2.1 INTRODUCTION

CHAPTER 2

The Neutral Geometry of
the Triangle

1. Introduction

It is common knowledge that most of the methods and tools of elementary mathematics
were developed independently thousands of years ago by many cultures, of which the
most influential were those of Babylonia, Egypt, China, and India. These skills usually
included a collection of rules for the computation of the areas of figures and plots, as well
as the volumes of solids and containers, from which geometry is descended (in Greek
geo-"earth” and metron-"a measure”). Such rules were often poorly justified, if at all,
and in some cases provided only an approximation to the exact value in question.
Moreover these rules were never stated in their generality. Instead, they were
exemplified by means of specific computations. Thus, nowhere in the surviving writings
of the Egyptian scribes is there found a formula for the calculation of the area of a circle
of a given radius. Instead, the Rhind Mathematical Papyrus, which dates to 1650 B.C. or

earlier, contains the following computation:

Example of a round field of a diameter 9 khet. What is its area? Take away 1/9 of the
diameter, 1; the remainder is 8. Multiply 8 times 8; it makes 64. Therefore it contains

64 setat of land.
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It is, of course, reasonable to second-guess this papyrus’s scribe and to claim that the
general formula that underlies his worked out example is

1 » 8d »
A=W-3d° = C5)

but the fact of the matter is that no such explicit formulas have ever been found amongst
any of the surviving Egyptian manuscripts. They probably did not exist and it is for this
reason that this kind of geometry has been called subconscious geometry.

The naive geometry of these ancient cultures was transformed by the Greeks of
the sixth and fifth centuries B.C. into a deductive science that is completely modern in
spirit. Their contribution was twofold. They invented the abstract statements that are
today called theorems and showed how these theorems could be demonstrated in a
purely logical manner. The first steps in this direction seem to have been taken by Thales
(c. 640 - c. 546 B.C.) of Miletus, on the west coast of Asia Minor. While nothing is
known with certainty about him, he is credited with having either stated or proved the

following results:

1. A circle is bisected by any diameter.

2. The base angles of an isosceles triangle are equal to each other.

3. The vertical angles formed by two intersecting straight lines are equal.
4. Two triangles are congruent if they have two angles and one side in each

respectively equal.

5. An angle inscribed in a semicircle is a right angle.

These results are, of course, quite elementary and Thales’s accomplishment lies in his

recognition of the value of abstract statements. He is also reputed to have traveled widely
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and legend has it that he amazed the Egyptian sages by computing the heights of the
pyramids (probably by means of similar triangles).

Pythagoras (c. 585 - ¢. 580 B.C.) is believed to have studied with Thales and then
moved to southern Italy where he founded his own school. In this school he taught a
mixture of philosophy, science, and religion that also included a fair amount of
mathematics. One of the tenets of the Pythagorean faith was the belief that the positive
integers were the ultimate components of the universe. For example, if one taut string is
double the length of another, plucking them will result in two notes that are exactly one
octave apart. If the lengths of the strings have ratio 3 to 2, then the shorter one will
produce a note that is recognized by musicians as being a fifth above the note of the
longer string. Similarly, the visual world could be reduced to numbers by endowing the
latter with shapes. Thus, 1, 3,6, 10, ... were called triangular numbers because the

corresponding number of dots could be organized into triangles (Fig. 2.1). The square

Figure 2.1

numbers were, of course, 1,4,9, 16, ... (Fig. 2.2). These visual representations of the

Figure 2.2

integers are mathematically fruitful. Figure 2.3 makes it clear that the sum of two
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consecutive triangular numbers is a square number, and Figure 2.4 makes a convincing
case that the sum of any sequence of consecutive odd integers that begins with 1 is in
fact also a square number. Given their other discoveries, it is hard to believe that the
Pythagoreans failed to notice these interesting relationships. They are supposed to have
discovered all the theorems regarding triangles, polygons, and circles that are taught as
part of today’s high school curriculum, including the fact that the sum of the angles of a
triangle is 180° and, of course, the Theorem of Pythagoras. In addition, they also had
some knowledge of the tilings and the regular solids that are discussed in Chapters 7 and
8 of this book.

The Pythagoreans’ preoccupation with integers eventually led them to the
realization that the length of the diagonal of a square of unit side is not expressible as the
ratio of two integers. In other words, \[2 is irrational. This discovery must have been
disconcerting because it conflicted with the aforementioned doctrine that the universe can
be expressed in terms of integers. Reportedly, its discoverer, Hippasus of Metapontum,
was drowned for his bad tidings. Eventually, the Greeks, if not the Pythagoreans
themselves, resigned themselves to the existence of irrational numbers and went on to
develop a theory of incommensurable numbers that made it possible to incorporate them
into the general framework of mathematics.

The irrationality of \2 is, of course, an interesting and important mathematical
fact. Equally significant, however, are its implications regarding the high level of rigor

the Greeks of the fifth century attained. All known proofs of this irrationality are subtle;
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no visually immediate proof of the type displayed in Figures 2.3 and 2.4 exists. It is
therefore safe to assume that by this time geometry had matured no only in the
abstraction of its concepts but also in the rigor of its arguments. Anyone who can
produce a convincing proof of such a surprising and counterintuitive fact as the
irrationality of \2 must have logical standards at least equal to those of today’s
graduate mathematics students.

The sophists, a group of itinerant professional teachers, the earliest of whom
studied with Pythagoras, did much to further the cause of geometry by incorporating it
into their curriculum (which also included grammar, rhetoric, dialectics, eloquence,
morals, astronomy, and philosophy). Since they promoted themselves as practical
trainers in the art of persuasion as preparation for political and legal careers, they must
have considered the abstraction and logical argumentation of geometry as a valuable

pedagogical tool. As Plato says in The Republic:

... with respect to finer reception of all studies, we surely know there is a general and
complete difference between the man who has been devoted to geometry and the one who

has not.

None of several geometry books that preceded Euclid’s have survived. The first of
those was written by Hippocrates of Chios (circa 460-380 B.C.). The most important and
innovative was, without doubt, that of Eudoxus (408 - ¢. 355 B.C.) who, amongst other
accomplishments, invented the method of exhaustion, a calculus-like discipline.

Euclid of Alexandria wrote his famous book The Elements circa 300 BC. This
book codified some of the state of the art of geometry at the time, although much was

omitted too. It actually consists of thirteen books whose contents are

Books I-IV:  The Geometry of Triangles and Circles
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Books V-VI: Theory of Geometric Proportions
Books VII-IX: Theory of Numbers
Book X: Theory of Irrational Surds

Books XI-XIII: Solid Geometry.

For two thousands years The Elements remained the standard text for geometry
throughout the world. It was translated into many languages and over a thousand printed
editions have been published since 1482. After the Bible, it is Western Civilization’s
most influential book. The first alternative exposition of geometry was offered by the
French mathematician Adrien-Marie Legendre (1752 - 1833) in 1794. The discovery of
non-Euclidean geometry in the nineteenth century forced mathematicians to reexamine
the foundations of geometry from a much more critical point of view. A variety of gaps
and flaws were found and this work culminated in David Hilbert’s (1862 - 1943) The
Foundations of Geometry which appeared in 1899 and which set Euclidean geometry on
completely rigorous grounds (see Appendix E). Unfortunately this development, as well
as those promulgated subsequently by other mathematicians, suffers from the
pedagogical defect that the proofs of many “obvious” facts are quite difficult. Current
high school geometry texts resolve this difficulty by listing many such facts as axioms
rather than theorems. This, of course, is problematic because it opens up the possibility
of simply declaring all geometrical facts to be axioms. There has been a considerable
amount of experimentation with innovative ways of teaching geometry during the last
fifty years but, unfortunately, no consensus has been reached. In the process, much of the
concern with rigor that characterized the old fashioned teaching style has been sacrificed
in the name of reform and replaced with other, more accessible, visually appealing, or

contemporary, topics.
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EXERCISES 2.1A
1. Briefly describe the lives and accomplishments of the following predecessors of Euclid:
a) Thales b) Pythagoras c) Democritus
d) Anaxagoras e) Archytas f) Eudoxus
2) Hippocrates of Chios
2. Briefly describe the lives and accomplishments of the following successors of Euclid:
a) Archimedes b) Apollonius c) Ptolemy
d) Heron e) Menelaus f) Pappus
2) Proclus

2. Preliminaries

Quite appropriately, Euclid began his development with a list of definitions.

DEFINITIONS

1. A point is that which has no part.

By modern standards, at least, many of Euclid’s definitions are deficient and it
has been argued that they were added by a later commentator. This particular definition
is not proper because it is impossible to define a term by listing only the qualities it does
not have. Instead it should be viewed as an attempt on its author’s part to informally
convey the notion of a point - the ultimate indecomposable particle. Definitions 2 below
should be understood in the same way. Points will be denoted by upper case letters A, B,

C, ..

2. A line is breadthless length.
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2.2 PRELIMINARIES

Euclid's line is today's curve.

3. The extremities of a line are points.

No new terms are defined here. Euclid is simply clarifying the relation between

the points and the lines defined above.

4. A straight line is a line which lies evenly with the points on itself.

This sentence is obscure. In the author’s opinion, the points of this definition are
the two extremities mentioned in the previous one. In other words, of all the lines having
the same extremities, the straight line is that one which lies exactly in between those

extremities.

It is customary to conclude from Definitions 3 and 4 that Euclid implicitly
assumed a straight line to have finite length so that it necessarily has endpoints. The
phrasing of Propositions 2.3.10 and 2.3.15 (amongst others) below indicates that this
view may not be entirely correct. When necessary, Euclid had no qualms about referring
to the infinite line that extends indefinitely in both directions. Many of today’s texts,
although by no means all, use AB to denote the finite straight line segment joining A
and B, AB for its length, and AB for the infinite straight line that contains both A and
B. Like Euclid, this text will gloss over the distinction between the first two and use AB
for both. When necessary, either the double arrow notation or a lower case letter will be

used for the infinite line. Similarly, AB denotes the ray or halfline which consists of that

half of AB that begins at A, extends indefinitely, and contains B.
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5. A surface is that which has length and breadth only.

