.14(I.43).  In any parallelogram the complements of the 

parallelograms about the diagonal are equal to one another. 

GIVEN:  ABCD,     K  is a point on the diagonal  AC,  BGKE,  KFDH (Fig. 

3.21). 

TO PROVE:  BGKE  =   KFDH.  
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Figure 3.21 

 

PROOF: See Exercise 2. 

 

PROPOSITION 3.2.15(I.44). To a given straight line to apply, in a given rectilineal 

angle, a parallelogram equal to a given triangle. 

See Exercise 3. 

 

PROPOSITION 3.2.16(I.45). To construct, in a given rectilineal angle, a 

parallelogram equal to a given rectilineal figure. 

See Exercise 4. 

 

EXERCISES 3.2B 
 
1. Prove Proposition 3.2.13. 

2. Prove Proposition 3.2.14. 

3. Prove Proposition 3.2.15. 

4. Prove Proposition 3.2.16. 

5. Convert a given parallelogram into a rectangle with the same base. 

6. Convert a given parallelogram into a rhombus with the same base. 

7. Convert a given parallelogram into another parallelogram with the same base and a given angle. 

8. Convert a given parallelogram into a triangle with the same base and a given angle. 

9. Convert a given triangle into a right triangle with the same base. 

10. Convert a given triangle into an isosceles triangle with the same base. 

11. Convert a given triangle into another triangle with the same base and a given angle. 
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12. Bisect the area of a parallelogram by means of a straight line that is parallel to a given straight 

line. 

13. Given  ΔABC, construct a point  O  in its interior such that the triangles  AOB, BOC, COA  all have 

equal areas. 

 

  
3.  The Theorem of Pythagoras 

 

The Theorem of Pythagoras was discovered independently by several cultures and has 

been given more different proofs than any other theorem.  It is considered by many 

mathematicians to be the most important of all theorems, and has the dubious distinction 

of being misquoted in the classic movie The Wizard of Oz and of being the subject of 

popular jokes.  It will be presented following an easy lemma. 

 

PROPOSITION 3.3.1(I.46).  On a given straight line to describe a square. 

GIVEN:  Line segment  AB  (Fig. 3.22). 

TO CONSTRUCT:   ABCD. 

 

 

Figure 3.22 

 

 

CONSTRUCTION:  Draw  EA 

€ 

⊥ AB  [PN 2.3.11]  and  let  D  on  AE  be such that  AD 

= AB.  Let  C  be the intersection of the straight lines through  B  and  D  that are parallel 
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to  AD  and  AB  respectively [PN 3.1.4].  Then quadrilateral ABCD  is the required 

square. 

PROOF:  By construction, ABCD  is a parallelogram.  Since  AB = AD  it follows that  

AB = AD = DC = CB.  It remains to show that all of the angles of ABCD  are right 

angles.  However,  

  ∠ 1  +  ∠ 2    =     2  right angles  [PN 3.1.1] 

 ∴ ∠ 2    =     right angle    [∠ 1 is a right angle] 

 ∴ ∠ 3     =     ∠ 4     =     right angle  [PN 3.1.8] 

           Q.E.D. 

 

PROPOSITION 3.3.2(I.47, The Theorem of Pythagoras).  In right-angled triangles 

the square on the side subtending the right angle is equal to the squares on the sides 

containing the right angle. 

GIVEN:  Δ ABC,    ∠ BAC = right angle,  ABFG,  ACKH,  BCED  (Fig. 3.23). 

TO PROVE:  BCED   =    ABFG  +    ACKH. 

 

 

Figure 3.23  
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PROOF:  Let  L, M  be the respective intersections of the straight lines  DE  and  BC  

with the straight line through  A  parallel to  BD  and  CE  [PN 3.1.4].  Note that 

  the points  G, A, C  are collinear   [∠ GAB + ∠BAC =   

        2  right angles, PN 2.3.18] 

  the points  B, A, H  are collinear   [∠ HAC + ∠BAC =   

        2  right angles, PN 2.3.18] 

  Δ ABD ≅ Δ FBC  by  SAS   because 

   BD     =     BC   [Sides of the same square] 

   ∠ ABD     =     ∠ FBC     [Both equal  ∠ ABC + right angle] 

   AB     =     FB   [Sides of the same square] 

 ∴ Δ ABD     =     Δ FBC  

 ∴  BDLM     =  ABFG  [Doubles of equal triangles,  

          PN 3.2.10] 

 A similar argument yields the equation    CELM  =  ACKH  and hence 

 

  BCED     =      BDLM  +    CELM      =  ABFG   +  ACKH 

           Q.E.D. 

