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1.  Introduction 

 

It is common knowledge that most of the methods and tools of elementary  mathematics 

were developed independently thousands of years ago by many cultures, of which the 

most influential were those of Babylonia, Egypt, China, and India.  These skills usually 

included a collection of rules for the computation of the areas of figures and plots, as well 

as the volumes of solids and containers, from which geometry is descended (in Greek 

geo-”earth” and metron-”a measure”).  Such rules were often poorly justified, if at all, 

and in some cases provided only an approximation to the exact value in question. 

Moreover these rules were never stated in their generality.  Instead, they were 

exemplified by means of specific computations.  Thus, nowhere in the surviving writings 

of the Egyptian scribes is there found a formula for the calculation of the area of a circle 

of a given radius.  Instead, the Rhind Mathematical Papyrus, which dates to 1650 B.C. or 

earlier, contains the following computation: 

 

Example of a round field of a diameter 9 khet.  What is its area?  Take away  1/9  of the 

diameter, 1; the remainder is  8.  Multiply  8  times  8; it makes 64.  Therefore it contains  

64  setat of land. 
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It is, of course, reasonable to second-guess this papyrus’s scribe and to claim that the 

general formula that underlies his worked out example is 

 

A  =  (d - 
1
9 d)2  =  (

8d
9  )2  

 

but the fact of the matter is that no such explicit formulas have ever been found amongst 

any of the surviving Egyptian manuscripts.  They probably did not exist and it is for this 

reason that this kind of geometry has been called subconscious geometry.  

 The naive geometry of these ancient cultures was transformed by the Greeks of 

the sixth and fifth centuries B.C. into a deductive science that is completely modern in 

spirit.  Their contribution was twofold.  They invented the abstract statements that are 

today called theorems and  showed how these theorems could be demonstrated in a 

purely logical manner.  The first steps in this direction seem to have been taken by Thales 

(c. 640 - c. 546 B.C.) of Miletus, on the west coast of Asia Minor.  While nothing is 

known with certainty about him, he is credited with having either stated or proved the 

following results: 

 

 1. A circle is bisected by any diameter. 

 2. The base angles of an isosceles triangle are equal to each other. 

 3. The vertical angles formed by two intersecting straight  lines are equal. 

 4. Two triangles are congruent if they have two angles and one side in each  

  respectively equal.  

 5. An angle inscribed in a semicircle is a right angle.  

 

These results are, of course, quite elementary and Thales’s accomplishment lies in his 

recognition of the value of abstract statements.  He is also reputed to have traveled widely 
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and legend has it that he amazed the Egyptian sages by computing the heights of the 

pyramids  (probably by means of similar triangles). 

 Pythagoras (c. 585 - c. 580 B.C.)  is believed to have studied with Thales and then 

moved to southern Italy where he founded his own school.  In this school he taught a 

mixture of philosophy, science, and religion that also included a fair amount of 

mathematics.  One of the tenets of the Pythagorean faith was the belief that the positive 

integers were the ultimate components of the universe.  For example, if one taut string is 

double the length of another, plucking them will result in two notes that are exactly one 

octave apart.  If the lengths of the strings have ratio  3  to  2,  then the shorter one will 

produce a note that is recognized by musicians as being a fifth above the note of the 

longer string.  Similarly, the visual world could be reduced to numbers by endowing the 

latter with shapes.  Thus,  1, 3, 6, 10, ...  were called triangular numbers because the 

corresponding number of dots could be organized into triangles (Fig. 2.1).  The square  

 

 

Figure 2.1 

 

numbers were, of course, 1, 4, 9, 16, ... (Fig. 2.2).  These visual representations of the 

 

 

Figure 2.2 

 

integers are mathematically fruitful.  Figure 2.3 makes it clear that the sum of two 
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  1 + 3 + 5 + 7 + 9  =  25 

   Figure 2.3    Figure 2.4 

 

consecutive triangular numbers is a square number, and Figure 2.4 makes a convincing 

case that the sum of any sequence of consecutive odd integers that begins with  1  is in 

fact also a square number.  Given their other discoveries, it is hard to believe that the 

Pythagoreans failed to notice these interesting relationships.  They are supposed to have 

discovered all the theorems regarding triangles, polygons, and circles that are taught as 

part of today’s high school curriculum, including the fact that the sum of the angles of a 

triangle is  180o  and, of course, the Theorem of Pythagoras.  In addition, they also had 

some knowledge of the tilings and the regular solids that are discussed in Chapters 7 and 

8 of this book. 

 The Pythagoreans’ preoccupation with integers eventually led them to the 

realization that the length of the diagonal of a square of unit side is not expressible as the 

ratio of two integers.  In other words,  2   is irrational. This discovery must have been 

disconcerting because it conflicted with the aforementioned doctrine that the universe can 

be expressed in terms of integers.  Reportedly, its discoverer, Hippasus of Metapontum, 

was drowned for his bad tidings.  Eventually, the Greeks, if not the Pythagoreans 

themselves, resigned themselves to the existence of irrational numbers and went on to 

develop a theory of incommensurable numbers that made it possible to incorporate them 

into the general framework of mathematics.   

 The irrationality of  2   is, of course, an interesting and important mathematical 

fact.  Equally significant, however, are its implications regarding the high level of rigor 

the Greeks of the fifth century attained.  All known proofs of this irrationality are subtle; 
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no visually immediate proof of the type displayed in Figures 2.3 and 2.4 exists.  It is 

therefore safe to assume that by this time geometry had matured no only in the 

abstraction of its concepts but also in the rigor of its arguments.  Anyone who can 

produce a convincing proof of such a surprising and counterintuitive fact as the 

irrationality of  2   must have logical standards at least equal to those of today’s 

graduate mathematics students. 

 The sophists, a group of itinerant professional teachers, the earliest of whom 

studied with Pythagoras, did much to further the cause of geometry by incorporating it 

into their curriculum (which also included grammar, rhetoric, dialectics, eloquence, 

morals, astronomy, and philosophy).  Since they promoted themselves as practical 

trainers in the art of persuasion as preparation for political and legal careers, they  must 

have considered the abstraction and logical argumentation of geometry as a valuable 

pedagogical tool.  As Plato says in The Republic: 

 

... with respect to finer reception of all studies, we surely know there is a general and 

complete difference between the man who has been devoted to geometry and the one who 

has not. 

 

 None of several geometry books that preceded Euclid’s have survived.  The first of 

those was written by Hippocrates of Chios (circa 460-380 B.C.). The most important and 

innovative was, without doubt, that of Eudoxus (408 - c. 355 B.C.)  who, amongst other 

accomplishments, invented the method of exhaustion, a calculus-like discipline.   

  Euclid of Alexandria wrote his famous book The Elements circa 300 BC. This 

book codified some of the state of the art of geometry at the time, although much was 

omitted too. It actually consists of thirteen books whose contents are 

 

Books I-IV:  The Geometry of Triangles and Circles  
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Books V-VI:  Theory of Geometric Proportions 

Books VII-IX: Theory of Numbers 

Book X:  Theory of Irrational Surds 

Books XI-XIII: Solid Geometry. 

 

  For two thousands years The Elements  remained the standard text for geometry 

throughout the world.  It was translated into many languages and over a thousand printed 

editions have been published since 1482.  After the Bible, it is Western Civilization’s 

most influential book.  The first alternative exposition of geometry was offered by the 

French mathematician Adrien-Marie Legendre (1752 - 1833) in 1794.  The discovery of 

non-Euclidean geometry in the nineteenth century forced mathematicians to reexamine 

the foundations of geometry from a much more critical point of view.  A variety of gaps 

and flaws were found and this work culminated in David Hilbert’s (1862 - 1943) The 

Foundations of Geometry which appeared in 1899 and which set Euclidean geometry on 

completely rigorous grounds (see Appendix E).  Unfortunately this development, as well 

as those promulgated subsequently by other mathematicians, suffers from the 

pedagogical defect that the proofs of many “obvious” facts are quite difficult.  Current 

high school geometry texts resolve this difficulty by listing many such facts as axioms 

rather than theorems.  This, of course, is problematic because it opens up the possibility 

of simply declaring all geometrical facts to be axioms.  There has been a considerable 

amount of experimentation with innovative ways of teaching geometry during the last 

fifty years but, unfortunately, no consensus has been reached.  In the process, much of the 

concern with rigor that characterized the old fashioned teaching style has been sacrificed 

in the name of reform and replaced with other, more accessible, visually appealing, or 

contemporary, topics.   
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EXERCISES 2.1A 

 
1. Briefly describe the lives and accomplishments of the following predecessors of Euclid: 

 a) Thales   b) Pythagoras  c) Democritus 

 d) Anaxagoras  e) Archytas  f) Eudoxus 

 g) Hippocrates of Chios 

2. Briefly describe the lives and accomplishments of the following successors of Euclid: 

 a) Archimedes  b) Apollonius  c) Ptolemy 

 d) Heron   e) Menelaus  f) Pappus 

 g) Proclus  

 

 

2.  Preliminaries 

 

Quite appropriately, Euclid began his development with a list of definitions.  
 

DEFINITIONS 

 

1. A point is that which has no part. 
 

 By modern standards, at least, many of Euclid’s definitions are deficient and it 

has been argued that they were added by a later commentator.  This particular definition 

is not proper because it is impossible to define a term by listing only the qualities it does 

not have.  Instead it should be viewed as an attempt on its author’s part to informally 

convey the notion of a point - the ultimate indecomposable particle.  Definitions 2 below 

should be understood in the same way.  Points will be denoted by upper case letters  A, B, 

C, ... 

 

2. A line is breadthless length. 
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 Euclid's line is today's curve.    

 

3. The extremities of a line are points. 
 

 No new terms are defined here.  Euclid is simply clarifying the relation between 

the points and the lines defined above. 

 

4. A straight line is a line which lies evenly with the points on itself. 
 

 This sentence is obscure.  In the author’s opinion, the points of this definition are 

the two extremities mentioned in the previous one. In other words, of all the lines having 

the same extremities, the straight line is that one which lies exactly in between those 

extremities. 

 
 It is customary to conclude from Definitions 3 and 4 that Euclid implicitly 

assumed a straight line to have finite length so that it necessarily has endpoints.  The 

phrasing of Propositions  2.3.10  and  2.3.15  (amongst others) below indicates that this 

view may not be entirely correct.  When necessary, Euclid had no qualms about referring 

to the infinite line that extends indefinitely in both directions.  Many of today’s texts, 

although by no means all, use  

€ 

AB   to denote the finite straight line segment joining A  

and  B,  AB  for its length, and  

€ 

↔AB   for the infinite straight line that contains both  A  and  

B.  Like Euclid, this text will gloss over the distinction between the first two and use  AB  

for both. When necessary, either the double arrow notation or a lower case letter will be 

used for the infinite line. Similarly, 

€ 

→AB denotes the ray or halfline which consists of that 

half of  

€ 

↔AB  that begins at  A, extends indefinitely, and contains  B. 
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5. A surface is that which has length and breadth only. 

 

6. The extremities of a surface are lines. 
 

  It is implicit in this definition that every surface is necessarily of finite extent. 

 

7. A plane surface is a surface which lies evenly with the straight lines on itself. 
 

 This should be interpreted in a manner similar to that of Definition 4.  A finite 

plane surface is characterized by the fact that it lies exactly in between its border lines. 

 

8. A plane angle is the inclination to one another of two lines in a plane which meet 

one another and do not lie in a straight line. 

