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CHAPTER 1 
 

Other Geometries: 
A Computational 

Introduction 
 

In order to provide a better perspective on Euclidean geometry, three alternative 

geometries are described.  These are the geometry of the surface of the sphere, hyperbolic 

geometry, and taxicab geometry. 

 

 
1.  Spherical Geometry 

 
 

Due to its relationship with geography and astronomy, spherical geometry was studied 

extensively by the Greeks as early as 300 BC.  Menelaus (circa 100) wrote the book 

Spherica on spherical trigonometry which was greatly extended by Ptolemy (100-178) in 

his Almagest.  Many later mathematicians, including Leonhard Euler (1707-1783) and 

Carl Friedrich Gauss (1777-1855) made substantial contributions to this topic.  Here it is 

proposed only to compare and contrast this geometry with that of the plane.  Because the 

time to develop spherical geometry in the same manner as will be done with Euclidean 

geometry is not available, this discussion is necessarily informal and frequent appeals 

will be made to the readers’ visual intuition. 
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 Strictly speaking there are no straight lines on the surface of a sphere.  Instead it is 

both customary and useful to focus on curves that share the "shortest distance" property 

with the Euclidean straight lines.  The following thought experiment will prove 

instructive for this purpose.  Imagine that two pins have been stuck in a smooth sphere in 

points that are not diametrically opposite and that a (frictionless) rubber band is held by 

the pins in a stretched state.  Rotate this sphere until one of the two pins is directly above 

the other right in front of your mind's eye.  It is then hard to avoid the conclusion that the 

rubber band will be stretched out along the sphere in the plane formed by the two pins 

and the eye - the plane of the book's page in Figure 1.1.  The inherent symmetry of the 

sphere  dictates that this plane should cut the sphere into two identical hemispheres, in 

other words, that this plane should pass through the center of the sphere. It is also clear 

 

 

Figure 1.1  A geodesic on the sphere.  

 

that the tension of the stretched rubber band forces it to describe the shortest curve on the 

surface of the sphere that connects the two pins. The following may therefore be 

concluded. 

 

PROPOSITION 1.1.1 (Spherical geodesics). If  A  and  B  are two points on a 

sphere that are not diametrically opposite, then the shortest curve joining  A  and  B  on 
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the sphere is an arc of the circle that constitutes the intersection of the sphere with a 

plane that contains the sphere's center.   

 

 Such circles are called great circles and these arcs are called great arcs or 

geodesic segments. They are the spherical analogs of the Euclidean line segments.  

 Diametrically opposite points on the sphere present a dilemma.  A stretched 

rubber band joining them will again lie along a great circle, but this circle is no longer 

uniquely determined since these points can clearly be joined by an infinite number of 

great semicircles.  For example, assuming for the sake of argument that the earth is an 

exact sphere, each meridian is a great semicircle that joins the north and south poles.  

Hence, the aforementioned analogy between the geodesic segments on the sphere and 

Euclidean line segments is not perfect.  It is necessary to either exclude such meridians 

from the class of geodesic segments or else to accept that some points can be joined by 

many such segments.  The first alternative is the one chosen in this text.  Thus, by 

definition, the endpoints of geodesic segments on the sphere are never diametrically 

opposite. 

 Next, the spherical analog of the angle is defined. Any two great semicircles that 

join two diametrically opposite points  A  and  B  but are not contained in the same great 

circle divide the sphere into two portions each of which is called a lune, or a spherical  
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Figure 1.2  The lune  α. 

 

angle (Fig. 1.2).  The measure of the spherical angle is defined to be the measure of the 

angle between their tangent lines at  A  (or at  B).  Alternately, this equals the measure of 

the angle formed by the radii from the center of the sphere to the midpoints of the 

bounding great semicircles.  For example, each meridian forms a  90o   angle with the 

equator at their point of intersection. 

  In the Euclidean plane the relationships between lengths of straight line segments 

and measures of angles are given by well known trigonometric identities. Some 

fundamental theorems of spherical trigonometry are now stated without proof.     

 Any three points  A, B, C  on the sphere no two of which are diametrically 

opposite, constitute the vertices of a spherical triangle denoted by  Δ ABC.  The three 

sides of this triangle are the geodesic segments that join each pair.  The sides opposite the 

vertices  A, B, C  (and their lengths)  are denoted  a, b, c  respectively.  The interior angle   

α  at the vertex  A  is the lune between  AB  and  AC.  The interior angles  β  and  γ   at  B  

and  C  are defined in a similar manner. 

 

PROPOSITION 1.1.2 (Spherical trigonometry).   On a sphere of radius  R = 1,  let  

Δ ABC  be a spherical triangle with sides  a, b, c  and interior angles  α,  β,  γ .  Then, 

 

 i)  cos α     =     
cos a  -  cos b cos c

sin b sin c    

 i')  cos a     =     cos b cos c   +  cos α  sin b sin c 
 

 ii)  cos a      =     
cos α  +  cos β cos γ

sin β sin γ   

 ii')  cos α =     cos a sin β sin γ   -  cos β cos γ 
 

 iii)  
sin α
sin a      =     

sin β
sin b      =     

sin γ
sin c  . 
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These are known as the first spherical law of cosines, the second spherical law of cosines, 

and the spherical law of sines.  It should be noted that  i  and  i'  are really the same 

equation as are  ii  and  ii', although, as will be demonstrated by the examples below, their 

uses are different.  The solution of a triangle consists of the lengths of its sides and the 

measures of its interior angles. 