6. The extremities of a surface are lines.

It is implicit in this definition that every surface is necessarily of finite extent.

7. A plane surface is a surface which lies evenly with the straight lines on itself.

This should be interpreted in a manner similar to that of Definition 4. A finite

plane surface is characterized by the fact that it lies exactly in between its border lines.

8. A plane angle is the inclination to one another of two lines in a plane which meet

one another and do not lie in a straight line.

9. And when the lines containing the angle are straight, the angle is called

rectilineal.

Notwithstanding the fact that Euclid seems to be displaying here an interest in
curvilinear angles, he subsequently referred to such angles only once, in Proposition
II1.16, to make a point that is of little interest. It has been posited that the geometers of
the time were dallying with such angles without coming to any serious conclusions, and
that Euclid felt it necessary to acknowledge their efforts.

Since it is unclear what is meant by the inclination of two lines, an angle is
defined here as either of the two portions of the plane bounded by a pair of rays that
emanate from the same point. By extension, any pair of line segments with a common
endpoint also determines two angles. The lines forming the angle are its sides and the
intersection of the sides is the angle's verfex. An angle that has vertex A and sides AB

and AC will be denoted by £ BAC (or £ CAB). Definition 8 excludes the possibility
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that AB and AC determine the same infinite straight line. I.e., Euclid excluded the 0°
and 180° angles from his definition, possibly because zero was not then recognized as a
number. This has both advantages and disadvantages and this text will not follow his
lead in this instance. Thus, if A, B, C are consecutive points on a straight line, then

£ ABC is a straight angle and £ BAC and £ BCA are zero angles.

10. When a straight line set up on another straight line makes the adjacent angles
equal to one another, each of the equal angles is right, and the straight line standing on

the other is called a perpendicular to that on which it stands.

The existence of right angles is demonstrated in Proposition 2.3.11. This is also
Euclid’s first mention of the notion of equality, and it is not clear whether he is referring
to equality of measure or congruence. This issue is discussed in detail in the paragraphs
dealing with the Common Notions below.

11.  An obtuse angle is an angle greater than a right angle.

12.  An acute angle is an angle less than a right angle.

13. A boundary is that which is an extremity of anything.

14. A figure is that which is contained by any boundary or boundaries.

15. A circle is a plane figure contained by one line such that all the straight lines

falling upon it from one point among those lying within the figure are equal to one

another.
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16.  And that point is called the center of the circle.

17. A diameter of the circle is any straight line drawn through the center and
terminated in both directions by the circumference of the circle, and such a straight line

also bisects the circle.

18. A semicircle is the figure contained by the diameter and the circumference cut off

by it. And the center of the semicircle is the same as that of the circle.

19. Rectilineal figures are those which are contained by straight lines, trilateral
figures [or triangles] being those contained by three, quadrilateral those contained by

four, and multilateral those contained by more than four straight lines.

These rectilineal figures are today’s polygons and the straight line segments
containing them are their sides. The endpoints of the sides of a polygons are its vertices.
It is implicit in Euclid's definition that every vertex lies on only two sides and every two
sides intersect only in a vertex. A straight line joining two vertices that are not the
endpoints of a side is a diagonal. A polygon that contains all of its diagonals in its

interior is said to be convex. The triangle with vertices A, B, C is denoted by A ABC.

20. Of trilateral figures, an equilateral triangle is that which has three sides equal,
and isosceles triangle that which has two of its sides alone equal, and a scalene triangle

that which has its three sides unequal.

According to this definition equilateral triangles are not isosceles triangles. This
unimportant distinction is contrary to modern usage, which sees an equilateral triangle as

a special kind of isosceles triangle, and will be ignored here. It is customary to refer to a
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side of an isosceles triangle as its base provided the other two sides are equal to each

other.

21.  Further, of trilateral figures, a right-angled triangle [or right triangle] is that
which has a right angle, an obtuse-angled triangle that which has an obtuse angle, and

an acute-angled triangle that which has its three angles acute.

22. Of quadrilateral figures, a square is that which is both equilateral and right-
angled; an oblong [rectangle] that which is right-angled but not equilateral; a thombus
that which is equilateral but not right-angled; and a rhomboid [parallelogram] that which
has its opposite sides and angles equal to one another but is neither equilateral not right-

angled. And let quadrilaterals other than these be called trapezia.

Once again, Euclid's definitions do not completely agree with modern usage. To
us a parallelogram is a quadrilateral whose opposite sides are parallel (see Definition 23
below), a rectangle is a parallelogram whose angles are all right angles, a rhombus is a
parallelogram all of whose sides are equal, and a square is a figure that is both a rectangle
and a thombus. The parallelogram ABCD is denoted by ABCD, the rectangle
ABCD is denoted by ABCD, and the square ABCD is denoted by 71 ABCD.

23. Parallel straight lines are straight lines which, being in the same plane and being

produced indefinitely in both directions, do not meet one another in either direction.

If the straight lines AB and CD are parallel, this is denoted by AB Il CD.
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By the time Euclid came to write The Elements the Greeks had amassed
thousands of theorems. As is the case today, the proofs of many of these relied on other
theorems. In order to eliminate the possibility of cyclical reasoning, it was necessary to
create a list of the fundamental theorems in which each proof cited only definitions,
previously proved theorems, or both. It must have come as a surprise to the Greek
geometers to discover that such a list was impossible. The starting point of such a list
could not consist of definitions alone - some theorems must be accepted without
justifications. These unproven theorems were called axioms or postulates. Just which
theorems should serve as postulates is a question that must be resolved on subjective
grounds. It often happens that one mathematician’s postulate is another’s proven
theorem. It is very likely that Euclid's choice of postulates was based to a large extent on
the various textbooks to which he had access. Later generations modified his choices in
many ways, and two well known systems appear in Appendices C, D, and E.

One informal principle that guides mathematicians in their selection of postulates
is that of austerity. A postulate should be a simple, easily parsed, statement.
Nevertheless, as will be seen below, there are important exceptions to this rule.

Euclid began with ten axioms. The first five are called postulates and the other
common notions (the meaning of this term will be clarified soon). These were followed
by 462 theorems that are called propositions (there is no difference between propositions
and theorems). The truth of the matter is that the view of The Elements as a well
grounded and logically consistent ordering of theorems is to be understood as an ideal
only because Euclid's organization of geometry is flawed. There are several instances
where undefined terms and unstated postulates appear in his arguments. Some of these
are minor errors, but the correction of others would require considerable revision of the
material. Nevertheless, because of its vision and because of its logical strength, Euclid's
opus is justly regarded as one of the supreme achievements of Greek Civilization in

particular and of the human mind in general. Euclid's choice of postulates are now listed.
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POSTULATES

Let the following be postulated.:

1. To draw a straight line from any point to any point.

Taken at face value, this postulate merely states that every pair of distinct points
can be joined by a straight line. However, in view of some of the arguments given in the
proof of Proposition 2.3.4 and elsewhere, it is necessary to conclude that Euclid
understood this statement to include the additional assumption that any two points can be

joined by at most one straight line.

2. To produce a finite straight line continuously in a straight line.

One of the implications of this postulate is that both the plane and space extend
infinitely far in all directions. The reason that it is stated in terms of extendibility rather
than extent is that the Greek mathematicians were aware of the logical complications
inherent in the concept of infinity and therefore avoided its explicit mention whenever

possible.

3. To describe a circle with any center and distance.

In this postulate Euclid is not asserting the existence of a circle. This existence
actually follows from Postulate 2 which implies that given any point A, straight line m
through A, and proposed radius r, there exists a point P on m such that AP =r. The

set of all such points P is the proposed circle with center A and radius r (Fig. 2.5).
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Rather, Euclid is stating here that he intends to use such circles as building blocks in the
logical tower he is setting out to construct. Alternatively, one can think of Euclidean

geometry as a solitaire game whose legitimate moves are these postulates.

Figure 2.5 Regarding the existence of circles.

The statement of Proposition 2.3.2 below makes it clear that this postulate is to be
interpreted in a very narrow sense. Namely, given a point A and a line segment AB
there exists a circle with center A and radius AB. The postulate does not say that given
a point A and a line segment BC there is a circle with center A and radius equal to
BC. This latter statement, which is considerably stronger than Postulate 3, is in fact the
content of Proposition 2.3.2 below. The distinction between Postulate 3 and Proposition
2.3.2 is rephrased by modern mathematicians by saying that their Greek predecessors
used collapsible compasses whose legs lost their angle whenever the compass was lifted
off the paper. This statement is, of course, a metaphor and should not be taken literally.
The circle with center A and radius AB or r is denoted in this text by (A; AB) or

(A, ).

4. That all right angles are equal to one another.

Euclid chose to use the right angle as his theoretical unit for measuring all
rectilineal angles (degrees were used in practice) and this is only possible if it is known

that all right angles are equal. It was therefore necessary for him to have either a theorem
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or a postulate that asserts this equality. It might be noted that this postulate is
qualitatively different from the previous three. Those proclaimed the legitimacy of

certain constructions whereas this one asserts the equality of some figures.

5. That, if a straight line falling on two straight lines make the interior angles on the
same side less than two right angle [in sum], the two straight lines, if produced

indefinitely, meet on that side on which are the angles less than two right angles.

Like Postulate 4, this one differs from the first three in that it makes a statement
that relates the several parts of a figure. Moreover, its statement is much more
complicated than any of the preceding statements. For these reasons many of Euclid’s
successors believed that this postulate could be proved on the basis of the others and was
therefore superfluous. However, their repeated attempts, over two millennia, to
substantiate this feeling were invariably unsuccessful. Finally, in the nineteenth century,
it was demonstrated beyond all doubt that all such efforts must of necessity fail. It is
impossible to deduce Postulate 5 from the other postulates. This issue will be discussed
in greater detail in Section 2.4 below.