 

9. And when the lines containing the angle are straight, the angle is called 

rectilineal. 
 

  Notwithstanding the fact that Euclid seems to be displaying here an interest in 

curvilinear angles, he subsequently referred to such angles only once, in Proposition 

III.16, to make a point that is of little interest.  It has been posited that the geometers of 

the time were dallying with such angles without coming to any serious conclusions, and 

that Euclid felt it necessary to acknowledge their efforts.   

 Since it is unclear what is meant by the inclination of two lines, an angle is 

defined here as either of the two portions of the plane bounded by a pair of rays that 

emanate from the same point.  By extension, any pair of line segments with a common 

endpoint also determines two angles.  The lines forming the angle are its sides and the 

intersection of the sides is the angle's vertex.  An angle that has vertex  A  and sides  AB  

and  AC  will be denoted by  ∠ BAC (or ∠ CAB).  Definition 8 excludes the possibility 
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that  AB  and  AC  determine the same infinite straight line.  I.e., Euclid excluded the  0o  

and  180o  angles from his definition, possibly because zero was not then recognized as a 

number.  This has both advantages and disadvantages and this text will not follow his 

lead in this instance.  Thus, if  A, B, C  are consecutive points on a straight line,  then  

∠ ABC is a straight angle and   ∠ BAC  and  ∠ BCA  are zero angles. 

 

10.  When a straight line set up on another straight line makes the adjacent angles 

equal to one another, each of the equal angles is right, and the straight line standing on 

the other is called a perpendicular to that on which it stands. 
 

 The existence of right angles is demonstrated in Proposition 2.3.11.  This is also 

Euclid’s first mention of the notion of equality, and it is not clear whether he is referring 

to equality of measure or congruence.  This issue is discussed in detail in the paragraphs 

dealing with the Common Notions below. 

 

11. An obtuse angle is an angle greater than a right angle. 

 

12.  An acute angle is an angle less than a right angle. 

 

13.  A boundary is that which is an extremity of anything. 

 

14.  A figure is that which is contained by any boundary or boundaries. 

 

15.  A circle is a plane figure contained by one line such that all the straight lines 

falling upon it from one point among those lying within the figure are equal to one 

another. 
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16. And that point is called the center of the circle. 

 

17.  A diameter of the circle is any straight line drawn through the center and 

terminated in both directions by the circumference of the circle, and such a straight line 

also bisects the circle. 

 

18. A semicircle is the figure contained by the diameter and the circumference cut off 

by it.  And the center of the semicircle is the same as that of the circle. 

 

19.  Rectilineal figures are those which are contained by straight lines, trilateral 

figures [or triangles] being those contained by three, quadrilateral those contained by 

four, and multilateral those contained by more than four straight lines. 

 

 These rectilineal figures are today’s polygons and the straight line segments 

containing them are their sides.  The endpoints of the sides of a polygons are its vertices.  

It is implicit in Euclid's definition that every vertex lies on only two sides and every two 

sides intersect only in a vertex.  A straight line joining two vertices that are not the 

endpoints of a side is a diagonal.  A polygon that contains all of its diagonals in its 

interior is said to be convex. The triangle with vertices  A, B, C  is denoted by  Δ ABC. 

  

20. Of trilateral figures, an equilateral triangle is that which has three sides equal, 

and isosceles triangle that which has two of its sides alone equal, and a  scalene triangle 

that which has its three sides unequal. 
 

 According to this definition equilateral triangles are not isosceles triangles.  This 

unimportant distinction is contrary to modern usage, which sees an equilateral triangle as 

a special kind of isosceles triangle, and will be ignored here.  It is customary to refer to a 
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side of an isosceles triangle as its base provided the other two sides are equal to each 

other. 

 

21. Further, of trilateral figures, a right-angled triangle [or right triangle] is that 

which has a right angle, an obtuse-angled triangle  that which has an obtuse angle, and 

an acute-angled triangle that which has its three angles acute. 

 

 

22. Of quadrilateral figures, a square is that which is both equilateral and right-

angled; an oblong [rectangle] that which is right-angled but not equilateral; a rhombus 

that which is equilateral but not right-angled; and a rhomboid [parallelogram] that which 

has its opposite sides and angles equal to one another but is neither equilateral not right-

angled.  And let quadrilaterals other than these be called trapezia. 
 

 Once again, Euclid's definitions do not completely agree with modern usage.  To 

us a parallelogram is a quadrilateral whose opposite sides are parallel (see Definition 23 

below), a rectangle is a parallelogram whose angles are all right angles, a rhombus is a 

parallelogram all of whose sides are equal, and a square is a figure that is both a rectangle 

and a rhombus.  The parallelogram  ABCD  is denoted by  ABCD,  the rectangle  

ABCD  is denoted by   ABCD,  and the square  ABCD  is denoted by   ABCD. 

 

23.  Parallel  straight lines are straight lines which, being in the same plane and being 

produced indefinitely in both directions, do not meet one another in either direction. 

 

 If the straight lines  AB  and  CD  are parallel, this is denoted by  AB || CD. 
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 By the time Euclid came to write The Elements the Greeks had amassed 

thousands of theorems.  As is the case today, the proofs of many of these relied on other 

theorems.  In order to eliminate the possibility of cyclical reasoning, it was necessary to 

create a list of the fundamental theorems in which each proof cited only definitions, 

previously proved theorems, or both.  It must have come as a surprise to the Greek 

geometers to discover that such a list was impossible.  The starting point of such a list 

could not consist of definitions alone - some theorems must be accepted without 

justifications.  These unproven theorems were called axioms or postulates.  Just which 

theorems should serve as postulates is a question that must be resolved on subjective 

grounds.  It often happens that one mathematician’s postulate is another’s proven 

theorem.  It is very likely that Euclid's choice of postulates was based to a large extent on 

the various textbooks to which he had access.  Later generations modified his choices in 

many ways, and two well known systems appear in Appendices C, D, and E.    

 One informal principle that guides mathematicians in their selection of postulates 

is that of austerity.  A postulate should be a simple, easily parsed, statement.   

Nevertheless, as will be seen below, there are important exceptions to this rule. 

 Euclid began with ten axioms.  The first five are called postulates and the other 

common notions (the meaning of this term will be clarified soon).  These were followed 

by 462 theorems that are called propositions  (there is no difference between propositions 

and theorems).  The truth of the matter is that the view of The Elements as a well 

grounded and logically consistent ordering of theorems is to be understood as an ideal 

only because Euclid's organization of geometry is flawed.  There are several instances 

where undefined terms and unstated postulates appear in his arguments.  Some of these 

are minor errors, but the correction of others would require considerable revision of the 

material.  Nevertheless, because of its vision and because of its logical strength, Euclid's 

opus is justly regarded as one of the supreme achievements of Greek Civilization in 

particular and of the human mind in general.  Euclid's choice of postulates are now listed.   
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POSTULATES 

 

Let the following be postulated: 

 

1. To draw a straight line from any point to any point. 
 

 Taken at face value, this postulate merely states that every pair of distinct points 

can be joined by a straight line.  However, in view of some of the arguments given in the 

proof of Proposition 2.3.4 and elsewhere, it is necessary to conclude that Euclid 

understood this statement to include the additional assumption that any two points can be 

joined by at most one straight line. 

 

2. To produce a finite straight line continuously in a straight line. 

 

 One of the implications of this postulate is that both the plane and space extend 

infinitely far in all directions.  The reason that it is stated in terms of extendibility rather 

than extent is that the Greek mathematicians were aware of the logical complications 

inherent in the concept of infinity and therefore avoided its explicit mention whenever 

possible.   

 

3. To describe a circle with any center and distance. 
 

 In this postulate Euclid is not asserting the existence of a circle. This existence 

actually follows from Postulate  2  which implies that given any point  A,  straight line  m  

through  A,  and proposed radius  r,  there exists a point  P  on  m  such that  AP = r.  The 

set of all such points  P  is the proposed circle  with center  A  and radius  r (Fig. 2.5).  
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Rather, Euclid is stating here that he intends to use such circles as building blocks in the 

logical tower he is setting out to construct.  Alternatively, one can think of Euclidean 

geometry as a solitaire game whose legitimate moves are these postulates. 

 

 

Figure 2.5  Regarding the existence of circles. 

 

 The statement of Proposition 2.3.2 below makes it clear that this postulate is to be 

interpreted in a very narrow sense.  Namely,  given a point  A  and a line segment  AB  

there exists a circle with center  A  and radius  AB.  The postulate does not say that given 

a point  A  and a line segment  BC  there is a circle with center  A  and radius equal to  

BC.  This latter statement, which is considerably stronger than Postulate 3,  is in fact the 

content of Proposition 2.3.2  below.  The distinction between Postulate 3 and Proposition 

2.3.2 is rephrased by modern mathematicians by saying that their Greek predecessors 

used collapsible compasses  whose legs lost their angle whenever the compass was lifted 

off the paper.  This statement is, of course, a metaphor and should not be taken literally.  

The circle with center  A  and  radius  AB  or  r  is denoted in this text by  (A; AB)  or   

(A; r). 

 

4. That all right angles are equal to one another. 
 

 Euclid chose to use the right angle as his theoretical unit for measuring all 

rectilineal angles (degrees were used in practice) and this is only possible if it is known 

that all right angles are equal.  It was therefore necessary for him to have either a theorem 
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or a postulate that asserts this equality.   It might be noted that this postulate is 

qualitatively different from the previous three.  Those proclaimed the legitimacy of 

certain constructions whereas this one asserts the equality of some figures.   

 

5.  That, if a straight line falling on two straight lines make the interior angles on the 

same side less than two right angle [in sum], the two straight lines, if produced 

indefinitely, meet on that side on which are the angles less than two right angles. 
 

 Like Postulate 4,  this one differs from the first three in that it makes a statement 

that relates the several parts of a figure.  Moreover, its statement is much more 

complicated than any of the preceding statements.  For these reasons many of Euclid’s 

successors believed that this postulate could be proved on the basis of the others and was 

therefore superfluous. However, their repeated attempts, over two millennia, to 

substantiate this feeling were invariably unsuccessful.  Finally, in the nineteenth century, 

it was demonstrated beyond all doubt that all such efforts must of necessity fail.  It is 

impossible to deduce Postulate 5 from the other postulates.  This issue will be discussed 

in greater detail in Section 2.4 below. 

 It was mentioned above that Euclid's axiomatization was incomplete in the sense 

that his proofs make occasional use of unstated and unvalidated assumptions.  This is the 

case in Propositions 2.3.1, 2.3.4, 2.3.8 and others.  Two such assumptions are stated as 

additional postulates. 

 

S (Separation). The infinitely extended straight line, the triangle and the circle separate 

the plane into two portions such that any line joining a point of one portion to a point of 

the other intersects the separating figure.  In the case of the line the two portions are 

called the line's sides.  In the case of a triangle or a circle the portions are called the 

interior and exterior. 
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A(Application). Given two triangles  ABC  and  A'B'C',  it is possible to apply  Δ 

ABC  to  Δ A'B'C'  so that the vertex  A  falls on the vertex  A',  the side  AB  falls on the 

side  A'B',  and the vertex  C  falls in the same side of  A'B'  as  C'. 