 

EXAMPLE 1.1.3.  Solve the spherical triangle with sides  a = 1, b = 2, and  c = π/2.   

It follows from the first spherical law of cosines that 

 

  cos α     =     
cos 1  -  cos 2 cos π/2

sin 2 sin π/2        =     
cos 1
sin 2       

so that 

 

  α     =     cos-1 (
cos 1
sin 2 )     ≈      53.54o. 

 

The angles  β  and  γ  are similarly shown to have measures    119.64o    and     72.91o .   

 

EXAMPLE 1.1.4.  On a sphere of radius  4000 miles, solve the triangle in which an 

interior angle of  50o  lies between sides of lengths  7000 miles and  9000 miles 

respectively. 

 Since the radius is the unit it follows that we may set 

 

  b     =     
7000
4000      =      1.75   c    =     

9000
4000      =     2.25 . 

 

Hence, from the first law of cosines, 
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 a    =     cos-1(cos a sin b sin c  +  cos b cos c)     ≈     .9221     ≈     3688 miles 

 

Now that all three sides of the triangle are known, the method of the previous example 

yields        

 

 β     =     cos-1(
cos b  -  cos a cos c

sin a sin c  )     ≈      71.05o 

 

 γ     =     cos-1(
cos c  -  cos a cos b

sin a sin b  )     ≈     131.58o . 

 

 Note that in both of the above examples the sum of the angles of the spherical 

triangle exceeds  180o.  That is in fact true for all spherical triangles. 

 

PROPOSITION 1.1.5.  The sum of the angles of every spherical triangle lies strictly 

between 180o  and  540o. 

            

 A spherical triangle the sum of whose angles is close to 180o  is formed by the 

equator together with two close meridians.  Thus, the sum of the angles of the spherical  

Δ ABC  of Figure 1.3  is  90o + 90o + α   =  180o + α.   A spherical triangle A′B′C′  with 

 

 

Figure 1.3  A thin spherical triangle. 
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angle sum near  540o  is described in Figure 1.4. where  A, B, C  are points that are 

equally spaced along a great circle.  As  A′, B′ , C′  approach  A, B, C  respectively, the 

angles they form are flattened out and come arbitrarily close to  180o  each.  For example, 

since the spherical distance between any two of the points  A, B, C  is  2π/3  it might be 

assumed that the spherical distance between any two of the points  A', B', C'  is  a = 2π/3 - 

0.00001,  in which case each of the angles of  Δ A'B'C'  is 

 

 

Figure 1.4  A nearly maximal spherical triangle. 

 

 

    cos-1 ( 
cos a - cos a cos a

sin a sin a  )     ≈     179.52o 

 

and their sum is  538.56o. 

 Since, by definition, each of the interior angles of the spherical triangle is less 

than  180o,  it follows that the sum of these angles can never equal  540o.  Similarly, as 

will be shown momentarily, the sum of these angle cannot equal the lower bound of  180o  

either. 

 The area of the spherical triangle is also of interest.  An elegant proof of this 

formula is offered in Section 3.2. 
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PROPOSITION 1.1.6.   If a triangle on a sphere of radius  R has angles  with radian 

measures  α, β, γ  then it has area  (α + β + γ  − π)R2. 

            

 For example, the spherical triangle formed by the equator, the Greenwich 

meridian and the  90o  East meridian has all of its angles equal to  π/2  and hence its area 

is 

 

   (
π
2   +  

π
2   +  

π
2   - π)R2     =     

πR2

2   . 

 

This answer is consistent with the fact that the said triangle constitutes one fourth of a 

hemisphere.  Since the surface area of the sphere is  4πR2,  this triangle has area 

 

    
1
4   

4πR2

2       =       
πR2

2    

 

which agrees with the previous calculation. 

 The quantity   α + β + γ  − π   is called the excess of the spherical  Δ ABC.  The 

above theorem in effect states that the area of a spherical triangle is proportional to its 

excess.  This assertion is supported by the triangle below which has excess  

π/2 + π/2 + α − π  =  α  and whose area is clearly proportional to  α  as long as  A  and  B  

vary along the equator and  C  remains at the north pole (see Fig. 1.5). 
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Figure 1.5  A spherical triangle. 

 

 This area formula can be used to close a gap in the above discussion.  Since every 

triangle has positive area, it follows that the sum of the angles of a spherical triangle 

never equals  π,   or  180o,  although, as was seen above, it can come arbitrarily close to 

this lower bound. 