It was mentioned above that Euclid's axiomatization was incomplete in the sense
that his proofs make occasional use of unstated and unvalidated assumptions. This is the
case in Propositions 2.3.1, 2.3.4, 2.3.8 and others. Two such assumptions are stated as

additional postulates.

S (Separation).The infinitely extended straight line, the triangle and the circle separate
the plane into two portions such that any line joining a point of one portion to a point of
the other intersects the separating figure. In the case of the line the two portions are
called the line's sides. In the case of a triangle or a circle the portions are called the

interior and exterior.
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A(Application). Given two triangles ABC and A'B'C', it is possible to apply A
ABC to AA'B'C' so that the vertex A falls on the vertex A', the side AB falls on the

side A'B', and the vertex C falls in the same side of A'B' as C'.

The Common Notions listed below are also postulates, and in some editions they
are indeed grouped together with the previous five postulates. However, these Common
Notions do share a common thread that sets them apart. They are all concerned with
equality and inequality. While Euclid did not define these notions explicitly, his sense of
these terms is clarified by the way he used them. For example, Proposition 3.2.3 states
that parallelograms which are on the same base and in [between] the same parallels are
equal to one another. The conclusion that Euclid was referring to equality of size rather
than congruence is therefore inescapable. In other words, when Euclid said that two
parallelograms were equal he meant that they had the same areas, when he said that two
straight lines were equal he meant that they had the same lengths, and when he said that
two angles were equal he meant something of the same nature. In order for this
interpretation to work it is necessary to stipulate that Euclid had an underlying, albeit
unstated, assumption that all geometric objects have an aspect of numerical size or
magnitude. In lieu of defining these terms, their properties were set forth in the Common
Notions, so named because they describe the properties that are shared by (or common
to) all mensurations, regardless of whether they relate to length, area, volume, weight, or
angular size. This explanation is supported by Euclid's failure to provide any other
definition of the notions of area and volume notwithstanding his many propositions about
these very concepts. When viewed in this light the Common Notions strikingly resemble
the standard modern axiomatic definition of a Haar Measure. Section 3.2 contains a

more detailed discussion of area.
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The symbol "=" 1is used to denote equality in magnitude, regardless of the

specific aspect that is being measured. Thus,

AABC = ADEF

means that the two said triangles have equal areas. Similarly,

AB = CD

means that the straight line segments joining A to B and C to D have equal lengths.
Of course, in this case, they are also congruent, but that is accidental. The equality in
length of line segments and the equality of angular measures of angles happens to imply
their congruences. On the other hand, the equality of the areas of regions and volumes of

solids does not entail the stronger relation of congruence.

COMMON NOTIONS
1. Things which are equal to the same thing are also equal to one another.
2. If equals be added to equals, the wholes are equal.
3. If equals be subtracted from equals, the remainders are equal.

From the modern point of view the third Common Notion is redundant, since it

seems to be already subsumed by the previous one. The Greeks, however, did not
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recognize the existence of negative numbers, and so it was necessary for Euclid to

include both Common Notions 2 and 3 in his list.

4. Things which coincide with one another are equal to one another.

In view of the proof of Proposition 2.3.4 (see below) this should be understood as
saying that things which can be made to coincide with one another have equal sizes. This
can be interpreted as Euclid's first mention of congruence in the sense of a rigid
transformation. The contradictory attitudes Euclid displayed in the proofs of Propositions
232 and 234 make it clear that he had ambivalent feelings about the use of such
transformations. The first of these propositions could have been proved by simply
moving a given line segment to a given location. Instead, Euclid produced an elaborate
and ingenious proof that, quite properly, made no use of such movements. The proof of
Proposition 2.3.4, on the other hand, begins with an application of one triangle to
another. In other words, one triangle is lifted and placed on top of the other. Since none
of the definitions or postulates provide for such applications, this is a clear-cut
relinquishment of standards on the part of Euclid. The fact that Euclid used this device
sparingly implies that he was in all likelihood aware of its impropriety. The lack of a
framework for the treatment of transformations and congruence constitutes one of the

more serious flaws of The Elements.

5. The whole is greater than the part.

This Common Notion turns out to be very useful in a variety of proofs by
contradiction, that of Proposition 2.3.6 being the first instance. In addition, it also insures
that, whatever aspect it is that is being measured, some geometrical figure has a non-zero
size. This is logically necessary since otherwise it could be possible to trivialize the

notion of size by assigning to every figure the measure of zero. Note that this trivial zero
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measure does have the properties stipulated in the first four notions and only fails to

satisfy the fifth one.

Euclid's postulates are now reexamined in the context of the surface of the sphere.
Since great semicircles are not geodesics, diametrically opposite points on the sphere
cannot be joined by a geodesic and so, strictly speaking, Euclid's Postulate 1 fails to hold
on the sphere. However, the next best thing is true: every two points on the sphere that
are not diametrically opposite can be joined by a (unique) geodesic segment. The
uniqueness is guaranteed by the fact that the plane containing the geodesic segment must
also contain the center of the sphere.

Euclid's Postulate 2 fails to hold on the sphere in a rather dramatic fashion. No
geodesic on the sphere of radius R can be extended to a length equal to or greater than
2aR. In fact, it could be argued that no spherical geodesic can be extended to a length of
iR or more, since if that length were reached the geodesic would have to contain a pair
of diametrically opposite points.

Euclid's Postulate 3 does hold on the sphere. Given any point C and any
geodesic segment CD, there clearly is a circle of spherical radius CD on the sphere (see

Fig. 2.6).

o

Figure 2.6 A spherical circle of spherical radius R.

Euclid's Postulate 4 also holds on the sphere. A right spherical angle is formed by

any two geodesic arcs whose defining planes are at right angles to each other. For
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example, every meridian cuts the equator in a spherical right angle. It is also true that
given any two spherical right angles, there is a rotation of the sphere that transforms one
into the other.

Postulate 5 holds trivially, regardless of the angles between the lines, since any
two geodesic segments, if sufficiently extended, will intersect (in a pair of diametrically
opposite points). The reason for this is that both segments extend to great circles each of
which divides the sphere into two equal halves. If these circles did not intersect these
equalities could not hold.

With the proper reinterpretation Postulate S can be made to hold on the sphere.
Infinitely extended straight lines have to be replaced with great circles, and the exterior
sides are no longer infinite. With these modifications the figures in question all separate
the surface of the sphere into two parts that can be seen as sides.

Postulate A also holds on the sphere. The requisite applications are rotations of
the sphere about an axis that passes through its center and reflections in planes that

contain the center.

EXERCISES 2.2A

1. Let A and B be two distinct points on the surface of a sphere. Describe a rigid motion of the
sphere that moves A to B's location.

2. Let AB and CD be two geodesic segments on the surface of the sphere. Describe a rigid motion
that moves AB to the position of CD. (Note: It is permissible to describe a rigid motion as a
composition of several rigid motions.)

3. Let A ABC and A DEF be equal spherical angles. Describe a rigid motion of the sphere that
moves the first angle onto the position of the second so that BA falls along ED and BC falls
along EF.

Euclid's postulates are now reexamined in the context of hyperbolic geometry.

Euclid's Postulate 1 holds here too. To verify this assertion two cases must to be
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considered. If the two points in question have coordinates (a, b;) and (a, b,) then

clearly the vertical Euclidean line segment joining them is the only geodesic that joins
them. If, on the other hand, they have coordinates (a,, b;,) and (a,, b,) with a, # a,,
then there is one and only one semicircle that contains them both and has its center on the
x-axis. This semicircle's center is the intersection of the x-axis with the perpendicular
bisector to the line segment joining those two points.

Euclid's Postulate 2 holds for hyperbolic geometry because the x-axis is infinitely
far for all of its inhabitants (see Section 1.2).

As was noted in the first discussion of Postulate 3 , the existence of the circle
(A; AB) follows from Postulate 2 which is already known to hold in the hyperbolic plane.
Consequently all such circles exist in hyperbolic geometry as well. It follows that these
circles are legitimate building blocks in this context too.

Since two geodesics form a hyperbolic right angle if and only if their tangents
form a Euclidean right angle, the equality of hyperbolic right angles follows from the
equality of Euclidean right angles. Thus, Postulate 4 holds in the hyperbolic plane.

Rather surprisingly, Postulate A does hold for the hyperbolic plane. This is
difficult to explain at this point because not enough tools have been developed to describe
the rigid motions of the hyperbolic plane. However, this statement is borne out by the
subsequent Exercises 7.3.9-11.

Postulate S also holds in the hyperbolic plane too. This is intuitively plausible
since, in fact, every closed curve C that does not intersect itself has a well defined inside
and outside, and every curve that joins the inside to the outside must of necessity cross C
at some point.

Since Euclid's Postulates 1,2,3,4,A,S hold for the hyperbolic plane it follows
that all the propositions that can be proved on the basis of these postulates alone also hold
for the hyperbolic plane. The set of propositions that follow from these common

postulates are collectively known as neutral geometry, or absolute geometry. This
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includes Propositions 1-28 of Book I of Euclid as well as a variety of others that are listed
in the neutral sections of this text. Postulate 5, on the other hand, does not hold in the

hyperbolic plane. In Figure 2.7 the geodesics p and g make interior angles a and f

Figure 2.7 A hyperbolic counterexample to Euclid's Postulate 5.

with the geodesic r, where the sum of a and 8 is quite clearly less than 180°, and yet
the geodesics p and ¢, no matter how far extended, do not meet. Postulate 5 is

therefore not a part of neutral geometry.