 

 The Common Notions listed below are also postulates, and in some editions they 

are indeed grouped together with the previous five postulates.  However, these Common 

Notions do share a common thread that sets them apart.  They are all concerned with 

equality and inequality.   While Euclid did not define these notions explicitly, his sense of 

these terms is clarified by  the way he used them.  For example, Proposition 3.2.3 states 

that parallelograms which are on the same base and in [between] the same parallels are 

equal to one another.   The conclusion that Euclid was referring to equality of size rather 

than congruence is therefore inescapable.  In other words, when Euclid said that two 

parallelograms were equal he meant that they had the same areas, when he said that two 

straight lines were equal he meant that they had the same lengths, and when he said that 

two angles were equal he meant something of the same nature.  In order for this 

interpretation to work it is necessary to stipulate that Euclid had an underlying, albeit 

unstated, assumption that all geometric objects have an aspect of numerical size or 

magnitude.  In lieu of defining these terms, their properties were set forth in the Common 

Notions, so named because they describe the properties that are shared by (or common 

to) all mensurations, regardless of whether they relate to length, area, volume, weight, or 

angular size.  This explanation is supported by Euclid's failure to provide any other 

definition of the notions of area and volume notwithstanding his many propositions about 

these very concepts.  When viewed in this light the Common Notions strikingly resemble 

the standard modern axiomatic definition of a Haar Measure.  Section 3.2 contains a 

more detailed discussion of area. 
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 The symbol  "="  is used to denote equality in magnitude, regardless of the 

specific aspect that is being measured.  Thus, 

 

    Δ ABC     =     Δ DEF 

 

means that the two said triangles have equal areas.   Similarly, 

 

    AB     =     CD 

 

means that the straight line segments joining  A  to  B  and  C  to  D  have equal lengths.  

Of course, in this case, they are also congruent, but that is accidental.  The equality in 

length of line segments and the equality of angular measures of angles happens to imply 

their congruences.  On the other hand, the equality of the areas of regions and volumes of 

solids does not entail the stronger relation of congruence.  

 

 

COMMON NOTIONS 

 

1. Things which are equal to the same thing are also equal to one another. 

 

2. If equals be added to equals, the wholes are equal. 

 

3.  If equals be subtracted from equals, the remainders are equal. 

 

  From the modern point of view the third Common Notion is redundant, since it 

seems to be already subsumed by the previous one.  The Greeks, however, did not 
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recognize the existence of negative numbers, and so it was necessary for Euclid to 

include both Common Notions  2  and  3  in his list. 

  

4. Things which coincide with one another are equal to one another. 
 

 In view of the proof of Proposition 2.3.4 (see below) this should be understood as 

saying that things which can be made to coincide with one another have equal sizes.  This 

can be interpreted as Euclid's first mention of congruence in the sense of a rigid 

transformation.  The contradictory attitudes Euclid displayed in the proofs of Propositions  

2.3.2  and  2.3.4  make it clear that he had ambivalent feelings about the use of such 

transformations.  The first of these propositions could have been proved by simply 

moving a given line segment to a given location.  Instead, Euclid produced an elaborate 

and ingenious proof that, quite properly, made no use of such movements.  The proof of 

Proposition 2.3.4, on the other hand, begins with an application of one triangle to 

another.  In other words, one triangle is lifted and placed on top of the other.  Since none 

of the definitions or postulates provide for such applications, this is a clear-cut 

relinquishment of standards on the part of Euclid.  The fact that Euclid used this device 

sparingly implies that he was in all likelihood aware of its impropriety.  The lack of a 

framework for the treatment of transformations and congruence constitutes one of the 

more serious flaws of The Elements. 

 

5.  The whole is greater than the part. 
 

 This Common Notion turns out to be very useful in a variety of proofs by 

contradiction, that of Proposition 2.3.6 being the first instance.  In addition, it also insures 

that, whatever aspect it is that is being measured, some geometrical figure has a non-zero 

size.  This is logically necessary since otherwise it could be possible to trivialize the 

notion of size by assigning to every figure the measure of zero.  Note that this trivial zero 
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measure does have the properties stipulated in the first four notions and only fails to 

satisfy the fifth one.  

 Euclid's postulates are now reexamined in the context of the surface of the sphere.   

Since great semicircles are not geodesics, diametrically opposite points  on the sphere 

cannot be joined by a geodesic and so, strictly speaking, Euclid's Postulate 1 fails to hold 

on the sphere.  However, the next best thing is true:   every two points on the sphere that 

are not diametrically opposite can be joined by a (unique) geodesic segment.  The 

uniqueness is guaranteed by the fact that the plane containing the geodesic segment must 

also contain the center of the sphere. 

 Euclid's Postulate 2 fails to hold on the sphere in a rather dramatic fashion.  No 

geodesic on the sphere of radius  R can be extended to a length equal to or greater than  

2πR.  In fact, it could be argued that no spherical geodesic can be extended to a length of 

πR  or more, since if that length were reached the geodesic would have to contain a pair 

of diametrically opposite points. 

 Euclid's Postulate 3 does hold on the sphere.  Given any point  C  and any 

geodesic segment  CD,  there clearly is a circle of spherical radius  CD  on the sphere (see 

Fig. 2.6). 

 

 

Figure 2.6  A spherical circle of spherical radius  R. 

 

 Euclid's Postulate 4 also holds on the sphere.  A right spherical angle is formed by 

any two geodesic arcs whose defining planes are at right angles to each other.  For 
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example, every meridian cuts the equator in a spherical right angle.  It is also true that 

given any two spherical right angles, there is a rotation of the sphere that transforms one 

into the other. 

 Postulate 5 holds trivially, regardless of the angles between the lines, since any 

two geodesic segments, if sufficiently extended, will intersect (in a pair of diametrically 

opposite points).  The reason for this is that both segments extend to great circles each of 

which divides the sphere into two equal halves.  If these circles did not intersect these 

equalities could not hold. 

 With the proper reinterpretation Postulate S  can be made to hold on the sphere.  

Infinitely extended straight lines have to be replaced with great circles, and the exterior 

sides are no longer infinite.  With these modifications the figures in question all separate 

the surface of the sphere into two parts that can be seen as sides. 

 Postulate A  also holds on the sphere.  The requisite applications are rotations of 

the sphere about an axis that passes through its center and reflections in planes that 

contain the center. 

  

EXERCISES 2.2A 

 
1. Let  A  and  B   be two distinct points on the surface of a sphere.  Describe a rigid motion of the 

sphere that moves  A  to  B's location. 

2. Let  AB  and  CD  be two geodesic segments on the surface of the sphere.  Describe a rigid motion 

that moves  AB  to the position of  CD.  (Note:  It is permissible to describe a rigid motion as a 

composition of several rigid motions.) 

3. Let Δ ABC and Δ DEF be equal spherical angles.   Describe a rigid motion of the sphere that 

moves the first angle onto the position of the second so that  BA  falls along  ED  and  BC  falls 

along  EF.   
  

 Euclid's postulates are now reexamined in the context of hyperbolic geometry.  

Euclid's Postulate 1 holds here too.  To verify this assertion two cases must to be 
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considered.  If the two points in question have coordinates  (a, b1)  and  (a, b2)  then 

clearly the vertical Euclidean line segment joining them is the only geodesic that joins 

them.  If, on the other hand, they have coordinates  (a1, b1)  and  (a2, b2)  with  a1 /=  a2,  

then there is one and only one semicircle that contains them both and has its center on the 

x-axis.  This  semicircle's center is the intersection of the x-axis with the perpendicular 

bisector to the line segment joining those two points. 

 Euclid's Postulate 2 holds for hyperbolic geometry because the x-axis is infinitely 

far for all of its inhabitants (see Section 1.2). 

 As was noted in the first discussion of Postulate 3 ,  the existence of the circle   

(A; AB)  follows from Postulate 2 which is already known to hold in the hyperbolic plane.  

Consequently all such circles exist in hyperbolic geometry as well.  It follows that these 

circles are legitimate building blocks in this context too. 

 Since two geodesics form a hyperbolic right angle if and only if their tangents 

form a Euclidean right angle, the equality of hyperbolic right angles follows from the 

equality of Euclidean right angles.  Thus, Postulate 4 holds in the hyperbolic plane. 

 Rather surprisingly, Postulate A does hold for the hyperbolic plane.  This is 

difficult to explain at this point because not enough tools have been developed to describe 

the rigid motions of the hyperbolic plane.  However, this statement is borne out by the 

subsequent Exercises 7.3.9-11. 

 Postulate S also holds in the hyperbolic plane too.  This is intuitively plausible 

since, in fact, every closed curve  C  that does not intersect itself has a well defined inside 

and outside, and every curve that joins the inside to the outside must of necessity cross  C  

at some point. 

 Since Euclid's Postulates  1, 2, 3, 4, A, S   hold for the hyperbolic plane it follows 

that all the propositions that can be proved on the basis of these postulates alone also hold 

for the hyperbolic plane.  The set of propositions that follow from these common 

postulates are collectively known as neutral geometry, or absolute geometry.  This 
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includes Propositions 1-28 of Book I of Euclid as well as a variety of others that are listed 

in the neutral sections of this text.  Postulate 5,  on the other hand, does not hold in the 

hyperbolic plane.  In Figure 2.7 the geodesics  p  and  q  make interior angles  α  and  β   

 

 

Figure 2.7  A hyperbolic counterexample to Euclid's Postulate 5. 

 

with the geodesic  r,  where the sum of  α  and β  is quite clearly less than  180o,  and yet 

the geodesics  p  and  q,  no matter how far extended, do not meet.  Postulate 5 is 

therefore not a part of neutral geometry. 

 

EXERCISES 2.2B 

 
1. Comment on the following postulates in the context of taxicab geometry: 

 a)  1;  b)  2;  c)  3;  d)  4;   e)  5;  

 f)  S;  g)  A.  

2. Comment on the following postulates in the context of maxi geometry: 

 a)  1;  b)  2;  c)  3;  d)  4;   e)  5;  

 f)  S;  g)  A. 

3. Draw a taxicab circle of radius  1. 

4. Draw a maxi circle of radius  1. 

 

3.   Propositions 1 - 28 

 

Having laid a foundation in the form of definitions, postulates, and common notions, 

Euclid proceeded to list several hundred logical conclusions each of which is called a 

proposition.  There are two kinds of propositions.  One kind asserts a relationship 
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between some geometrical objects.  Such, for example is Proposition 2.3.5 which states 

that the angles at the base of an isosceles triangle are equal to each other.  The second 

kind of proposition asserts the constructibility of a certain geometrical object.  Thus, 

Proposition 2.3.9 states that angles can be bisected, or, in other words, that angle 

bisectors can be constructed.  Since Euclid's postulates only mention the existence of 

points, straight lines, and circles, it has become customary to say that the only tools that 

are allowed in Euclidean constructions are rulers and compasses.  This too is to be 

understood only as a metaphor.  Surely the idea of using a physical ruler to draw a 

straight line is just as objectionable as that of using the top of a can to draw a circle.  It 

would be more accurate to say that Euclid constrained himself to a discussion of logical 

constructs definable by means of points, straight lines, and circles alone. 

 Ideally, the justification of both kinds of propositions must rely only on 

definitions, postulates, common notions, and previously justified propositions.  In fact, 

both Euclid and the author allow for some deviation from this strict standard. 

 Euclid's conventions also allowed him to only use and/or make relational 

propositions about geometrical figures whose constructibility had been demonstrated in a 

previous constructive proposition.  Thus, Proposition 2.3.20, whose proof requires the 

midpoint of the side of a triangle must be preceded by Proposition 2.3.10  which asserts 

the constructibility of the midpoint of a straight line segment. 