 

Two other proofs of this theorem are now sketched out. 

 If  a  and  b  are the legs and  c  is the hypotenuse of a right triangle then the 

square of side  a + b  can be dissected in the two ways depicted in Figure 3.24.  The 

dissection of  I  calls for no explication.  That of  II  requires a proof that the interior 

quadrilateral labeled as  c2  is indeed a square (see Exercise 8).  However, once these 

dissections are granted, it is clear from Figure 3.24 that  a2 + b2  =  c2.   This proof is 

attributed to the Chinese mathematician Chou-pei Suan-ching who lived circa 250 B.C. 
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Figure 3.24 

 

The next proof is due to the Indian mathematician Bhaskara (1114-1185).  The square of 

side  c  can be dissected in the manner depicted in Figure 3.25.   It then follows that    

 

 c2     =     4 
ab
2    +  (a - b)2     =     2ab  +  a2  -  2ab  +  b2     =     a2  +  b2 . 

 

 

Figure 3.25 

 

Yet another proof of the Theorem of Pythagoras in indicated in Exercise 17.  This one is 

due to president James Garfield (1831-1881). 

 The Theorem of Pythagoras has a converse. 
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PROPOSITION 3.3.3(I.48).  If in a triangle the square on one of the sides be equal 

to the squares on the remaining two sides of the triangle, the angle contained by the 

remaining two sides is right. 

See Exercise 9. 

 

 Since  32 + 42 = 52  it follows that any triangle whose sides have lengths  3 units, 

4 units, and 5 units is necessarily a right triangle.  So is the triangle whose sides have 

lengths  5, 12, 13.  Triples of integers  a, b, c  such that   

 

     a2 + b2 = c2   

 

are known as Pythagorean triples, but the interest in such triples precedes Pythagoras by 

over a thousand year.  The Babylonian tablet PLIMPTON 322, dated between 1900 and 

1600 BC contains fifteen Pythagorean triples the largest of which consists of   12709,  

13500,  and  18541.  Although it is highly unlikely that the Babylonians found these 

numbers by trial and error, it is not known what method they used to generate these 

triples.  Not surprisingly, the earliest method for generating Pythagorean triples appears 

in Euclid's The Elements.  Lemma 1 to Proposition 29 of Book X states that if  m  >  n  

are any positive integers,  then 

 

   (2mn)2  +  (m2 - n2)
2
     =     (m2 + n2)

2
 

 

(Exercise 13)  so that  2mn,  m2 - n2,  m2 + n2  form a Pythagorean triple.  For example,    

m = 5  and  n = 4   yield the triple 

 

   (2⋅5⋅4)2  +  (52 - 42)
2
     =     (52 + 42)

2
 

or 
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    402  +  92     =     412. 

 

 Pierre Fermat (1601? - 1665) took it for granted that Euclid's method can be used 

to generate all the  Pythagorean triples and this fact was proven by Euler a hundred years 

later.  Specifically, Euler proved that if  a, b, c  are numbers whose only common divisor 

is  1  and which constitute a Pythagorean triple, then there exists a pair of relatively prime 

integers  m, n  such that    

 

{a, b, c}     =     {2mn,  m2 - n2,  m2 + n2}. 

 

All other Pythagorean triple of course proportional to these. 

 

EXERCISES 3.3A 

 
1. Which of the following triples of numbers are the lengths of the sides of a right triangle: 

 a) 7, 10, 15    b) 5, 12, 13   

 c) 203750, 364056, 417194  d) 57302, 491714, 650463  

2. Show that an equilateral triangle of side  a  has area  
a

2
3

4   . 

3. An isosceles right triangle has a hypotenuse of length  c.  Compute its other sides and its area. 
4. A right triangle has an angle of  30

o
  and a hypotenuse of length 1.  Compute its other sides and its 

area. 

5. Compute the area of a rhombus whose sides equal  13  and one of whose diagonals  has length  10. 

6. Compute the area of a parallelogram whose sides have lengths  11  and  8  and one of whose 

angles is  45
o
. 

7. The diagonals and one side of a parallelogram have lengths  30,  16, 17,  respectively.  Prove that 

it is a rhombus and compute its area. 

8. Show that the interior quadrilateral in Dissection II  of Figure 3.24 is indeed a square of area  c
2
. 

9. Prove Proposition 3.3.3. 

10. Find the error in the following "proof" of the "proposition" that every triangle is isosceles: 

 GIVEN:  Δ ABC  
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 TO PROVE:  AB = AC 

   

 
Figure 3.26 

 
 PROOF:  Let  N  be the intersection of the bisector of  ∠ ABC  and the perpendicular bisector of 

 side  BC,  M  the midpoint of  BC,  and  ND ' AB,   NE ' AC.  Then 

  ND    =     NE   [PN 2.3.33] 

 ∴ AD     =     AE   [Pythagoras] 

 Also BN     =     CN   [PN 2.3.14] 

 ∴ BD     =     CE   [Pythagoras] 

 ∴ AB     =     AC   [CN 2] 

           Q.E.D. 