 

EXERCISES 1.1 

 
1. Let  ABC   be a spherical triangle with a right angle at  C.  Use the formulas of spherical 

trigonometry to prove that: 
 a) sin a  =  sin α sin c   b) tan a  =  tan α  sin b 
 c) tan a  =  cos β  tan c   d) cos c  =  cos a cos b 
 e) cos α  =  sin β cos a   f) sin b  =  sin β sin c 
 g) tan b  =  tan β  sin a   h) tan b  =  cos α tan c 
 i) cos c  =  cot α cot β   j) cos β  =  sin α  cos b. 
2. On a sphere of radius  R,  solve the spherical triangle with angles    

 a) 60
o
, 70

o
, 80

o    
b) 70

o
, 70

o
, 70

o    

 c) 120
o
, 130

o
, 140

o
    d) θ, θ, θ,   where   60

ο
< θ  < 120

ο. 
3. On a sphere of radius  R,  solve the spherical triangle with sides 
 a) R, R, R     b) R, 1.5R, 2R 
 c) πR/2, πR/2, πR/2    d) d, d, d,  where  0 < d < 2πR 
 e) .2R, .3R, .4R    f) .02R, .03R, .04R 
 g) 2R, 3R, 4R 

4. On a sphere of radius  R,  solve the spherical triangle with 

 a) a = .5R,  β = 60
o
,  γ = 80

o
   b) b = R, α = 40

o
, γ = 100

o
 

 c) a = 2R, β =  γ = 10
o
   d) a = 2R, β =  γ = 170

o
 

5. On a sphere of radius  R,  solve the spherical triangle with 

 a) a = 2R, b = R,  γ = 100
o
   b) b = .5R, c = 1.2R, α = 100

o 

 
c) a = 2R, b = R,  γ = 120

o
   d) b = .5R, c = 1.2R, α = 120

o 
6. On a sphere of radius  75 cm,  solve the spherical triangle with 

 a) a = 100 cm, b = 125 cm, c = 140 cm b) α = 100
o

, β = 125
o

, γ  = 140
o

  

 c)   α = 100
o

, b  = 125 cm, c  = 125 cm  d) a = 100 cm, β  = 125
o
, γ  = 125

o
 

7. Evaluate the limits of the angles of the spherical triangles below both as  x → 0 and as  x → π 
 a) a = b = c = x    b) a = b = x,  c = 2x  
 c) a = x, b = c = 2x 

8. Which of the following congruence theorems hold for spherical triangles?  Justify your answer. 
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 a)  SSS  b)  SAS  c)  ASA  d)  SAA  e)  AAA. 

9*. Prove that the three angles  α, β, γ  are the three interior angles of a spherical triangle if and only if 

they satisfy all of the following conditions: 

   α + β + γ > π,   α + π > β + γ,  β + π > α + γ, γ + π > α + β. 

 

  
2.  Hyperbolic Geometry 

 
 

Imagine a two dimensional universe, with a superimposed Cartesian coordinate system, 

in which the x-axis is infinitely cold.  Imagine further, that as the objects of this universe 

approach the x-axis, the drop in temperature causes them to contract (see Fig. 1.6).  Thus,  

 

 

Figure 1.6  The shrinkage that defines the hyperbolic plane.  

  

the inhabitants of this fictitious land will find  that it takes them less time to walk along a 

horizontal line from  A(0, 1)  to B(1, 1)  (Fig. 1.7) than it takes to walk along a horizontal 

line from  C(0, .5)  to  D(1, .5).  Since their rulers contract just as much as they do, this 

observation will not seem at all paradoxical to them.  If it is assumed that the contraction 



 1.2 HYPERBOLIC GEOMETRY 

 1.11 

is such that the outside observer sees the length of any object as being proportional to its 

distance from the  x-axis, then the inhabitants will find that walking from   C(0, 0.5) to  

D(1, .5) takes twice as long as walking from  A(0, 1) to B(1, 1) and one fifth of the time  

 

 

Figure 1.7  Paths of unequal hyperbolic lengths. 

 

of walking from  E(0, .1)  to  F(1, .1).  To differentiate between the Euclidean length of 

such a segment and its length as experienced by these fictitious beings, it is customary to 

refer to the latter as the hyperbolic length of the segment.  Accordingly, the hyperbolic 

lengths of the segments  AB, CD, and  EF  of Figure 1.7  are  1, 2, and  10  respectively.  

In general, the hyperbolic length of a horizontal line segment at distance  y  from the  x-

axis is given by the formula 

 

        hyperbolic length  =  
Euclidean length

y      (1). 

 

Other curves also have a hyperbolic length and a method for computing this is given in 

Exercise 16 below. 

 Not surprisingly, perhaps, the Euclidean straight line segment joining two points 

does not constitute the curve of shortest hyperbolic length between them.  When setting 

out from  A(0, 1)  to  B(1, 1)  the inhabitants of this strange land may find that if they bear 

a little to the north their journey will be somewhat shorter because, unbeknownst to them,  
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Figure 1.8  Which path has shorter hyperbolic length? 

 

their legs are longer on this  route (Fig. 1.8).  However, if they stray too far north the 

length of the detour will offset any advantages gained by the elongation of their stride 

and they will find the length of the tour to be excessive.  They are therefore faced with a 

trade-off problem.  Some deviation to the north will shorten the duration of the trip from  

A  to  B,  but too much will extend it.  Which path, then, is it that makes the trip as short 

as possible? 

 The answer to this question is surprisingly easy to describe, though not to justify.   

The path of shortest hyperbolic length that connects  A(0, 1)  to  B(1, 1)  is the arc of the  

 

 

Figure 1.9  A hyperbolic geodesic. 