EXERCISES 2.2B

1. Comment on the following postulates in the context of taxicab geometry:
a) 1 b) 2; ©) 3 d) 4; e) 5;
f) S; g A.

2. Comment on the following postulates in the context of maxi geometry:
a) 1 b) 2; ©) 3 d) 4; e) 5;
f) S; g A.

3. Draw a taxicab circle of radius 1.

4. Draw a maxi circle of radius 1.

3. Propositions 1 - 28

Having laid a foundation in the form of definitions, postulates, and common notions,
Euclid proceeded to list several hundred logical conclusions each of which is called a

proposition. There are two kinds of propositions. One kind asserts a relationship
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between some geometrical objects. Such, for example is Proposition 2.3.5 which states
that the angles at the base of an isosceles triangle are equal to each other. The second
kind of proposition asserts the constructibility of a certain geometrical object. Thus,
Proposition 2.3.9 states that angles can be bisected, or, in other words, that angle
bisectors can be constructed. Since Euclid's postulates only mention the existence of
points, straight lines, and circles, it has become customary to say that the only tools that
are allowed in Euclidean constructions are rulers and compasses. This too is to be
understood only as a metaphor. Surely the idea of using a physical ruler to draw a
straight line is just as objectionable as that of using the top of a can to draw a circle. It
would be more accurate to say that Euclid constrained himself to a discussion of logical
constructs definable by means of points, straight lines, and circles alone.

Ideally, the justification of both kinds of propositions must rely only on
definitions, postulates, common notions, and previously justified propositions. In fact,
both Euclid and the author allow for some deviation from this strict standard.

Euclid's conventions also allowed him to only use and/or make relational
propositions about geometrical figures whose constructibility had been demonstrated in a
previous constructive proposition. Thus, Proposition 2.3.20, whose proof requires the
midpoint of the side of a triangle must be preceded by Proposition 2.3.10 which asserts
the constructibility of the midpoint of a straight line segment.

The format that Euclid used for stating and validating his propositions is still in
use today. The verbal description of the proposition is followed by a symbolic
description of the context (GIVEN) and the relational or constructive asseveration (TO
PROVE or TO CONSTRUCT). In the case of a relational proposition this is followed by
a proof (PROOF) that validates the proposition. In the justifications of the steps of a
proof the terms definition, common notion, postulate, and proposition will be respectively

abbreviated as DFN, CN, PT, and PN.
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Euclid invariably signed off on his proofs with the phrase "what it was required
to prove" which is rendered as "quod erat demonstrandum" in Latin. The initials of this
phrase, Q.E.D. served as the traditional end of proof symbol for hundreds of years until it
became fashionable in the last thirty or so years to replace it with some variant of a small
rectangle. In this text the traditional "Q.E.D." denotes the end of a proof. In the case of a
constructive proposition, the above mentioned asseveration is followed by a description
of the construction (CONSTRUCTION). This, in turn, should be followed by a proof
that the constructed figure does indeed possess the required properties. However, the
proof of the validity of a construction is often so straightforward that it can, and should
be, omitted.

As part of his exposition Euclid incorporated many propositions that constitute
geometrical analogs of algebraic rules. Because of the lack of algebraic symbols in his
times, this resulted in many obvious propositions with tedious proofs. In order to avoid
these inconveniences basic algebraic manipulations will be permitted in this text’s proofs.

For the most part, the statements of the propositions and proofs in this text are
essentially the same as those that appear in Sir Thomas L. Heath's century old translation
of The Elements. For the sake of clarity the proofs are presented with modern notation
and some of the statements of the propositions are paraphrased. Some of Euclid's more
cumbersome or erroneous proofs are replaced by improved ones. All such instances are

explicitly noted.

PROPOSITIONS

PROPOSITION 2.3.1(1.1). On a given finite straight line to construct an equilateral

triangle.

GIVEN: Line segment AB (Fig 2.8)
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TO CONSTRUCT: A ABC such that AB = BC = CA.
C
Figure 2.8

CONSTRUCTION: Draw the circles (A; AB) and (B; AB) [PT 3]. Let C be one of

their intersections [PT S]. Then A ABC is the required triangle.

PROOF: AB = AC [DFN 15]
BA = BC [DFN 15]
AC = BC [CN 1]

QED.

This proposition demonstrates both some of Euclid's strengths and some of his
weaknesses. On the positive side he was a careful thinker and expositor who was
unwilling to accept as obvious the existence of a triangle which most people take for
granted. Unfortunately, he was not careful enough. Specifically, he implicitly accepted
that the two auxiliary circles drawn in this proof necessarily intersected (there is no
version of Postulate S in The Elements). Now, as physical objects, these figures must
clearly intersect, but as abstract entities, whose properties must be reducible to Euclid's
definitions, postulates, and common notions, this claim calls for verification. This is not
a minor point. The fact is that Euclid failed to provide a framework within which the
interiors and exteriors of configurations can be discussed and this is one of the major

defects of his logical edifice. The need for such a framework is underscored by the
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paradoxical nature of Exercise 3.3C.10. In this text, of course, it is Postulate S that
provides the rationale for the existence of the intersection point C in the above proof.

There was no compelling reason for Euclid to choose the construction of
equilateral triangles as his first proposition. Other texts employ different starting points.
It is noteworthy that the last few propositions of the last of the thirteen books that
comprise Euclid's The Elements deal with the construction of the five regular solids (see
Section 8.1) that are the three dimensional analogs of the equilateral triangle in particular
and of the regular polygons in general. In fact, the faces of three of these five solids are
themselves equilateral triangles. Thus, Euclid may have chosen his starting point and
ending point on esthetic grounds. They gave his work an artistic form.

It is convenient to denote the intersection of two lines p and g by p M ¢g. In the
case where p or g is a circle, this will be used to denote only one of the intersection

points.

PROPOSITION 2.3.2(1.2). To place at a given point (as an extremity) a straight
line equal to a given straight line.

GIVEN: Point A, line segment BC (Fig 2.9).

TO CONSTRUCT: A point D suchthat AD = BC.

Figure 2.9

CONSTRUCTION: Let A ABE be equilateral [PN 2.3.1], let F = EB N (B; BC)
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[PT 3],and let D = EA N (E; EF) [PT 3]. Then D is the required point.

PROOF: ED = EF [Radii of the same circle]
EFA = EB [Sides of an equilateral triangle]
AD = BF [CN 3]
but BF = BC [Radii of the same circle]
AD = BC [CN 1]

Q.ED.

Informally speaking, this proposition asserts that any construction that can be
carried out with a non-collapsible compass, i.e., a compass that does not lose its angle
when lifted off the plane, can also be accomplished with a collapsible one, albeit by a
process that requires several more steps. More succinctly, the constructive power of the
collapsible compass equals that of the rigid compass.

This proposition and its relation to Postulate 3 clarify one of the principles that
underlie Euclid's strategy in choosing his postulates. Postulates should have as little
content as possible. After all, Euclid could have chosen Proposition 2.3.2 as Postulate 3
with no resulting loss of any subsequent propositions or complications in any subsequent
proofs. That he chose not to do this indicates that he enjoyed flexing his mental muscles

just for the joy of using them.

PROPOSITION 2.3.3(1.3). Given two unequal straight lines, to cut off from the

greater a straight line segment equal to the less.
GIVEN: Line segments AB > CD (Fig 2.10).

TO CONSTRUCT: A point E on AB such that AE = CD.
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/

Figure 2.10

CONSTRUCTION: Let F be a point such that AF = CD [PN 2.3.2] and let

E= ABN (A; AF) with AB. Then E is the required point.

PROOF: By construction, AE = AF = CD.

QED.

EXERCISES 2.3A

1. Construct a line segment whose length is double that of a given line segment.

2. At a given point P, construct a line segment whose length is double that of a given line segment
AB.

3. Construct a line segment whose length is the sum of the lengths of two given line segments.

4. At a given point P construct a line segment whose length equals the sum of the lengths of two
given line segments AB and CD.

5. At a given point P construct a line segment whose length equals the difference of the lengths of
two given unequal line segments AB and CD.

6. At a given point P, construct a line segment whose length is triple that of a given line segment
AB.

7. Comment on Proposition 2.3.1 in the context of the following geometries:
a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.

8. Comment on Proposition 2.3.2 in the context of the following geometries:
a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.

9. Comment on Proposition 2.3.3 in the context of the following geometries:
a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.

10(C). Perform the construction of Proposition 2.3.1 using a computer application.

11(C). Perform the construction of Proposition 2.3.2 using a computer application.
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12(C). Perform the construction of Proposition 2.3.3 using a computer application.

The next proposition is the well known SAS (side-angle-side) congruence

theorem.

PROPOSITION 2.3.4(1.4). If two triangles have two sides equal to two sides
respectively, and have the angles contained by the equal straight lines equal, they will
also have the base equal to the base, the triangle will be equal to the triangle, and the
remaining angles will be equal to the remaining angles respectively, namely those which
equal sides subtend.

GIVEN: A ABC,A DEF, AB = DE, AC = DF, £ BAC = £ EDF (Fig.2.11).

TO PROVE: BC = EF, AABC=ADEF, L ABC= /L DEF, / ACB =/ DFE.

B C E F

Figure 2.11

PROOF: Apply A ABC to A DEF sothat A fallson D and AB falls along DE

[PT A]. Then
B fallson E [AB = DE, given]
AC falls along DF [£ BAC = £ EDF, given]
C fallson F [AC = DF, given]
BC fallson EF [PT 1]

BC = EF, A ABC = A DEF,
/ ABC = / DEF, / ACB = / DFE [CN 4]

Q.ED.
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This is the first of several instances wherein Euclid uses the undefined notion of
application. Postulate A can be used to justify this step.

The triangles ABC and DEF of Proposition 2.3.4 are such that

AB = DE, BC = FF, AC = DF,
L BCA = LEFD,LCAB = LFDE /ABC = L DEF

i.e., their respective sides and their respective angles are equal. Such triangles are today
called congruent since it is intuitively clear that given any two physical congruent
triangles, one of them can be picked up and placed on top of the other so that the
corresponding sides and angles will coincide. It is important to note, though, that this
term does not appear in The Elements. The congruence of these triangles is denoted
today as A ABC = A DEF. It is both customary and helpful to list the vertices of these
triangles in an order that is consistent with the equality of their parts. In other words, if

A POR = A XYZ then it is implicitly understood that £ QRP = £ YZX, PR = XZ, and so

on.

EXERCISES 2.3B

1. Use the notion of an application to create a simpler "construction" for Proposition 2.

2. Use the notion of an application to provide a "proof" of Postulate 4 .

3. Use the notion of an application to prove the ASA congruence theorem [PN 2.3.29], i.e. that if two
triangles have two angles of one equal respectively to two angles of the other, and if the sides
joining these angles are also equal, then the triangles are congruent.