 The format that Euclid used for stating and validating his propositions is still in 

use today.  The verbal description of the proposition is followed by a symbolic 

description of the context (GIVEN) and the relational or constructive asseveration (TO 

PROVE or TO CONSTRUCT).  In the case of a relational proposition this is followed by 

a proof (PROOF) that validates the proposition.  In the justifications of the steps of a 

proof the terms definition, common notion, postulate, and proposition will be respectively 

abbreviated as DFN, CN, PT, and PN.  
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 Euclid invariably signed off on his proofs with the phrase "what it was required 

to prove" which is rendered as "quod erat demonstrandum"  in Latin.  The initials of this 

phrase, Q.E.D.  served as the traditional end of proof symbol for hundreds of years until it 

became fashionable in the last thirty or so years to replace it with some variant of a small 

rectangle.  In this text the traditional "Q.E.D." denotes the end of a proof.  In the case of a 

constructive proposition, the above mentioned asseveration is followed by a description 

of the construction (CONSTRUCTION).  This, in turn, should be followed by a proof 

that the constructed figure does indeed possess the required properties.  However, the 

proof of the validity of a construction is often so straightforward that it can, and should 

be, omitted.   

 As part of his exposition Euclid incorporated many propositions that constitute 

geometrical analogs of algebraic rules.  Because of the lack of algebraic symbols in his 

times, this resulted in many obvious propositions with tedious proofs.  In order to avoid 

these inconveniences basic algebraic manipulations will be permitted in this text’s proofs. 

 For the most part, the statements of the propositions and proofs in this text are 

essentially the same as those that appear in Sir Thomas L. Heath's century old translation 

of The Elements.   For the sake of clarity the proofs are presented with modern notation 

and some of the statements of the propositions are paraphrased.  Some of Euclid's more 

cumbersome or erroneous proofs are replaced by improved ones.  All such instances are 

explicitly noted. 

 

 

PROPOSITIONS 

 

PROPOSITION 2.3.1(I.1).  On a given finite straight line to construct an equilateral 

triangle. 

GIVEN:  Line segment  AB  (Fig 2.8) 
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TO CONSTRUCT:  Δ ABC  such that  AB  =  BC  =  CA. 

 

 

Figure 2.8  

   

CONSTRUCTION:  Draw the circles  (A; AB)  and  (B; AB) [PT 3].  Let  C  be one of 

their intersections [PT S].  Then  Δ ABC  is the required triangle. 

PROOF: AB     =     AC     [DFN 15] 

  BA     =     BC     [DFN 15] 

 ∴  AC     =     BC     [CN 1] 

           Q.E.D. 

 

 This proposition demonstrates both some of Euclid's strengths and some of his 

weaknesses.  On the positive side he was a careful thinker and expositor who was 

unwilling to accept as obvious the existence of a triangle which most people take for 

granted.  Unfortunately, he was not careful enough.  Specifically, he implicitly accepted 

that the two auxiliary circles drawn in this proof necessarily intersected (there is no 

version of Postulate S in The Elements).  Now, as physical objects, these figures must 

clearly intersect, but as abstract entities, whose properties must be reducible to Euclid's 

definitions, postulates, and common notions, this claim calls for verification.  This is not 

a minor point.  The fact is that Euclid failed to provide a framework within which the 

interiors and exteriors of configurations can be discussed and this is one of the major 

defects of his logical edifice.  The need for such a framework is underscored by the 
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paradoxical nature of Exercise 3.3C.10.  In this text, of course, it is Postulate S that 

provides the rationale for the existence of the intersection point  C  in the above proof. 

 There was no compelling reason for Euclid to choose the construction of 

equilateral triangles as his first proposition.  Other texts employ different starting points.  

It is noteworthy that the last few propositions of the last of the thirteen books that 

comprise Euclid's The Elements  deal with the construction of the five regular solids (see 

Section 8.1) that are the three dimensional analogs of the equilateral triangle in particular 

and of the regular polygons in general.  In fact, the faces of three of these five solids are 

themselves equilateral triangles.  Thus, Euclid may have chosen his starting point and 

ending point  on esthetic grounds.  They gave his work an artistic form. 

 It is convenient to denote the intersection of two lines  p  and  q  by  p  ∩ q.  In the 

case where  p  or  q  is a circle, this will be used to denote only one of the intersection 

points. 

 

PROPOSITION 2.3.2(I.2).  To place at a given point (as an extremity) a straight 

line equal to a given straight line. 

GIVEN:  Point  A,   line segment  BC (Fig 2.9). 

TO CONSTRUCT:  A point  D  such that   AD  =  BC. 

 

 

Figure 2.9 

 

CONSTRUCTION:  Let  Δ ABE  be equilateral  [PN 2.3.1],  let  F  =  EB ∩ (B; BC)  
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[PT 3], and let  D  = EA ∩ (E; EF) [PT 3].  Then  D  is the required point. 

PROOF: ED     =     EF   [Radii of the same circle] 

  EA     =     EB   [Sides of an equilateral triangle] 

 ∴ AD     =     BF   [CN 3] 

 but BF     =     BC   [Radii of the same circle] 

 ∴ AD     =     BC   [CN 1] 

           Q.E.D. 

 

 Informally speaking, this proposition asserts that any construction that can be 

carried out with a non-collapsible compass, i.e., a compass that does not lose its angle 

when lifted off the plane, can also be accomplished with a collapsible one, albeit by a 

process that requires several more steps.  More succinctly, the constructive power of the 

collapsible compass equals that of the rigid compass. 

 This proposition and its relation to Postulate 3 clarify one of the principles that 

underlie Euclid's strategy in choosing his postulates.  Postulates should have as little 

content as possible.  After all, Euclid could have chosen Proposition 2.3.2 as Postulate 3 

with no resulting loss of any subsequent propositions or complications in any subsequent 

proofs.  That he chose not to do this indicates that he enjoyed flexing his mental muscles 

just for the joy of using them. 

 

PROPOSITION 2.3.3(I.3).  Given two unequal straight lines, to cut off from the 

greater a straight line segment equal to the less. 

GIVEN:  Line segments  AB > CD (Fig 2.10). 

TO CONSTRUCT:  A point  E  on  AB  such that  AE = CD. 
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Figure 2.10 

 

CONSTRUCTION:  Let  F  be a point such that  AF = CD  [PN 2.3.2]  and let   

E =  AB ∩ (A; AF)  with  AB.  Then  E  is the required point. 

PROOF:  By construction,  AE = AF = CD. 

           Q.E.D.  

 

EXERCISES 2.3A 

 
1. Construct a line segment whose length is double that of a given line segment. 
2. At a given point  P,  construct a line segment whose length is double that of a given line segment  

AB. 

3. Construct a line segment whose length is the sum of the lengths of two given line segments. 

4. At a given point  P  construct a line segment whose length equals the sum of the lengths of two 

given line segments  AB  and  CD. 

5. At a given point  P  construct a line segment whose length equals the difference of the lengths of 

two given unequal line segments  AB  and  CD. 
6. At a given point  P,  construct a line segment whose length is triple that of a given line segment  

AB. 

7. Comment on Proposition 2.3.1 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

8. Comment on Proposition 2.3.2 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

9. Comment on Proposition 2.3.3 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

10(C). Perform the construction of Proposition 2.3.1 using a computer application. 

11(C). Perform the construction of Proposition 2.3.2 using a computer application. 
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12(C). Perform the construction of Proposition 2.3.3 using a computer application. 

 

 The next proposition is the well known  SAS (side-angle-side) congruence 

theorem. 

 

PROPOSITION 2.3.4(I.4).  If two triangles have two sides equal to two sides 

respectively, and have the angles contained by the equal straight lines equal, they will 

also have the base equal to the base, the triangle will be equal to the triangle, and the 

remaining angles will be equal to the remaining angles respectively, namely those which 

equal sides subtend. 

GIVEN:  Δ ABC, Δ DEF,  AB = DE,  AC = DF,  ∠ BAC = ∠ EDF (Fig. 2.11). 

TO PROVE:  BC = EF,  Δ ABC = Δ DEF,  ∠ ABC = ∠ DEF,  ∠ ACB = ∠ DFE. 

 

 

Figure 2.11 

 

PROOF:  Apply  Δ ABC  to  Δ DEF so that  A  falls on  D  and  AB  falls along  DE  

[PT A].  Then 

  B  falls on  E     [AB = DE, given] 

  AC  falls along  DF    [∠ BAC = ∠ EDF, given] 

  C  falls on  F     [AC = DF, given] 

  BC  falls on  EF    [PT 1] 

 ∴ BC = EF,  Δ ABC = Δ DEF,   

  ∠ ABC = ∠ DEF,  ∠ ACB = ∠ DFE  [CN 4] 

           Q.E.D.   
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 This is the first of several instances wherein Euclid uses the undefined notion of 

application.  Postulate A  can be used to justify this step.   

 The triangles  ABC  and  DEF  of Proposition 2.3.4 are such that  

  

 AB     =     DE,  BC     =     EF,  AC     =     DF, 

 ∠ BCA    =    ∠ EFD, ∠ CAB    =    ∠ FDE, ∠ ABC    =    ∠ DEF 

 

i.e., their respective sides and their respective angles are equal.  Such triangles are today 

called congruent  since it is intuitively clear that given any two physical congruent 

triangles, one of them can be picked up and placed on top of the other so that the 

corresponding sides and angles will coincide.  It is important to note, though, that this 

term does not appear in The Elements.  The congruence of these triangles is denoted 

today as  Δ ABC ≅ Δ DEF.  It is both customary and helpful to list the vertices of these 

triangles in an order that is consistent with the equality of their parts.  In other words, if   

Δ PQR ≅ Δ XYZ  then it is implicitly understood that  ∠ QRP = ∠ YZX, PR = XZ, and so 

on. 

  

EXERCISES 2.3B 

 
1. Use the notion of an application to create a simpler "construction" for Proposition 2. 

2. Use the notion of an application to provide a "proof" of Postulate 4 . 

3. Use the notion of an application to prove the ASA congruence theorem [PN 2.3.29], i.e. that if two 

triangles have two angles of one equal respectively to two angles of the other, and if the sides 

joining these angles are also equal, then the triangles are congruent. 
4. Comment on Proposition 2.3.4 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic. 
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5. Let  A = (0, 0), B = (1, 1), C = (-1, 1), A' = (2, 0), B' = (4, 0), C' = (2, -2).  Show that ΔABC  and  

ΔA'B'C'  satisfy the hypothesis of Proposition 2.3.4  in taxicab geometry but are not congruent in 

it. 

6. Let Δ ABC be given.  Show that there exists a  Δ DEF  such that  Δ ABC �≅ Δ DEF in the 

Euclidean sense but not in the taxicab sense. 

7. Comment on Proposition 2.3.4 in the context of maxi geometry. 
    

PROPOSITION 2.3.5(I.5).  In isosceles triangles the angles at the base are equal to 

one another; and, if the equal straight lines be produced further, the angles under the 

base will be equal to one another. 

GIVEN:    Δ ABC,  AB = AC (Fig 2.12). 

TO PROVE:    ∠ 1   =   ∠ 2,   ∠ 3   =   ∠ 4. 