 

circle that is centered at  (.5, 0) and contains  A  and  B (Fig. 1.9).  Its hyperbolic length 

turns out to be  0.962...  in contrast with the hyperbolic length  1  of the horizontal 

segment  AB.   More drastically, the arc of the semicircle centered at  (50, 0)  and which 
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joins the points  A(0, 1)  and  X(100, 1)  has hyperbolic length  9.21,  a mere  9%  of the 

hyperbolic length of the segment  AX. 

 Given any two points, their hyperbolic distance is the minimum of the hyperbolic 

lengths of all the curves joining them.   As was the case for spherical geometry, the 

geodesic segments of hyperbolic geometry are those curves that realize the hyperbolic 

distance between their endpoints.  The hyperbolic plane consists of the portion of the 

Cartesian coordinate system that lies above the x-axis. 

 

PROPOSITION 1.2.1 (Hyperbolic geodesics).  The geodesic segments of the 

hyperbolic plane are arcs of circles centered on the  x-axis and Euclidean line segments 

that are perpendicular to the  x-axis. 

 

 

Figure 1.10  Six hyperbolic geodesics. 

 

 The geodesics of the first variety are called bowed geodesics, whereas the vertical 

ones are the straight geodesics (see Fig. 1.10).  This distinction is only meaningful to the 

outside observer.  The inhabitants of this geometry perceive no difference between these 

two kinds of geodesics. 

 It so happens that as the inhabitants of the hyperbolic plane approach the x-axis 

they shrink at such a rate as to make the x-axis unattainable.  Technically speaking, the 

hyperbolic lengths of all of the geodesic segments in Figure 1.10  diverge to infinity as 
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the endpoints  Q  approach the  x-axis.  This claim will be given a quantitative 

justification at the end of this section. 

 A hyperbolic angle  is the portion of the hyperbolic plane between two geodesic 

rays (Fig. 1.11).  The measure of the angle between two geodesics is, by definition,  the  

 

 

  

Figure 1.11  Three hyperbolic angles. 

 

measure of the angle between the tangents to the geodesics at the vertex of the angle.  

Accordingly, two geodesics are said to form a hyperbolic right angle if and only if their 

tangents are perpendicular to each other as Euclidean straight lines (Fig. 1.12). Given any 

three points that do not lie on one hyperbolic geodesic,  they constitute the vertices of a  

 

 

Figure 1.12  Hyperbolic right angles. 

 

hyperbolic triangle formed by joining the vertices, two at a time, with hyperbolic 

geodesics (Fig. 1.13). 
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Figure 1.13  Three hyperbolic triangles. 

 

 The geometry of the hyperbolic plane has been studied extensively.  Its 

trigonometric laws are surprisingly, not to say mysteriously, similar to those of spherical 

geometry. 

 

PROPOSITION 1.2.2 (Hyperbolic trigonometry).  Let  Δ ABC  be a hyperbolic 

triangle with sides  a, b, c  and interior angles  α,  β,  γ.  Then 

 

 i)  cos α     =     
cosh b cosh c  -  cosh a

sinh b sinh c   

 i')  cosh a     =     cosh b cosh c   -  cos α sinh b sinh c 
 

 ii)  cosh a     =     
cos α  +  cos β cos γ

sin β sin γ   

 ii')  cos α     =     cosh a sin β sin γ  -  cos β cos γ 
 

 iii)  
sin α
sinh a      =     

sin β
sinh b      =     

sin γ
sinh c   

 

EXAMPLE 1.2.3.   Solve the hyperbolic triangle with sides  a = 1, b = 2, and   

c = π/2.    

 It follows from Formula  i  of hyperbolic trigonometry  that   

 

  cos α     =     
cosh 2 cosh π/2  -  cosh 1

sinh 2 sinh π/2       ≈     .9461   
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and so  α  ≈  cos-1(.9461)  ≈  18.89o.    Similarly  β  ≈  87.67o  and  γ   ≈  39.34o.   

 

EXAMPLE 1.2.4.  Solve the hyperbolic triangle with two sides of lengths  2, 3  

respectively, if they are to include an angle of  30o.  

  Set    α  =  30o,  b  =  2,  c   =   3 .  It follows from Formula i’) of hyperbolic 

trigonometry that  

 

 a     =     cosh-1(cosh b cosh c  -  cos α sinh b sinh c)     =     2.545... 

 

Now that all three sides of the triangle are known, the method of the previous example 

yields        

 

  β    =    cos-1(
cosh a cosh c  -  cosh b

sinh a sinh c  )   ≈     16.64o 

 

  γ    =    cos-1(
cosh a cosh b  -  cosh c

sinh a sinh b  )    ≈      52.28o  

 

 As for the sum of the angles of a hyperbolic triangle, the situation is diametrically 

opposite to that on the sphere. 

 

PROPOSITION 1.2.5.  The sum of the angles of every hyperbolic triangle is less 

than  180o. 

 

Figure 1.14  A hyperbolic triangle with three small angles. 
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 This proposition is borne out by the above two examples.  Figure 1.14 

demonstrates that this sum can be quite small.  In fact, in the hyperbolic triangle with 

sides  a = b = c = 10  each angle equals 

 

  α     =     cos-1(
cosh 10 cosh 10 - cosh 10

sinh 10 sinh 10  )     ≈     .77o. 