11. Given a square of side  a,  construct a square of double its area. 

12. Given a square of side  a  and a positive integer  n,  construct a square whose area equals  n  times 

that of the given square. 

13. Construct a square whose area equals the sum of three given squares. 

14. Use algebra to prove that Euclid's method does indeed generate Pythagorean triples. 
15. Assume that a line segment of length 1 inch  is given.  Prove that line segments of the following 

lengths can be constructed. 

 a) 2  inch  b) 3  inch   c)  5  inch 

 d) n   inch,  where  n  is any positive integer  e) 1/ 2  inch . 
16. Find two non-congruent isosceles triangles whose sides have integer lengths and whose perimeters 

and areas are equal.  

17. Prove the Theorem of Pythagoras by applying Exercise 3.2A.4 to Figure 3.27. 
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Figure 3.27 

18(C). Perform the construction of Proposition 3.3.1 using a computer application. 

19(C). Use a computer application to verify the Theorem of Pythagoras. 

 

 Both spherical and hyperbolic geometry have their own versions of the Theorem 

of Pythagoras.  Their proofs follow directly from the appropriate trigonometries 

(Exercises 1, 3). 

 

PROPOSITION 3.3.4(The spherical Theorem of Pythagoras).   If the spherical  Δ 

ABC  has a right angle at  C,  then 

 

    cos c  =  cos a cos b. 

            

 

PROPOSITION 3.3.5(The hyperbolic Theorem of Pythagoras). If the hyperbolic  Δ 

ABC  has a right angle at  C,  then 

 

    cosh c  =  cosh a cosh b. 

            

EXERCISES 3.3D 

 
1. Derive the spherical Theorem of Pythagoras from Proposition 1.1.2. 
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2. Find the length of the hypotenuses of the three spherical isosceles right triangles whose legs have 

lengths 1, .1, .01 respectively.  Compare the answers to the lengths of the hypotenuses of the three 

Euclidean isosceles right triangles both of whose legs have lengths 1, .1, .01  respectively. 

3. Derive the hyperbolic Theorem of Pythagoras from Propositions 1.2.2. 

4. Find the length of the hypotenuses of the three hyperbolic right triangles whose legs have lengths 

1, .1, .01 respectively.  Compare the answers to the lengths of the hypotenuses of the three 

Euclidean triangles both of whose legs have lengths 1, .1, .01  respectively. 

5. Is there a taxicab version of the Theorem of Pythagoras? 

6. Is there a maxi version of the Theorem of Pythagoras? 

 

4.  Consequences of the Theorem of Pythagoras 
(optional) 

 

 

Book II of Euclid's Elements  contains a variety of consequences of the Theorem of 

Pythagoras of which only a sample are presented here.  The first of these is tantamount to 

a construction of the Golden Ratio.  This proposition will be used later in the construction 

of the regular pentagon. 

 

PROPOSITION 3.4.1(II.6).  To cut a given line segment so that the rectangle 

contained by the whole and one of the segments is equal to the square on the remaining 

segment. 

GIVEN:  Line segment  AB  (Fig. 3.28). 

TO CONSTRUCT:  A point  C  on  AB  such that  AB⋅BC  =  AC2 . 

 

 

Figure 3.28 
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CONSTRUCTION:  At  B  construct  BD ' AB  and  BD = 
1
2  AB.  Join  AD,  let  E  be the 

point  on  AD  such that  DE = DB  and let  C  be the point on  AB  such that  AC = AE.  

Then  C  is the required point. 

PROOF:  Set  AB = 2a.  Then  DE = BD = a  and 

 

 AC     =     AE     =      AD  -  DE     =     (2a)2 + a2   -  a     =     
 
( 5  - 1)a   

so that 

 AC2     =      ( 5  - 1)2a2     =     (5  -  2 5   +  1)a2     =     (6  -  2 5 )a2   

and 

 AB⋅BC     =     AB(AB - AC)     =     AB(AB  -  AE)  =  AB[AB  -  (AD  -  DE)]  =    

 2a[2a  -  ( 5 a - a)]     =     2(3  -  5 )a2     =    AC2 

           Q.E.D. 