 

 

Figure 2.12 

 

PROOF: Δ ABC  ≅   Δ ACB by  SAS  because 

   AB   =   AC   [Given] 

   AC   =   AB   [Given] 

   ∠ 5  =   ∠ 5 

 ∴ ∠ 1  =   ∠ 2 

 but ∠ ABD   =   ∠ ACE    [Both are straight angles] 

 ∴ ∠ 3   =   ∠ 4    [CN 3] 

          Q.E.D.  
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 Euclid's proof of Proposition 2.3.5  is surprisingly long and intricate. This earned 

it the nickname Pons Asinorum or Ass's Bridge in the days when every schoolboy studied 

Euclid.  The 19th century logician and philosopher Charles S. Pierce commented that it 

"... made so many boys conclude they have no capacity for geometry because this proof, 

the first one of any difficulty in Euclid, leaves the proposition to their minds less evident 

than they found it."  This is the attitude that is evident in the following modern day 

limerick: 

    

   In Greek mathematical forum 

   Your Euclid was present to bore 'em. 

    He spent all his time 

    Drawing circles sublime 

   And crossing the Pons Asinorum. 

 

The proof given here is due to Pappus (ca 300), also an Alexandrine, who wrote a now 

lost commentary on Euclid's Elements. 

 

EXERCISES 2.3C 

 
1. Prove that the three angles of an equilateral triangle are all equal to each other.  What adjustments 

would your proof require if you accepted Euclid's definition of an isosceles triangle? 

2. In  Δ ABC,  K  and  L  are points on the equal sides  AB  and  AC  respectively,  such that  AK = 

AL.  Prove that  CK = BL. 

3. In Δ ABC,  AB = AC  and  D  and  E  are points on the side  BC  such that    BD = CE.  Prove that  

AD = AE. 

4. Suppose  AC = AD  and  BC = BD  where  C  and  D  are points in the opposite sides of the 

straight line  AB.  Prove that  Δ  ABC ≅ Δ ABD.  (Hint: Draw  CD  and consider three cases.) 

5. Comment on Proposition 2.3.5 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 
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PROPOSITION 2.3.6(I.6).  If in a triangle two angles be equal to one another, the 

sides which subtend the equal angles will also be equal to one another. 

GIVEN:  Δ ABC,  ∠ 1 =  ∠ 2 (Fig 2.13). 

TO PROVE:  AC  =  AB.  

  

 

Figure 2.13 

 

PROOF:  By contradiction.  Suppose  AB  and  AC  are unequal and assume without loss 

of generality that   AB > AC.  Let  D  be that point in the interior of  side  AB  such that  

BD = AC.  Then  Δ BCD ≅ Δ CBA  by  SAS  because 

   DB   =   AC    [Construction] 

   BC   =   CB 

   ∠ 1  =   ∠ 2    [Given] 

 ∴ Δ BCD   =   Δ CBA  

This, however, contradicts Common Notion 5  since  Δ DCB  is clearly only a part of  Δ 

ACB.  Hence, the original supposition was false and so  AB = AC. 

           Q.E.D. 

 

 The converse of a statement of the form  if  p  then  q  is the statement  if  q  then  

p.    Thus, the converse of the statement   if   a = b  then  a2 = b2 is the statement  if  a2 = 

b2  then  a = b.  Similarly,  each of Propositions 2.3.5  and  2.3.6  is the other's converse.  

As these examples attest, there is no apparent necessary relation between the logical 
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validity of a statement and that of its converse.  In the first instance the original statement  

if   a = b  then  a2 = b2  is valid whereas its converse  if  a2 = b2  then  a = b  is 

demonstrably false.   Similarly, the false statement  if  a2 = b2  then  a = b  has the valid 

converse  if   a = b  then  a2 = b2.  Finally, the converse Propositions 2.3.5 and 2.3.6 are 

both valid. 

 

EXERCISES 2.3D 

 1. Prove that if all three angles of a triangle are equal to each other then the triangle is equilateral. 

2. Comment on Proposition 2.3.6 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

3. Give an example of a proposition and its converse that are both false. 

 

PROPOSITION 2.3.7(I.7).  Given two straight lines constructed on a straight line 

(from its extremities) and meeting in a point, there cannot be constructed on the same 

straight line (from its extremities) and on the same side of it, two other straight lines 

meeting in another point and equal to the former two respectively, namely, each to that 

which has the same extremity. 

GIVEN:  Line segment  AB,  points  C, D  on the same side of  AB,  

 CA = DA,   CB = DB (Fig 2.14). 

 

 

Figure 2.14 
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TO PROVE:   The points  C  and  D  coincide. 

PROOF:  By contradiction.  Suppose  C  and  D  are distinct and draw the line segment  

CD.  Since  Δ ACD  is isosceles, it follows from Proposition 2.3.5 that   ∠ 2 =   ∠  3 .    

Consequently, 

 

   ∠ 1   <    ∠ 2   =     ∠ 3    <     ∠ 4 . 

 

This, however, contradicts the fact that   ∠ 1 = ∠ 4 [because  Δ BDC  is also isosceles]. 

 Hence the points  C  and  D  cannot be distinct. 

           Q.E.D. 

 

EXERCISES 2.3E 

 
1. The proof of Proposition 2.3.7 is incomplete because it depends on the position of  D  relative to Δ 

ABC.  Complete this proof by considering three additional cases: one where  D  is inside Δ ABC, 

one where it is in the interior of one of the sides, and one where it coincides with one of the 

vertices. 

2. Comment on Proposition 2.3.7 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

 

 

PROPOSITION 2.3.8(I.8).  If two triangles have their respective sides equal then 

they are congruent. 

GIVEN:  Δ ABC,  Δ DEF,  AB = DE,     BC =  EF,     AC = DF (Fig 2.15). 
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Figure 2.15 

 

TO PROVE:  Δ ABC ≅ Δ DEF.  

PROOF:  Apply  Δ ABC  to  Δ DEF  so that  B, C  fall on  E, F  respectively and so that 

the vertex  A  falls in that side of  EF  that contains the point  D [PT A].   Then 

 

 GE     =     AB     =     DE and  GF     =     AC     =     DF 

 

and hence, by Proposition 2.3.7,  it follows that the points  G  and  D  coincide.  

Consequently,  ∠ ABC = ∠ GEF = ∠ DEF  and so,  Δ ABC ≅ Δ DEF  [SAS]. 

           Q.E.D. 

 

 Proposition 2.3.8 is called the SSS congruence theorem. 

 

EXERCISES 2.3F 
 
1. Use Exercise 2.3C.4 to provide an alternate proof of Proposition 2.3.8 that does not rely on 

Proposition 2.3.7. 

2. Comment on Proposition 2.3.8 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

   

PROPOSITION 2.3.9(I.9).  To bisect a given rectilineal angle. 

GIVEN:  ∠ BAC (Fig 2.16). 

TO CONSTRUCT:  A line  AF  such that  ∠ BAF = ∠ FAC. 
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Figure 2.16 

 

CONSTRUCTION:  Let  D  be any point on  AB  and let  E  be a point on  AC  such that   

AE = AD  [PN 2.3.3].  Let  DEF  be an equilateral triangle [PN 2.3.1].  Then  ∠ 1= ∠ 2 . 

PROOF:   Δ DAF ≅ Δ EAF by SSS because 

   AD     =     AE    [Construction] 

   DF      =     EF    [Construction] 

   AF     =     AF 

 ∴ ∠ 1    =     ∠ 2. 

           Q.E.D. 

 

 The line  AF  of this proposition is called the angle bisector of  ∠ BAC.  In a  Δ 

ABC  it is common to refer to the portion of the angle bisector of  ∠ BAC  that lies 

between the vertex  A  and the side  BC  also as one of the triangle's angle bisectors.  The 

method used by Euclid to construct angle bisectors is different from the one commonly 

taught in high schools wherein the equilateral  Δ DEF  is replaced by two arcs of equal 

radii that are centered at  D  and  E  respectively and intersect at  F.  This latter 

construction is properly speaking not Euclidean since it assumes the compass to be rigid.   

Of course, this method could be justified by Proposition 2.3.2, but Euclid chose to work 

with Proposition 2.3.1 instead. 
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 Proposition 2.3.9 begs the question of how to divide an arbitrary angle into any 

number of equal parts.  There is of course no difficulty in dividing an arbitrary angle into  

4, 8, or  2n  equal parts, where  n is any positive integer.  On the other hand, dividing an 

angle into three equal parts, otherwise known as the angle trisection problem turns out to 

be impossible.  This problem was first formulated by the Greeks and continued to draw 

the interest of both professional and amateur mathematicians for over 2000 years.  In  

1837  this impossibility of this construction was finally demonstrated by Pierre Laurent 

Wantzel (1814-1848).  Unfortunately, the proof is not easy and lies beyond the grasp of 

many amateurs who still continue to search for a ruler and compass angle trisection.  

Sometimes they "succeed"  and produce a construction that either misuses rulers and/or 

compasses or else simply produces an approximation.  An example of such a popular 

misconstruction appears in Exercise 3.1C.32 

 

EXERCISES 2.3G 
 
1. Find an alternate method of bisecting a given angle using Euclid's "collapsible" compass. 

2. Prove that the angle bisectors of an isosceles triangle divide the equal sides into respectively equal 

line segments. 

3. Prove that the bisector of the angle opposite to the base of an isosceles triangle also bisects the 

base and is perpendicular to it. 

4. Comment on Proposition 2.3.9 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

5. Divide a given angle into four equal parts. 

6. Given positive integers  m  and  n  and an angle of measure  α, prove that it is possible to construct  

 an angle of measure  
mα

2
n   . 

7(C). Perform the construction of Proposition 2.3.9 using a computer application. 

 

PROPOSITION 2.3.10(I.10).  To bisect a given finite straight line. 
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GIVEN:  Line segment  AB (Fig 2.17). 

TO CONSTRUCT:  A point  D  on  AB  such that   AD =  DB. 

 

 

Figure 2.17 

 

CONSTRUCTION:  Construct an equilateral  Δ ABC  [PN 2.3.1] and let  D  be the 

intersection of the bisector of  ∠ ACB  with  AB.  Then  AD = DB. 

PROOF:   Δ DAC ≅ Δ DBC  by  SAS   because 

   AC     =     BC     [Construction] 

   ∠ 1    =     ∠ 2     [Construction] 

   CD     =     CD 

 ∴ AD     =     DB 

           Q.E.D. 

 

 That point  M  of the line segment  AB  such that  AM = MB  is called the 

midpoint of  AB.  The line segment joining a vertex of a triangle to the midpoint of the 

opposite side is called a median.  The median joining vertex  A  of  Δ ABC  to the 

midpoint of the side  BC  is denoted by either  ma  or  mBC. 

 

EXERCISES 2.3H 
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1. Prove that the triangle formed by joining the midpoints of the three sides of an isosceles triangle is 

also isosceles. 

2. Prove that the triangle formed by joining the midpoints of the three sides of an equilateral triangle 

is also equilateral. 

3. Prove that the medians to the equal sides of an isosceles triangle are equal to each other. 

4. Prove that the medians to the equal sides of an isosceles triangle divide each other into 

respectively equal segments. 

5. Prove that the median to the base of an isosceles triangle is perpendicular to the base and bisects 

the opposite angle. 

6. Divide a given line segment into four equal parts. 

7. Comment on Proposition 2.3.10 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

8(C). Perform the construction of Proposition 2.3.10 using a computer application. 

 

PROPOSITION 2.3.11(I.11).  To draw a straight line at right angles to a given 

straight line. 

GIVEN:  Point  C  on straight line  AB (Fig 2.18). 