 

EXAMPLE 1.2.6.  Solve the hyperbolic triangle with  a = 2, β = γ  = 60o.  By 

formula  ii'  of hyperbolic trigonometry 

 

 cos α     =     cosh 2 sin 60osin 60o -  cos 60o cos 60o     ≈     2.57   . 

 

Since the cosine of an angle cannot exceed  1,  such a hyperbolic triangle does not exist.  

Note that a Euclidean triangle with the same specifications does exist.  Exercises 4, 5 

contain some related information.   

 

 The area of the hyperbolic triangle is of course of interest too.  Its formula is quite 

surprising. 

 

PROPOSITION  1.2.7.  The area of the hyperbolic triangle whose angles have 

radian measures α, β, γ  is  π − α − β − γ.   

 

 This formula is given some support by Figure 1.15.  Note that the sum of the 

angles of the larger hyperbolic Δ ABC  is less than the sum of the angles of the smaller 

hyperbolic Δ AB'C'.  The quantity  π − α − β − γ  is called, by analogy with its spherical 

counterpart, the defect  of the hyperbolic triangle.  Thus, the above theorem asserts that 

the area of a hyperbolic triangle is equal to its defect.   
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Figure 1.15  Two hyperbolic triangles with different areas and defects. 

 

 A somewhat peculiar aspect of the hyperbolic notion of length is its independence 

of the choice of unit of length.  Regardless of what scale is chosen for the Cartesian 

coordinate system that is used to define the hyperbolic version of length, the hyperbolic 

distance between any two points remains the same.   Note that the three parts of Figure 

1.16  correspond to three different scales, and yet, according to Formula (1) above, in  

 

 

Figure 1.16  A curve with hyperbolic length  1. 

 

each of the three cases the hyperbolic length of  AB  is  

 
1
1   =  

2
2   =  

3
3   =  1. 
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It follows from this independence of scale that in hyperbolic geometry it is not necessary 

to specify units of length. 

 It might be instructive to show that this independence holds in the vertical 

direction as well. The hyperbolic length of a vertical segment of the hyperbolic plane is 

easily computed with the aid of calculus.  For, if dy  denotes the Euclidean length of the  

 

 

Figure 1.17  Hyperbolic length along the  y-axis. 

 

(infinitesimally) small vertical line segment at height  y  above the x-axis,  then its 

hyperbolic length is  dy/y (see Fig. 1.17).  Consequently the total hyperbolic length of the 

segment  PQ  is 

 

   ⌡
⌠

a

b
dy
y       =     ln b  -  ln a     =     ln 

b
a .    (2). 

 

In particular, if  a = 1  and  b = e = 2.718...,  then the hyperbolic length of the  y-axis 

between  P(0, 1)  and  Q(0, e)  is   

 

    ln 
e
1      =     ln e     =     1. 
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Moreover, if the scale on the axes is changed by a factor of  s,  then  P = (0, s)  and  Q  =  

(0, es)  and again their hyperbolic distance is 

 

    ln 
es
s      =     ln e     =     1. 

 

Thus, if  P  and  Q  are points with coordinates (0, 1)  and  (0, e)  relative to some unit of 

the Cartesian coordinate system, then the line segment joining  P  and  Q  has hyperbolic 

length  1 regardless of the scale that is actually used.  Moreover, this Euclidean line 

segment  PQ,  which has hyperbolic length  1,  is also a hyperbolic geodesic in contrast 

with the aforementioned segment  AB  which also has hyperbolic length  1  but is not a 

hyperbolic geodesic.  Consequently, this geodesic can be taken as the natural unit, or 

absolute unit of length, of hyperbolic geometry. 

 Both spherical and hyperbolic geometry look very different from Euclidean 

geometry.  Nevertheless, it is well known that on a large sphere, a small portion of the 

surface may be practically indistinguishable from a piece of a plane.  This resemblance 

accounts for the fact that people first thought that the world was flat and small children 

still do so today.  The same confusion could occur in the hyperbolic plane.  If the portion 

of the hyperbolic plane that is subject to the direct experience and observation of its 

inhabitants is sufficiently small, their geometry would appear to them as practically 

indistinguishable from that of the Euclidean plane.  This affinity between the hyperbolic 

and Euclidean planes is a topic that will be revisited many times in the subsequent 

discussion.  The explanation of how the trigonometry of a small portion of the hyperbolic 

plane may be confusable with Euclidean trigonometry can be found in the references.  At 

this point it will be demonstrated that, just like the Euclidean plane and in contrast with 

the sphere,  hyperbolic geometry extends indefinitely in all directions.  In other words, 

the inhabitants of the hyperbolic plane have no reason to suspect that part of their  
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Figure 1.18  The hyperbolic plane extends indefinitely in all directions. 

 

universe is missing.  To see this note that by Eq’n (2)  the hyperbolic distance from the 

point  (a, 1)  to the point  (a, t)  in Figure 1.18 is 

 

     ln 
1
t       =     - ln t . 

 

Hence, if travel in the direction of the  x-axis  is simulated by letting  t  approach  0,  then 

this quantity diverges to  -(-∞)  =  ∞.  In other words, for the hyperbolic people the  x-axis  

lies infinitely far away. 

 

HYPERBOLIC DISTANCE. 