 

 In the context of the above proposition, the common value   τ  of the ratios 

 

      
BC
AC      =     

AC
AB       =    

AD - DE
AB     =   

( 5 - 1)a
2a       =     

5 - 1
2       =     0.618... 

    

is called the Golden Ratio.  While of demonstrated mathematical interest, this quantity 

has also been the subject of much nonsensical speculation.  Typical of this latter variety is 

an article that reports that the average ratio of the height of a man's navel off the ground 

to his height equals the Golden ratio. 

 The following two propositions constitute Euclid's analog of the modern day Law 

of Cosines.  Their proofs are relegated to the exercises. 

 

PROPOSITION 3.4.2(II.12).  In obtuse-angled triangles the square on the side 

subtending the obtuse angle is greater than the squares on the sides containing the obtuse 
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angle by twice the rectangle contained by one of the sides about the obtuse angle, namely 

that on which the perpendicular falls, and the straight line cut off outside by the 

perpendicular towards the obtuse angle. 

GIVEN:  Δ ABC,   ∠ BAC  >  right angle,    CD' AB  (Fig. 3.29). 

TO PROVE:  BC2     =     AB2  +  AC2  +  2AB⋅AD. 

 

 

Figure 3.29 

 

PROOF:  See Exercise 2. 

 

PROPOSITION 3.4.3(II.13).  In acute-angled triangles the square on the side 

subtending the obtuse angle is greater than the squares on the sides containing the obtuse 

angle by twice the rectangle contained by one of the sides about the obtuse angle, namely 

that on which the perpendicular falls, and the straight line cut off within by the 

perpendicular towards the acute angle. 

GIVEN: Δ ABC,   ∠ BAC  <  right angle,    CD' AB  (Fig. 3.30). 

TO PROVE: BC2     =     AB2  +  AC2  -  2AB⋅AD. 

 

 

Figure 3.30 
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PROOF:  See Exercise 3. 

 

EXERCISES 3.4A 

 
1. Explain the relation of Proposition 3.4.2 to the Law of Cosines of the trigonometry of the 

 Euclidean plane. 

2. Prove Proposition 3.4.2. 

3. Explain the relation of Proposition 3.4.3 to the Law of Cosines of the trigonometry of the 

 Euclidean plane. 

4. Prove Proposition 3.4.3. 

 

 Assuming a unit length and a segment of length  r  units,  the next proposition 

deals with the construction of a line segment of length  r   units.  The statement that 

appears here is weaker than that of Euclid's, but it is sufficient for this text's purposes and 

obviates the need for the omitted Proposition I.45.  Euclid's version appears in Exercise 2. 

 

PROPOSITION 3.4.4(II.14).  To construct a square equal to a given rectangle. 

GIVEN:   BCDE   (Fig. 3.31). 

TO CONSTRUCT:  Line segment  EH  such that    EH2  =  ` BCDE. 

     

B

C D

H

G E F

 

Figure 3.31 

 

CONSTRUCTION:  If  BE = ED  then  BE  is the required line segment.  Otherwise, it 

may be assumed without loss of generality that  BE > ED.  Extend  BE  to  F  so that  EF  
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=  DE  and let  G  be the midpoint of  BF.  Let  H  be an intersection of the straight line 

through  E  perpendicular to  BF  with the circle (G; BG).  Then  EH  is the required line 

segment. 

PROOF:  By the Theorem of Pythagoras, 

 

 EH2    =    GH2  -  GE2    =    (GH + GE)(GH - GE)    =    (BG + GE)(GF - GE) 

 

 =     BE⋅EF    =     BE⋅ED    =      BCDE . 

           Q.E.D. 

 

An alternative proof of the equation  EH2 = BE⋅EF   appears in Exercise 3.5C.16. 

 

EXERCISES 3.4B 

 

1. Assume that a line segment of length  1 inch  is given.  Construct a line segment whose length is: 

 a) 6  inch  b) 11  inch  c)  
4

2  inch 

 d) 
4

6  inch  e) 
4

11  inch 

2. Prove Euclid's Proposition II.14: To construct a square equal to a given polygon. 

 
 
 

5. Proportion and Similarity  
 

 

Euclid's definition of proportion is too intricate for the context and purpose of this text.  

Instead, a shortcut provided by the real number system is used.  Recall Euclid's tacit 

assumption that all geometrical figures have an aspect of size or magnitude.  Thus, lines, 

regions, solids, and angles, have lengths, areas, volumes, and angular measure 
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respectively.  If two figures of the same types have sizes  a  and  b  (relative to some 

unit), it is said that their ratio  is the real number  
a
b  .  The numbers  a, b, c, ...    are said 

to be proportional to the numbers  a', b', c', ...   provided that  

 

    
a
a'      =     

b
b'      =     

c
c'     =   ...    . 