TO CONSTRUCT:  Straight line  CF ⊥  AB. 

  

 

Figure 2.18 

 

CONSTRUCTION:  Let  D  be any point on  AC  and let  E  be  point on  BC  such that  

CD = CE [PN 2.3.3].  Construct equilateral  Δ DEF.  Then  CF ⊥ AB. 

PROOF:   Δ DCF ≅ Δ ECF   by  SSS  because 
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   DF     =     EF     [Construction] 

   DC     =     EC     [Construction] 

   FC     =     FC 

 ∴ ∠ 1   =     ∠ 2  

 ∴ CF ⊥ AB       [DFN 10] 

          Q.E.D.  

 

 Given a line segment  AB,  the straight line through its midpoint that is also 

perpendicular to  AB  is called its perpendicular bisector.  The next two propositions 

about perpendicular bisectors do not appear in Euclid's Elements but are nevertheless 

quite useful. 

 

PROPOSITION 2.3.12.  Every point on the perpendicular bisector of a line segment 

is equidistant from the segment's endpoints. 

See Exercise 1. 

 

PROPOSITION 2.3.13.  Every point that is equidistant from the endpoints of a line 

segment is on its perpendicular bisector.  

See Exercise 2. 

 

 The geometrical word for the notion of set or collection is locus.  For example, 

given a point  C  and a real number  r,  the locus of all the points at distance  r  from  C  is 

the circle  (C; r).  This term is frequently used to describe collections of points that have 

geometrically interesting properties.  Thus, it is customary to combine Propositions 

2.3.12-13  into the following one.  
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PROPOSITION 2.3.14.  The locus of all the points that are equidistant from two 

distinct points is the perpendicular bisector to the line segment determined by these 

points. 

 

 As this proposition does not say anything that isn't already contained in either 

Proposition 2.3.12  or Proposition 2.3.13, no proof is required. 

 

PROPOSITION 2.3.15(I.12).  To a given infinite straight line, from a given point 

which is not on it, to draw a perpendicular straight line. 

GIVEN:  Straight line  AB×  ; point  C  not on  AB×  (Fig 2.19) .   

TO CONSTRUCT:  A straight line  CH  such that  CH ⊥ AB×  . 

   

 

Figure 2.19 

 

CONSTRUCTION:  Let  D  be any point on the side of  AB  that does not contain  C.  Let 

the circle (C; CD)  [PT 3]  intersect the straight line AB in the points  E  and  G [PT S].  

Let  H  be the midpoint of  EG  [PN 2.3.10].  Then  CH ⊥ AB. 

PROOF:  Draw  CG  and  CE.  Then  Δ CGH ≅ Δ CEH  by  SSS  because 

   CG     =     CE   [Radii of the same circle] 

   GH     =     EH   [Construction] 

   CH     =     CH 

 ∴ ∠ GHC     =     ∠ EHC 
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 ∴ CH ⊥ AB    [DFN 10] 

           Q.E.D. 

 

 The straight line segment that joins a vertex of a triangle to a point on the opposite 

side and is perpendicular to that side is called an altitude of the triangle.  The altitudes 

that contain the vertices  A, B, C  are denoted by  ha, hb, hc  respectively, or else  hBC, 

hAC, hAB. 

 

EXAMPLE 2.3.16.   Construct  Δ ABC  given the data  β, a, mc.  By this is meant that 

a   Δ ABC  is to be constructed in which the magnitudes of   ∠ ABC,  the side  BC,  and 

the median from  C  to  AB  are prespecified.  Thus, following the standard format for 

construction problems: 

 

GIVEN:  Angle β, line segments  a, mc (Fig 2.20). 

TO CONSTRUCT:  Δ ABC  such that  ∠ ABC = β,  BC = a,  mBC = ma. 

CONSTRUCTION:   Label the vertex of  β  with  B,  and its two sides with  BP and BQ. 

   Set  C  =   BP  ∩ (B; a)    [PN 2.3.3] 

   Set  D  =   BQ ∩ (C; mc)   [PN 2.3.3] 

   Set  A  =    BQ ∩ (D; DB)   [PT 2.3.3]   

 

 

Figure 2.20 

PROOF:  Self-evident. 
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           Q.E.D. 

 

COMMENTS:  If  mc  is too short, there will be no solution.  If  mc  is long enough, there 

may be two solutions, depending on whether the given angle  β  is acute, right, or obtuse. 

 

EXERCISES 2.3I 
 
1. Prove Proposition 2.3.12. 

2. Prove Proposition 2.3.13.  

3. Prove that if one of the altitudes of a triangle is also a median, then the triangle is isosceles. 
4. Construct an isosceles triangle in which  a  and  ha  are given  (b  and  c  being the equal sides). 

5. The point  D  lies either inside or outside ∠ BAC.  Construct a straight line that contains  D  and 

cuts off equal segments on the sides of  ∠ BAC. 
6. Construct  ΔABC  given the data  b, c, ha. 

7. Construct  ΔABC  given the data  a, b, hb. 

8. Construct  ΔABC  given the data  a, ma, hb. 

9. Construct  ΔABC  given the data  a, mb, hb. 

10. Construct  ΔABC  given the data  c, hb, ma. 

11. Construct  ΔABC  given the data  a, ma, β. 

12. Construct  ΔABC  given the data  a, b + c, β. 

13. Construct  ΔABC  given the data  a, b - c, γ. 

14. Construct  ΔABC  given the data  a, b - c, β. 

15. Comment on Proposition 2.3.11 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

16. Comment on Proposition 2.3.12 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

17. Comment on Proposition 2.3.13 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

18. Comment on Proposition 2.3.14 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

19. Comment on Proposition 2.3.15 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 
20(C). Perform the construction of Proposition 2.3.11 using a computer application. 
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 If  A  is a point not on the straight line  

€ 

↔
CD  and  B  is a point on it between  C  

and  D,   then  ∠ ABC  and  ∠ ABD  are said to be supplementary (Fig 2.21). 

 

 

Figure 2.21 

 

PROPOSITION 2.3.17(I.13).  The sum of two supplementary angles is equal to two 

right angles. 

GIVEN:  Straight lines  AB  and  CD  with  B  on  CD. 

TO PROVE:  ∠ CBA + ∠ ABD   =   2  right angles. 

 

 This proposition will not be proved in this text as the sum of supplementary 

angles quite obviously equals a straight angle.  Euclid, however, is somewhat hobbled by 

his artificial exclusion of the straight angle from the realm of angles (see DFN 8).  

Consequently he finds it necessary to replace this obvious equality by the statement that 

the sum of supplementary angles equals that of two right angles.  Moreover, he gives a 

proof that is, in the author's  opinion, unnecessary.  The same attitude is adopted 

regarding the next proposition which is the converse of the previous one. 

 

PROPOSITION 2.3.18(I.14).  If with any straight line, and at a point on it, two 

straight lines not lying on the same side make the adjacent angles equal to two right 

angles, the two straight lines will be in a straight line with one another. 

GIVEN:  ∠ ABC  and  ∠ ABD  with  C  and  D  lying in distinct sides of  AB. 

   ∠ ABC + ∠ ABD   =   2  right angles. 



 2.3 PROPOSITIONS 1-28 

 2.47 

TO PROVE:  BC  and  BD  form a single straight line. 

            

EXERCISES 2.3J 

 

1. Prove that the bisectors of  ∠ ABC  and  ∠ ABD of Proposition 2.3.17 are perpendicular to each 

 other. 

2. Comment on Proposition 2.3.17 in the context the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

3. Comment on Proposition 2.3.18 in the context the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

 

PROPOSITION 2.3.19(I.15).  If two straight lines cut one another, they make the 

vertical angles equal to one another. 

GIVEN:  Straight lines  AB  and  CD  intersecting at  E (Fig 2.22). 

TO PROVE:  ∠ 1  =  ∠ 2. 

 

 

Figure 2.22 

 

PROOF: ∠ 1  +   ∠ 3    =     2  right angles  [PN 2.3.17] 

  ∠ 2  +   ∠ 3   =      2  right angles  [PN 2.3.17] 

 ∴ ∠ 1    =     ∠ 2   [By subtraction of ∠ 3 & CN 3] 

           Q.E.D. 
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 The angles whose equality is asserted by Proposition 2.3.19 are said to be 

vertically opposite. 

 

EXCERCISES 2.3K 

 
1. Prove that if an angle's bisector is extended into the vertically opposite angle then it bisects the 

latter too. 

2. Prove that the bisectors of vertically opposite angles lie in the same straight line.  

3. Prove that if one of the triangle's medians is also an angle bisector then the triangle is isosceles. 

(Hint: extend the median by its own length) 

4. Prove that if a quadrilateral's diagonals bisect each other then the quadrilateral's opposite sides are 

equal to each other and so are its opposite angles. 

5. Comment on Proposition 2.3.19 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 
 
 

PROPOSITION 2.3.20(I.16).  In any triangle, if one of the sides be produced, the 

exterior angle is greater than either of the interior and opposite angles. 

 

 

Figure 2.23 

 

GIVEN:  Δ ABC,  side  BC  produced to  BD (Fig 2.23). 

TO PROVE:  ∠ 5  >  ∠ 3. 

PROOF:     Let  E  be the midpoint of  AC  [PN 2.3.10]  and extend  BE  to  F  so that  

BE = EF [PT 2, PN 2.3.3].  Then  Δ AEB ≅ Δ CEF   by  SAS   because 
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   AE    =     EC    [Construction] 

   ∠ 1    =     ∠ 2    [PN 2.3.19] 

   BE     =     FE    [Construction] 

 ∴ ∠ 3    =     ∠ 4 

 But ∠ 4   <     ∠ 5     [CN 5] 

 ∴ ∠ 3   <     ∠ 5 

           Q.E.D. 

 

EXERCISES 2.3L 

 
1. Let  D  be a point in the interior of  Δ ABC.   Prove that  ∠ ADC  >  ∠ ABC. 

2. Points are said to be collinear  if they lie on one straight line.  Prove that three collinear points 

cannot all be equidistant from the same point.  

3. Prove that through a given point  P  there is only one straight line perpendicular to a given straight 

line  AB. 
4. Comment on Proposition 2.3.20 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

 

 

PROPOSITION 2.3.21(I.17).  In any triangle two angles taken together in any 

manner are less than two right angles. 

GIVEN:   Δ ABC (Fig 2.24). 

TO PROVE:  ∠ 1 + ∠ 2  <   2  right angles. 

 

 

Figure 2.24 
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PROOF: Extend  BC  to  D  [PT 2].  Then 

  ∠ 3  + ∠ 2    =     2  right angles   [PN 2.3.17] 

  ∠ 3   >     ∠ 1      [PN 2.3.20] 

 ∴  ∠ 1  + ∠ 2    <      2  right angles 

           Q.E.D. 

 

EXERCISES 2.3M 

 
1. One of the angles of  Δ ABC  is obtuse.  Prove that the other two are acute. 

2. Prove that if one of a triangle's angles is right, then the other two are acute. 

3. Prove that the angles at the base of an isosceles triangle are acute. 

4. Prove that every triangle has at least one altitude that is interior to it. 

5. One side of a triangle is extended in both directions. Prove that the sum of the two exterior angles 

so formed is greater than two right angles. 
6. Comment on Proposition 2.3.21 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

 

 

PROPOSITION 2.3.22(I.18).  In any triangle the greater side subtends the greater 

angle. 