 

The hyperbolic distance between any two points   A(x1, y1)  and  B(x2, y2)  can be 

determined by means of the following formulas: 

i) If   x1 = x2  then the hyperbolic distance from  A  to  B  is  |ln 
y1
y2

  | ; 

ii) If  x1 /=  x2  ,  and  (c, o) is the center of the geodesic segment that connects   

 (x1, y1)  and  (x2, y2),  and  r  is  its radius,  then the hyperbolic distance from  A  

to    

 B  is   |ln 
(x1 - c - r)y2
(x2 - c - r)y1

  |  . 
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EXAMPLE 1.2.8.  The hyperbolic distance between the points  (5, 4)  and  (5,7)  is   

|ln (4/7)|   ≈   0.56. 

 

EXAMPLE 1.2.9.  To find the hyperbolic distance between  A(8, 4)  and  B(0, 8)   

note that the line segment  AB  has slope  
8 - 4
0 - 8   =  - 

1
2    and midpoint  M(4, 6) (see Fig. 

1.19).    Hence the perpendicular bisector of  AB  has equation  y - 6 = 2(x - 4)  and is 

easily seen to intersect the  x-axis in the point  C(1, 0).  Thus,  c = 1  and  r = 

(0 - 1)2 + (8 - 0)2     =  65 .   Hence the required distance is   |ln 
(8 - 1 - 65)8
(0 - 1 - 65)4  |     ≈     

1.45... . 

 

 

Figure 1.19  Computing the length of a hyperbolic geodesic. 

 

 

EXERCISES 1.2 

 
1. Let  ABC   be a hyperbolic triangle with a right angle at  C.  
 a) sinh a  =  sin α sinh c   b) tanh a  =  tan α  sinh b 
 c) tanh a  =  cos β  tanh c   d) cosh c  =  cosh a cosh b 
 e) cos α  =  sin β cosh a   f) sinh b  =  sin β sinh c 
 g) tanh b  =  tan β  sinh a   h) tanh b  =  cos α tanh c 
 i) cosh c  =  cot α cot β   j) cos β  =  sin α  cosh b. 

2. Solve the hyperbolic triangle with angles    

 a) 60
o
, 50

o
, 40

o    
b) 50

o
, 50

o
, 50

o    

 c) 20
o
, 50

o
, 70

o
    d) θ, θ, θ,   where    0o

 < θ < 60
ο  

 3. Solve the hyperbolic triangle with sides 
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 a) 1, 1, 1    b) 2, 3, 4  c) 1/2, 1/2, 1/2  
 d) d, d, d,  where  0 < d   e) .2, .3, .4  f) .02, .03, .04 

4. Solve the hyperbolic triangle with 

 a) a = .5,  β = 60
o
,  γ = 40

o
  b) b = .5, α = 40

o
, γ = 50

o
 

 c) a = 2, β = γ = 40
o 

  d) a = 10, β = γ = 40
o 

 
e) a = 1, β = γ = 60

o 
  f) a = .1, β = γ = 60

o  

 
g) a = .2, β = γ = 100

o  
5. For which values of  a  does there exist a hyperbolic triangle with  β = γ = 60

o?   

6. Solve the hyperbolic triangle with 

 a) a = 2, b = 1 ,  γ = 30
o
   b) b = .5, c = 1.2, α = 120

o 

 
c) a = 2, b = 1 ,  γ = 45

o
   d) b = .5, c = 1.2, α = 120

o
 

7.  Evaluate the limits of the angles of the hyperbolic triangles below both as  x → 0  and as  x  → ∞ 
 a) a = b = c = x    b) a = b = x,  c = 2x  
 c) a = x, b = c = 2x  

8. Does the SSS congruence theorem hold for hyperbolic triangles?  Justify your answer. 

9. Does the SAS congruence theorem hold for hyperbolic triangles?  Justify your answer. 

10. Does the ASA congruence theorem hold for hyperbolic triangles?  Justify your answer. 

11. Does the SAA congruence theorem hold for hyperbolic triangles?  Justify your answer. 

12. Explain why the AAA congruence theorem holds for hyperbolic triangles. 

13. Find the hyperbolic distances between each pair of the three points  A(0, 6), B(10, 4), C(10, 16). 

14. Explain why the hyperbolic length of every Euclidean line segment that is parallel to the  x-axis is 

independent of the unit of the underlying Cartesian coordinate system. 

15. Explain why the hyperbolic length of every Euclidean line segment that is parallel to the  y-axis is 

independent of the unit of the underlying Cartesian coordinate system. 

16. Explain why 

  ⌡

⌠

a

b

1 + (f’)
2

f  dx    

 is a reasonable formula for the hyperbolic length of a differentiable curve defined by  y = f(x),   

 a ≤ x ≤ b. 

17(C). Write a script that takes two distinct points as input and yields the hyperbolic geodesic joining 

them, as well as its hyperbolic length, as output. 

18(C). Write a script that takes three distinct points as input and yields a sketch of the hyperbolic triangle 

they form, as well as its solution, as output. (Recall that  cosh
-1

x = ln(x + x
2
 + 1 ).) 
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3.  Other Geometries 
 

 

All school children learn about the geometry of the plane. As was seen in the previous 

two sections, there are other geometries which, broadly speaking, can be classified into 

two categories. 