 

 The next five propositions set up some algebraic preliminaries.  The first of these 

is, of course, none other than the Distributive Law and so requires no proof.  The rest are 

basic observations regarding proportions.   

 

PROPOSITION 3.5.1(V.1).  If  m, a, b, c,   are any numbers, then   

 

  ma  +  mb  +  mc  +  ...     =     m(a  +  b  +  c  +  ...) 

            

 

PROPOSITION 3.5.2(V.12).  If   a, b, c, ...  are proportional to  a', b', c', ...  then 

 

  
a
a'      =     

b
b'      =     

c
c'     =   ...    =     

a  +  b  +  c  +  ...
a'  +  b'  +  c'  +  ...   . 

 

GIVEN:  
a
a'      =     

b
b'      =     

c
c'     =   ...   . 

TO PROVE:  
a
a'      =     

b
b'      =     

c
c'     =   ...    =     

a  +  b  +  c  +  ...
a'  +  b'  +  c'  +  ...   . 

PROOF:  Let   k     =       
a
a'      =     

b
b'      =     

c
c'     =   ...  .  Then 

  a  =  ka', b  =  kb', c  =  kc', ... 

 ∴ a  +  b  +  c  +  ...    =    ka'  +  kb'  +  kc'  +  ...    =   k(a  +  b  +  c  +  ...) 

 

 ∴ 
a  +  b  +  c  +  ...

a'  +  b'  +  c'  +  ...      =     k    =     
a
a'      =     

b
b'      =     

c
c'     =   ...  .  
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           Q.E.D. 

 

PROPOSITION 3.5.3(V.16).   
a
a'   =  

b
b'       if and only if     

a
b   =  

a'
b'    . 

 See Exercise 8. 

 

PROPOSITION 3.5.4(V.17). If    
a
a'   =  

b
b'     then   

a - a'
a'    =  

b - b'
b    . 

See Exercise 9. 

 

PROPOSITION 3.5.5(V.18). If    
a
a'   =  

b
b'     then   

a + a'
a'    =  

b + b'
b    . 

See Exercise 10. 

 

EXERCISES 3.5A 

 
In Exercises  1-7   prove the stated equalities on the basis of the assumption that  a, b, c, d are proportional 

to  a', b', c', d'. 

 

1. 
a
a'   =  

4a - 3b + 2c +7d
4a' -3b' + 2c' + 7d'  

2. 
a

2

a'
2   =   

4a
2
 - 3b

2
 + 2c

2
 +7d

2

4a'
2
 -3b'

2
 + 2c'

2
 + 7d'

2  

3. 
a
a'   =  

a
2
 + 2b

2
 - 3c

2
 + 5d

2

a'
2
 + 2b'

2
 - 3c'

2
 + 5d'

2
  

€ 

4. a
3

′ a 3
=

a3 − b3 + c 3 − d3

′ a 3 − ′ b 3 + ′ c 3 − ′ d 3  
5. 

a + 3b
a - 3b    =  

c + 3d
c - 3d   

6. 
a

 
- 3c

a + 3c   =  
b - 3d
b + 3d  

7. 
a

2
 + 3d

2

a
2
 - 3d

2    =  
c
2
 + 3b

2

c
2
 - 3b

2   

8. Prove Proposition 3.5.3. 

9. Prove Proposition 3.5.4. 

10. Prove Proposition 3.5.6. 
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PROPOSITION 3.5.6(VI.2).  If a straight line meets two sides of a triangle, then it 

is parallel to the third side if and only if it cuts them into proportional segments. 

GIVEN:  Δ ABC,  points  D  and  E  on  

€ 

↔
AB  and  

€ 

↔
CD  respectively  (Fig. 3.32). 

TO PROVE:  1. If  DE || BC  then  
AD
DB   =  

AE
EC   

  2. If    
AD
DB   =  

AE
EC    then  DE || BC. 

 

 

Figure 3.32 

 

Proof of 1: Join  CD  and  BE.  Then, since  DE || BC 

  Δ BDE     =     Δ CDE     [PN 3.2.6] 

  Δ ADE     =     Δ ADE 

 ∴ Δ ABE     =     Δ ACD      [CN 2] 
 

 ∴ 
Δ ABE
Δ ADE      =     

ΔACD
ΔADE   

 Let  EG  and  DH  be altitudes of  Δ ADE.  Then it follows from the above that  
 

  

€ 

AB ⋅GE
AD ⋅GE

=
AC ⋅DH
AE ⋅DH     [PN 3.2.5] 

 

 ∴ 
AB
AD      =     

AC
AE   

  

 ∴ 
DB
AD      =     

EC
AE       [PN 3.5.4] 
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 ∴ 
AD
DB      =     

AE
EC  

Proof of 2: Using the same construction as above, it is only necessary to reverse the 

order of the steps of the above argument (Exercise 1). 