GIVEN:  Δ ABC,  AC > AB (Fig 2.25). 

TO PROVE:  ∠ 1  >  ∠ 4 . 

 

 

Figure 2.25 
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PROOF:  Let  D  be that point inside  AC  such that  AD = AB [PN 2.3.3],  and draw  BD.  

Then 

  ∠ 1    >     ∠ 2   [CN 5]  

  ∠ 2    =     ∠ 3   [Δ ABD  is isosceles, PN 2.3.5]  

  ∠ 3    >     ∠ 4   [Exterior versus interior, PN 20] 

 ∴ ∠ 1    >     ∠ 4 

           Q.E.D. 

 

PROPOSITION 2.3.23(I.19).  In any triangle the greater angle is subtended by the 

greater side. 

GIVEN:  Δ ABC,   ∠ 1  >  ∠ 2 (Fig 2.26). 

TO PROVE:  AC > AB. 

   

 

Figure 2.26  

 

PROOF: By contradiction.  Suppose that  AC >/   AB.  Then either   

AC = AB  or  AC < AB.  However,  

 if     AC = AB     then     ∠ 1  =  ∠ 2    [PN 2.3.5] 

 if     AC < AB     then     ∠ 1  <  ∠ 2    [PN 2.3.22] 

Since both of the above conclusions contradict the given  ∠ 1  > ∠ 2,  it follows that   

AC > AB. 

          Q.E.D.  
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EXERCISES 2.3N 

 
1. If the bisector of  ∠ BAC  of  Δ ABC  intersects the side  BC  in the point  D,  then  AB > BD  and  

AC > CD. 

2. If in  Δ ABC  and  Δ A'B'C'   AB = A'B',  BC = B'C',  AB < BC,  and  ∠ BAC = ∠ B'A'C',  then the 

two triangles are congruent. (This is sometimes dubbed SSA, although it is clearly not as powerful 

as the other congruence theorems.) 

3. Prove that if the leg and hypotenuse of one right triangle are equal to the leg and hypotenuse of 

another, respectively, then the two triangles are congruent. 

4. In  Δ ABC  AB < AC  and  N  is the intersection of the bisectors of the angles at  B  and  C.  Prove 

that  NB  <  NC. 

5. Prove that the line segment joining any point in the interior of the base of an isosceles triangle to 

the opposite vertex is shorter than the two other sides. 

6. Prove that in a right triangle the hypotenuse (the side opposite the right angle) is greater than either 

of the legs (the other two sides). 

7. In  Δ ABC  AB < BC  and  E  is the midpoint of  AC.  Prove that  ∠ CBE  <  ∠ ABE. (Hint:  Extend  

BE  by its own length.) 

8. In  Δ ABC  AB < BC  and the bisector of  ∠ ABC  intersects the side  AC  in the point  D.  Prove 

that  AD < CD.  

9. One of the angle bisectors of  a triangle is also a median.  Prove that the triangle is isosceles (Hint: 

Use Exercises 2.3K.4.)  
10. Comment on Proposition 2.3.22 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

11 Comment on Proposition 2.3.23 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

 

 

 The following useful proposition does not appear explicitly in The Elements, but 

it is implicit in Definition 5 of Book III. 

 

PROPOSITION 2.3.24.  Of all the line segments joining a point to a straight line, 

the shortest is the one that is perpendicular to the given straight line. 

GIVEN:   Straight line  

€ 

↔
AB, point  C  not on  

€ 

↔
AB,  points  P =/   Q  on  

€ 

↔
AB,  CP 

€ 

⊥ 

€ 

↔
AB 
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(Fig 2.27). 

TO PROVE:  CP  <  CQ. 

 

 

Figure 2.27 

 

PROOF: ∠ 1  +  ∠ 2    <     2  right angles   [PN 2.3.21] 

  ∠ 1    =     right angle     [PC ' AB] 

 ∴ ∠ 2    <     right angle     =     ∠ 1 

 ∴ CP     <      CQ      [PN 2.3.23] 

           Q.E.D. 

 

 The distance of the line  

€ 

↔
AB from a point  C  not on it is the shortest of the 

segments  CP  where  P  is any point on  AB.  It follows from Proposition 2.3.24  that this 

distance is realized by that point  P  such that CP 'AB.    

 

PROPOSITION 2.3.25(I.20). In any triangle two sides taken together in any 

manner are greater than the remaining one. 

GIVEN:  Δ ABC (Fig 2.28). 

TO PROVE:  AB + AC   >   BC. 
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Figure 2.28 

 

PROOF:  Extend  BA  to a point  D  such that  AD = AC [PT 2, PN 2.3.3]  and draw  CD.  

Then, 

  ∠ 3    >     ∠ 2   [CN 5] 

  ∠ 2    =     ∠ 1   [Δ ACD  is isosceles, PN 2.3.5] 

 ∴ ∠ 3    >     ∠ 1 

 ∴ BD     >     BC   [PN 2.3.23 in  Δ BCD] 

 ∴ AB + AC     =     BA + AD     =     BD     >     BC 

           Q.E.D. 

 The perimeter of a triangle is the sum of the lengths of its sides. 

 

EXERCISES 2.3O 

 
1. Prove that the difference of the lengths of two sides of a triangle is less than the third side. 
2. Prove that each of the triangle's sides is less than half of the triangle's perimeter. 

3. Prove that half of the triangle's perimeter is greater than any line segment that joins a vertex to a 

point in the interior of the opposite side. 

4. Prove that in a triangle one side's median is less than half the sum of the other two sides. 

5. Prove that the sum of the lengths of the three line segments that join any point to the three vertices 

of a triangle is greater than half of that triangle's perimeter. (The point may be inside the triangle, 

outside it, or on one of its sides.) 

6. Prove that the sum of the lengths of the four line segments that join a point to the vertices of a 

quadrilateral is  greater than the sum of the lengths of the quadrilateral's diagonals, unless that 

point is the intersection of the diagonals. 

7. Prove that the sum of the lengths of a quadrilateral's diagonals is less than its perimeter. 
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8. Prove that the sum of the lengths of the diagonals of a convex quadrilateral is greater than half its 

perimeter. 

9. Prove that if  AD  is the bisector of the exterior  ∠ CAE  of  Δ ABC  then  BD + DC  >  BA + AC.   

10*. Let  A, B  be two points on the same side of the straight line  m,  and let  P  be an arbitrary point on  

m.  Prove that  AP + PB  is least when  m  forms equal angles with  AP  and  BP. (Hint: Use the 

previous exercise.) 
11. Comment on Proposition 2.3.24 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

12. Comment on Proposition 2.3.25 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

 

 

PROPOSITION 2.3.26(I.21). If on one of the sides of a triangle, from its 

extremities, there be constructed two straight lines meeting within the triangle, the 

straight lines so constructed will be less than the remaining two sides of the triangle, but 

will contain a greater angle. 

See Exercise 1. 

 

PROPOSITION 2.3.27(I.22).  Out of three straight lines, which are equal to three 

given straight lines, to construct a triangle:  thus it is necessary that two of the straight 

lines taken together in any manner should be greater than the remaining one.  

GIVEN:   Line segments  a, b, c,  a + b  >  c,  b + c  >  a,  c + a  >  b (Fig 2.29). 

 

 

Figure 2.29 
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TO CONSTRUCT:  Δ ABC  such that   BC = a,  CA = b,  AB = c. 

CONSTRUCTION:  Because of the symmetry of the given inequalities, it may be 

assumed, without loss of generality that  a ≥ b ≥ c.  Let  BC  be any line segment of 

length  a.  If  A = (B; c) ∩(C; b)  then  Δ ABC  is the required triangle. 

PROOF:  It follows from the inequality    b + c  >  a  =  BC  that the two drawn circles 

intersect in a point  A  not on  BC.   The choice of radii makes it clear that  AC = b  and  

AB = c. 

           Q.E.D. 

 

 Euclid's proof of the above proposition is unsatisfactory because he does not 

prove that his circles intersect.  This was fixed in this text by assuming that  a  ≥ b  ≥ c. 

 

PROPOSITION 2.3.28(I.23).  On a given straight line and at a point on it to 

construct a rectilineal angle equal to a given rectilineal angle.  

GIVEN:  Straight line  AB  and  ∠ DCE (Fig 2.30). 

TO CONSTRUCT:  ∠ FAB  = ∠ DCE. 

  

 

Figure 2.30 

 

CONSTRUCTION:   Draw  DE.  Construct  Δ AFG  so that  G  is on  AB,  AG = CE,   

AF = CD,  and  FG = DE [PN 2.3.27].  Then  ∠ FAG   is the required angle. 
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PROOF:  Δ AFG ≅ Δ CDE  by  SSS  and so   ∠ FAG = ∠ DCE. 

          Q.E.D.  

 

 It would have been much easier to accomplish this construction by applying the 

given angle to the given line.  That Euclid chooses not to do so indicates that he was 

uncomfortable with this device. 

 

EXERCISES 2.3P 

 
1. Prove Proposition 2.3.26. 

2. For which of the following triples of numbers does there exist a triangle whose sides have those 

lengths? 

 a) 6, 7, 8   b) 4, 6, 8   c) 3, 5, 8   

 d) 10
3
, 10

4
, 10

5  
 

3. Find all numbers  x  such that there is a triangle the lengths of whose sides  are  6, 8, x. 

4. Let  a  and  b  be two positive numbers.  Find all numbers  x  such that there is a triangle the 

lengths of whose sides  are  a, b, x. 

5. Construct an isosceles triangle each of whose equal sides is double the third side. 

6. Construct an angle that equals the sum of two given angles. 

7. Construct an angle that equals the difference of two given angles. 

8. Construct  ΔABC  given the data  a, B, C. 
9. Construct  ΔABC  given the data  A, B, hc. 
9. Construct  ΔABC  given the data  A, B, ha. 
10. Construct  ΔABC  given the data  b, ha, A. 

11. Comment on Proposition 2.3.26 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

12. Comment on Proposition 2.3.27 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

13. Comment on Proposition 2.3.28 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

14(C). Perform the construction of Proposition 2.3.28 using a computer application. 
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 As Propositions I.24 and I.25 are not important for the development in this text, 

their statements and proofs have been relegated to Exercises 5 and 6 respectively. 

 Euclid's Proposition I.26 consists of two congruence theorems that are different 

enough to require separate proofs.  These two are stated here separately.  The following 

proposition is known as the ASA congruence theorem. Proposition 2.3.30, on the other 

hand, could be called the AAS congruence theorem. An alternative proof for ASA that 

makes use of Postulate A was mentioned in Exercise 2.3B.3. 

 

PROPOSITION 2.3.29(I.26). If two triangles have the two angles equal to the two 

angles respectively, and the sides joining the angles are also equal, then they are 

congruent. 

 

 

Figure 2.31 

 

GIVEN:   Δ ABC, Δ DEF,  BC = EF,  ∠ 1 = ∠ 3,  ∠ 2 = ∠ 4 (Fig 2.31). 

TO PROVE:  Δ ABC ≅ Δ DEF 

PROOF:   It is first proven, by contradiction, that  AB = DE.  Suppose not, then it may be 

assumed without loss of generality that  AB  < DE.  Let  G  be a point in the extension of 

the segment  AB  such that  GB = DE.  Then, 

 Δ GBC ≅ Δ DEF   by  SAS  because 

  GB  = DE    [Construction] 

  ∠ 1    =     ∠ 3    [Given] 

  BC     =     EF    [Given] 
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 ∴ ∠ GCB     =     ∠ 4 

 ∴ ∠ GCB     =     ∠ 2   [∠ 4  =  ∠ 2, given] 

This last conclusion, however, contradicts CN 5, and hence it may be concluded that  AB 

= DE.  That  Δ ABC ≅ Δ DEF  now follows by SAS. 