 One way to obtain a new geometry is to distort the plane.  A piece of paper can be 

rolled into either a cylinder or a cone.  A film of soap can  assume many other shapes, 

including that of a sphere.  The best known of this type of geometries is that of the 

sphere, some of whose properties were presented in Section 1.   Of course, the distortion 

of surfaces may or may not result in distortions of lengths of curves.  Rolling a piece of 

paper into a cone has no such effect - the straight lines on the paper are merely twisted 

into spirals (or circles) but their lengths are unaffected.  On the other hand when a flat 

soap film waves in the air the lengths of the curves on it are continuously altered.  It took 

mathematicians several centuries to realize, sometime around 1850, that this notion of 

distortion of lengths and distances could be, and should be, studied independently of the 

shape distortion that induced it.  The geometries that are obtained by changing the way 

distance is measured in the plane are called Riemannian geometries and hyperbolic 

geometry is their best known and studied instance. Riemannian geometry has found many 

applications in science, the most spectacular of these being the theory of relativity. 

Hyperbolic geometry is still the subject of much contemporary research and has had 

many surprising applications to other mathematical disciplines. 

 Every Riemannian geometry has geodesics which are defined as the shortest 

curves joining two points.  Such geodesics will form triangles and these triangles will 

have interior angles.  These angles, in turn, provide a means for quantifying the 

distortion, or curvature, of a geometry.  If  ABC  is a triangle of a geometry, with interior 

angles of radian measures  α, β, γ,   then the expression  α + β + γ − π  is called its total 
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curvature.   Accordingly, every triangle of the Euclidean plane has total curvature  0.  It 

is therefore reasonable to interpret this quantity as a measure of the extent to which that 

triangle differs from a Euclidean triangle.  By this definition, the total curvature of a 

spherical triangle is always positive and so the sphere is said to be positively curved.  

Hyperbolic geometry, on the other hand, is negatively curved.  It was Gauss who 

formally defined this notion and pointed out its central role in the study of geometry. 

 This chapter concludes with the discussion of yet another specific geometry 

which, while also arising from an esoteric way of measuring distance, is not, for reasons 

that cannot be explained here, a Riemannian geometry.  Taxicab geometry was first 

defined in 1973  but, unlike spherical and hyperbolic geometry, has not been integrated 

into the mathematical mainstream.  Nevertheless, is has proven useful as a pedagogical 

tool that sheds a light on Euclidean geometry and also provides students with an 

elementarily defined mathematical territory they can explore on their own.  Like 

hyperbolic geometry, taxicab geometry takes the Euclidean plane as its starting point and 

redefines distance.  The taxicab distance between the points  P = (x1, y1)  and  Q = (x2, 

y2)  is  

 

dt(P, Q)  =  |x1 - x2| + |y1 - y2| . 

 

Thus, the taxicab distance between  P = (0, 0)  and  Q = (1,1)   is   

 

dt(P, Q)     =     |0 - 1| + |0 - 1|     =     2  

 

whereas the Euclidean distance dE(P, Q)   between them is 

 

(0 - 1)2 + (0 - 1)2      =     2  . 
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Similarly, the taxicab distance between  (2, -3)  and  (3, 5)  is   1 + 8  =  9  and their 

Euclidean distance is  1 + 64   =  65  .   This geometry receives its name from the fact 

that it models the way a taxicab driver would think of distances in a city all of whose 

blocks are perfect squares. 

 It is clear that taxicab distances agree with Euclidean distances along both 

horizontal and vertical straight lines.  If  p  is any other straight line, with inclination  θ  

from the positive  x-axis,  then the taxicab distances along p  are different from, but still 

proportional to, the Euclidean distances.  As indicated by Figure 1.20, 

 

 

Figure 1.20   

 

dt(P, Q )     =     |x2 - x1|  +  |y2 - y1|     =     |cos θ| dE(P, Q)  +  |sin θ| dE(P, Q) 

 

=     (|cos θ|  +  |sin θ|) dE(P, Q)  . 

 

It follows that along any fixed straight line taxicab distances behave very much like 

Euclidean distances.  In particular, the geometrical notion of betweenness can still be 

expressed numerically. 

 

PROPOSITION 1.3.1.  If  the distinct points  P, Q, R  are collinear, then  Q  is 

between  P  and  R  if and only if 
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dt(P, Q)  +  dt(Q, R)     =     dt(P, R).  

           [] 

 

There are many other similarities between the taxicab and Euclidean geometries and 

these are relegated to the exercises in the subsequent chapters.  Some of these differences 

are qualitative.  For example, note that in Figure 1.20 

 

dt(P, Q)     =     dt(P, R)  +  dt(R, Q). 

 

In other words, the line segment  PQ  is not the only shortest path joining  P  and  Q.  In 

fact, if  γ  is any polygonal path joining  P  and  Q  all of whose segments have non-

negative slope, then the taxicab length of  γ  still equals  dt(P, Q)   (Exercise 6).  

Nevertheless,  no path joining  P  and  Q  has taxicab length shorter than  dt(P, Q)  

(Exercise 9) and so it is not unreasonable to agree to regard the Euclidean straight lines as 

the straight lines of taxicab geometry.  Not surprisingly, the taxicab measure of angles 

agrees with their Euclidean measure.  There is, however, no consensus yet on how areas 

should be measured in this outlandish geometry.   