4. Comment on Proposition 2.3 .4 in the context of the following geometries:

a) spherical; b) hyperbolic.
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5. Let A=(0,0),B=(1,1),C=(-1,1),A'=(2,0),B'=(4,0), C'=(2,-2). Show that AABC and
AA'B'C' satisfy the hypothesis of Proposition 2.3.4 in taxicab geometry but are not congruent in
it.

6. Let A ABC be given. Show that there exists a A DEF such that A ABC []J= A DEF in the
Euclidean sense but not in the taxicab sense.

7. Comment on Proposition 2.3 .4 in the context of maxi geometry.

PROPOSITION 2.3.5(1.5). In isosceles triangles the angles at the base are equal to
one another; and, if the equal straight lines be produced further, the angles under the
base will be equal to one another.

GIVEN: A ABC, AB = AC (Fig 2.12).

TOPROVE: Z1 = 42, L3 = LA4.

Figure 2.12
PROOF: AABC = AACB by SAS because
AB = AC [Given]
AC = AB [Given]
5= LS
L1 =12
but LABD = L ACE [Both are straight angles]
L3 = L4 [CN 3]

QED.
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Euclid's proof of Proposition 2.3.5 is surprisingly long and intricate. This earned
it the nickname Pons Asinorum or Ass's Bridge in the days when every schoolboy studied
Euclid. The 19th century logician and philosopher Charles S. Pierce commented that it
"... made so many boys conclude they have no capacity for geometry because this proof,
the first one of any difficulty in Euclid, leaves the proposition to their minds less evident
than they found it." This is the attitude that is evident in the following modern day

limerick:

In Greek mathematical forum

Your Euclid was present to bore 'em.
He spent all his time
Drawing circles sublime

And crossing the Pons Asinorum.

The proof given here is due to Pappus (ca 300), also an Alexandrine, who wrote a now

lost commentary on Euclid's Elements.

EXERCISES 2.3C

1. Prove that the three angles of an equilateral triangle are all equal to each other. What adjustments
would your proof require if you accepted Euclid's definition of an isosceles triangle?

2. In A ABC, K and L are points on the equal sides AB and AC respectively, such that AK =
AL. Prove that CK = BL.

3. In AABC, AB = AC and D and E are points on the side BC such that BD = CE. Prove that
AD = AE.
4. Suppose AC = AD and BC = BD where C and D are points in the opposite sides of the

straight line AB. Prove that A ABC = A ABD. (Hint: Draw CD and consider three cases.)
5. Comment on Proposition 2.3.5 in the context of the following geometries:

a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.
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PROPOSITION 2.3.6(1.6). Ifin a triangle two angles be equal to one another, the
sides which subtend the equal angles will also be equal to one another.
GIVEN: AABC, £ 1= £ 2 (Fig2.13).

TO PROVE: AC = AB.

Figure 2.13

PROOF: By contradiction. Suppose AB and AC are unequal and assume without loss
of generality that AB > AC. Let D be that point in the interior of side AB such that

BD = AC. Then A BCD =A CBA by SAS because

DB = AC [Construction]
BC = CB
L1 = 242 [Given]

ABCD = ACBA
This, however, contradicts Common Notion 5 since A DCB is clearly only a part of A

ACB. Hence, the original supposition was false and so AB = AC.
QED.

The converse of a statement of the form if p then g is the statement if g then
. 2 2. o 2
p. Thus, the converse of the statement if a = b then a = b is the statement if a =
2 . . .
b~ then a = b. Similarly, each of Propositions 2.3.5 and 2.3.6 is the other's converse.

As these examples attest, there is no apparent necessary relation between the logical
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validity of a statement and that of its converse. In the first instance the original statement
. 2 2 . . . o 2 2 .
if a=0>b then a = b 1is valid whereas its converse if a =b then a =b is
o e 22 .
demonstrably false. Similarly, the false statement if @ = b then a = b has the valid

converse if a=b then a2 = bZ. Finally, the converse Propositions 2.3.5 and 2.3.6 are

both valid.
EXERCISES 2.3D
1. Prove that if all three angles of a triangle are equal to each other then the triangle is equilateral.
2. Comment on Proposition 2.3.6 in the context of the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.
3. Give an example of a proposition and its converse that are both false.

PROPOSITION 2.3.7(1.7). Given two straight lines constructed on a straight line
(from its extremities) and meeting in a point, there cannot be constructed on the same
straight line (from its extremities) and on the same side of it, two other straight lines
meeting in another point and equal to the former two respectively, namely, each to that
which has the same extremity.

GIVEN: Line segment AB, points C, D on the same side of AB,

CA = DA, CB = DB (Fig 2.14).

Figure 2.14
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TO PROVE: The points C and D coincide.
PROOF: By contradiction. Suppose C and D are distinct and draw the line segment
CD. Since A ACD is isosceles, it follows from Proposition 235 that £ 2= /£ 3.

Consequently,

L1 < L2 = L3 < 4.

This, however, contradicts the fact that £ 1 =/ 4 [because A BDC is also isosceles].

Hence the points C and D cannot be distinct.

QED.

EXERCISES 2.3E

1. The proof of Proposition 2.3.7 is incomplete because it depends on the position of D relative to A
ABC. Complete this proof by considering three additional cases: one where D is inside A ABC,

one where it is in the interior of one of the sides, and one where it coincides with one of the

vertices.
2. Comment on Proposition 2.3.7 in the context of the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.

PROPOSITION 2.3.8(1.8). If two triangles have their respective sides equal then
they are congruent.

GIVEN: AABC, ADEF, AB=DE, BC= EF, AC=DF (Fig2.15).
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E

Figure 2.15

TO PROVE: A ABC = A DEF.

PROOF: Apply A ABC to A DEF sothat B, C fall on E, F' respectively and so that

the vertex A falls in that side of EF that contains the point D [PT A]. Then

GE = AB = DE and GF = AC = DF

and hence, by Proposition 2.3.7, it follows that the points G and D coincide.

Consequently, £ ABC = £ GEF = £ DEF and so, A ABC = A DEF [SAS].

QED.
Proposition 2.3.8 is called the SSS congruence theorem.
EXERCISES 2.3F
1. Use Exercise 2.3C4 to provide an alternate proof of Proposition 2.3.8 that does not rely on

Proposition 2.3.7.
2. Comment on Proposition 2.3.8 in the context of the following geometries:

a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.

PROPOSITION 2.3.9(1.9). To bisect a given rectilineal angle.
GIVEN: Z BAC (Fig 2.16).
TO CONSTRUCT: A line AF suchthat £ BAF = £ FAC.
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H B

Figure 2.16

CONSTRUCTION: Let D be any point on AB and let E be a point on AC such that
AE = AD [PN 2.3.3]. Let DEF be an equilateral triangle [PN 2.3.1]. Then £ 1=2472.

PROOF: A DAF = A EAF by SSS because
AD = AFE [Construction]
DF = EF [Construction]
AF = AF
L1 = L2

Q.ED.

The line AF of this proposition is called the angle bisector of £ BAC. Ina A
ABC it is common to refer to the portion of the angle bisector of £ BAC that lies
between the vertex A and the side BC also as one of the triangle's angle bisectors. The
method used by Euclid to construct angle bisectors is different from the one commonly
taught in high schools wherein the equilateral A DEF is replaced by two arcs of equal
radii that are centered at D and E respectively and intersect at F. This latter
construction is properly speaking not Euclidean since it assumes the compass to be rigid.
Of course, this method could be justified by Proposition 2.3.2, but Euclid chose to work

with Proposition 2.3.1 instead.
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Proposition 2.3.9 begs the question of how to divide an arbitrary angle into any
number of equal parts. There is of course no difficulty in dividing an arbitrary angle into
4,8,0r 2" equal parts, where n is any positive integer. On the other hand, dividing an
angle into three equal parts, otherwise known as the angle trisection problem turns out to
be impossible. This problem was first formulated by the Greeks and continued to draw
the interest of both professional and amateur mathematicians for over 2000 years. In
1837 this impossibility of this construction was finally demonstrated by Pierre Laurent
Wantzel (1814-1848). Unfortunately, the proof is not easy and lies beyond the grasp of
many amateurs who still continue to search for a ruler and compass angle trisection.
Sometimes they "succeed" and produce a construction that either misuses rulers and/or
compasses or else simply produces an approximation. An example of such a popular

misconstruction appears in Exercise 3.1C.32

EXERCISES 2.3G
1. Find an alternate method of bisecting a given angle using Euclid's "collapsible" compass.
2. Prove that the angle bisectors of an isosceles triangle divide the equal sides into respectively equal

line segments.
3. Prove that the bisector of the angle opposite to the base of an isosceles triangle also bisects the

base and is perpendicular to it.

4. Comment on Proposition 2.3.9 in the context of the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.
5. Divide a given angle into four equal parts.
6. Given positive integers m and n and an angle of measure ¢, prove that it is possible to construct
ma
an angle of measure —~ .
2

7(C).  Perform the construction of Proposition 2.3.9 using a computer application.

PROPOSITION 2.3.10(1.10). To bisect a given finite straight line.
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GIVEN: Line segment AB (Fig 2.17).
TO CONSTRUCT: A point D on AB suchthat AD = DB.

A D B

Figure 2.17

CONSTRUCTION: Construct an equilateral A ABC [PN 2.3.1] and let D be the

intersection of the bisector of £ ACB with AB. Then AD = DB.

PROOF: A DAC = A DBC by SAS because
AC = BC [Construction]
L1 = 42 [Construction]
CD = CD
AD = DB
QED.

That point M of the line segment AB such that AM = MB is called the
midpoint of AB. The line segment joining a vertex of a triangle to the midpoint of the
opposite side is called a median. The median joining vertex A of A ABC to the

midpoint of the side BC is denoted by either m, or my.