           Q.E.D. 

 

 The proof of the above theorem depends superficially on the additional 

assumption that the point  D  lies between  A  and  B.  Exercises 15-17 rectify this minor 

flaw. 

 

EXERCISES 3.5B 

 
1. Complete the proof of Proposition 3.5.6. 

2. Prove that the straight line that bisects one side of a triangle and is parallel to a second side also 

bisects the third side. 

3. Use Proposition 3.5.6 (twice) to prove that the line segment joining the midpoints of two sides of 

the triangle is parallel to the third side and equals half its length.  

4. The point  K  is on the side  AB  of  Δ ABC,  points  L, M  are on side  AC,  so that  KL || BM  and  

KM || BC.  Prove that  
AL
AM   =  

AM
AC  . 

5. Point  O  is not on any of the sides of  Δ ABC  or their extensions, and K, L, M  are on  OA, OB, 

OC  respectively so that  KL || AB  and  LM || BC.  Prove that  KM || AC.  

6. Prove that if  D  is any point on the side  BC  of  Δ ABC,  then  AD  bisects the interior angle at  A  

if and only if  
AB
AC   =  

BD
DC   .  

7. Prove that if  E  is any point on the extension of side  BC of  Δ ABC,  then  AE  bisects the exterior 

angle at  A  if and only if  
AB
AC   =  

BE
EC  .   

8. Prove that if the straight lines  m1, m2, ..., mn  are all parallel to one side of a triangle and they cut 

off equal segments on a second side, then they also cut off equal segments on the third side.  

9. Divide a given line segment into three equal parts. 

10. Let  n  be a given positive integer.  Divide a given line segment into  n  equal parts. 

11. Let  m  and  n  be given positive integers.  Divide a given line segment into two parts whose ratio 

is  m/n. 

12. Let  a, b, c  be three given line segments.  Divide  a  into two parts whose ratio equals  b/c. 
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13. Let  a, b, c  be three given line segments.  Construct a line segment  x  such that   

 
a
b   =  

c
x  . 

14. Let  a, b  be two given line segments.  Construct a line segment  x  such that  
a
x   =  

x
b . 

15. Show that the proof of Proposition 3.5.6 still holds, with minor modifications, when  A  lies in 

between  B  and  D. 

16. Show that the proof of Proposition 3.5.6 still holds, with minor modifications, when  B  lies in 

between  A  and  D. 

17. Does the proof of Proposition 3.5.6  require any other corrections? 
18. Comment on Proposition 3.5.6 in the context of the following geometries: 

 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 

19. Use the spherical trigonometry formulas to experiment with comparing the length of the line 

joining the midpoints of two sides of a spherical triangle with that of the third side (see Exercise 2 

above).  Form a conjecture regarding the relative sizes of these two geodesic segments. 

20. Use the hyperbolic trigonometry formulas to experiment with comparing the length of the line 

joining the midpoints of two sides of a hyperbolic triangle with that of the third side (see Exercise 

2 above).  Form a conjecture regarding the relative sizes of these two geodesic segments.. 

21. Comment on Exercise 19  in the context of taxicab geometry. 

22. Comment on Exercise 19  in the context of maxi geometry. 
23. Construct Δ ABC given the following data: a)   a, mb, mc b)   ma, mb, mc. 

24(C). Use a computer application to verify part 1 of Proposition 3.5.6. 

 

 Similar polygons are those whose corresponding angles are equal and whose 

corresponding sides are proportional.  Congruent triangles are similar (Exercise 2)  and 

the relation of similarity is transitive (Exercise 3).  If  Δ ABC  and  Δ DEF  are similar 

this is denoted by   Δ ABC ∼ Δ DEF  where it is implicit that  A, B, C  correspond to  D, 

E, F  respectively, as was the case for congruent triangles.  The next proposition is known 

as the AAA similarity theorem. 

 

PROPOSITION 3.5.7(VI.4).  Equiangular triangles are similar. 

GIVEN:  Δ ABC, Δ DEF   ∠ ABC = ∠ DEF,   ∠ ACB = ∠ DFE,    ∠ BAC = ∠ EDF 

(Fig. 3.33) 
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TO PROVE:  
AB
DE   =  

BC
EF   =   

AC
DF  . 