 Only one more striking difference between the taxicab and Euclidean geometries 

will be mentioned here.  The SAS congruence theorem does not  hold for taxicab 

geometry.  For the two triangles in Figure 1.21  we have  dt(A, B)  =  dt(D, E)  =  2  =  

dt(A, C)  =  dt(D, F)   and  ∠ BAC  =  ∠ EDF = 90o  and yet  dt(B, C)  =  2  /=   4  =   

dt(E, F).                     
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Figure 1.21   Two almost congruent triangles. 

 

 Maxi geometry, yet another variant of the Cartesian plane, is defined in Exercise 4  

below.  Some of its properties are the subject of Exercise 4. 

 

EXERCISES 1.3  

 
1. Compute the total curvature of the triangles in Exercise  1.1.2. 
 
2. Compute the total curvature of the triangles in Exercise  1.2.2. 

3. A metric is a function  f(P, Q)  of pairs of points such that for any points  P, Q, R, 
 a) f(P, Q) ≥ 0  and equality holds if and only if  P  and  Q  are identical points; 
 b) f(P, Q)  = f(Q, P); 
 c) f(P, Q)  +  f(Q, R)  ≥  f(Q, R); 
 Show that the taxicab distance is a metric.  
4. The maxi geometry is defined on the Cartesian plane by redefining the distance between its points.  

The maxi distance between  P = (x1, y1)   and  Q = (x2, y2)  is 
 

dm(P, Q)     =    Maximum of { |x1 - x2| ,  |y1 - y2|} . 
 
 In other words, the maxi distance is the larger of the horizontal and vertical Euclidean distances  

between  P  and  Q.  (The straight lines of maxi geometry are, by definition, the Euclidean straight 
lines, and the taxicab measures of angles are also taken to be identical with their Euclidean 
measures.)   

 a) Show that the maxi distance is a metric. 
 b) Show that if  P, Q, R  are collinear, then  Q  is between  P  and  R  if and only if     
   dm(P, Q) + dm(Q, R)  =  dm(P, R).  
5. Determine the taxicab perimeter and curvature of the triangles with the following vertices: 
 a) (0, 0), (0, 3), (3, 4);  b) (-1, -2), (2, 3), (0, 6). 

6. Suppose  γ  is a polygonal path joining  P  and  Q  such that all of its segments have nonnegative 
slopes.  Show that the taxicab length of  γ  equals  dt(P, Q).  Is this also true if all of the segments 

have nonpositive slopes? 
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7. Explain why  ⌡⌠

a

b
 (1 + | f' |)dx   is a reasonable formula for the taxicab length of a differentiable 

curve defined by  y = f(x),  a ≤ x ≤ b. 

8. Let  y = f(x),  a ≤ x ≤ b  be a monotone (either increasing or decreasing) differentiable function.  

Show that if  P = (a, f(a))  and  Q = (b, f(b))  then the taxicab length of the curve defined by  f  is  
dt(P, Q). 

9. Explain why no path joining  P  and  Q  has taxicab length shorter that  dt(P, Q). 

10. Determine the maxi perimeter and total curvature of the triangles with the following vertices: 
 a) (0, 0), (0, 3), (3, 4);  b) (-1, -2), (2, 3), (0, 6). 
11. Find a maxi geometry analog for a)  Exercise 6; b)  Exercise 7; c)  Exercise 8;  
 d)  Exercise 9. 
   

 

CHAPTER REVIEW EXERCISES  

 
1. Compute the perimeter of the triangle formed by joining the midpoints of an equilateral triangle all 

of whose sides have length a = 1  in  
 a)   Euclidean geometry;  b)   spherical geometry;  c)   hyperbolic geometry. 

2. Repeat Exercise  1  for  a = 5. 

3. Repeat Exercise  1  for  a = 10. 

4. Repeat Exercise  1  for  a = 0.1. 

5. Compute the areas of all the triangles in   a)  Exercise  1;   b)  Exercise  2; c) Exercise  4. 

6. Compute the total curvature of all the triangles in  a)  Exercise  1;   b)  Exercise  2;  
 c)  Exercise  4. 

7. Are the following statements true or false?  Justify your answers. 

a) There is a spherical triangle with angles  π/2, π/3, π/6. 

b) There is a hyperbolic triangle with angles  π/2, π/3, π/6. 

c) There is a taxicab triangle with angles  π/2, π/3, π/6. 

d) If two spherical triangles have angles  π/2, π/2, π/2,  then they are congruent. 

e) If two hyperbolic triangles have angles  π/4, π/4, π/4,  then they are congruent. 

f) If two taxicab triangles have angles  π/3, π/3, π/3,  then they are congruent. 

g) Euclidean, spherical, hyperbolic, taxicab, maxi, are all the geometries there are. 

h) Given any two points of spherical geometry, there is a unique geodesic that joins them. 

i) Given any two points of hyperbolic geometry, there is a unique geodesic that joins them. 

j) Given any two points of taxicab geometry, there is a unique geodesic that joins them. 

k) On a sphere of radius  1  there is a triangle of area  4. 

l) In hyperbolic geometry there is a triangle of area  4. 
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m) Every proposition that is valid in spherical geometry is false in hyperbolic geometry. 

n) Every proposition that is valid in hyperbolic geometry is false in spherical geometry. 

 