           Q.E.D. 

 

EXERCISES 2.3Q 

 
1. Prove that if one of the triangle's altitudes is also an angle bisector then the triangle is isosceles. 

2. Prove that if a triangle has two equal angles then their bisectors are equal. 

3. In quadrilateral ABCD the diagonal  AC  bisects the interior angles at  A  and  C.  Prove that the 

interior angles at  B  and  D  are equal. 

4. In  Δ ABC  AB = AC  and D, E  are points in the interiors of sides  AB  and  AC  respectively such 

that  AD = AE.  Prove that if  CD  and  BE  intersect in the point  O  then  AO  bisects  ∠ BAC. 
5*. In Δ ABC  and  Δ DEF  AB = DE,  AC = DF,  and  ∠ BAC > ∠ EDF.  Prove that  BC > EF.  (This 

is Proposition I.24.)  

6. In Δ ABC  and  Δ DEF  AB = DE,  AC = DF,  and  BC > EF.  Prove that  ∠ BAC > ∠ EDF.  (This 

is Proposition I.25.) 

7. Comment on Proposition 2.3.29 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

 

 

PROPOSITION 2.3.30(I.26). If two triangles have two angles equal to two angles 

respectively, and the side opposite one of the angles equal to the side opposite the 

corresponding angle, then the two triangles are congruent. 

 See Exercise 1. 

 

 The following two propositions about angle bisectors do not appear in The 

Elements.  They are, however, standard fare in most elementary geometry texts. 
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PROPOSITION 2.3.31. Every point on an angle's bisector is equidistant from that 

angle's sides. 

See Exercise 5. 

 

PROPOSITION 2.3.32. Every point inside an angle that is equidistant from its sides 

lies on its bisector. 

See Exercise 6. 

 

 The next proposition merely combines the previous two.  It requires no new 

proof. 

 

PROPOSITION 2.3.33. The locus of all the points that are equidistant from two 

intersecting lines are the two straight lines that bisect the four angles formed by them. 

 

EXERCISES 2.3R 

  
1. Prove Proposition 2.3.30. (Hint: Assume the triangle sides joining the given angles are not equal 

and obtain a contradiction using PN 2.3.20.) 

2. Prove that the altitudes to the equal sides of an isosceles triangle are also equal. 

3. Prove that the altitudes to the equal sides of an isosceles triangle divide each other into segments 

that are respectively equal. 

4. Prove that the altitude to the base of an isosceles triangle bisects both the base and the angle 

opposite to it. 

5. Prove Proposition 2.3.31. 

6. Prove Proposition 2.3.32. 

7. Comment on Proposition 2.3.30 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

8. Comment on Proposition 2.3.31 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 
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9. Comment on Proposition 2.3.32 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

10. Comment on Proposition 2.3.33 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

 

 

 If a straight line  p  intersects two other straight lines  m  and  n,  then it is 

convenient to attach the following nomenclature to the listed angles and pairs of angles 

(Fig 2.32). 

 

Alternate angles:  {ε, γ},  {δ, θ}, {α, ψ}, {β, η} 

Corresponding angles: {α, ε}, {β, θ}, {δ, η}, {γ, ψ} 

Interior angles:  γ, δ, ε, θ  

Exterior angles:  α, β, η, ψ 

 

 

Figure 2.32 

 

PROPOSITION 2.3.34(I.27).  If a straight line falling on two straight lines make the 

alternate angles equal to one another, the straight lines will be parallel to one another. 

GIVEN:  Straight line  EF  intersects  the straight lines  AB  and  CD  in the points  E  and  

F  respectively,  ∠ 1  = ∠ 2 (Fig 2.33). 
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TO PROVE:  AB || CD. 

 

 

Figure 2.33 

 

PROOF:  By contradiction.  Suppose AB and  CD  are not parallel.  Then it may be 

assumed without loss of generality that  

€ 

↔
AB  and  

€ 

↔
CD  intersect at some point  G  that 

lies on the same side of  EF  as  B  and  D.  Then, however, ∠ 2 is interior to  Δ EFG  

whereas  ∠ 1  is exterior to it.  By Proposition 2.3.20,   ∠ 2 < ∠ 1, contradicting the given 

equality.  Hence  AB || CD. 

           Q.E.D. 

 

PROPOSITION 2.3.35(I.28).  If a straight line falling on two straight lines make the 

exterior angle equal to the interior and opposite angle on the same side, or the interior 

angles on the same side equal to two right angles, the straight lines will be parallel to 

one another. 

See Exercise 3. 
 
 

EXERCISES 2.3S 

 
1. If both pairs of the opposite sides of a quadrilateral are equal to each other then they are also 

parallel to each other. 
2. If the diagonals of a quadrilateral bisect each other then the quadrilateral's opposite sides are 

parallel to each other. 
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3. Prove Proposition 2.3.35. 

4. Comment on Proposition 2.3.34 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

5. Comment on Proposition 2.3.35 in the context of the following geometries: 

 a)  spherical; b)  hyperbolic; c)  taxicab; d)  maxi. 

 

 
4. Postulate 5 Revisited 

 

So far no use whatsoever has been made of Postulate 5.  It is somewhat puzzling 

that Euclid should shy away from the use of this postulate for so long, especially as this 

deferral results in the need for an unnatural, though ingenious, proof for the apparently 

incomplete Proposition 2.3.20(I.16).  The reason this proposition might be viewed as 

incomplete is that, as will be seen in Proposition 3.1.6(I.32), the exterior angle actually 

equals the sum of the two interior and opposite angles - a considerably more elegant and 

satisfying observation.  Some scholars read into this ordering of the propositions a 

conscious reluctance on Euclid's part to make use of the fifth postulate.  They believe that 

Euclid felt that this postulate was unnecessary and that, with enough effort, it could be 

omitted by proving that it is a consequence of the other postulates and common notions.  

By  450 A.D.  the search for such a proof of the Postulate 5 became an acknowledged 

goal of geometry.  Over the centuries, the existence of a proof of this postulate turned 

into a holy grail for mathematicians.  Many geometers occupied themselves with this 

project and many purported proofs were produced.  All of these proofs were subsequently 

demonstrated to be faulty in that they relied on yet other unstated assumptions that were 

in fact logically equivalent to Euclid's Postulate 5.  By the early 1800s the mathematical 

community began acknowledging the possibility that such a proof might not exist.  Ja′  nos 

Bolyai (1802-1862), Nikolay Ivanovich Lobachevsky (1792-1856), and Ernst Minding 
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(1806-1885) found strong evidence supporting this view and in 1868 Eugenio Beltrami 

(1835-1900) proved conclusively that 

 

 Postulate 5  cannot be proved on the basis of the other  

postulates and common notions alone.  

 

Beltrami accomplished this feat by pointing out that with the exception of Postulate 5,  all 

of Euclid's postulates and common notions were valid in the hyperbolic geometry that 

had been created by Joseph Liouville (1809-1882) two decades earlier in a completely 

different context and for completely different purposes, and which was described in 

Section 1.2.  Postulate 5, on the other hand, does not hold in this geometry as is 

illustrated by Figure 2.7  where  α + β  <  180o  and yet the geodesics  p  and  q  do not 

intersect.  This difference between Postulate 5 and the other postulates and common 

notions demonstrates that this postulate cannot be a logical consequence of them alone. 

 

 

CHAPTER REVIEW EXERCISES 

 
1. Let  E  be the midpoint of the median  AD  of the equilateral  Δ ABC.  Prove that  AE < BE. 
2. The isosceles triangles  CAD  and  CBD  have the common base  CD.  Prove that  AB  bisects 

both  ∠ CAD  and  ∠ CBD. 
3. Let  P  be a point in the interior of  Δ ABC  in which  ∠ BAC  is obtuse.  Prove that if  D = BP 

∩ AC  and  E = CP ∩   AB  then  BD + CE  >  BE + ED + DC. 
4. Let  P  be a point in the interior of  Δ ABC    and set  D = AP ∩ BC and  E = BP ∩ AC.   

 Prove that if  PA = PB  and  PD = PE,  then  Δ ABC  is isosceles. 

5. Prove that the sum of the three altitudes of a triangle is less than the sum of its three sides. 

6. Given  Δ ABC  and point  P  in its interior,  let  D = AP ∩ BC and  E = BP ∩ AC.  Prove that if 

 ∠ PBC = ∠ PAC  and  ∠ PBA= ∠ PAB,  then  Δ ABC  is isosceles. 

7. Show that if a quadrilateral is convex then the sum of the diagonals is greater than the sum of each 

pair of opposite sides. 
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8. In quadrilateral  ABCD,  AB = AD  and  ∠ ABC = ∠ ADC.  Prove that  AC  is the perpendicular 

bisector of  BD. 

9. Let  D  be the midpoint of the base  BC  of the isosceles  Δ ABC,  and let  E  be any point on  AC.  

Prove that the difference between  DB  and  DE  is smaller than the difference between  AB  and  

AE. 

10. Let  C  be the midpoint of  AB  and let  D  and  E  be points on the same side of  AB  such that  AD 

= BE  and  CD = CE.  Prove that  AE = BD. 

11. Let  BD, CE, AF  be equal segments on the respective sides  BC, CA, AB of the equilateral  Δ ABC.  

Prove that if the points  M = AD ∩ BE, N = BE ∩ CF, P = CF ∩ AD  are distinct then they form 

an equilateral triangle. 

12. Given points  A  and  B  on the same side of the straight line  m, determine on  m  a point  P  such 

that the difference  AM - MB  is as large as possible. 

13. It is planned to place a bridge across a straight river so that each of two given locations on the 

river's opposite sides are at equal distances from the nearest entry to the bridge.  Where should the 

bridge be placed, assuming that it runs at right angles to the banks?  (See Fig. 2.34) 
 

 
Figure 2.34 

 

14**. Prove that if two of the angle bisectors of a triangle are equal then the triangle is  isosceles. (Hint: 

Proceed by contradiction.) 

15. Explain the difference between Euclid's axioms and common notions. 

16. Explain the difference between collapsible and rigid compasses.  What is the significance of this 

difference in Euclidean geometry? 

17. Are the following statements true or false?  Justify your answers. 

a) Euclid’s development of geometry is error-free. 

b) Euclid gave an axiomatic definition of area. 

c) Every proposition of Euclidean geometry is also valid in neutral geometry. 

d) Every proposition of neutral geometry is also valid in Euclidean geometry. 

e) Every proposition of spherical geometry is also valid in neutral geometry. 

f) Every proposition of neutral geometry is also valid in spherical geometry. 
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g) Every proposition of hyperbolic geometry is also valid in neutral geometry. 

h) Every proposition of neutral geometry is also valid in hyperbolic geometry. 

i) Every proposition of taxicab geometry is also valid in neutral geometry. 

j) Every proposition of neutral geometry is also valid in taxicab geometry. 

k) Parallel straight lines exist in neutral geometry. 

l) Parallel straight lines exist in spherical geometry. 

m) Parallel straight lines exist in Euclidean geometry. 

n) Parallel straight lines exist in hyperbolic geometry. 

o) Parallel straight lines exist in taxicab geometry. 
 