EXERCISES 2.3H
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1. Prove that the triangle formed by joining the midpoints of the three sides of an isosceles triangle is
also isosceles.

2. Prove that the triangle formed by joining the midpoints of the three sides of an equilateral triangle
is also equilateral.

3. Prove that the medians to the equal sides of an isosceles triangle are equal to each other.

4. Prove that the medians to the equal sides of an isosceles triangle divide each other into
respectively equal segments.

5. Prove that the median to the base of an isosceles triangle is perpendicular to the base and bisects

the opposite angle.

6. Divide a given line segment into four equal parts.
7. Comment on Proposition 2.3.10 in the context of the following geometries:
a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.

8(C).  Perform the construction of Proposition 2.3.10 using a computer application.

PROPOSITION 2.3.11(1.11). To draw a straight line at right angles to a given
straight line.

GIVEN: Point C on straight line AB (Fig 2.18).

TO CONSTRUCT: Straight line CF L AB.

A + 1/\2 + B

D C E

Figure 2.18
CONSTRUCTION: Let D be any point on AC and let E be point on BC such that

CD = CE [PN 2.3.3]. Construct equilateral A DEF. Then CF L AB.
PROOF: A DCF = A ECF by SSS because
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DF = EF [Construction]
DC = EC [Construction]
FC = FC
L1 = L2
CF L AB [DEN 10]
QED.

Given a line segment AB, the straight line through its midpoint that is also
perpendicular to AB is called its perpendicular bisector. The next two propositions
about perpendicular bisectors do not appear in Euclid's Elements but are nevertheless

quite useful.

PROPOSITION 2.3.12. Every point on the perpendicular bisector of a line segment

is equidistant from the segment's endpoints.

See Exercise 1.

PROPOSITION 2.3.13. Every point that is equidistant from the endpoints of a line

segment is on its perpendicular bisector.

See Exercise 2.

The geometrical word for the notion of set or collection is locus. For example,
given a point C and a real number r, the locus of all the points at distance r from C is
the circle (C; r). This term is frequently used to describe collections of points that have
geometrically interesting properties. Thus, it is customary to combine Propositions

2.3.12-13 into the following one.

242



2.3 PROPOSITIONS 1-28

PROPOSITION 2.3.14. The locus of all the points that are equidistant from two
distinct points is the perpendicular bisector to the line segment determined by these

points.

As this proposition does not say anything that isn't already contained in either

Proposition 2.3.12 or Proposition 2.3.13, no proof is required.

PROPOSITION 2.3.15(1.12). To a given infinite straight line, from a given point
which is not on it, to draw a perpendicular straight line.

GIVEN: Straight line AB ; point C not on AB (Fig 2.19) .

TO CONSTRUCT: A straight line CH such that CH L AB .

Figure 2.19

CONSTRUCTION: Let D be any point on the side of AB that does not contain C. Let
the circle (C; CD) [PT 3] intersect the straight line AB in the points £ and G [PT S].
Let H be the midpoint of EG [PN 2.3.10]. Then CH 1 AB.

PROOF: Draw CG and CE. Then A CGH =A CEH by SSS because

CG = CE [Radii of the same circle]
GH = EH [Construction]
CH = CH

L GHC = L EHC
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CH 1L AB [DEN 10]

Q.ED.

The straight line segment that joins a vertex of a triangle to a point on the opposite

side and is perpendicular to that side is called an altitude of the triangle. The altitudes

that contain the vertices A, B, C are denoted by h,, h,, h, respectively, or else hy,

hAC’hAB'

EXAMPLE 2.3.16. Construct A ABC given the data f3, a, m_. By this is meant that

a A ABC is to be constructed in which the magnitudes of £ ABC, the side BC, and

the median from C to AB are prespecified. Thus, following the standard format for

construction problems:

GIVEN: Angle 3, line segments a, m_ (Fig 2.20).
TO CONSTRUCT: A ABC suchthat £ ABC=f, BC =a, mg.=m,.

CONSTRUCTION: Label the vertex of B with B, and its two sides with BP and BQ.

Set C = BP N (B; a) [PN 2.3 3]
Set D = BQN(C;m,) [PN 2.3.3]
Set A = BQN (D; DB) [PT 2.3.3]

Figure 2.20
PROOF: Self-evident.
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Q.ED.

COMMENTS: If m, is too short, there will be no solution. If m_ is long enough, there

may be two solutions, depending on whether the given angle f is acute, right, or obtuse.

EXERCISES 2.31
1. Prove Proposition 2.3.12.
2. Prove Proposition 2.3.13.
3. Prove that if one of the altitudes of a triangle is also a median, then the triangle is isosceles.
4. Construct an isosceles triangle in which a and h, are given (b and c¢ being the equal sides).
5. The point D lies either inside or outside £ BAC. Construct a straight line that contains D and
cuts off equal segments on the sides of 2 BAC.
6. Construct AABC given the data b, c, ha.
7. Construct AABC given the data a, b, hb'
8. Construct AABC given the data a, m,, hb'
9. Construct AABC given the data a, ny, hb'
10. Construct AABC given the data c, hh’ m,.
11. Construct AABC given the data a, m,, p.
12. Construct AABC given the data a, b + ¢, .
13. Construct AABC given the data a, b - ¢, .
14. Construct AABC given the data a, b - ¢, B.
15. Comment on Proposition 2.3.11 in the context of the following geometries:
a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.
16. Comment on Proposition 2.3.12 in the context of the following geometries:
a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.
17. Comment on Proposition 2.3.13 in the context of the following geometries:
a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.
18. Comment on Proposition 2.3.14 in the context of the following geometries:
a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.
19. Comment on Proposition 2.3.15 in the context of the following geometries:
a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.
20(C). Perform the construction of Proposition 2.3.11 using a computer application.
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<>
If A is a point not on the straight line CD and B is a point on it between C

and D, then £ ABC and £ ABD are said to be supplementary (Fig 2.21).

B
Figure 2.21

PROPOSITION 2.3.17(1.13). The sum of two supplementary angles is equal to two
right angles.

GIVEN: Straight lines AB and CD with B on CD.

TO PROVE: £ CBA+ £ ABD = 2 right angles.

This proposition will not be proved in this text as the sum of supplementary
angles quite obviously equals a straight angle. Euclid, however, is somewhat hobbled by
his artificial exclusion of the straight angle from the realm of angles (see DFN 8).
Consequently he finds it necessary to replace this obvious equality by the statement that
the sum of supplementary angles equals that of two right angles. Moreover, he gives a
proof that is, in the author's opinion, unnecessary. The same attitude is adopted

regarding the next proposition which is the converse of the previous one.

PROPOSITION 2.3.18(1.14). If with any straight line, and at a point on it, two
straight lines not lying on the same side make the adjacent angles equal to two right

angles, the two straight lines will be in a straight line with one another.
GIVEN: £ ABC and £ ABD with C and D lying in distinct sides of AB.

L ABC + £ ABD = 2 right angles.
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TO PROVE: BC and BD form a single straight line.

EXERCISES 2.3])

1. Prove that the bisectors of 2 ABC and £ ABD of Proposition 2.3.17 are perpendicular to each
other.

2. Comment on Proposition 2.3.17 in the context the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.

3. Comment on Proposition 2.3.18 in the context the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.

PROPOSITION 2.3.19(1.15). If two straight lines cut one another, they make the
vertical angles equal to one another.

GIVEN: Straight lines AB and CD intersecting at E (Fig 2.22).

TOPROVE: 21 = £2.
A
C
1 E 2
D
3 B
Figure 2.22
PROOF: L1+ £3 = 2 rightangles [PN 2.3.17]
42+ £3 = 2 rightangles [PN 2.3.17]
L1 = L2 [By subtraction of £ 3 & CN 3]

QED.
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The angles whose equality is asserted by Proposition 2.3.19 are said to be

vertically opposite.

EXCERCISES 2.3K

1. Prove that if an angle's bisector is extended into the vertically opposite angle then it bisects the
latter too.

2. Prove that the bisectors of vertically opposite angles lie in the same straight line.

3. Prove that if one of the triangle's medians is also an angle bisector then the triangle is isosceles.

(Hint: extend the median by its own length)

4. Prove that if a quadrilateral's diagonals bisect each other then the quadrilateral's opposite sides are
equal to each other and so are its opposite angles.

5. Comment on Proposition 2.3.19 in the context of the following geometries:

a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.

PROPOSITION 2.3.20(1.16). In any triangle, if one of the sides be produced, the

exterior angle is greater than either of the interior and opposite angles.

Figure 2.23

GIVEN: A ABC, side BC produced to BD (Fig 2.23).

TOPROVE: 25 > 3.

PROOF: Let E be the midpoint of AC [PN 2.3.10] and extend BE to F so that
BE = EF [PT 2,PN 2.3.3]. Then AAEB=A CEF by SAS because
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AE = EC [Construction]
L1 = L2 [PN 2.3.19]
BE = FE [Construction]
L3 = L4
But 2424 < £S5 [CN 5]
L3 < L5
QED.
EXERCISES 2.3L
1. Let D be a point in the interior of A ABC. Prove that £ ADC > £ ABC.
2. Points are said to be collinear if they lie on one straight line. Prove that three collinear points
cannot all be equidistant from the same point.
3. Prove that through a given point P there is only one straight line perpendicular to a given straight
line AB.
4. Comment on Proposition 2.3.20 in the context of the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.

PROPOSITION 2.3.21(1.17). In any triangle two angles taken together in any

manner are less than two right angles.
GIVEN: A ABC (Fig2.24).
TOPROVE: £ 1+ 42 < 2 right angles.

D

Figure 2.24
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PROOF: Extend BC to D [PT 2]. Then
43 +/22 = 2 rightangles [PN 2.3.17]
L3 > 21 [PN 2.3.20]

L1 +242 < 2 rightangles

QED.

EXERCISES 2.3M

1. One of the angles of A ABC is obtuse. Prove that the other two are acute.

2. Prove that if one of a triangle's angles is right, then the other two are acute.

3. Prove that the angles at the base of an isosceles triangle are acute.

4. Prove that every triangle has at least one altitude that is interior to it.

5. One side of a triangle is extended in both directions. Prove that the sum of the two exterior angles

so formed is greater than two right angles.
6. Comment on Proposition 2.3.21 in the context of the following geometries:

a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.