 

 

Figure 3.33 

 

PROOF:  If any side of  Δ ABC  equals the corresponding side of  Δ DEF  then the two 

triangles are congruent [ASA] .  Hence it may be assumed without loss of generality that  

AB < DE.  Let  G  be a point in the interior of  DE  such that  DG = AB.  Let  H  be the 

intersection of the straight line parallel to  EF  through  G  with  DF.  Then 

 

  
GE
DG      =     

HF
DH       [PN 3.5.6] 

  

  
DE
DG      =     

DF
DH       [PN 3.5.5] 

 However,   Δ ABC ≅ Δ DEF   by  ASA  because 

  ∠ 2     =     ∠ 2'     [Both equal  ∠ 3] 

  AB     =     DG      [Construction] 

  ∠ 1    =     ∠ 4      [Given] 

 ∴ AC     =     DH 
 

 ∴ 
AB
DE      =     

DG
DE      =     

DH
DF     =     

AC
DF  

 

A similar argument can be used to prove that    
BC
EF  =  

AC
DF  

           Q.E.D. 
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 The following similarity theorems  are known as the SSS  and  SAS similarity 

theorems, not to be confused with the SSS  and  SSA  congruence theorems, and their 

proofs are relegated to Exercises 5 and 6 respectively. 

 

PROPOSITION 3.5.8(VI.5). If two triangles have their sides proportional then the 

triangles are similar. 

            

PROPOSITION 3.5.9(VI.6).  If two triangles have one angle equal to one angle and 

the sides about those angles are proportional, then the triangles are similar. 

            

 In view of the fact that the sum of the angles of every Euclidean triangle is  180o,  

it follows that the conclusion of Proposition 3.5.7 holds even when only two of the angles 

of one triangle are known to be equal to the corresponding angles  of the other triangle. 

 

EXERCISES 3.5C 

 
1. Complete the proof of Proposition 3.5.7. 

2. Prove that congruent triangles are similar. 

3. Prove that if  Δ ABC  is similar to  Δ A'B'C'  and  Δ A'B'C'  is similar to  Δ A"B"C",  then  Δ ABC  

is similar to  Δ  A"B"C". 

4. Prove Proposition 3.5.8. 

5. Prove Proposition 3.5.9. 

6. Prove that in similar triangles corresponding altitudes are proportional to corresponding sides. 

7. Prove that in similar triangles corresponding medians are proportional to corresponding sides. 

8. Prove that in similar triangles the corresponding angle bisectors are proportional to the 

corresponding sides. 

9. Prove that the areas of similar triangles are proportional to the squares of their corresponding 

sides. 

10. Prove that the areas of similar polygons are proportional to the squares of their corresponding 

sides (VI.19). 
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11. Three parallel straight lines cut the straight lines  m  and  n  in the points  A, B, C,  and   K, L, M.  

respectively.  Prove that  
AB
BC   =  

KL
LM  .   

12. In  ~ ABCD  the straight line  BKLM  cuts the diagonal  AC  in the point  K  and the (possibly 

extended) sides  AD  and  CD  in the points  L  and  M  respectively.  Prove that  
BK
KL   =  

KM
BK   . 

13. In  ~ ABCD  the straight line  BKN  cuts the (possibly extended) sides CD  and  AD  in the points  

K  and  N  respectively.  Prove that  
AD
DN   =  

CK
KD  

14. Prove that the intersection point of two of a triangle's altitudes divides them so that the product of 

each altitude's segments equals the product of the other's segments. 

15. Prove Euclid's Proposition VI.8:  If in a right triangle a perpendicular be drawn from the right  

angle to the opposite side,  then the triangles so formed are similar to each other and to the given 

triangle. 

16. Prove Euclid's Proposition VI.13:  The square of the altitude to the hypotenuse of a right triangle 

equals the product of the segments it determines on the hypotenuse. 

17. Prove Euclid's Proposition VI.31:  If similar polygons are constructed on the sides of a right 

triangle, then the polygon on the hypotenuse equals the sum of the polygons on the other two 

sides.  

18. Describe the locus of all the points whose distances from the sides of a given angle have a ratio 

equal to that of two given line segments. 

19. Given an angle and a point  A  inside it,  construct through  A  a straight line whose portion 

between the sides of the angle is divided by  A  into segments whose ratio equals that of two given 

line segments. 

20. Given an angle and a point  A  inside it, find a point  P  on one side of the angle whose distance 

from  A  equals its distance from the other side of the angle.  (How many solutions are there?) 