PROPOSITION 2.3.22(1.18). In any triangle the greater side subtends the greater
angle.

GIVEN: A ABC, AC > AB (Fig 2.25).

TOPROVE: 21 > 4.

Figure 2.25
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PROOF: Let D be that point inside AC such that AD = AB [PN 2.3.3], and draw BD.

Then
L1 > L2 [CN 5]
L2 = L3 [A ABD is isosceles, PN 2.3.5]
L3 > L4 [Exterior versus interior, PN 20]
L1 > L4

QED.

PROPOSITION 2.3.23(1.19). In any triangle the greater angle is subtended by the
greater side.

GIVEN: AABC, /1 > /2 (Fig2.26).

TO PROVE: AC > AB.

A
1
2
B C
Figure 2.26

PROOF: By contradiction. Suppose that AC # AB. Then either
AC =AB or AC < AB. However,

if AC=AB then 241 =142 [PN 2.3.5]

if AC<AB then /1< 42 [PN 2.3.22]

Since both of the above conclusions contradict the given £ I > £ 2, it follows that
AC > AB.

QED.
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EXERCISES 2.3N

10.

11

If the bisector of £ BAC of A ABC intersects the side BC in the point D, then AB > BD and
AC > CD.

Ifin AABC and AA'B'C' AB=AB', BC=B'C', AB<BC, and £ BAC =/ B'A'C', then the
two triangles are congruent. (This is sometimes dubbed SSA, although it is clearly not as powerful
as the other congruence theorems.)

Prove that if the leg and hypotenuse of one right triangle are equal to the leg and hypotenuse of
another, respectively, then the two triangles are congruent.

In AABC AB < AC and N is the intersection of the bisectors of the angles at B and C. Prove
that NB < NC.

Prove that the line segment joining any point in the interior of the base of an isosceles triangle to
the opposite vertex is shorter than the two other sides.

Prove that in a right triangle the hypotenuse (the side opposite the right angle) is greater than either
of the legs (the other two sides).

In AABC AB < BC and E is the midpoint of AC. Prove that £ CBE < £ ABE. (Hint: Extend
BE by its own length.)

In A ABC AB < BC and the bisector of Z ABC intersects the side AC in the point D. Prove
that AD < CD.

One of the angle bisectors of a triangle is also a median. Prove that the triangle is isosceles (Hint:
Use Exercises 2.3K 4.)

Comment on Proposition 2.3.22 in the context of the following geometries:

a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.

Comment on Proposition 2.3.23 in the context of the following geometries:

a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.

The following useful proposition does not appear explicitly in The Elements, but

it is implicit in Definition 5 of Book III.

PROPOSITION 2.3.24. Of all the line segments joining a point to a straight line,

the shortest is the one that is perpendicular to the given straight line.

<> <> <> <>
GIVEN: Straight line AB,point C noton AB, points P # Q on AB, CP 1 AB
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(Fig 2.27).
TO PROVE: CP < CQ.

C
1 2
A ] B
P 0
Figure 2.27
PROOF: L1 + £2 < 2 rightangles [PN 2.3.21]
£Z1 = rightangle [PC' AB]
L2 < rightangle = <21
CP < CQ [PN 2.3.23]

QED.

<>
The distance of the line AB from a point C not on it is the shortest of the
segments CP where P is any point on AB. It follows from Proposition 2.3.24 that this

distance is realized by that point P such that CP 'AB.

PROPOSITION 2.3.251.20). In any triangle two sides taken together in any

manner are greater than the remaining one.
GIVEN: A ABC (Fig 2.28).
TO PROVE: AB+AC > BC.
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Figure 2.28

PROOF: Extend BA to a point D such that AD = AC [PT 2, PN 2.3.3] and draw CD.

Then,
L3 > L2 [CN 5]
L2 = 21 [A ACD is isosceles, PN 2.3.5]
L3 > L1
BD > BC [PN 2.3.23in A BCD]
AB+AC = BA+AD = BD > BC
QED.
The perimeter of a triangle is the sum of the lengths of its sides.

EXERCISES 2.30

1. Prove that the difference of the lengths of two sides of a triangle is less than the third side.

2. Prove that each of the triangle's sides is less than half of the triangle's perimeter.

3. Prove that half of the triangle's perimeter is greater than any line segment that joins a vertex to a
point in the interior of the opposite side.

4. Prove that in a triangle one side's median is less than half the sum of the other two sides.

5. Prove that the sum of the lengths of the three line segments that join any point to the three vertices
of a triangle is greater than half of that triangle's perimeter. (The point may be inside the triangle,
outside it, or on one of its sides.)

6. Prove that the sum of the lengths of the four line segments that join a point to the vertices of a
quadrilateral is greater than the sum of the lengths of the quadrilateral's diagonals, unless that
point is the intersection of the diagonals.

7. Prove that the sum of the lengths of a quadrilateral's diagonals is less than its perimeter.
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Prove that the sum of the lengths of the diagonals of a convex quadrilateral is greater than half its
perimeter.

Prove that if AD is the bisector of the exterior £ CAE of A ABC then BD + DC > BA + AC.
Let A, B be two points on the same side of the straight line m, and let P be an arbitrary point on
m. Prove that AP + PB is least when m forms equal angles with AP and BP. (Hint: Use the
previous exercise.)

Comment on Proposition 2.3.24 in the context of the following geometries:

a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.

Comment on Proposition 2.3.25 in the context of the following geometries:

a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.

PROPOSITION 2.3.26(1.21). If on one of the sides of a triangle, from its

extremities, there be constructed two straight lines meeting within the triangle, the

straight lines so constructed will be less than the remaining two sides of the triangle, but

will contain a greater angle.

See Exercise 1.

PROPOSITION 2.3.27(1.22). Out of three straight lines, which are equal to three

given straight lines, to construct a triangle: thus it is necessary that two of the straight

lines taken together in any manner should be greater than the remaining one.

GIVEN: Line segments a,b,c, a+b > c, b+c > a, c +a > b (Fig2.29).

Figure 2.29
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TO CONSTRUCT: A ABC suchthat BC =a, CA=b, AB =c.

CONSTRUCTION: Because of the symmetry of the given inequalities, it may be
assumed, without loss of generality that a = b = ¢c. Let BC be any line segment of
length a. If A=(B;c) N(C; b) then A ABC is the required triangle.

PROOF: It follows from the inequality b + ¢ > a = BC that the two drawn circles
intersect in a point A not on BC. The choice of radii makes it clear that AC = b and
AB =c.

QED.

Euclid's proof of the above proposition is unsatisfactory because he does not

prove that his circles intersect. This was fixed in this text by assuming that a =b =c.

PROPOSITION 2.3.28(1.23). On a given straight line and at a point on it to
construct a rectilineal angle equal to a given rectilineal angle.

GIVEN: Straight line AB and £ DCE (Fig 2.30).

TO CONSTRUCT: £ FAB = £ DCE.

A . B

Figure 2.30

CONSTRUCTION: Draw DE. Construct A AFG sothat G ison AB, AG = CE,
AF = CD, and FG = DE [PN 2.3.27]. Then £ FAG is the required angle.
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PROOF: AAFG = A CDE by SSS andso £ FAG= 4 DCE.

Q.ED.

It would have been much easier to accomplish this construction by applying the

given angle to the given line. That Euclid chooses not to do so indicates that he was

uncomfortable with this device.

EXERCISES 2.3P

1. Prove Proposition 2.3.26.

2. For which of the following triples of numbers does there exist a triangle whose sides have those
lengths?
a) 6,7,8 b) 4,6,8 c) 3,5,8
d) 103, 104, 105

3. Find all numbers x such that there is a triangle the lengths of whose sides are 6, 8, x.

4. Let a and b be two positive numbers. Find all numbers x such that there is a triangle the
lengths of whose sides are a, b, x.

5. Construct an isosceles triangle each of whose equal sides is double the third side.

6. Construct an angle that equals the sum of two given angles.

7. Construct an angle that equals the difference of two given angles.

8. Construct AABC given the data a, B, C.

9. Construct AABC given the data A, B, hc.

9. Construct AABC given the data A, B, ha.

10. Construct AABC given the data b, ha, A.

11. Comment on Proposition 2.3.26 in the context of the following geometries:
a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.

12. Comment on Proposition 2.3.27 in the context of the following geometries:
a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.

13. Comment on Proposition 2.3.28 in the context of the following geometries:
a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.

14(C). Perform the construction of Proposition 2.3.28 using a computer application.
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As Propositions 1.24 and 1.25 are not important for the development in this text,
their statements and proofs have been relegated to Exercises 5 and 6 respectively.

Euclid's Proposition 1.26 consists of two congruence theorems that are different
enough to require separate proofs. These two are stated here separately. The following
proposition is known as the ASA congruence theorem. Proposition 2.3.30, on the other
hand, could be called the AAS congruence theorem. An alternative proof for ASA that

makes use of Postulate A was mentioned in Exercise 2.3B.3.

PROPOSITION 2.3.29(1.26). If two triangles have the two angles equal to the two
angles respectively, and the sides joining the angles are also equal, then they are

congruent.

B ' C E ' F

Figure 2.31

GIVEN: AABC,ADEF, BC=FEF, £ 1=/,3, £2=/, 4 (Fig2.3l).
TO PROVE: A ABC = A DEF
PROOF: It is first proven, by contradiction, that AB = DE. Suppose not, then it may be
assumed without loss of generality that AB < DE. Let G be a point in the extension of
the segment AB such that GB = DE. Then,

A GBC = A DEF by SAS because

GB =DE [Construction]
L1 = L3 [Given]
BC = EF [Given]
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4 GCB L4

4 GCB

ya) [£4 = £ 2,given]

This last conclusion, however, contradicts CN 5, and hence it may be concluded that AB

= DE. That A ABC = A DEF now follows by SAS.

Q.ED.

EXERCISES 2.3Q

5*.

Prove that if one of the triangle's altitudes is also an angle bisector then the triangle is isosceles.
Prove that if a triangle has two equal angles then their bisectors are equal.

In quadrilateral ABCD the diagonal AC bisects the interior angles at A and C. Prove that the
interior angles at B and D are equal.

In AABC AB=AC and D, E are points in the interiors of sides AB and AC respectively such
that AD = AE. Prove that if CD and BE intersect in the point O then AO bisects £ BAC.

In A ABC and A DEF AB=DE, AC =DF, and £ BAC > £ EDF. Prove that BC > EF. (This
is Proposition 1.24.)

In A ABC and A DEF AB =DE, AC =DF, and BC > EF. Prove that £ BAC > £ EDF. (This

is Proposition 1.25.)
Comment on Proposition 2.3.29 in the context of the following geometries:

a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.

PROPOSITION 2.3.30(1.26). If two triangles have two angles equal to two angles

respectively, and the side opposite one of the angles equal to the side opposite the

corresponding angle, then the two triangles are congruent.

See Exercise 1.

The following two propositions about angle bisectors do not appear in The

Elements. They are, however, standard fare in most elementary geometry texts.
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PROPOSITION 2.3.31. Every point on an angle's bisector is equidistant from that
angle's sides.

See Exercise 5.

PROPOSITION 2.3.32. Every point inside an angle that is equidistant from its sides
lies on its bisector.

See Exercise 6.

The next proposition merely combines the previous two. It requires no new

proof.

PROPOSITION 2.3.33. The locus of all the points that are equidistant from two

intersecting lines are the two straight lines that bisect the four angles formed by them.

EXERCISES 2.3R

1. Prove Proposition 2.3.30. (Hint: Assume the triangle sides joining the given angles are not equal
and obtain a contradiction using PN 2.3.20.)

2. Prove that the altitudes to the equal sides of an isosceles triangle are also equal.

3. Prove that the altitudes to the equal sides of an isosceles triangle divide each other into segments
that are respectively equal.

4. Prove that the altitude to the base of an isosceles triangle bisects both the base and the angle

opposite to it.

5. Prove Proposition 2.3.31.

6. Prove Proposition 2.3.32.

7. Comment on Proposition 2.3.30 in the context of the following geometries:
a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.

8. Comment on Proposition 2.3.31 in the context of the following geometries:
a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.
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9. Comment on Proposition 2.3.32 in the context of the following geometries:
a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.

10. Comment on Proposition 2.3.33 in the context of the following geometries:
a) spherical, b) hyperbolic; c¢) taxicab; d) maxi.

If a straight line p intersects two other straight lines m and n, then it is

convenient to attach the following nomenclature to the listed angles and pairs of angles

(Fig 2.32).

Alternate angles: {e, v}, {6, 6}, {a, ¥}, {B, 1}
Corresponding angles: {a, },{B, 6},{6, n}.{y. ¥}
Interior angles: 7,0, ¢ 0

Exterior angles: a, pB,ny

Figure 2.32

PROPOSITION 2.3.34(1.27). If a straight line falling on two straight lines make the
alternate angles equal to one another, the straight lines will be parallel to one another.
GIVEN: Straight line EF intersects the straight lines AB and CD in the points £ and
F respectively, £ 1 = £ 2 (Fig 2.33).
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TO PROVE: AB Il CD.

E B
A
1
G
2
c
/ F D
Figure 2.33

PROOF: By contradiction. Suppose AB and CD are not parallel. Then it may be
assumed without loss of generality that Z)B and E)D intersect at some point G that
lies on the same side of EF as B and D. Then, however, Z 2 is interior to A EFG
whereas £ 1 is exterior to it. By Proposition 2.3.20, £ 2 < £ 1, contradicting the given
equality. Hence AB Il CD.

Q.ED.

PROPOSITION 2.3.35(1.28). If a straight line falling on two straight lines make the
exterior angle equal to the interior and opposite angle on the same side, or the interior
angles on the same side equal to two right angles, the straight lines will be parallel to
one another.

See Exercise 3.

EXERCISES 2.3S

1. If both pairs of the opposite sides of a quadrilateral are equal to each other then they are also
parallel to each other.
2. If the diagonals of a quadrilateral bisect each other then the quadrilateral's opposite sides are

parallel to each other.

2.62



2.3 PROPOSITIONS 1-28

3. Prove Proposition 2.3.35.

4. Comment on Proposition 2.3.34 in the context of the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.

5. Comment on Proposition 2.3.35 in the context of the following geometries:
a) spherical; b) hyperbolic; c¢) taxicab; d) maxi.

4. Postulate 5 Revisited

So far no use whatsoever has been made of Postulate 5. It is somewhat puzzling
that Euclid should shy away from the use of this postulate for so long, especially as this
deferral results in the need for an unnatural, though ingenious, proof for the apparently
incomplete Proposition 2.3.20(1.16). The reason this proposition might be viewed as
incomplete is that, as will be seen in Proposition 3.1.6(1.32), the exterior angle actually
equals the sum of the two interior and opposite angles - a considerably more elegant and
satisfying observation. Some scholars read into this ordering of the propositions a
conscious reluctance on Euclid's part to make use of the fifth postulate. They believe that
Euclid felt that this postulate was unnecessary and that, with enough effort, it could be
omitted by proving that it is a consequence of the other postulates and common notions.
By 450 A.D. the search for such a proof of the Postulate 5 became an acknowledged
goal of geometry. Over the centuries, the existence of a proof of this postulate turned
into a holy grail for mathematicians. Many geometers occupied themselves with this
project and many purported proofs were produced. All of these proofs were subsequently
demonstrated to be faulty in that they relied on yet other unstated assumptions that were
in fact logically equivalent to Euclid's Postulate 5. By the early 1800s the mathematical
community began acknowledging the possibility that such a proof might not exist. J a nos

Bolyai (1802-1862), Nikolay Ivanovich Lobachevsky (1792-1856), and Ernst Minding
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(1806-1885) found strong evidence supporting this view and in 1868 Eugenio Beltrami

(1835-1900) proved conclusively that

Postulate 5 cannot be proved on the basis of the other

postulates and common notions alone.

Beltrami accomplished this feat by pointing out that with the exception of Postulate 5, all
of Euclid's postulates and common notions were valid in the hyperbolic geometry that
had been created by Joseph Liouville (1809-1882) two decades earlier in a completely
different context and for completely different purposes, and which was described in
Section 1.2. Postulate 5, on the other hand, does not hold in this geometry as is
illustrated by Figure 2.7 where a+ 8 < 180° and yet the geodesics p and ¢ do not
intersect. This difference between Postulate 5 and the other postulates and common

notions demonstrates that this postulate cannot be a logical consequence of them alone.

CHAPTER REVIEW EXERCISES

1. Let E be the midpoint of the median AD of the equilateral A ABC. Prove that AE <BE.
2. The isosceles triangles CAD and CBD have the common base CD. Prove that AB bisects

both £ CAD and £ CBD.
3. Let P be a point in the interior of A ABC in which £ BAC is obtuse. Prove thatif D = BP
NAC and E=CPN AB then BD + CE > BE + ED + DC.

4. Let P be a point in the interior of A ABC andset D = AP N BCand E = BP N AC.
Prove that if PA = PB and PD = PE, then A ABC is isosceles.
5. Prove that the sum of the three altitudes of a triangle is less than the sum of its three sides.
6. Given A ABC and point P in its interior, let D = AP N BC and E = BP N AC. Prove that if
/ PBC =/ PAC and £ PBA= / PAB, then A ABC is isosceles.
7. Show that if a quadrilateral is convex then the sum of the diagonals is greater than the sum of each

pair of opposite sides.
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CHAPTER REVIEW

In quadrilateral ABCD, AB = AD and £ ABC = £ ADC. Prove that AC is the perpendicular
bisector of BD.

Let D be the midpoint of the base BC of the isosceles A ABC, and let E be any point on AC.
Prove that the difference between DB and DE is smaller than the difference between AB and
AE.

Let C be the midpoint of AB and let D and E be points on the same side of AB such that AD
=BE and CD = CE. Prove that AE = BD.

Let BD, CE, AF be equal segments on the respective sides BC, CA, AB of the equilateral A ABC.
Prove that if the points M = AD N BE, N = BEN CF, P = CF N AD are distinct then they form
an equilateral triangle.

Given points A and B on the same side of the straight line m, determine on m a point P such
that the difference AM - MB is as large as possible.

It is planned to place a bridge across a straight river so that each of two given locations on the
river's opposite sides are at equal distances from the nearest entry to the bridge. Where should the

bridge be placed, assuming that it runs at right angles to the banks? (See Fig. 2.34)

A

Figure 2.34

Prove that if two of the angle bisectors of a triangle are equal then the triangle is isosceles. (Hint:
Proceed by contradiction.)

Explain the difference between Euclid's axioms and common notions.

Explain the difference between collapsible and rigid compasses. What is the significance of this
difference in Euclidean geometry?

Are the following statements true or false? Justify your answers.

a) Euclid’s development of geometry is error-free.

b) Euclid gave an axiomatic definition of area.

c) Every proposition of Euclidean geometry is also valid in neutral geometry.
d) Every proposition of neutral geometry is also valid in Euclidean geometry.
e) Every proposition of spherical geometry is also valid in neutral geometry.
f) Every proposition of neutral geometry is also valid in spherical geometry.

2.65



CHAPTER REVIEW

Every proposition of hyperbolic geometry is also valid in neutral geometry.
Every proposition of neutral geometry is also valid in hyperbolic geometry.
Every proposition of taxicab geometry is also valid in neutral geometry.
Every proposition of neutral geometry is also valid in taxicab geometry.
Parallel straight lines exist in neutral geometry.

Parallel straight lines exist in spherical geometry.

Parallel straight lines exist in Euclidean geometry.

Parallel straight lines exist in hyperbolic geometry.

Parallel straight lines exist in taxicab geometry.
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