21. Prove that the perimeters of similar triangles are proportional to their corresponding sides. 

22. Prove that the perimeters of similar polygons are proportional to their corresponding sides. 
23. A straight line through the intersection of the diagonals of a trapezoid is parallel to its parallel 

sides.  Prove that the segment between the non-parallel sides is bisected by the intersection of the 

diagonals. 

24. Prove that in a trapezoid the line joining the midpoint of one of the parallel sides to the 

intersection of the diagonals bisects both the parallel sides.  

25. Prove that in a trapezoid which is not a parallelogram the straight line joining the intersection of 

the diagonals to the intersection of the non-parallel sides bisects both the parallel sides. 
26. Comment on Proposition 3.5.7 in the context of the following geometries: 

 a)   spherical; b)   hyperbolic; c)   taxicab; d)   maxi. 
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CHAPTER REVIEW EXERCISES 

 
1. Let  P  be a point in the interior of the equilateral Δ ABC.  Prove that the sum of the perpendicular 

segments from  P  to the sides of the triangle is constant. 

2. The diagonals of a trapezoid cut each other into segments that are proportional to the parallel sides 

of the trapezoid. 

3. Suppose the non-parallel sides of a trapezoid are equal.  Prove the following. 

 i) The two angles adjacent to the same base are equal. 

 ii) The diagonals are equal. 

 iii) The diagonals intersect in a point that lies on the straight line joining the 

 midpoints of the unequal sides.  

 iv) The diagonals divide each other into respectively equal segments. 

 v) The midpoints of the four sides form a rhombus. 

4. Find a simple expression for the angle between two of a triangle's angle  bisectors. 

5. A straight line through the vertex of a triangle divides it into two triangles that are similar to each 

other and to the original triangle.  Prove that the given triangle is a right triangle. 

6. In  ~ ABCD  a straight line parallel to  AB  intersects  AD, AC, and  BC  in the points  P, Q, R  

respectively.  Prove that  Δ APR = Δ AQD. 
7. In  Δ ABC,  ma = BC/2.  Prove that  ∠ CAB  is a right angle. 

8. In Δ ABC,  ∠ BAC  =  2  ∠  ABC. Prove that  a
2
 = b(b + c).  

9. In  ~ ABCD  M  and  N  are the midpoints of the opposite sides  AB  and  CD.  Prove that the 

straight lines  DM  and  BN  divide the diagonal  AC  into three equal segments. 

10. Suppose that  ∠ ACB  of  Δ ABC  is obtuse and the perpendicular bisectors to  AC  and  BC  

intersect  AB  in the points  D  and  E  respectively.  Prove that  ∠DCE  =  2(∠ ACB - 90
o
). 

11. From a point on the base of an isosceles triangle straight lines parallel to the triangle's other sides 

are drawn.  Prove that the perimeter of the parallelogram thus formed is independent of the 

position of the point on the base. 

12. Prove that the bisectors of the two angles formed by the opposite pairs of sides of a convex 

quadrilateral intersect in angle that equals half the sum of two opposite angles of the quadrilateral. 

13. Prove that the median and the altitude to the hypotenuse of a right triangle form an angle that 

equals the difference of the triangle's other two angles. 

14*. In  ΔABC,  AB = AC,  E  and  D  are on the sides  AB  and  AC  respectively,  and  ∠ABD = 20
0
, 

∠CBD = 60
o
, ∠BCE = 50

o
, and ∠ACE = 30

o.  Find ∠EDB. 
15. Are the following statements true or false? Justify your answers. 

a) Playfair’s postulate is valid in neutral geometry. 



 CHAPTER REVIEW 

 3.51 

b) Playfair’s postulate is valid in Euclidean geometry. 

c) Playfair’s postulate is valid in spherical geometry. 

d) Playfair’s postulate is valid in hyperbolic geometry. 

e) Playfair’s postulate is valid in taxicab geometry. 

f) If in a quadrilateral one pair of opposite sides are equal, as are one pair of opposite 

angles, then the quadrilateral is a parallelogram. 

g) There is a Euclidian right triangle with sides  287, 816, 865. 

h) There is a neutral right triangle with sides  287, 816, 865. 

i) There is a spherical right triangle with sides  287, 816, 865. 

j) There is a hyperbolic right triangle with sides  287, 816, 865. 

k) There is a taxicab right triangle with sides  287, 816, 865. 

l) If the corresponding sides of two triangles are proportional then so are their 

corresponding angles. 

m) Equiangular triangles are similar. 

n) The corresponding sides of equiangular quadrilaterals are proportional. 

o) If the corresponding angles of two quadrilaterals on the surface of a sphere are equal, 

then so are their areas. 

p) Equiangular quadrilaterals are similar. 
 


